Sample records for field orientation parallel

  1. The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification.

    PubMed

    Srivastava, R P; De Wagter, C

    2012-10-01

    The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. An inverse pyramid IMRT field, consisting of six regular and elongated 3 × 20 cm(2) field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 × 5 cm(2) field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 × 5 cm(2). On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 × 20 cm(2) at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 × 20 cm(2). This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.

  2. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  3. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  4. Thermal conductivity of layered organic superconductor β-(BDA-TTP)2SbF6 in a parallel magnetic field: Anomalous effect of coreless vortices

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.

    2005-01-01

    Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.

  5. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  6. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  7. Current distribution on a cylindrical antenna with parallel orientation in a lossy magnetoplasma

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Klock, P. W.; Deschamps, G. A.

    1972-01-01

    The current distribution and impedance of a thin cylindrical antenna with parallel orientation to the static magnetic field of a lossy magnetoplasma is calculated with the method of moments. The electric field produced by an infinitesimal current source is first derived. Results are presented for a wide range of plasma parameters. Reasonable answers are obtained for all cases except for the overdense hyperbolic case. A discussion of the numerical stability is included which not only applies to this problem but other applications of the method of moments.

  8. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  9. Choice of Grating Orientation for Evaluation of Peripheral Vision

    PubMed Central

    Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda

    2016-01-01

    ABSTRACT Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation. PMID:26889822

  10. Choice of Grating Orientation for Evaluation of Peripheral Vision.

    PubMed

    Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda

    2016-06-01

    Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.

  11. Magnetorheological effect in the magnetic field oriented along the vorticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR responsemore » in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.« less

  12. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  13. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either with or without the presence of the sample. Notably, the additional cooling in the presence of conductive samples appears more beneficial at higher field strengths and with an orthogonal incidence than with parallel. The temperature range accessible here, involving a relatively straightforward cryogenic design, brings a gain in RF sensitivity that is of great significance to cutting-edge applications with very weakly conducting samples, small biological specimens, or small animals in vivo. This work also demonstrates a better tolerance to thin-film orientation misalignments relative to the magnetic field, and this could eventually play a role in designing effective non-planar HTS coils or coil arrays which include elements of various orientations. Finally, the data provided in this work may help understand some critical aspects in the design of HTS coils for NMR and MRI applications and accounts for the presence of the static magnetic field, particularly regarding the SNR loss due to a decreased quality factor and detuning issues.

  14. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers.

    PubMed

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-14

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.

  15. Flux pinning forces in irradiated a-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J. I.; Gonzalez, E. M.; Kwok, W.-K

    1999-10-12

    {alpha}-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films have been irradiated with high energy heavy ions in different configurations to study the possible pinning role of the artificial defects in this kind of samples. The original pinning limiting mechanism of the samples is not essentially altered what the irradiation is parallel to the CuO{sub 2} planes. However, when it is deviated from this direction, an increase in critical current density and a change in pinning force are observed when the magnetic field is parallel to the columnar defects at values around the matching field.

  16. Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.

    PubMed

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-05-31

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.

  17. Effect of orientational ordering of magnetic nanoemulsions immobilized in agar gel on magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2018-04-01

    Magnetic nanoemulsions of droplet size ∼200 nm, loaded with single domain superparamagnetic nanoparticles (MNP), are potential candidates for multimodal hyperthermia due to availability of large loading volume and enhanced permeation and retention (EPR) in the cancerous tissues. In such nanoemulsions, radio frequency alternating magnetic field induced heating occur at two entirely different length scales, viz. Neel-Brown relaxation of the dispersed MNP and Brownian relaxation of emulsion droplets. Here we study the effects of orientation ordering or texturing of droplets, immobilized in a tissue mimicking agar matrix, on the field induced heating efficiency. A higher specific absorption rate (maximum ∼73 ± 2 W/gFe) is observed for droplets orientated parallel to the direction of the alternating magnetic field because of the enhancement of effective uniaxial anisotropy energy density and increased effective relaxation time. For identical and non-interacting MNP oriented parallel to the external DC magnetic field, a threefold increase in the effective uniaxial anisotropy energy density and ∼20-30% increased specific absorption rate are observed as compared to those oriented perpendicular to the magnetic field. Magnetic force microscopy images showed that the spherical morphology of the droplets remains intact even after orientational ordering and average topographic height of the droplets are found to be ∼220 (±17) nm, which is in good agreement with the most probable size obtained from dynamic light scattering. The residual volume magnetization of the emulsion droplets is found to be 1.1 × 10-6 emu/cc, indicating the superparamagnetic nature of the droplets in tissue equivalent environment. The observed increase in heating efficiency of the immobilized and oriented emulsion droplets shows promising applications in multimodal hyperthermia therapy because of the requirement of lower dose of MNP and shorter treatment time.

  18. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.

    PubMed

    Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A

    2014-12-01

    In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Thin film metallic sensors in an alternating magnetic field for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Hussein, Z. A.; Boekelheide, Z.

    In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.

  20. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGES

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  1. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Eng Lim, An; Lim, Chun Yee; Cheong Lam, Yee; Taboryski, Rafael; Rui Wang, Shu

    2017-06-01

    Electroosmotic flow (EOF) is an electric-field-induced fluid flow that has numerous micro-/nanofluidic applications, ranging from pumping to chemical and biomedical analyses. Nanoscale networks/structures are often integrated in microchannels for a broad range of applications, such as electrophoretic separation of biomolecules, high reaction efficiency catalytic microreactors, and enhancement of heat transfer and sensing. Their introduction has been known to reduce EOF. Hitherto, a proper study on the effect of nanostructures orientation on EOF in a microfluidic channel is yet to be carried out. In this investigation, we present a novel fabrication method for nanostructure designs that possess maximum orientation difference, i.e. parallel versus perpendicular indented nanolines, to examine the effect of nanostructures orientation on EOF. It consists of four phases: fabrication of silicon master, creation of mold insert via electroplating, injection molding with cyclic olefin copolymer, and thermal bonding and integration of practical inlet/outlet ports. The effect of nanostructures orientation on EOF was studied experimentally by current monitoring method. The experimental results show that nanolines which are perpendicular to the microchannel reduce the EOF velocity significantly (approximately 20%). This flow velocity reduction is due to the distortion of local electric field by the perpendicular nanolines at the nanostructured surface as demonstrated by finite element simulation. In contrast, nanolines which are parallel to the microchannel have no effect on EOF, as it can be deduced that the parallel nanolines do not distort the local electric field. The outcomes of this investigation contribute to the precise control of EOF in lab-on-chip devices, and fundamental understanding of EOF in devices which utilize nanostructured surfaces for chemical and biological analyses.

  2. Motion-form interactions beyond the motion integration level: Evidence for interactions between orientation and optic flow signals

    PubMed Central

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-01-01

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted. PMID:23729767

  3. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

  4. Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1989-07-01

    Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.

  5. Field gradients can control the alignment of nanorods.

    PubMed

    Ooi, Chinchun; Yellen, Benjamin B

    2008-08-19

    This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.

  6. Strong transverse fields in delta-spots

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Wang, Haimin

    1993-01-01

    Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.

  7. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  8. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  9. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  10. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates.more » In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.« less

  11. Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.

    PubMed

    Ernst, David A; Lohmann, Kenneth J

    2016-06-15

    The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.

  12. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

  13. Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni-W substrate

    NASA Astrophysics Data System (ADS)

    Lakshmi, L. S.; Staines, M. P.; Badcock, R. A.; Long, N. J.; Majoros, M.; Collings, E. W.; Sumption, M. D.

    2010-08-01

    We have investigated the frequency dependent contributions to the magnetic ac loss in a 10 strand Roebel cable with 2 mm wide non-insulated strands and a transposition length of 90 mm. This cable is made from 40 mm wide YBCO coated conductor tape manufactured by AMSC and stabilized by electroplating 25 µm thick copper on either side prior to the mechanical punching of the cable strands. The measurements were carried out in both perpendicular and parallel field orientation, at frequencies in the range of 30-200 Hz. While the loss in the perpendicular orientation is predominantly hysteretic in nature, we observe some frequency dependence of the loss when the cable approaches full flux penetration at high field amplitudes. The magnitude is consistent with eddy current losses in the copper stabilization layer. This supports the fact that the inter-strand coupling loss is not significant in this frequency range. In the parallel field orientation, the hysteresis loss in the Ni-W alloy substrate dominates, but we see an unusually strong frequency dependent contribution to the loss which we attribute to intra-strand current loops.

  14. Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    NASA Technical Reports Server (NTRS)

    Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)

    1981-01-01

    Quiet-day data from MAGSAT were examined for effects which might test the validity of Maxwell's equations. Both external and toroidal fields which might represent a violation of the equations appear to exist, well within the associated errors. The external field might be associated with the ring current, and varies of a time-scale of one day or less. Its orientation is parallel to the geomagnetic dipole. The toriodal field can be confused with an orientation in error (in yaw). It the toroidal field really exists, its can be related to either ionospheric currents, or to toroidal fields in the Earth's core in accordance with Einstein's unified field theory, or to both.

  15. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  16. Mechanical signals in plant development: a new method for single cell studies

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.

    1997-01-01

    Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.

  17. Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate

    NASA Astrophysics Data System (ADS)

    Hongo, Motoharu; Matsuo, Shigeki

    2016-06-01

    Laser-induced periodic surface structures (LIPSS) were fabricated on a prescratched silicon surface by irradiation with subnanosecond laser pulses. Low-spatial-frequency LIPSS (LSFL) were observed in the central and peripheral regions; both had a period Λ close to the laser wavelength λ, and the wavevector orientation was parallel to the electric field of the laser beam. The LSFL in the peripheral region seemed to be growing, that is, expanding in length with increasing number of pulses, into the outer regions. In addition, high-spatial-frequency LIPSS, Λ ≲ λ /2, were found along the scratches, and their wavevector orientation was parallel to the scratches.

  18. On the role of the quasi-parallel bow shock in ion pickup - A lesson from Venus?

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Phillips, J. L.; Barnes, A.

    1987-01-01

    Previous observations at Venus show convincing evidence of planetary O(+) ion pickup by the largescale motional -V x B electric field in the magnetosheath when the interplanetary magnetic field is perpendicular to the solar wind flow. However, the presence of magnetic field fluctuations in the magnetosheath downstream from the quasi-parallel bow shock should allow pickup to occur even when the upstream magnetic field B and plasma velocity V are practically coaligned. Single-particle calculations are used to demonstrate the convecting magnetic field fluctuations similar to those observed in the Venus magnetosheath when the subsolar bow shock is quasi-parallel can efficiently accelerate cold planetary ions by means of the electric field associated with their transverse components. This ion pickup process, which is characterized by a spatial dependence determined by the bow shock shape and the orientation of the upstream magnetic field, is likely also to occur at Mars and may be effective at comets.

  19. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  20. Crystalisation of aqueous ferrofluids at the free liquid interface investigated by specular and off-specular x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.

    2018-03-01

    Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.

  1. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  2. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  3. Electromagnetic (EM) Wave Attachment to Laser Plasma Filaments

    DTIC Science & Technology

    2009-05-01

    this phenomenon over a laboratory scale distance and observed that the channel energy, diameter, and modulated spectrum all remained relatively ...are oriented parallel to one another and insulated from one another to maintain a calculated separation. The TEM waves also represent plane waves...orientation, the electric field will point along the direction of the wire axis. The wire is 0.8 mm copper wire, fixed at both ends and insulated at

  4. Method for selectively orienting induced fractures in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-02-01

    The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.

  5. Effect of grain alignment on magnetic properties of Hg(Re)-1223 superconductors

    NASA Astrophysics Data System (ADS)

    Sakamoto, N.; Noguchi, S.; Akune, T.; Matsumoto, Y.

    2002-08-01

    Alignment of HgBa 2Ca 2Cu 3Re 0.2O y (Hg(Re)-1223) powders was made in epoxy resin under a high magnetic field of 10 T to be confirmed by X-ray analysis. DC magnetizations and AC susceptibilities of the grain aligned specimen were measured by SQUID and PPMS magnetometers at temperatures of 5-110 K and under the field of 0-14 T for both field directions of B parallel and perpendicular to ab-plane. The magnetization width for B parallel to the c-axis ΔMc showed high values at low field, decreased rather rapidly with the magnetic field compared to that for B parallel to the ab-plane ΔMab and became lower than ΔMab above a crossing field Bcr. Peak-heights of the imaginary parts of the AC susceptibilities χ″ were largest at B∥ c-axis. Non-aligned samples always showed intermediate characteristics between B∥ c-axis and B∥ ab-plane. Irreversibility fields of all samples were also evaluated. Correlations of the pinning mechanism with the crystal axis orientations are discussed.

  6. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at amore » quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.« less

  7. Elongate summit calderas as Neogene paleostress indicators in Antarctica

    USGS Publications Warehouse

    Paulsen, T.S.; Wilson, T.J.

    2007-01-01

    The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.

  8. Aligned 1-D nanorods of a π-gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks.

    PubMed

    Sakakibara, Keita; Chithra, Parayalil; Das, Bidisa; Mori, Taizo; Akada, Misaho; Labuta, Jan; Tsuruoka, Tohru; Maji, Subrata; Furumi, Seiichi; Shrestha, Lok Kumar; Hill, Jonathan P; Acharya, Somobrata; Ariga, Katsuhiko; Ajayaghosh, Ayyappanpillai

    2014-06-18

    Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.

  9. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  11. SU-E-T-133: Dosimetric Impact of Scan Orientation Relative to Target Motion During Spot Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoker, J; Summers, P; Li, X

    2014-06-01

    Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantommore » was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single field hint that multiple-field delivery alters intra-fraction beam-target motion synchronization and may mitigate heterogeneity, though further study is warranted.« less

  12. The effect of spatial orientation on detecting motion trajectories in noise.

    PubMed

    Pavan, Andrea; Casco, Clara; Mather, George; Bellacosa, Rosilari M; Cuturi, Luigi F; Campana, Gianluca

    2011-09-15

    A series of experiments investigated the extent to which the spatial orientation of a signal line affects discrimination of its trajectory from the random trajectories of background noise lines. The orientation of the signal line was either parallel (iso-) or orthogonal (ortho-) to its motion direction and it was identical in all respects to the noise (orientation, length and speed) except for its motion direction, rendering the signal line indistinguishable from the noise on a frame-to-frame basis. We found that discrimination of ortho-trajectories was generally better than iso-trajectories. Discrimination of ortho-trajectories was largely immune to the effects of spatial jitter in the trajectory, and to variations in step size and line-length. Discrimination of iso-trajectories was reliable provided that step-size was not too short and did not exceed line length, and that the trajectory was straight. The new result that trajectory discrimination in moving line elements is modulated by line orientation suggests that ortho- and iso-trajectory discrimination rely upon two distinct mechanisms: iso-motion discrimination involves a 'motion-streak' process that combines motion information with information about orientation parallel to the motion trajectory, while ortho-motion discrimination involves extended trajectory facilitation in a network of receptive fields with orthogonal orientation tuning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California

    USGS Publications Warehouse

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D.

    1997-01-01

    We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.

  14. Artificially modified magnetic anisotropy in interconnected nanowire networks.

    PubMed

    Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc

    2015-01-28

    Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented ±30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire.

  15. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules

    NASA Astrophysics Data System (ADS)

    Steer, Edward W.; Petralia, Lorenzo S.; Western, Colin M.; Heazlewood, Brianna R.; Softley, Timothy P.

    2017-02-01

    The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2 + 1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated - with respect to both the local field direction and a space-fixed axis - as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK =11 could be achieved with the application of a small bias voltage (17 V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.

  16. Experimental investigation on the accuracy of plastic scintillators and of the spectrum discrimination method in small photon fields.

    PubMed

    Papaconstadopoulos, Pavlos; Archambault, Louis; Seuntjens, Jan

    2017-02-01

    To investigate the accuracy of output factor measurements using a commercial (Exradin W1, SI) and a prototype, "in-house" developed, plastic scintillation dosimeter (PSD) in small photon fields. Repetitive detector-specific output factor OF det measurements were performed in water (parallel to the CAX) using two W1 PSDs (SI), a PTW microLion, a PTW microDiamond and an unshielded diode D1V (SI) to which Monte Carlo calculated corrections factors were applied. Four sets of repetitive measurements were performed with the W1 PSD positioned parallel and perpendicular to the CAX, each set on a different day, and with analytically calculated volume averaging corrections applied. The W1 OF det measurements were compared to measurements using an "in-house" developed PSD in water (CHUQ) and both were validated against a previously commissioned Monte Carlo beam model in small photon fields. The performance of the spectrum discrimination calibration procedure was evaluated under different fiber orientations and wavelength threshold choices and the impact on the respective OF det was reported. For all detectors in the study an excellent agreement was observed down to a field size of 1 × 1 cm 2 . For the smallest field size of 0.5 × 0.5 cm 2 , the W1 PSDs presented OF det readings higher by 3.8 to 5.0% relative to the mean corrected OF det of the rest of the detectors and by 5.8 to 6.1% relative to the CHUQ PSD. The repetitive W1 OF det measurements in water (parallel CAX) were higher by 3.9% relative to the OF det measurements in Solid Water TM (perpendicular CAX) even after volume averaging corrections were applied, indicating a potential fiber orientation dependency in small fields. Uncertainties in jaw and detector repositioning as well as source variations with time were estimated to be less than 0.9% (1 σ) for the W1 under both orientations. The CHUQ PSD agreed with the MC dose calculations in water, for the smallest field size, within 1.1-1.7% before any corrections and within 0.3-0.8% after volume averaging corrections. The spectrum discrimination method provided reproducible Cherenkov spectra under the different calibration set-ups with noisier spectra extracted if the calibration is performed in water and parallel to the CAX. The impact of fiber orientation and wavelength threshold during calibration on OF det was in general minimal. Clinically relevant differences were observed between similar scintillator dosimeters in photon fields smaller than 1 ×  1 cm 2 . Further research on PSDs is needed that can explain the origin of these differences especially related to the Cherenkov spectrum dependencies on the optical fiber technical characteristics. © 2016 American Association of Physicists in Medicine.

  17. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  18. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Comparison of three underwater antennas for use in radiotelemetry

    USGS Publications Warehouse

    Beeman, J.W.; Grant, C.; Haner, P.V.

    2004-01-01

    The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.

  20. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinohana, Y; Toita, T; Kasuya, G

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their longmore » side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.« less

  2. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.

  3. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    PubMed

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low magnetic fields, with potential applications in the manufacturing of three-dimensional composites with microstructural features comparable to biological materials for high-performance engineering applications.

  4. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuna, M. A.; Gravielle, M. S.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

    2011-03-15

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, whilemore » the influence of the crystal orientation was found to be negligible.« less

  5. Object-Oriented Implementation of the NAS Parallel Benchmarks using Charm++

    NASA Technical Reports Server (NTRS)

    Krishnan, Sanjeev; Bhandarkar, Milind; Kale, Laxmikant V.

    1996-01-01

    This report describes experiences with implementing the NAS Computational Fluid Dynamics benchmarks using a parallel object-oriented language, Charm++. Our main objective in implementing the NAS CFD kernel benchmarks was to develop a code that could be used to easily experiment with different domain decomposition strategies and dynamic load balancing. We also wished to leverage the object-orientation provided by the Charm++ parallel object-oriented language, to develop reusable abstractions that would simplify the process of developing parallel applications. We first describe the Charm++ parallel programming model and the parallel object array abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Triangular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation of the methodology used.

  6. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    NASA Astrophysics Data System (ADS)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  7. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  8. Coaching in the AP Classroom

    ERIC Educational Resources Information Center

    Fornaciari, Jim

    2013-01-01

    Many parallels exist between quality coaches and quality classroom teachers--especially AP teachers, who often feel the pressure to produce positive test results. Having developed a series of techniques and strategies for building a team-oriented winning culture on the field, Jim Fornaciari writes about how he adapted those methods to work in the…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agosta, C. C.; Jin, J.; Coniglio, W. A.

    We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which ismore » calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.« less

  10. Neuromorphic VLSI vision system for real-time texture segregation.

    PubMed

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  11. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less

  12. Thermal and physiologic responses to 1200-MHz radiofrequency radiation: Differences between exposure in E and H orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jauchem, J.R.; Frei, M.R.; Padilla, J.M.

    1990-09-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 1200-MHz continuous wave radiofrequency radiation in both E and H orientations (long axis of animal parallel to electric or magnetic field, respectively). Power densities were used that resulted in equivalent whole-body specific absorption rates of approximately 8 W/kg in both orientations (20 mW/cm{sup 2} for E and 45 mW/cm{sup 2} for H). Exposure was conducted to repeatedly increase colonic temperature from 38.5 to 39.5{degrees}C in both orientations in the same animal. Irradiation in E orientation resulted in greater colonic, tympanic, left subcutaneous (side toward antenna), and tail heating. The results indicated a moremore » uniform distribution of heat than that which occurred in previous experiments of 2450-MHz irradiation in E and H orientation. A lack of significant differences in blood pressure and heart rate responses between exposures in the two orientations in this study suggest that greater peripheral heating, as was seen in the earlier study of 2450 MHz, is necessary for these differences to occur.« less

  13. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells.

    PubMed

    Kim, Seungchan; Im, Woo-Seok; Kang, Lami; Lee, Soon-Tae; Chu, Kon; Kim, Byoung In

    2008-09-15

    Electric and magnetic fields have been known to influence cellular behavior. In the present study, we hypothesized that the application of static magnetic fields to neurons will cause neurites to grow in a specific direction. In cultured human neuronal SH-SY5Y cells or PC12 cells, neurite outgrowth was induced by forskolin, retinoic acid, or nerve growth factor (NGF). We applied static magnetic fields to the neurons and analyzed the direction and morphology of newly formed neuronal processes. In the presence of the magnetic field, neurites grew in a direction perpendicular to the direction of the magnetic field, as revealed by the higher orientation index of neurites grown under the magnetic field compared to that of the neurites grown in the absence of the magnetic field. The neurites parallel to the magnetic field appeared to be dystrophic, beaded or thickened, suggesting that they would hinder further elongation processes. The co-localized areas of microtubules and actin filaments were arranged into the vertical axis to the magnetic field, while the levels of neurofilament and synaptotagmin were not altered. Our results suggest that the application of magnetic field can be used to modulate the orientation and direction of neurite formation in cultured human neuronal cells.

  14. Temporal resolution of orientation-defined texture segregation: a VEP study.

    PubMed

    Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael

    2008-09-01

    Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.

  15. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan

    2016-05-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  16. Equatorial Pacific gravity lineaments: interpretations with basement topography along seismic reflection lines

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.; Davies, Huw

    2018-03-01

    The central equatorial Pacific is interesting for studying clues to upper mantle processes, as the region lacks complicating effects of continental remnants or major volcanic plateaus. In particular, the most recently produced maps of the free-air gravity field from satellite altimetry show in greater detail the previously reported lineaments west of the East Pacific Rise (EPR) that are aligned with plate motion over the mantle and originally suggested to have formed from mantle convection rolls. In contrast, the gravity field 600 km or farther west of the EPR reveals lineaments with varied orientations. Some are also parallel with plate motion over the mantle but others are sub-parallel with fracture zones or have other orientations. This region is covered by pelagic sediments reaching 500-600 m thickness so bathymetry is not so useful for seeking evidence for plate deformation across the lineaments. We instead use depth to basement from three seismic reflection cruises. In some segments of these seismic data crossing the lineaments, we find that the co-variation between gravity and basement depth is roughly compatible with typical densities of basement rocks (basalt, gabbro or mantle), as expected for some explanations for the lineaments (e.g., mantle convection rolls, viscous asthenospheric inter-fingering or extensional deformation). However, some other lineaments are associated with major changes in basement depth with only subtle changes in the gravity field, suggesting topography that is locally supported by varied crustal thickness. Overall, the multiple gravity lineament orientations suggest that they have multiple origins. In particular, we propose that a further asthenospheric inter-fingering instability mechanism could occur from pressure variations in the asthenosphere arising from regional topography and such a mechanism may explain some obliquely oriented gravity lineaments that have no other obvious origin.

  17. Evidence for parallel consolidation of motion direction and orientation into visual short-term memory.

    PubMed

    Rideaux, Reuben; Apthorp, Deborah; Edwards, Mark

    2015-02-12

    Recent findings have indicated the capacity to consolidate multiple items into visual short-term memory in parallel varies as a function of the type of information. That is, while color can be consolidated in parallel, evidence suggests that orientation cannot. Here we investigated the capacity to consolidate multiple motion directions in parallel and reexamined this capacity using orientation. This was achieved by determining the shortest exposure duration necessary to consolidate a single item, then examining whether two items, presented simultaneously, could be consolidated in that time. The results show that parallel consolidation of direction and orientation information is possible, and that parallel consolidation of direction appears to be limited to two. Additionally, we demonstrate the importance of adequate separation between feature intervals used to define items when attempting to consolidate in parallel, suggesting that when multiple items are consolidated in parallel, as opposed to serially, the resolution of representations suffer. Finally, we used facilitation of spatial attention to show that the deterioration of item resolution occurs during parallel consolidation, as opposed to storage. © 2015 ARVO.

  18. An object-oriented approach to nested data parallelism

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.; Chatterjee, Siddhartha

    1994-01-01

    This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.

  19. [Problems of using a thermocouple for measurements of skin temperature rise during the exposure to millimeter waves].

    PubMed

    Alekseev, S I; Ziskin, M S; Fesenko, E E

    2011-01-01

    The possibility of using thermocouples for the artifact-free measurements of skin temperature during millimeter wave exposure was studied. The distributions of the specific absorption rate (SAR) in the human skin were calculated for different orientations of the thermocouple relative to the E-field of exposure. It was shown that, at the parallel orientation of a thermocouple relative to the E-field, SAR significantly increased at the tip of the thermocouple. This can result in an overheating of the thermocouple. At the perpendicular orientation of a thermocouple, the distortions of the SAR were insignificant. The data obtained confirm that the skin temperature can be measured with a thermocouple during exposure under the condition that the thermocouple is located perpendicular to the E-vector of the electromagnetic field. For the accurate determination of SAR from the rate of the initial temperature rise, it is necessary to fit the temperature kinetics measured with the thermocouple to the solution of the bio-heat transfer equation.

  20. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE PAGES

    Lendínez, S.; Zarzuela, R.; Tejada, J.; ...

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  1. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendínez, S.; Zarzuela, R.; Tejada, J.

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  2. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  3. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  4. Anisotropic phase diagram of the rare-earth hyperkagome system Gd3Ga5O12 (GGG)

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey; Rousseau, Alexandre; Parent, Jean-Michel

    An understanding of the low-temperature properties of the hyperkagome system Gd3Ga5O12 or GGG is a long-standing problem in the field of frustrated magnetism. The origins of spin liquid and exotic spin-glass phases in this material remain mysterious and even its precise magnetic phase diagram is still not firmly established. We have investigated the field-induced phase diagram of this material using the ultrasound velocity and attenuation technique at temperatures as low as 40 mK. Two different field orientations are tested, and give rise to significant quantitative and qualitative differences. Notably, two distinct field-induced antiferromagnetic phases are observed for field parallel to 110, consistent with recent results, whereas only one ordered phase is observed for a 100 orientation. The field dependence of the sound velocity and attenuation is also found to be anisotropic within the low-field spin liquid phase. Research supported by NSERC, FQRNT.

  5. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  7. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE PAGES

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...

    2017-08-12

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  8. The role of interplanetary shock orientation on SC/SI rise time and geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Selvakumaran, R.; Veenadhari, B.; Ebihara, Y.; Kumar, Sandeep; Prasad, D. S. V. V. D.

    2017-03-01

    Interplanetary (IP) shocks interact with the Earth's magnetosphere, resulting in compression of the magnetosphere which in turn increases the Earth's magnetic field termed as Sudden commencement/Sudden impulse (SC/SI). Apart from IP shock speed and solar wind dynamic pressure, IP shock orientation angle also plays a major role in deciding the SC rise time. In the present study, the IP shock orientation angle and SC/SI rise time for 179 IP shocks are estimated which occurred during solar cycle 23. More than 50% of the Shock orientations are in the range of 140°-160°. The SC/SI rise time decreases with the increase in the orientation angle and IP shock speed. In this work, the type of IP shocks i.e., Radio loud (RL) and Radio quiet (RQ) are examined in connection with SC/SI rise time. The RL associated IP shock speeds show a better correlation than RQ shocks with SC/SI rise time irrespective of the orientation angle. Magnetic Cloud (MC) associated shocks dominate in producing less rise time when compared to Ejecta (EJ) shocks. Magneto hydrodynamic (MHD) simulations are used for three different IP shock orientation categories to see the importance of orientation angle in determining the geoeffectiveness. Simulations results reveal that shocks hitting parallel to the magnetosphere are more geoeffective as compared to oblique shocks by means of change in magnetic field, pressure and Field Aligned Current (FAC).

  9. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  10. Collective motion of squirmers in a quasi-2D geometry

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2013-03-01

    Microorganisms like bacteria, algae or spermatozoa typically move in an aqueous environment where they interact via hydrodynamic flow fields. Recent experiments studied the collective motion of dense suspensions of bacteria where swarming and large-scale turbulence emerged. Moreover, spherical artificial microswimmers, so-called squirmers, have been constructed and studied in a quasi-2D geometry. Here we present a numerical study of the collective dynamics of squirmers confined in quasi-2D between two parallel walls. Because of their spherical shape the reorientation of squirmers is solely due to noise and hydrodynamic interactions via induced flow fields. This is in contrast to elongated swimmers like bacteria which locally align due to steric interactions. We study the collective motion of pushers, pullers and potential swimmers at different densities. At small densities the squirmers are oriented parallel to the walls and pairwise collisions determine the reorientation rate. In dense suspensions rotational diffusion is greatly enhanced and pushers, in particular, tend to orient perpendicular to the walls. This effects the dynamics of the emerging clusters. In very dense suspensions we observe active jamming and long-lived crystalline structures.

  11. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  12. Methods for controlling pore morphology in aerogels using electric fields and products thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In onemore » approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.« less

  13. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  14. Possible functions of contextual modulations and receptive field nonlinearities: pop-out and texture segmentation

    PubMed Central

    Schmid, Anita M.; Victor, Jonathan D.

    2014-01-01

    When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to “pop out” and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion. PMID:25064441

  15. Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications

    PubMed Central

    Purpura, Keith P.; Victor, Jonathan D.

    2014-01-01

    Segmenting the visual image into objects is a crucial stage of visual processing. Object boundaries are typically associated with differences in luminance, but discontinuities in texture also play an important role. We showed previously that a subpopulation of neurons in V2 in anesthetized macaques responds to orientation discontinuities parallel to their receptive field orientation. Such single-cell responses could be a neurophysiological correlate of texture boundary detection. Neurons in V1, on the other hand, are known to have contextual response modulations such as iso-orientation surround suppression, which also produce responses to orientation discontinuities. Here, we use pseudorandom multiregion grating stimuli of two frame durations (20 and 40 ms) to probe and compare texture boundary responses in V1 and V2 in anesthetized macaque monkeys. In V1, responses to texture boundaries were observed for only the 40 ms frame duration and were independent of the orientation of the texture boundary. However, in transient V2 neurons, responses to such texture boundaries were robust for both frame durations and were stronger for boundaries parallel to the neuron's preferred orientation. The dependence of these processes on stimulus duration and orientation indicates that responses to texture boundaries in V2 arise independently of contextual modulations in V1. In addition, because the responses in transient V2 neurons are sensitive to the orientation of the texture boundary but those of V1 neurons are not, we suggest that V2 responses are the correlate of texture boundary detection, whereas contextual modulation in V1 serves other purposes, possibly related to orientation “pop-out.” PMID:24599456

  16. Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters

    NASA Astrophysics Data System (ADS)

    Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.

    2001-05-01

    Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).

  17. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  18. Predicting helix orientation for coiled-coil dimers

    PubMed Central

    Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.

    2008-01-01

    The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation - parallel vs. antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to asses the ability of five energy functions to recognize the correct fold. We also developed and tested three sequenced-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing ∼81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored. PMID:18506779

  19. Fin field effect transistor directionality impacts printing of implantation shapes

    NASA Astrophysics Data System (ADS)

    Wang, Xiren; Granik, Yuri

    2018-01-01

    In modern integrated circuit (IC) fabrication processes, the photoresist receives considerable illumination energy that is reflected by underlying topography during optical lithography of implantation layers. Bottom antireflective coating (BARC) is helpful to mitigate the reflection. Often, however, BARC is not used, because its removal is technically challenging, in addition to its relatively high economic cost. Furthermore, the advanced technology nodes, such as 14/10-nm nodes, have introduced fin field effect transistor (FinFET), which makes reflection from nonuniform silicon substrates exceptionally complicated. Therefore, modeling reflection from topography becomes obligatory to accurately predict printing of implantation shapes. Typically, FinFET is always fixed in one direction in realistic designs. However, the same implantation rectangle may be oriented in either horizontal or vertical direction. Then, there are two types of relations between the critical dimension (CD) and FinFET, namely a parallel-to and a perpendicular-to relation. We examine the fin directionality impact on CD. We found that this impact may be considerable in some cases. We use our in-house rigorous optical topography simulator to reveal underlining physical reasons. One of the major causes of the CD differences is that in the parallel orientation, the solid sidewalls of the fins conduct considerable light reflections unlike for the perpendicular orientation. This finding can aid the compact modeling in optical proximity correction of implantation masks.

  20. Perception Of "Features" And "Objects": Applications To The Design Of Instrument Panel Displays

    NASA Astrophysics Data System (ADS)

    Poynter, Douglas; Czarnomski, Alan J.

    1988-10-01

    An experiment was conducted to determine whether socalled feature displays allow for faster and more accurate processing compared to object displays. Previous psychological studies indicate that features can be processed in parallel across the visual field, whereas objects must be processed one at a time with the aid of attentional focus. Numbers and letters are examples of objects; line orientation and color are examples of features. In this experiment, subjects were asked to search displays composed of up to 16 elements for the presence of specific elements. The ability to detect, localize, and identify targets was influenced by display format. Digital errors increased with the number of elements, the number of targets, and the distance of the target from the fixation point. Line orientation errors increased only with the number of targets. Several other display types were evaluated, and each produced a pattern of errors similar to either digital or line orientation format. Results of the study were discussed in terms of Feature Integration Theory, which distinguishes between elements that are processed with parallel versus serial mechanisms.

  1. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  2. Magnetic anisotropy of some phyllosilicates

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Werner, Tomasz

    1994-08-01

    Magnetic susceptibility, anisotropy of susceptibility and hysteresis of single microcrystals of chlorite, biotite, phlogopite, muscovite, zinnwaldite and fuchsite were measured in low and high magnetic fields with an alternating gradient force magnetometer (Micromag). Their properties are sufficient to account for the low field susceptibility (AMS) of most micaceous rocks. Nearly all samples show some ferromagnetic contribution at low fields due to inclusions of pseudosingle domain and multidomain magnetite. The paramagnetic contribution isolated at high fields usually exceeds the ferromagnetic contribution. The paramagnetic susceptibility is intrinsic to the silicate lattice and agrees with values predicted from chemical composition within the limits of error. The minimum susceptibility is nearly parallel to c, another axis is parallel to b and the third susceptibility (usually the maximum) is close to a. The paramagnetic susceptibility has a disk-shaped magnitude ellipsoid with strong anisotropy ( P' < 2). The ferromagnetic contributions at low fields have more variably shaped ellipsoids with greater eccentricity ( P' < 5). The silicate lattice does not constrain their orientation. Our technique cannot determine the principal axes of the ferromagnetic component. However, its principal values usually correspond with the paramagnetic principal susceptibilities in order of magnitude. Thus, the combined paramagnetic-ferromagnetic anisotropy recognised in routine studies of AMS should faithfully represent the petrofabric of most micaceous rocks. Nevertheless, nearly 10% of our samples have incompatible anisotropy ellipsoids for the silicate host and magnetite inclusions. These yield a net inverse AMS that does not correctly represent the orientation of the silicate lattice. Therefore, some caution is necessary in petrofabric-AMS studies of micaceous rocks.

  3. The cost of parallel consolidation into visual working memory.

    PubMed

    Rideaux, Reuben; Edwards, Mark

    2016-01-01

    A growing body of evidence indicates that information can be consolidated into visual working memory in parallel. Initially, it was suggested that color information could be consolidated in parallel while orientation was strictly limited to serial consolidation (Liu & Becker, 2013). However, we recently found evidence suggesting that both orientation and motion direction items can be consolidated in parallel, with different levels of accuracy (Rideaux, Apthorp, & Edwards, 2015). Here we examine whether there is a cost associated with parallel consolidation of orientation and direction information by comparing performance, in terms of precision and guess rate, on a target recall task where items are presented either sequentially or simultaneously. The results compellingly indicate that motion direction can be consolidated in parallel, but the evidence for orientation is less conclusive. Further, we find that there is a twofold cost associated with parallel consolidation of direction: Both the probability of failing to consolidate one (or both) item/s increases and the precision at which representations are encoded is reduced. Additionally, we find evidence indicating that the increased consolidation failure may be due to interference between items presented simultaneously, and is moderated by item similarity. These findings suggest that a biased competition model may explain differences in parallel consolidation between features.

  4. Field orientation effects during 5. 6-GHz radiofrequency irradiation of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frei, M.R.; Jauchem, J.R.; Price, D.L.

    1990-12-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed in E and H orientations (long axis parallel to electric and magnetic fields, respectively) to far-field 5.6-GHz continuous-wave radio-frequency radiation (RFR). Power densities were used that resulted in equivalent whole-body average specific absorption rates of 14 W/kg in both orientations (90 mW/cm2 for E and 66 mW/cm2 for H). Irradiation was conducted to increase colonic temperature by 1 degree C (from 38.5 to 39.5 degrees C). During experimentation, arterial blood pressure and respiratory rate and colonic, tympanic, left and right subcutaneous (sides toward and away from RFR source), and tail temperatures were continuously recorded. Resultsmore » showed no significant difference in the times required to cause a 1 degree C increase or to recover to the initial temperature when irradiation was stopped. Significant differences between E- and H-orientation exposure were seen in the patterns of localized heating. The tail and left subcutaneous temperature increases were significantly greater during E-orientation exposure, the tympanic site showed no difference, and the right subcutaneous temperature increase was significantly greater during H-orientation exposure. Under both exposure conditions, heart rate and mean arterial blood pressure significantly increased during irradiation; however, there were no significant differences between E and H orientation responses. These findings at 5.6 GHz are in contrast to the significant cardiovascular response differences between E- and H-orientation exposure noted during a previous study of irradiation at 2.45 GHz.« less

  5. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  6. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  7. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  8. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  9. Size and Shape of the Distant Magnetotail

    NASA Technical Reports Server (NTRS)

    Sibeck, D.G.; Lin, R.-Q.

    2014-01-01

    We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.

  10. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  11. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  12. Dynamics of an integral membrane peptide: a deuterium NMR relaxation study of gramicidin.

    PubMed Central

    Prosser, R S; Davis, J H

    1994-01-01

    Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, 1/2 (= 16 +/- 2 degrees at 34 degrees C), formed by the peptide helix axis and the average bilayer normal. PMID:7520294

  13. Anisotropic transverse mixing and its effect on reaction rates in multi-scale, 3D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Engdahl, N. B.

    2016-12-01

    Mixing rates in porous media have been a heavily research topic in recent years covering analytic, random, and structured fields. However, there are some persistent assumptions and common features to these models that raise some questions about the generality of the results. One of these commonalities is the orientation of the flow field with respect to the heterogeneity structure, which are almost always defined to be parallel each other if there is an elongated axis of permeability correlation. Given the vastly different tortuosities for flow parallel to bedding and flow transverse to bedding, this assumption of parallel orientation may have significant effects on reaction rates when natural flows deviate from this assumed setting. This study investigates the role of orientation on mixing and reaction rates in multi-scale, 3D heterogeneous porous media with varying degrees of anisotropy in the correlation structure. Ten realizations of a small flow field, with three anisotropy levels, were simulated for flow parallel and transverse to bedding. Transport was simulated in each model with an advective-diffusive random walk and reactions were simulated using the chemical Langevin equation. The reaction system is a vertically segregated, transverse mixing problem between two mobile reactants. The results show that different transport behaviors and reaction rates are obtained by simply rotating the direction of flow relative to bedding, even when the net flux in both directions is the same. This kind of behavior was observed for three different weightings of the initial condition: 1) uniform, 2) flux-based, and 3) travel time based. The different schemes resulted in 20-50% more mass formation in the transverse direction than the longitudinal. The greatest variability in mass was observed for the flux weights and these were proportionate to the level of anisotropy. The implications of this study are that flux or travel time weights do not provide any guarantee of a fair comparison in this kind of a mixing scenario and that the role of directional tendencies on reaction rates can be significant. Further, it may be necessary to include anisotropy in future upscaled models to create robust methods that give representative reaction rates for any flow direction relative to geologic bedding.

  14. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  15. Dynamics of magnetic single domain particles embedded in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Usadel, K. D.; Usadel, C.

    2015-12-01

    Kinetic equations for magnetic nano particles dispersed in a viscous liquid are developed and analyzed numerically. Depending on the amplitude of an applied oscillatory magnetic field, the particles orient their time averaged anisotropy axis perpendicular to the applied field for low magnetic field amplitudes and nearly parallel to the direction of the field for high amplitudes. The transition between these regions takes place in a narrow field interval. In the low field region, the magnetic moment is locked to some crystal axis and the energy absorption in an oscillatory driving field is dominated by viscous losses associated with particle rotation in the liquid. In the opposite limit, the magnetic moment rotates within the particle while its easy axis being nearly parallel to the external field direction oscillates. The kinetic equations are generalized to include thermal fluctuations. This leads to a significant increase of the power absorption in the low and intermediate field regions with a pronounced absorption peak as function of particle size. In the high field region, on the other hand, the inclusion of thermal fluctuations reduces the power absorption. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.

  16. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    PubMed

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  17. ProperCAD: A portable object-oriented parallel environment for VLSI CAD

    NASA Technical Reports Server (NTRS)

    Ramkumar, Balkrishna; Banerjee, Prithviraj

    1993-01-01

    Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

  18. Chemical spray pyrolysis of Tl-Ba-Ca-Cu-O high-T(sub c) superconductors for high-field bitter magnets

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Zhang, John G.; Squillante, Michael R.; Hermann, A. M.; Duan, H. M.; Andrews, Robert J.; Kelliher, Warren C.

    1991-01-01

    The deposition of Tl-Ba-Ca-Cu-O thick films by spray pyrolyzing a Ba-Ca-Cu-O precursor film and diffusing thallium into the film to form the superconducting phase is examined. This approach was taken to reduce exposure to thallium and its health and safety hazards. The Tl-Ba-Ca-Cu-O system was selected because it has very attractive features which make it appealing to device and manufacturing engineering. Tl-Ba-Ca-Cu-O will accommodate a number of superconducting phases. This attribute makes it very forgiving to stoichiometric fluctuations in the bulk and film. It has excellent thermal and chemical stability, and appears to be relatively insensitive to chemical impurities. Oxygen is tightly bound into the systems, consequently there is no orthorhombic (conductor) to tetragonal (insulator) transition which would affect a component's lifetime. More significantly, the thallium based superconductors appear to have harder magnetic properties than the other high-Tc oxide ceramics. Estimates using magnetoresistance measurements indicate that at 77 K Tl2Ba2CaCu2O10 will have an upper critical field, H(sub c2) fo 26 Tesla for applied fields parallel to the c-axis and approximately 1000 Tesla for fields oriented in the a-b plane. Results to date have shown that superconducting films can be reproducibly deposited on 100 oriented MgO substrates. One film had a zero resistance temperature of 111.5 K. Furthermore, x ray diffraction analysis of the films showed preferential c-axis orientation parallel to the plane of the substrate. These results have now made it possible to consider the manufacture of a superconducting tape wire which can be configured into a topology useful for high-field magnet designs. The research which leads to the preparation of these films and plans for further development are reviewed.

  19. Separating the Laparoscopic Camera Cord From the Monopolar "Bovie" Cord Reduces Unintended Thermal Injury From Antenna Coupling: A Randomized Controlled Trial.

    PubMed

    Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V

    2015-06-01

    The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.

  20. An application of an optimal statistic for characterizing relative orientations

    NASA Astrophysics Data System (ADS)

    Jow, Dylan L.; Hill, Ryley; Scott, Douglas; Soler, J. D.; Martin, P. G.; Devlin, M. J.; Fissel, L. M.; Poidevin, F.

    2018-02-01

    We present the projected Rayleigh statistic (PRS), a modification of the classic Rayleigh statistic, as a test for non-uniform relative orientation between two pseudo-vector fields. In the application here, this gives an effective way of investigating whether polarization pseudo-vectors (spin-2 quantities) are preferentially parallel or perpendicular to filaments in the interstellar medium. For example, there are other potential applications in astrophysics, e.g. when comparing small-scale orientations with larger scale shear patterns. We compare the efficiency of the PRS against histogram binning methods that have previously been used for characterizing the relative orientations of gas column density structures with the magnetic field projected on the plane of the sky. We examine data for the Vela C molecular cloud, where the column density is inferred from Herschel submillimetre observations, and the magnetic field from observations by the Balloon-borne Large-Aperture Submillimetre Telescope in the 250-, 350- and 500-μm wavelength bands. We find that the PRS has greater statistical power than approaches that bin the relative orientation angles, as it makes more efficient use of the information contained in the data. In particular, the use of the PRS to test for preferential alignment results in a higher statistical significance, in each of the four Vela C regions, with the greatest increase being by a factor 1.3 in the South-Nest region in the 250 - μ m band.

  1. Study on Properties of CoNi Films with mn Doping Prepared by Magnetic Fields Induced Codeposition Technology

    NASA Astrophysics Data System (ADS)

    Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia

    Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.

  2. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  3. Experimental and modelling study of the effect of airflow orientation with respect to strip electrode on ozone production of surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Mikeš, J.; Pekárek, S.; Soukup, I.

    2016-11-01

    This study examines the effect of airflow orientation with respect to the strip active electrode on concentration of ozone and nitrogen dioxide produced in a planar generator based on the surface dielectric barrier discharge. The orientation of the airflow was tested in parallel and perpendicular with respect to the strips. It was found that in the investigated range of average discharge power, the ozone concentration increases approximately by 25% when airflow was oriented in parallel with respect to the strips in comparison with perpendicular orientation of the airflow. Similarly the increase of nitrogen dioxide concentration was observed for parallel orientation of the airflow with respect to the strips in comparison with the perpendicular orientation of the airflow. Within the range of wavelengths from 250 to 1100 nm, the changes of intensities of spectral lines associated with airflow orientation have been observed. A 3D numerical model describing ion trajectories and airflow patterns have also been developed.

  4. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian, Dugesia tigrina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1996-12-31

    The authors recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. The authors report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 {micro}T. These anomalies often culminate in the complete disaggregation of the organism. Similarmore » to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 {micro} V/m. The addition of either 51.1 or 78.4 {micro}T DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas the previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling.« less

  5. The orientation of iron–sulphur clusters in membrane multilayers prepared from aerobically-grown Escherichia coli K12 and a cytochrome-deficient mutant

    PubMed Central

    Blum, Haywood; Poole, Robert K.; Ohnishi, Tomoko

    1980-01-01

    1. Membrane particles prepared from ultrasonically-disrupted, aerobically-grown Escherichia coli were centrifuged on to a plastic film that was supported perpendicular to the centrifugal field to yield oriented membrane multilayers. In such preparations, there is a high degree of orientation of the planes of the membranes such that they lie parallel to each other and to the supporting film. 2. When dithionite- or succinate-reduced multilayers are rotated in the magnetic field of an e.p.r. spectrometer, about an axis lying in the membrane plane, angular-dependent signals from an iron–sulphur cluster at gx=1.92, gy=1.93 and gz=2.02 are seen. The g=1.93 signal has maximal amplitude when the plane of the multilayer is perpendicular to the magnetic field. Conversely, the g=2.02 signal is maximal when the plane of the multilayer is parallel with the magnetic field. 3. Computer simulations of the experimental data show that the cluster lies in the cytoplasmic membrane with the gy axis perpendicular to the membrane plane and with the gx and gz axes lying in the membrane plane. 4. In partially-oxidized multilayers, a signal resembling the mitochondrial high-potential iron–sulphur protein (Hipip) is seen whose gz=2.02 axis may be deduced as lying perpendicular to the membrane plane. 5. Appropriate choice of sample temperature and receiver gain reveals two further signals in partially-reduced multilayers: a g=2.09 signal arises from a cluster with its gz axis in the membrane plane, whereas a g=2.04 signal is from a cluster with the gz axis lying along the membrane normal. 6. Membrane particles from a glucose-grown, haem-deficient mutant contain dramatically-lowered levels of cytochromes and exhibit, in addition to the iron–sulphur clusters seen in the parental strain, a major signal at g=1.90. 7. Only the latter may be demonstrated to be oriented in multilayer preparations from the mutant. 8. Comparisons are drawn between the orientations of the iron–sulphur proteins in the cytoplasmic membrane of E. coli and those in mitochondrial membranes. The effects of diminished cytochrome content on the properties of the iron–sulphur proteins are discussed. PMID:6258566

  6. Modeling the Proterozoic Basement's Effective Stress Field, Assessing Fault Reactivation Potential Related to Increased Fluid Pressures, and Improved 3D Structural Interpretation of Faulting within Wellington and Anson-Bates Fields, Sumner County, Kansas

    NASA Astrophysics Data System (ADS)

    Keast, R. T.; Lacroix, B.; Raef, A. E.; Adam, C.; Bidgoli, T. S.; Leclere, H.; Daniel, G.

    2017-12-01

    South-central Kansas has experienced an increase in seismic activity within the Proterozoic basement. Since 2013, United States Geological Survey (USGS) seismograph stations have recorded 3414 earthquakes. Fluid pressure increases associated with recent high-rate wastewater injection into the dolomitic Arbuckle disposal zone is the hypothesized cause of reactivation of the faulted study region's Proterozoic basement. Although the magnitude of the pressure change required for reactivation of these faults is likely low given failure equilibrium conditions in the midcontinent, heterogeneities in the basement could allow for a range of fluid pressure changes associated with injection. This research aims to quantify the fluid pressure changes responsible for fault reactivation of the Proterozoic basement. To address this issue, we use 103 focal mechanisms and 3,414 seismic events, from the USGS catalog, within an area encompassing 4,000 km2. Three major fault populations have been identified using the dense seismicity and focal mechanism datasets. Win-Tensor paleostress reconstruction software was used to identify effective stress ratios, R = (σ'1/σ'3), and stress tensors for twelve 22 km by 17 km grid squares covering the study area. One fault population strikes parallel with the Nemaha Ridge basement structure ( 030˚). Another reoccurring fault population is oriented 310˚, closely parallel to the Central Kansas Uplift, a subtle anticlinal structure subjected to repeated movement during the Paleozoic. The third population of faults is parallel to the regional maximum compressive stress oriented 265˚ as determined by previous researchers using borehole image logs and shear wave anisotropy. A 3D stress modeling Matlab script was used to analyze fault reactivation potential based on results obtained from Win-Tensor to better understand fault orientations and their susceptibility to reactivation related to pore fluid pressure increases. In addition, the orientations of these normal and strike-slip fault populations suggest the development of a transtensional basin, not yet identified.

  7. Magnetic fields in the Perseus Spiral Arm and in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Hoq, Sadia

    2017-04-01

    The magnetic (B) field is ubiquitous throughout the Milky Way. Several fundamental questions about the B-field in the cool, star-forming interstellar medium (ISM) remain unanswered. In this dissertation, near-infrared (NIR) polarimetric observations are used to study the large-scale Galactic B-field in the cool ISM in a spiral arm and to determine the role of B-fields in the formation of Infrared Dark Clouds (IRDCs). NIR polarimetry of 31 star clusters, located in and around the Perseus spiral arm, were obtained to determine the orientation of the plane-of-sky B-field in the outer Galaxy, and whether the presence of a spiral arm influenced B-field properties. Cluster distances, which provide upper limits to the B-field probed by observations, were estimated by developing a maximum likelihood method to fit theoretical stellar isochrones to stars in cluster color-magnitude diagrams (CMDs). Using the distance estimates, the cluster locations relative to the Perseus arm were found. The cluster polarization percentages and orientations were compared between clusters foreground to the arm and clusters inside or behind the arm. The cluster polarization orientations are predominantly parallel to the Galactic plane. Clusters inside and behind the arm have larger polarization percentages, likely a result of more polarizing material along the line of sight. The cluster polarization data were also compared to optical, inner Galaxy NIR, and Planck submm polarimetry data, and showed agreement with all three data sets. The polarimetric properties of one IRDC, G28.23, were determined using deep NIR observations. The polarization orientations relative to the cloud major axis were found to change directions with distance from the cloud axis. The B-field strength was estimated to be 10 to 100microG. Despite these large inferred B-field strengths, the B-field was found not to be the dominant force in the formation of the IRDC, though the B-field morphology was influenced by the cloud. Using NIR observations, the B-field of 27 IRDCs were studied. The relative polarization orientations with respect to the cloud major axes were found. No preferential relative orientation was found, implying that the B-field did not greatly influence the formation of this sample of IRDCs.

  8. Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL).

    PubMed

    Matin, L; Li, W

    2001-10-01

    An individual line or a combination of lines viewed in darkness has a large influence on the elevation to which an observer sets a target so that it is perceived to lie at eye level (VPEL). These influences are systematically related to the orientation of pitched-from-vertical lines on pitched plane(s) and to the lengths of the lines, as well as to the orientations of lines of 'equivalent pitch' that lie on frontoparallel planes. A three-stage model processes the visual influence: The first stage parallel processes the orientations of the lines utilizing 2 classes of orientation-sensitive neural units in each hemisphere, with the two classes sensitive to opposing ranges of orientations; the signal delivered by each class is of opposite sign in the two hemispheres. The second stage generates the total visual influence from the parallel combination of inputs delivered by the 4 groups of the first stage, and a third stage combines the total visual influence from the second stage with signals from the body-referenced mechanism that contains information about the position and orientation of the eyes, head, and body. The circuit equation describing the combined influence of n separate inputs from stage 1 on the output of the stage 2 integrating neuron is derived for n stimulus lines which possess any combination of orientations and lengths; Each of the n lines is assumed to stimulate one of the groups of orientation-sensitive units in visual cortex (stage 1) whose signals converge on to a dendrite of the integrating neuron (stage 2), and to produce changes in postsynaptic membrane conductance (g(i)) and potential (V(i)) there. The net current from the n dendrites results in a voltage change (V(A)) at the initial segment of the axon of the integrating neuron. Nerve impulse frequency proportional to this voltage change signals the total visual influence on perceived elevation of the visual field. The circuit equation corresponding to the total visual influence for n equal length inducing lines is V(A)= sum V(i)/[n+(g(A)/g(S))], where the potential change due to line i, V(i), is proportional to line orientation, g(A) is the conductance at the axon's summing point, and g(S)=g(i) for each i for the equal length case; the net conductance change due to a line is proportional to the line's length. The circuit equation is interpreted as a basis for quantitative predictions from the model that can be compared to psychophysical measurements of the elevation of VPEL. The interpretation provides the predicted relation for the visual influence on VPEL, V, by n inducing lines each with length l: thus, V=a+[k(i) sum theta(i)/n+(k(2)/l)], where theta(i) is the orientation of line i, a is the effect of the body-referenced mechanism, and k(1) and k(2) are constants. The model's output is fitted to the results of five sets of experiments in which the elevation of VPEL measured with a small target in the median plane is systematically influenced by distantly located 1-line or 2-line inducing stimuli varying in orientation and length and viewed in otherwise total darkness with gaze restricted to the median plane; each line is located at either 25 degrees eccentricity to the left or right of the median plane. The model predicts the negatively accelerated growth of VPEL with line length for each orientation and the change of slope constant of the linear combination rule among lines from 1.00 (linear summation; short lines) to 0.61 (near-averaging; long lines). Fits to the data are obtained over a range of orientations from -30 degrees to +30 degrees of pitch for 1-line visual fields from lengths of 3 degrees to 64 degrees, for parallel 2-line visual fields over the same range of lengths and orientations, for short and long 2-line combinations in which each of the two members may have any orientation (parallel or nonparallel pairs), and for the well-illuminated and fully structured pitchroom. In addition, similar experiments with 2-line stimuli of equivalent pitch in the frontoparallel plane were also fitted to the model. The model accounts for more than 98% of the variance of the results in each case.

  9. Structural fabrics, mineralization and Lamaride kinematics of the Idaho Springs-Ralston shear zone, Colorado mineral belt and central Front Range uplift

    USGS Publications Warehouse

    Caine, Jonathan S.; Nelson, E.P.; Beach, S.T.; Layer, P.W.

    2006-01-01

    The Idaho Springs and Central City mining districts form the central portion of a structurally controlled hydrothermal precious- and base-metal vein system in the Front Range of the northeast-trending Colorado Mineral Belt. Three new 40Ar/39Ar plateau ages on hydrothermal sericite indicate the veins formed during the Laramide orogeny between 65.4??1.5 - 61.9??1.3 Ma. We compile structural geologic data from surface geological maps, subsurface mine maps, and theses for analysis using modern graphical methods and integration into models of formation of economic mineral deposits. Structural data sets, produced in the 1950s and 1960s by the U.S. Geological Survey, are compiled for fabric elements, including metamorphic foliations, fold axial trends, major brittle fault zones, quartz and precious- and base-metal veins and fault veins, Tertiary dikes, and joints. These fabric elements are plotted on equal-area projections and analyzed for mean fabric orientations. Strike-slip fault-vein sets are mostly parallel or sub-parallel, and not conjugate as interpreted by previous work; late-stage, normal-slip fault veins possibly show a pattern indicative of triaxial strain. Fault-slip kinematic analysis was used to model the trend of the Laramide maximum horizontal stress axis, or compression direction, and to determine compatibility of opening and shear motions within a single stress field. The combined-model maximum compression direction for all strike slip fault veins is ???068??, which is consistent with published Laramide compression directions of ???064?? (mean of 23 regional models) and ???072?? for the Front Range uplift. The orientations of fabric elements were analyzed for mechanical and kinematic compatibility with opening, and thus permeability enhancement, in the modeled regional east-northeast, Laramide compression direction. The fabric orientation analysis and paleostress modeling show that structural permeability during mineralization was enhanced along pre-existing metamorphic foliations and fold axial planes. Large orientation dispersion in most fabric elements likely caused myriad potential pathways for permeability. The dominant orientations of opening and shear mode structures are consistent with a sub-parallel network of structures that formed in the Laramide east-northeast compression direction. The results presented demonstrate the importance of using mechanical and kinematic theory integrated with contemporary ideas of permeability structure to better understand the coupled nature of fluid flow, mineral deposition, stress, and strain. Further, the results demonstrate that there is significant internal strain within this basement-cored uplift that was localized by optimally oriented pre-existing structures in a regional stress field.

  10. Multisensory architectures for action-oriented perception

    NASA Astrophysics Data System (ADS)

    Alba, L.; Arena, P.; De Fiore, S.; Listán, J.; Patané, L.; Salem, A.; Scordino, G.; Webb, B.

    2007-05-01

    In order to solve the navigation problem of a mobile robot in an unstructured environment a versatile sensory system and efficient locomotion control algorithms are necessary. In this paper an innovative sensory system for action-oriented perception applied to a legged robot is presented. An important problem we address is how to utilize a large variety and number of sensors, while having systems that can operate in real time. Our solution is to use sensory systems that incorporate analog and parallel processing, inspired by biological systems, to reduce the required data exchange with the motor control layer. In particular, as concerns the visual system, we use the Eye-RIS v1.1 board made by Anafocus, which is based on a fully parallel mixed-signal array sensor-processor chip. The hearing sensor is inspired by the cricket hearing system and allows efficient localization of a specific sound source with a very simple analog circuit. Our robot utilizes additional sensors for touch, posture, load, distance, and heading, and thus requires customized and parallel processing for concurrent acquisition. Therefore a Field Programmable Gate Array (FPGA) based hardware was used to manage the multi-sensory acquisition and processing. This choice was made because FPGAs permit the implementation of customized digital logic blocks that can operate in parallel allowing the sensors to be driven simultaneously. With this approach the multi-sensory architecture proposed can achieve real time capabilities.

  11. TH-CD-BRA-10: Towards Reference Dosimetry of MR-Linacs Using a Clinical Probe-Format Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, J; Seuntjens, J; Sarfehnia, A

    Purpose: To evaluate the influence of a 1.5 T magnetic field (B-field) on the response of a small-scale graphite calorimeter probe (GPC) developed for use as a novel clinical reference dosimeter. Characterization of the GPC was also assessed in a hybrid MRI-linac (MRL) clinical prototype by performing absolute dosimetry in multiple detector orientations. Methods: B-field influence was characterized using a variable-strength electromagnet system located 280 cm from the source of a clinical linac. The GPC was used to perform a total of 160 absolute dose measurements (6 MV, 920 MU/min) in a water phantom placed between the poles of themore » electromagnet. The magnitude of the B-field between the poles was varied in the range of 0 – 1.5 T. The relative response of the GPC was determined and compared to that of a thimble type ionization chamber (Exradin A1SL, Standard Imaging). Next, 65 dose measurements were performed using the GPC in a clinical MRL field (7 MV, 620 MU/min) to quantify the rotational dependence of the detector in the presence of a 1.5 T B-field. The GPC was rotated in steps of 90° inside a graphite phantom (SSD 140 cm, depth 2.5 cm) for two detector orientations (parallel and perpendicular to the B field). Results: Relative to the zero B-field condition, the A1SL chamber exhibited an average overresponse of +1.2 % ± 0.03 % at a B-field of 1.5 T, while the GPC under-responded on average by −0.5 % ± 0.9 %. For the MRL measurements, no significant differences were observed between the parallel and perpendicular orientations. In both cases, a rotational dependence of approximately ±1 % was measured. Conclusion: This work suggests that the B-field has minimal influence on the response of the GPC, making it a potentially attractive solution for clinical MRL reference dosimetry. This work has been supported in part by the CREATE Medical Physics Research Training Network NSERC grant RGPIN 432290, as well as NSERC grants RGPIN 298191 & 435608. JR is a scholar from The Terry Fox Foundation Strategic Training Initiative for Excellence in Radiation Research for the 21st Century (EIRR21).« less

  12. Parallel evolutionary computation in bioinformatics applications.

    PubMed

    Pinho, Jorge; Sobral, João Luis; Rocha, Miguel

    2013-05-01

    A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    NASA Astrophysics Data System (ADS)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  14. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance.

    PubMed

    Rose, Jonas C; Cámara-Torres, María; Rahimi, Khosrow; Köhler, Jens; Möller, Martin; De Laporte, Laura

    2017-06-14

    Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.

  15. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the beam axis and those fired from a point source. This is indicative of the 3D spatially variant nature of the MRI fringe field. For the first time, accurate magnetic and Monte Carlo modeling have been used to assess the transport of generic proton beams toward a 1 T split-bore MRI. Significant rotation is observed in the inline orientation, while more complex deflection and distortion are seen in the perpendicular orientation. The results of this study suggest that due to the complexity and energy-dependent nature of the magnetic deflection and distortion, the pencil beam scanning method will be the only choice for delivering a therapeutic proton beam inside a potential MRI-guided proton therapy system in either the inline or perpendicular orientation. Further to this, significant correction strategies will be required to account for the MRI fringe fields.

  16. The effect of cosmic-ray acceleration on supernova blast wave dynamics

    NASA Astrophysics Data System (ADS)

    Pais, M.; Pfrommer, C.; Ehlert, K.; Pakmor, R.

    2018-05-01

    Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasi-parallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code AREPO for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.

  17. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.

    1958-08-19

    The construction of an ion source is descrtbed wherein a uniform and elongated arc is established for employment in a calutron. The novel features of the . source include the positioning of a cathode at one end of an elongated extt slit of an arc chamber. and anode electrodes defintng the longitudinal margins of the exit opening. When the exit slit is orientated in a parallel relation to a magnetic field, the arc extends in the direction of the magnetic field along and between the anode electrodes, which are held at a positsve potential with respect to the cathode.

  18. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  19. Horizontal slip along Alleghanian joints of the Appalachian plateau: evidence showing that mild penetrative strain does little to change the pristine appearance of early joints

    NASA Astrophysics Data System (ADS)

    Engelder, Terry; Haith, Benjamin F.; Younes, Amgad

    2001-07-01

    Some Alleghanian joints in black shales of the Geneseo and Middlesex Formations of the Catskill Delta complex, Finger Lakes district, New York, slipped horizontally up to 8 cm. Horizontal slip is measured by the offset of ENE-striking joints. Alleghanian joints striking 330-350° display a right-lateral slip with an average value of 1.9 cm, while joints striking 004-010° slip in the left-lateral sense with an average value of 1.3 cm. The maximum horizontal stress (SH) driving this slip falls between 350° and 004°, the orientation of local Alleghanian layer-parallel shortening as indicated by both disjunctive and pencil cleavage. By commonality of orientation, we infer that slip on Alleghanian joints is driven contemporaneously with layer-parallel shortening. If so, the offset ENE-striking joints predate the Alleghanian stress field. These observations mean that both pre-Alleghanian and early Alleghanian joints persist through a period of penetrative strain.

  20. Chirality-Assisted Electronic Cloaking of Confined States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Gu, Nan; Rudner, Mark; Levitov, Leonid

    2011-10-01

    We show that the strong coupling of pseudospin orientation and charge carrier motion in bilayer graphene has a drastic effect on transport properties of ballistic p-n-p junctions. Electronic states with zero momentum parallel to the barrier are confined under it for one pseudospin orientation, whereas states with the opposite pseudospin tunnel through the junction totally uninfluenced by the presence of confined states. We demonstrate that the junction acts as a cloak for confined states, making them nearly invisible to electrons in the outer regions over a range of incidence angles. This behavior is manifested in the two-terminal conductance as transmission resonances with non-Lorentzian, singular peak shapes. The response of these phenomena to a weak magnetic field or electric-field-induced interlayer gap can serve as an experimental fingerprint of electronic cloaking.

  1. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    NASA Astrophysics Data System (ADS)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.

  2. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  3. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  4. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less

  5. 3-D Hybrid Kinetic Modeling of the Interaction Between the Solar Wind and Lunar-like Exospheric Pickup Ions in Case of Oblique/ Quasi-Parallel/Parallel Upstream Magnetic Field

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.

    2015-01-01

    The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.

  6. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  7. Major Paleostress Field Differences on Complementary Margins of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Salomon, E.; Koehn, D.; Passchier, C. W.; Hackspacher, P. C.; Glasmacher, P. A.

    2013-12-01

    We present a detailed study of paleostress fields of the Namibian and Brazilian passive continental margins of the South Atlantic to address a general debate on whether or not these complementary margins experienced similar tectonic histories (e.g. Cobbold et al., 2001; Al-Hajri et al., 2009; Japsen et al., 2012). In our study, we compare the NW of Namibia and the SE of Brazil with each other. These areas are largely covered by the flood basalts of the Paraná-Etendeka-Large Igneous Province overlying Neo-Proterozoic basement of the Pan-African orogeny. With an age of ~133 Ma the basalts were emplaced just before or during the onset of the South Atlantic opening and thus serve as a good time marker for rift- and post-rift-related tectonics. We studied mainly fault planes and associated striations within the flood basalts and compared the resulting stress patterns of both margins. Results reveal remarkable differences in the stress patterns for SE Brazil and NW Namibia. In NW Namibia, a WSW-ENE directed extensional stress field dominates and fits well with extension of the original continental rift and the passive margin. A second extensional stress field (σ3 SSW oriented) and a strike-slip system (σ1 NW oriented) appear only subdued. In contrast, the SE of Brazil is mainly characterized by two strike-slip systems (σ1 oriented SW and E, respectively) whereas an extensional stress field is almost non-existent. The strike-slip faulting of the Brazilian study area occur widespread across SE Brazil as they are also evident in other paleostress studies of the region and might thus be the result of far-field stresses. Margin-parallel faults are scarce, so it appears that rift-related extension was restricted to a narrower strip along the continent-ocean boundary, now lying offshore. In NW Namibia, the faults of the extensional stress regime run parallel to the sub-margin-parallel basement structure (i.e. shear zones and foliation) and hence indicate a reactivation of the Neo-Proterozoic basement during the Atlantic rifting. The stress fields of NW Namibia stand in contrast to observations in other parts of southern Africa, where also compression is evident. We relate these variations to a strong influence of the basement structure on younger faulting in southern Africa. Our results indicate that different mechanisms may have produced the present-day high topography on both sides of the Southern Atlantic, the Brazilian margin being under compression in a strike-slip regime whereas the Namibian margin mainly under margin perpendicular extension. References Al-Hajri, Y. et al., 2009. Geology, 37, 883-886. Cobbold, P. R. et al., 2001. AAPG Bull., 85, 1925-1944. Japsen, P. et al., 2012. Geol. Soc. Am. Bull., 124, 800-816.

  8. Kinematics, partitioning and the relationship between velocity and strain in shear zones

    NASA Astrophysics Data System (ADS)

    Murphy, Justin James

    Granite Point, southeast Washington State, captures older distributed deformation deflected by younger localized deformation. This history agrees with mathematical modeling completed by Watkinson and Patton (2005; 2007 in prep). This model suggests that distributed strain occurs at a lower energy threshold than localized strain and predicts deformation histories similar to Granite Point. Ductile shear zones at Granite Point define a zone of deformation where strain is partitioned and localized into at least ten sub parallel shear zones with sinistral, west side down shear sense. Can the relative movement of the boundaries of this partitioned system be reconstructed? Can partitioning be resolved from a distributed style of deformation? The state of strain and kinematics of actively deforming zones was studied by relating the velocity field to strain. The Aleutian Arc, Alaska and central Walker Lane, Nevada were chosen because they have a wealth of geologic data and are recognized examples of obliquely deforming zones. The graphical construction developed by Declan De Paor is ideally suited for this application because it provides a spatially referenced visualization of the relationship between velocity and strain. The construction of De Paor reproduces the observed orientation of strain in the Aleutian Arc, however, the spatial distribution of GPS stations suggest a component of partitioning. Partitioning does not provide a unique solution and cannot be differentiated from a combination of partitioning and distributed strain. In the central Walker Lane, strain trajectories can be reproduced at the domain scale. Furthermore, the effect of anisotropy from Paleozoic through Cenozoic crustal structure, which breaks the regional strain field into pure shear and simple shear dominated transtension can be detected. Without GPS velocities to document strictly coaxial strain, the strain orientation should not be taken as the velocity orientation. The strain recorded at Granite Point should not be used to reconstruct the relative movement of the boundaries because the strain direction may not be parallel to the velocity orientation. Kinematic reconstructions of obliquely deforming zones that assume a palaeo-velocity orientation equal to the measured orientation of finite strain may not accurately reflect the deviation between velocity and strain.

  9. Nerve Fiber Activation During Peripheral Nerve Field Stimulation: Importance of Electrode Orientation and Estimation of Area of Paresthesia.

    PubMed

    Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl

    2016-04-01

    Low back pain is one of the indications for using peripheral nerve field stimulation (PNFS). However, the effect of PNFS varies between patients; several stimulation parameters have not been investigated in depth, such as orientation of the nerve fiber in relation to the electrode. While placing the electrode parallel to the nerve fiber may give lower activation thresholds, anodal blocking may occur when the propagating action potential passes an anode. A finite element model was used to simulate the extracellular potential during PNFS. This was combined with an active cable model of Aβ and Aδ nerve fibers. It was investigated how the angle between the nerve fiber and electrode affected the nerve activation and whether anodal blocking could occur. Finally, the area of paresthesia was estimated and compared with any concomitant Aδ fiber activation. The lowest threshold was found when nerve and electrode were in parallel, and that anodal blocking did not appear to occur during PNFS. The activation of Aβ fibers was within therapeutic range (<10V) of PNFS; however, within this range, Aδ fiber activation also may occur. The combined area of activated Aβ fibers (paresthesia) was at least two times larger than Aδ fibers for similar stimulation intensities. No evidence of anodal blocking was observed in this PNFS model. The thresholds were lowest when the nerves and electrodes were parallel; thus, it may be relevant to investigate the overall position of the target nerve fibers prior to electrode placement. © 2015 International Neuromodulation Society.

  10. Tailoring magnetostriction with various directions for directional solidification Fe82Ga15Al3 alloy by magnetic field heat treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Bao, Xiaoqian; Liu, Yangyang; Yu, Linhua; Li, Jiheng; Gao, Xuexu

    2017-10-01

    The magnetostriction of the Fe82Ga15Al3 alloy, along the length and width, can be tailored by applying a magnetic field heat treatment. In this work, the Fe82Ga15Al3 sheet was cut from the directional solidified Fe82Ga15Al3 alloy with the ⟨100⟩ preferred orientation and was annealed at 720 °C for 30 min under a magnetic field of 800 Oe along the length direction with a heating and cooling rate of 100 °C/min. The magnetostrictive properties along the length and width directions were modified to λ// = 7 ppm and λ⊥ = -210 ppm from λ// = 210 ppm and λ⊥ = -10 ppm for the initial sample prior to the magnetic field heat treatment. The cellular-like magnetic domain structure was composed of parallel 180° stripe domains and vertical 90° domains observed using a magnetic-force microscope. The change in magnetostriction along parallel and perpendicular directions was mainly resulted from the rotation of the magnetic domain units.

  11. Effect of grain-boundary flux pinning in MgB 2 with columnar structure

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.

    2009-10-01

    We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.

  12. Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction

    NASA Technical Reports Server (NTRS)

    Miura, A.; Pritchett, P. L.

    1982-01-01

    A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.

  13. Highly anisotropic magneto-transport and field orientation dependent oscillations in aligned carbon nanotube/epoxy composites

    NASA Astrophysics Data System (ADS)

    Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.

    2017-12-01

    Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.

  14. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis

    PubMed Central

    Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.

    2011-01-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610

  15. Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone

    NASA Astrophysics Data System (ADS)

    Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.

    2014-12-01

    Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  16. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  17. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors [Possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-17

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  18. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  19. Ion acceleration by multiple reflections at Martian bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, M.

    2012-02-01

    The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for both QL cases whereas the field-aligned speed is much smaller than the perpendicular speed for all QT cases.

  20. New Measurements of the Azimuthal Alignments of Greek Temples

    NASA Astrophysics Data System (ADS)

    Mickelson, M. E.; Higbie, C.; Boyd, T. W.

    1998-12-01

    The canonical opinion about the placement of Greek temples is that they are oriented east-west (Dinsmoor 1975). Major exceptions, such as the temple of Apollo at Bassae which faces north-south, are always noted in the handbooks, but many other temples are scattered across the Greek landscape in a variety of orientations. Although no surviving ancient author ever discusses the criteria for placing or orienting temples, we may assume from scattered remarks that Greeks had reasons for choosing the sites and orientations. In the last century, archaeologists and architects such as Nissen (1896), Penrose (1893) and Dinsmoor (1939), have measured the alignments of Greek temples on the Greek mainland, the west coast of Turkey, and the Aegean islands. Their data have varying degrees of precision and accuracy, as a recent paper by Papathanassiou (1994) makes clear. Parallel work done in Italy on Etruscan temples by Aveni and Romano (1994) provides further stimulus to re-investigate Greek temples. We have undertaken two field seasons in Greece to make preliminary measurements for a number of temples associated with Athena, Apollo, and Zeus. These temples were chosen for a number of reasons. The structures have to be well enough preserved to allow determination of the orientation of foundations, location of doorways and other openings, placement of cult statues etc. By focusing on these three gods, we may be able to discover patterns in the orientation and placement for specific divinities. For some of these questions, we are dependent on literary and inscriptional evidence, such as the work of the Greek travel writer, Pausanias. This paper describes the preliminary measurements made over our two field seasons in Greece. Field methods and analysis of the data will be presented along with proposed applications. Research supported by the Denison University Research Foundation.

  1. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    NASA Astrophysics Data System (ADS)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  2. Concerning the Motion of FTEs and Attendant Signatures

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2010-01-01

    We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.

  3. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; Liu, Zhiqi; Bauer, E. D.; Betts, J. B.; Migliori, A.; Thompson, J. D.; Janoschek, M.; Maiorov, B.

    2018-03-01

    We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

  4. The sun and heliosphere at solar maximum

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Marsden, R. G.; Balogh, A.; Gloeckler, G.; Geiss, J.; McComas, D. J.; McKibben, R. B.; MacDowall, R. J.; Lanzerotti, L. J.; Krupp, N.; hide

    2003-01-01

    Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun'rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.

  5. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

    DOE PAGES

    Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; ...

    2018-03-26

    In this paper, we investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Finally, our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

  6. Performance Evaluation of Parallel Branch and Bound Search with the Intel iPSC (Intel Personal SuperComputer) Hypercube Computer.

    DTIC Science & Technology

    1986-12-01

    17 III. Analysis of Parallel Design ................................................ 18 Parallel Abstract Data ...Types ........................................... 18 Abstract Data Type .................................................. 19 Parallel ADT...22 Data -Structure Design ........................................... 23 Object-Oriented Design

  7. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  8. Electrohydrodynamic Quincke rotation of a prolate ellipsoid

    NASA Astrophysics Data System (ADS)

    Brosseau, Quentin; Hickey, Gregory; Vlahovska, Petia M.

    2017-01-01

    We study experimentally the occurrence of spontaneous spinning (Quincke rotation) of an ellipsoid in a uniform direct current (dc) electric field. For an ellipsoid suspended in an unbounded fluid, we find two stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning (perpendicular). The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with the theory of Cēbers et al. [Phys. Rev. E 63, 016301 (2000)], 10.1103/PhysRevE.63.016301. We also investigate the dynamics of the ellipsoidal Quincke rotor resting on a planar surface with normal perpendicular to the field direction. We find behaviors, such as swinging (long axis oscillating around the applied field direction) and tumbling, due to the confinement.

  9. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin.

    PubMed

    Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E

    2017-09-26

    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.

  10. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  11. Planck intermediate results: XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-02-09

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions rangemore » from N H≈ 10 21 to10 23 cm -2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.« less

  12. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  13. Ion Acceleration by Multiple Reflections at Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, H.

    2012-04-01

    The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for the QL shock whereas the field-aligned speed is much smaller than the perpendicular speed for the QT shock. The reflected ions escape into the solar wind when and only when the reflection is in the field-aligned direction.

  14. Antiferromagnetic structure of exchange-coupled L a0.7S r0.3Fe O3 thin films studied using angle-dependent x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Shafer, Padraic; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Takamura, Yayoi

    2017-12-01

    The magnetic structure of exchange-coupled antiferromagnetic (AF) layers in epitaxial L a0.7S r0.3Mn O3 (LSMO)/L a0.7S r0.3Fe O3 (LSFO) superlattices grown on (111)-oriented SrTi O3 substrates was studied using angle-dependent x-ray absorption spectroscopy utilizing linearly polarized x rays. We demonstrate the development of the measurement protocols needed to determine the orientation of the LSFO antiferromagnetic spin axis and how it responds to an applied magnetic field due to exchange interactions with an adjacent ferromagnetic layer. A small energy difference exists between two types of AF order: the majority of the AF moments cant out-of-the-plane of the film along the 110 or 100 directions depending on the LSFO layer thickness. In response to an applied magnetic field, these canted moments are aligned with a single 110 or 100 direction that maintains a nearly perpendicular orientation relative to the LSMO sublayer magnetization. The remaining AF moments lie within the (111 ) plane and these in-plane moments can be reoriented to an arbitrary in-plane direction to lie parallel to the LSMO sublayer magnetization. These results demonstrate that the magnetic order of AF thin films and heterostructures is far more complex than in bulk LSFO and can be tuned with orientation, thickness, and applied magnetic field.

  15. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  16. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  17. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  18. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  19. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece

    NASA Astrophysics Data System (ADS)

    Brady, John B.; Markley, Michelle J.; Schumacher, John C.; Cheney, John T.; Bianciardi, Grace A.

    2004-01-01

    Numerous rod-shaped calcite crystals occur in the blueschist to eclogite facies marbles of Syros, Greece. The rods show a shape-preferred orientation, and the long axes of the rods are oriented at a large angle to foliation. The crystals also have a crystallographic-preferred orientation: calcite c-axes are oriented parallel to the long axes of the rods. Based on their chemical composition, shape, and occurrence in high-pressure marbles, these calcite crystals are interpreted as topotactic pseudomorphs after aragonite that developed a crystallographic-preferred orientation during peak metamorphism. This interpretation is consistent with deformation of aragonite by dislocation creep, which has been observed in laboratory experiments but has not been previously reported on the basis of field evidence. Subsequent to the high-pressure deformation of the aragonite marbles, the aragonite recrystallized statically into coarse rod-shaped crystals, maintaining the crystallographic orientation developed during deformation. During later exhumation, aragonite reverted to calcite, and the marbles experienced little further deformation, at least in the pseudomorph-rich layers. Some shearing of pseudomorph-bearing marble layers did occur and is indicated by twinning of calcite and by a variable inclination of the pseudomorphs relative to foliation.

  20. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  1. Dependences of the geometrical parameters of cell community on stimulation voltage and frequency in chick embryonic cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Fujii, Koki; Nomura, Fumimasa; Kaneko, Tomoyuki

    2018-03-01

    To investigate the optimal conditions for electrical stimulation, communities of lined-up chick embryonic cardiomyocytes were evaluated in terms of their threshold voltage for pacing (PVMin) and the half-maximum paced frequency (PF50), with a focus on the following factors: (1) the orientation of the major axis of cell communities to the electric field (EF) direction as the external factor; (2) the number of cells in a cell community, the length of the cell community, and the mean length of cells comprising the community as the internal factors. Firstly, PVMin decreased with increasing length of the cell network oriented parallel to the EF. PVMin was approximately 0.041 ± 0.025 V/mm when the community was sufficiently long. On the other hand, PVMin in the orthogonal orientation was constant at 1.7 ± 0.047 V/mm with no dependence on the length of the cell network. Secondly, we found that PF50 increased with increasing length of the cell network or the number of cells in the network; the PF50 values were 2.03 ± 0.05 and 3.39 ± 0.05 Hz when the respective cell network lengths were 100 µm (n = 43) and more than 300 µm (n = 6) and the cells were oriented parallel to the EF. These findings indicate that it is important to suppress ventricular fibrillation with minimal efficient stimulation by considering the EF direction with respect to the orientation of cardiomyocytes. Furthermore, expanded cells showed the loss of ability to respond to stimulation at higher frequencies. Cardiomyocytes combined with seeded fibroblasts as a cell network at a low density are a possible model of a ventricular remodeling heart.

  2. Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen

    2017-02-01

    We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ˜ 2-4 pc and densities of n ˜ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.

  3. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    NASA Astrophysics Data System (ADS)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  4. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, D. J.; Sawakuchi, G. O.

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. Amore » point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR{sup 20}{sub 10}, the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR{sup 20}{sub 10} is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future dosimetry protocols. This project was partially funded by Elekta Ltd.« less

  5. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  6. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    NASA Astrophysics Data System (ADS)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  7. Polarization-resolved second-harmonic-generation imaging of photoaged dermal collagen fiber

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Takahashi, Yu; Araki, Tsutomu

    2009-02-01

    Polarization-resolved second-harmonic-generation (SHG) microscopy is useful for assessment of collagen fiber orientation in tissues. In this paper, we investigated the relation between wrinkle direction and collagen orientation in ultraviolet-B-exposed (UVB-exposed) skin using polarization-resolved SHG microscopy. A polarization anisotropic image of the SHG light indicated that wrinkle direction in UVB-exposed skin is predominantly parallel to the orientation of dermal collagen fibers whereas no-UVB-exposed skin was dominated by collagen orientation parallel to the meridian line of body. The method proposed has the potential to become a powerful non-invasive tool for assessment of cutaneous photoaging.

  8. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  9. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE PAGES

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  10. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  11. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.

    PubMed

    Wen, Feng; Huang, Xueliang

    2017-02-08

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously.

  12. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems

    PubMed Central

    Wen, Feng; Huang, Xueliang

    2017-01-01

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously. PMID:28208709

  13. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.

    2018-06-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.

  14. Forward Monte Carlo Computations of Polarized Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Kummerow, C.

    2000-01-01

    Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.

  15. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  16. What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds?

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Hennebelle, P.

    2017-10-01

    >Bˆ-> being mostly parallel at low NH to mostly perpendicular at the highest NH, is related to the magnetic field strength and constitutes a crucial piece of information for determining the role of the magnetic field in the dynamics of MCs.

  17. Study of the Induced Anisotropy in Field Annealed Hitperm Alloys by Mössbauer Spectroscopy and Kerr Microscopy

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Marcin, J.; Andrejka, F.; Franco, V.; Conde, A.; Skorvanek, I.

    2016-08-01

    Samples of Fe39Co39Nb6B15Cu1 alloy were nanocrystallized under zero field annealing (ZF) and transverse field annealing (TF) conditions. A reduction in coercivity for TF samples with respect to ZF sample (16 and 45 A/m, respectively) is observed. Kerr microscopy images show a well-defined parallel domain structure, transversally oriented to the ribbon axis for the TF sample unlike for the ZF sample, for which a complex pattern is observed with large and small domains at the surface of the ribbon. Although Mössbauer spectra are clearly different for the two studied samples, Mössbauer studies confirm that there is no significant difference between the hyperfine field distributions of TF and ZF samples but only the relative intensity of the 2nd and 3rd lines A 23 (related to the angle between the gamma radiation and the magnetic moments, α). However, for TF annealed samples α = 90 deg ( A 23 = 4), indicating that the magnetic moments lay on the plane of the ribbon in agreement with the well-defined domain structure observed by Kerr microscopy, ZF annealed samples show A 23 = 1.8. This value is close to that of a random orientation ( A 23 = 2) but smaller, indicating a slight preference for out of plane orientations. Moreover, it is clearly smaller than that of the as-cast amorphous samples A 23 = 2.8, with a preference to in-plane orientations. The application of the law of approach to saturation yields a larger effect of the inhomogeneities in ZF sample with respect to TF one.

  18. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  19. Self-assembled microstructures of confined rod-coil diblock copolymers by self-consistent field theory.

    PubMed

    Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang

    2010-11-25

    We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.

  20. Fabric analysis of quartzites with negative magnetic susceptibility - Does AMS provide information of SPO or CPO of quartz?

    NASA Astrophysics Data System (ADS)

    Renjith, A. R.; Mamtani, Manish A.; Urai, Janos L.

    2016-01-01

    We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.

  1. Open and closed loop manipulation of charged microchiplets in an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J. P., E-mail: jplu@parc.com; Thompson, J. D.; Whiting, G. L.

    We demonstrate the ability to orient, position, and transport microchips (“chiplets”) with electric fields. In an open-loop approach, modified four phase traveling wave potential patterns manipulate chiplets in a dielectric solution using dynamic template agitation techniques. Repeatable parallel assembly of chiplets is demonstrated to a positional accuracy of 6.5 μm using electrodes of 200 μm pitch. Chiplets with dipole surface charge patterns are used to show that orientation can be controlled by adding unique charge patterns on the chiplets. Chip path routing is also demonstrated. With a closed-loop control system approach using video feedback, dielectric, and electrophoretic forces are used to achievemore » positioning accuracy of better than 1 μm with 1 mm pitch driving electrodes. These chip assembly techniques have the potential to enable future printer systems where inputs are electronic chiplets and the output is a functional electronic system.« less

  2. Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties.

    PubMed

    Jehl, Z; Rousset, J; Donsanti, F; Renou, G; Naghavi, N; Lincot, D

    2010-10-01

    The electrodeposition of ZnO nanorods on ZnO:Al films with different orientations is reported. The influence of the total charge exchanged during electrodeposition on the nanorod's geometry (length, diameter, aspect ratio and surface density) and the optical transmission properties of the nanorod arrays is studied on a [0001]-oriented ZnO:Al substrate. The nanorods are highly vertically oriented along the c axis, following the lattice matching with the substrate. The growth on a [1010] and [1120] ZnO:Al-oriented substrate with c axis parallel to the substrate leads to a systematic deviation angle of 55 degrees from the perpendicular direction. This finding has been explained by the occurrence of a minority orientation with the [1011] planes parallel to the surface, with a preferential growth on corresponding [0001] termination. Substrate crystalline orientation is thereby found to be a major parameter in finely tuning the orientation of the nanorod array. This new approach allows us to optimize the light scattering properties of the films.

  3. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field.

    PubMed

    Shakhparonov, Vladimir V; Ogurtsov, Sergei V

    2017-01-01

    Orientation by magnetic cues appears to be adaptive during animal migrations. Whereas the magnetic orientation in birds, mammals, and urodele amphibians is being investigated intensively, the data about anurans are still scarce. This study tests whether marsh frogs could determine migratory direction between the breeding pond and the wintering site by magnetic cues in the laboratory. Adult frogs (N = 32) were individually tested in the T-maze 127 cm long inside the three-axis Helmholtz coil system (diameter 3 m). The arms of the maze were positioned parallel to the natural migratory route of this population when measured in accordance with magnetic field. The frogs were tested under two-motivational conditions mediated by temperature/light regime: the breeding migratory state and the wintering state. The frogs' choice in a T-maze was evident only when analyzed in accordance with the direction of the magnetic field: they moved along the migratory route to the breeding pond and followed the reversion of the horizontal component of the magnetic field. This preference has been detected in both sexes only in the breeding migratory state. This suggests that adult ranid frogs can obtain directional information from the Earth's magnetic field as was shown earlier in urodeles and anuran larvae.

  4. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  5. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE PAGES

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...

    2017-09-11

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  6. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    NASA Astrophysics Data System (ADS)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  7. Cross-bedding related anisotropy and its interplay with various boundary conditions in the formation and orientation of joints in an aeolian sandstone

    NASA Astrophysics Data System (ADS)

    Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla

    2015-08-01

    Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy < εzz and εxx = εyy > εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a triaxial extension (εxx > εyy > εzz) would mitigate this influence. We suggest that the potential implication of different categories of joint sets (i.e., cross-bed package confined joints and joint zones) forming in response to the variation of the boundary conditions (axisymmetric extension and triaxial extension, respectively) and the interplay with the rock anisotropy is significant. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  8. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiationmore » source facility.« less

  9. Beneath the Surface: Understanding Patterns of Intra-Domain Orientational Order

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa; Grason, Gregory

    Block copolymers (BCP) self assemble into a rich spectrum of ordered phases due to asymmetry in copolymer architecture. Despite extensive study of spatially-ordered composition patterns of BCP, knowledge of orientational order of chain segments that underlie these spatial patterns is evidently missing. We show using self consistent field (SCF) theory and coarse-grained molecular dynamics (MD) simulations that, even without explicit orientational interactions between segments, BCP exhibit generic patterns of intra-domain segment orientation, which vary both within a given morphology and from morphology to morphology. We find that segment alignment is usually both normal and parallel to the interface within different local regions of a BCP sub-domain. We describe principles that control relative strength and directionality of alignment in different morphologies and report a surprising yet generic emergence of biaxial segment order in morphologies with anisotropic curved interfaces, such as cylinders and gyroid phases. Finally, we focus our study on cholesteric textures that pervade mesochiral BCP morphologies, specifically alternating double gyroid (aDG) and helical cylinder (H*) phases, and analyze patterns of twisted (nematic and polar) segment order within these domains.

  10. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Zhang; L Richter; D DeLongchamp

    We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm{sup 2} V{sup -1} s{sup -1}, with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packingmore » and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.« less

  11. Orthogonally superimposed laser-induced periodic surface structures (LIPSS) upon nanosecond laser pulse irradiation of SiO2/Si layered systems

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.

    2017-12-01

    In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.

  12. Self-organization and stability of magnetosome chains—A simulation study

    PubMed Central

    Faivre, Damien; Klumpp, Stefan

    2018-01-01

    Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attachment of the magnetosomes to the filament and their magnetic interactions. We show that the filamentous backbone is crucial for the robust assembly of the magnetic particles into a linear chain, which in turn is key for the functionality of the chain in cellular orientation and magnetically directed swimming. In addition, we simulate the response to an external magnetic field that is rotated away from the axis of the filament, an experimental method used to probe the mechanical stability of the chain. The competition between alignment along the filament and alignment with the external fields leads to the rupture of a chain if the applied field exceeeds a threshold value. These observations are in agreement with previous experiments at the population level. Beyond that, our simulations provide a detailed picture of chain rupture at the single cell level, which is found to happen through two abrupt events, which both depend on the field strength and orientation. The re-formation of the chain structure after such rupture is found to be strongly sped up in the presence of a magnetic field parallel to the filament, an observation that may also be of interest for the design of self-healing materials. Our simulations underline the dynamic nature of the magnetosome chain. More generally, they show the rich complexity of self-assembly in systems with competing driving forces for alignment. PMID:29315342

  13. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Wilson, Michael

    1997-01-01

    If peptides consist of nonpolar residues only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an a-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called the 310-helix, which remains in equilibrium with the a-helix. This process represents a simple, protobiologically relevant example of environmentally-mediated self-organization of biological molecules. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with changing external conditions may have provided a simple mechanism of transmitting signals from the environment to the interior of a protocell.

  14. Effects of visual information regarding allocentric processing in haptic parallelity matching.

    PubMed

    Van Mier, Hanneke I

    2013-10-01

    Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.

  15. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  16. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE PAGES

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.; ...

    2017-09-11

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  17. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  18. Magneto-capillary dynamics of amphiphilic Janus particles at curved liquid interfaces.

    PubMed

    Fei, Wenjie; Driscoll, Michelle M; Chaikin, Paul M; Bishop, Kyle J M

    2018-05-11

    A homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane. Application of a static homogeneous field drives particle motion to the drop equator where the particle's magnetic moment can align parallel to the field. As explained quantitatively by a simple model, the effective magnetic force on the particle scales linearly with the curvature of the interface. For particles adsorbed on small droplets such as those found in emulsions, these magneto-capillary forces can far exceed those due to magnetic field gradients in both magnitude and range. This mechanism may be useful in creating highly responsive emulsions and foams stabilized by magnetic particles.

  19. The simple procedure for the fluxgate magnetometers calibration

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2014-05-01

    The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.

  20. A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow

    NASA Astrophysics Data System (ADS)

    Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy

    2017-11-01

    It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.

  1. Multiprocessor smalltalk: Implementation, performance, and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallas, J.I.

    1990-01-01

    Multiprocessor Smalltalk demonstrates the value of object-oriented programming on a multiprocessor. Its implementation and analysis shed light on three areas: concurrent programming in an object oriented language without special extensions, implementation techniques for adapting to multiprocessors, and performance factors in the resulting system. Adding parallelism to Smalltalk code is easy, because programs already use control abstractions like iterators. Smalltalk's basic control and concurrency primitives (lambda expressions, processes and semaphores) can be used to build parallel control abstractions, including parallel iterators, parallel objects, atomic objects, and futures. Language extensions for concurrency are not required. This implementation demonstrates that it is possiblemore » to build an efficient parallel object-oriented programming system and illustrates techniques for doing so. Three modification tools-serialization, replication, and reorganization-adapted the Berkeley Smalltalk interpreter to the Firefly multiprocessor. Multiprocessor Smalltalk's performance shows that the combination of multiprocessing and object-oriented programming can be effective: speedups (relative to the original serial version) exceed 2.0 for five processors on all the benchmarks; the median efficiency is 48%. Analysis shows both where performance is lost and how to improve and generalize the experimental results. Changes in the interpreter to support concurrency add at most 12% overhead; better access to per-process variables could eliminate much of that. Changes in the user code to express concurrency add as much as 70% overhead; this overhead could be reduced to 54% if blocks (lambda expressions) were reentrant. Performance is also lost when the program cannot keep all five processors busy.« less

  2. Dual-keel electrodynamic maglev system

    DOEpatents

    He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang

    1996-01-01

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  3. Identification of Behavioral Indicators in Political Protest Music

    DTIC Science & Technology

    2015-12-01

    to ways to influence that behavior. Political protest songs are one such source. Protest music is goal-oriented, and lyrics often parallel movement ... music is goal-oriented, and lyrics often parallel movement goals of potential TAs. This thesis examines how political protest music can help identify... movement theory in order to bridge the MISO doctrine with music theories and understand what influences people to change their behavior and act or

  4. Scalable alignment and transfer of nanowires based on oriented polymer nanofibers.

    PubMed

    Yan, Shancheng; Lu, Lanxin; Meng, Hao; Huang, Ningping; Xiao, Zhongdang

    2010-03-05

    We develop a simple and scalable method based on oriented polymer nanofiber films for the parallel assembly and transfer of nanowires at high density. Nanowires dispersed in solution are aligned and selectively deposited at the central space of parallel nanochannels formed by the well-oriented nanofibers as a result of evaporation-induced flow and capillarity. A general contact printing method is used to realize the transfer of the nanowires from the donor nanofiber film to a receiver substrate. The mechanism, which involves ordered alignment of nanowires on oriented polymer nanofiber films, is also explored with an evaporation model of cylindrical droplets. The simplicity of the assembly and transfer, and the facile fabrication of large-area well-oriented nanofiber films, make the present method promising for the application of nanowires, especially for the disordered nanowires synthesized by solution chemistry.

  5. Reducing the motor response in haptic parallel matching eliminates the typically observed gender difference.

    PubMed

    van Mier, Hanneke I

    2016-01-01

    When making two bars haptically parallel to each other, large deviations have been observed, most likely caused by the bias of a hand-centered egocentric reference frame. A consistent finding is that women show significantly larger deviations than men when performing this task. It has been suggested that this difference might be due to the fact that women are more egocentrically oriented than men or are less efficient in overcoming the egocentric bias of the hand. If this is indeed the case, reducing the bias of the egocentric reference frame should eliminate the above-mentioned gender difference. This was investigated in the current study. Sixty participants (30 men, 30 women) were instructed to haptically match (task HP) the orientation of a test bar with the dominant hand to the orientation of a reference bar that was perceived with the non-dominant hand. In a haptic visual task (task HV), in which only the reference bar and exploring hand were out of view, no motor response was required, but participants had to "match" the perceived orientation by verbally naming the parallel orientation that was read out on a test protractor. Both females and males performed better in the HV task than in the HP task. Significant gender effects were only found in the haptic parallelity task (HP), corroborating the idea that women perform at the same level as men when the egocentric bias of the hand is reduced.

  6. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  8. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.

    PubMed

    Lintuvuori, J S; Würger, A; Stratford, K

    2017-08-11

    We present a study of the hydrodynamics of an active particle-a model squirmer-in an environment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid crystalline director can lead to reorientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behavior arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterize and guide spherical microswimmers in the bulk.

  9. Synthesis and Self-Assembly of fcc Phase FePt Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Pica, Timothy; Jiang, Ying-Bing

    2007-05-01

    In this paper, we report a synthesis of FePt nanorods by confining decomposition of Fe(CO) 5 and reduction of Pt(caca) 2 in surfactant reverse cylindrical micelles. The controlled nucleation and growth kinetics in confined environment allows easy control over Fe/Pt composition, nanorod uniformity, and nanorod aspect ratio. The FePt nanorods tend to self-assemble into ordered arrays along three-dimensions. Directed assembly under external magnetic field leads to two-dimensional ordered arrays, parallel to the substrate magnetic field. We expect that with optimized external magnetic fields, we should be able to assemble these nanorods into orientated one or two-dimensional arrays, providing a uniformmore » anisotropic magnetic platform for varied applications in enhanced data storage, magneto-electron transport, etc.« less

  10. Structure development in melt processing isotactic polypropylene, polypropylene blends/compounds and dynamically vulcanized polyolefin TPEs

    NASA Astrophysics Data System (ADS)

    Yu, Yishan

    The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.

  11. Mapping Magnetic Susceptibility Anisotropies of White Matter in vivo in the Human Brain at 7 Tesla

    PubMed Central

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A.D.; van Zijl, Peter C. M.

    2012-01-01

    High-resolution magnetic resonance phase- or frequency- shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor (χ¯¯). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS = (χ∥ + 2χ⊥)/3 and a magnetic susceptibility anisotropy, MSA = χ∥ − χ⊥, where χ∥ and χ⊥ are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°–30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1×1×1 mm3 frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from −0.037 to −0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with the expectation that the susceptibility perpendicular to the fiber is more diamagnetic than the one parallel to it. PMID:22561358

  12. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  13. Enhanced critical current in superconducting FeSe0.5Te0.5 films at all magnetic field orientations by scalable gold ion irradiation

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Si, Weidong; Jie, Qing; Li, Qiang

    2018-07-01

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe0.5Te0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10-15 nm over the entire film. The pristine FeSe0.5Te0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2 K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1 × 1012 Au cm-2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.

  14. Testing the Axion-Conversion Hypothesis of 3.5 keV Emission with Polarization.

    PubMed

    Gong, Yan; Chen, Xuelei; Feng, Hua

    2017-02-10

    The recently measured 3.5 keV line in a number of galaxy clusters, the Andromeda galaxy (M31), and the Milky Way (MW) center can be well accounted for by a scenario in which dark matter decays to axionlike particles (ALPs) and subsequently convert to 3.5 keV photons in magnetic fields of galaxy clusters or galaxies. We propose to test this hypothesis by performing x-ray polarization measurements. Since ALPs can only couple to photons with a polarization orientation parallel to the magnetic field, we can confirm or reject this model by measuring the polarization of the 3.5 keV line and compare it to the orientation of the magnetic field. We discuss luminosity and polarization measurements for both a galaxy cluster and spiral galaxy, and provide a general relation between the polarization and galaxy inclination angle. This effect is marginally detectable with x-ray polarimetry detectors currently under development, such as the enhanced X-ray Timing and Polarization satellite, the Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer. The sensitivity can be further improved in the future with detectors of a larger effective area or better energy resolutions.

  15. Tordo 1 polar cusp barium plasma injection experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wescott, E.M.; Stenbaek-Nielsen, H.C.; Davis, T.N.

    1978-04-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched from Cape Parry, Northwest Territories, Canada, into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. One experiment, Tordo 1, took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to B moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min untilmore » the barium flux tubes encountered large E fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.« less

  16. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  17. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  18. Nanosecond liquid crystalline optical modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less

  19. Single crystal polarized neutron diffraction study of the magnetic structure of HoFeO3.

    PubMed

    Chatterji, T; Stunault, A; Brown, P J

    2017-09-27

    Polarised neutron diffraction measurements have been made on HoFeO 3 single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of [Formula: see text] T parallel to [0 0 1] at [Formula: see text] K and with the lower field [Formula: see text] T parallel to [1 0 0] at [Formula: see text] K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70 K, 9 T applied parallel to [0 0 1] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the [Formula: see text] plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature [Formula: see text] structure with a lower field, 0.5 T [Formula: see text] [1 0 0] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the [Formula: see text] domain stabilised by the field were determined relative to the distorted perovskite structure. This relationship fixes the sign of the Dzyalshinski-Moriya (D-M) interaction which leads to the weak ferromagnetism. Our results indicate that the combination of strong y-axis anisotropy of the Ho moments and Ho-Fe exchange interactions breaks the centrosymmetry of the structure and could lead to ferroelectric polarization.

  20. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Alpaslan, Mehmet; Ashby, Matthew; Ashcraft, Teresa; Cohen, Seth H.; Condon, James J.; Conselice, Christopher; Ferrara, Andrea; Frye, Brenda L.; Grogin, Norman A.; Hammel, Heidi B.; Hathi, Nimish P.; Joshi, Bhavin; Kim, Duho; Koekemoer, Anton M.; Mechtley, Matt; Milam, Stefanie N.; Rodney, Steven A.; Rutkowski, Michael J.; Strolger, Louis-Gregory; Trujillo, Chadwick A.; Willmer, Christopher; Windhorst, Rogier A.; Yan, Haojing

    2017-01-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ˜14‧ in diameter (˜10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST “windmill”) and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 micron, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ˜10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ˜ 26 mag) wide-field (˜23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 8-12 GHz VLA radio observations (pending), and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible images will be available before JWST launches in Oct 2018.

  1. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Webb Medium Deep Fields IDS GTO Team, the NEPTDS-VLA/VLBA Team, and the NEPTDS-Chandra Team

    2017-06-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST "windmill") and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 μm, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ~10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 3-4.5 GHz VLA and VLBA radio observations, and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible (pending) and Chandra/ACIS X-ray (pending) images will be available before JWST launches in Oct 2018.

  2. Threading dynamics of a polymer through parallel pores: Potential applications to DNA size separation

    NASA Astrophysics Data System (ADS)

    Åkerman, Björn

    1997-04-01

    DNA orientation measurements by linear dichroism (LD) spectroscopy and single molecule imaging by fluorescence microscopy are used to investigate the effect of DNA size (71-740 kilo base pairs) and field strength E (1-5.9 V/cm) on the conformation dynamics during the field-driven threading of DNA molecules through a set of parallel pores in agarose gels, with average pore radii between 380 Å and 1400 Å. Locally relaxed but globally oriented DNA molecules are subjected to a perpendicular field, and the observed LD time profile is compared with a recent theory for the threading [D. Long and J.-L. Viovy, Phys. Rev. E 53, 803 (1996)] which assumes the same initial state. As predicted the DNA is driven by the ends into a U-form, leading to an overshoot in the LD. The overshoot-time scales as E-(1.2-1.4) as predicted, but grows more slowly with DNA size than the predicted linear dependence. For long molecules loops form initially in the threading process but are finally consumed by the ends, and the process of transfer of DNA segments, from the loops to the arms of the U, leads to a shoulder in the LD as predicted. The critical size below which loops do not form (as indicated by the LD shoulder being absent) is between 71 and 105 kbp (0.5% agarose, 5.9 V/cm), and considerably larger than predicted because in the initial state the DNA molecules are housed in gel cavities with effective pore sizes about four times larger than the average pore size. From the data, the separation of DNA by exploiting the threading dynamics in pulsed fields [D. Long et al., CR Acad. Sci. Paris, Ser. IIb 321, 239 (1995)] is shown to be feasible in principle in an agarose-based system.

  3. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE PAGES

    Fishman, Randy S.

    2018-01-03

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  4. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  5. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  6. 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo

    2017-09-08

    Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.

  7. Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings

    NASA Astrophysics Data System (ADS)

    Szalai, A.; Szekeres, G.; Balázs, J.; Somogyi, A.; Csete, Maria

    2013-09-01

    Theoretical investigation of rotated grating coupling phenomenon was performed on a multilayer comprising 416-nmperiodic shallow rectangular polymer grating on bimetal film made of gold and silver layers. During the multilayer illumination by 532 nm wavelength p-polarized light the polar and azimuthal angles were varied. In presence of 0-35 nm, 0-50 nm and 15-50 nm thick polymer-layers at the valleys and hills splitting was observed on the dual-angle dependent reflectance in two regions: (i) close to 0° azimuthal angle corresponding to incidence plane parallel to the periodic pattern (P-orientation); and (ii) around ~33.5°/29°/30° azimuthal angle (C-orientation), in agreement with our previous experimental studies. The near-field study revealed that in P-orientation the E-field is enhanced at the glass side with p/2 periodicity at the first minimum appearing at 49°/50°/52° polar angles, and comprises maxima below both the valleys and hills; while E-field enhancement is observable both at the glass and polymer side with p-periodicity at the second minimum developing at 55°/63/64° tilting, comprising maxima intermittently below the valleys or above the hills. In Corientation coupled plasmonic modes are observable, involving modes propagating along the valleys at the secondary maxima appearing at ~35°/32°/32° azimuthal and ~49°/51°/56° polar angles, while modes confined along the polymer hills are observable at the primary minima, which are coupled most strongly at the ~31.5°/25°/28° azimuthal and ~55°/63°/66° polar angles. The secondary peak observable in C-orientation is proposed for biosensing applications, since the supported modes are confined along the valleys, where biomolecules prefer to attach.

  8. Implementation and Assessment of a Virtual Laboratory of Parallel Robots Developed for Engineering Students

    ERIC Educational Resources Information Center

    Gil, Arturo; Peidró, Adrián; Reinoso, Óscar; Marín, José María

    2017-01-01

    This paper presents a tool, LABEL, oriented to the teaching of parallel robotics. The application, organized as a set of tools developed using Easy Java Simulations, enables the study of the kinematics of parallel robotics. A set of classical parallel structures was implemented such that LABEL can solve the inverse and direct kinematic problem of…

  9. Anisotropy in Third-Order Nonlinear Optical Susceptibility of a Squarylium Dye in a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki

    2006-03-01

    A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.

  10. Making Macroscopic Assemblies of Aligned Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; hide

    2005-01-01

    A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant of the method (see figure) includes a reservoir containing SWNTs dispersed in a suspending agent (for example, dimethylformamide) and a reservoir containing a suitable solvent (for example, water mixed with a surfactant). By use of either pressurized gas supplied from upstream or suction from downstream, the suspension of SWNTs and the solvent are forced to mix and flow into a tank. A filter inside the tank contains pores small enough to prevent the passage of most SWNTs, but large enough to allow the passage of molecules of the solvent and suspending agent. The filter is oriented perpendicular to the flow path. A magnetic field parallel to the plane of the filter is applied. The success of the method is based on the tendency of SWNTs to become aligned with their longitudinal axes parallel to an applied magnetic field. The alignment energy of an SWNT increases with the length of the SWNT and the magnetic-field strength. In order to obtain an acceptably small degree of statistical deviation of SWNTs of a given length from alignment with a magnetic field, one must make the field strong enough so that the thermal energy associated with rotation of an SWNT away from alignment is less than the alignment energy.

  11. Dynamics of elastic interactions in soft and biological matter.

    PubMed

    Yuval, Janni; Safran, Samuel A

    2013-04-01

    Cells probe their mechanical environment and can change the organization of their cytoskeletons when the elastic and viscous properties of their environment are modified. We use a model in which the forces exerted by small, contractile acto-myosin filaments (e.g., nascent stress fibers in stem cells) on the extracellular matrix are modeled as local force dipoles. In some cases, the strain field caused by these force dipoles propagates quickly enough so that only static elastic interactions need be considered. On the other hand, in the case of significant energy dissipation, strain propagation is slower and may be eliminated completely by the relaxation of the cellular cytoskeleton (e.g., by cross-link dissociation). Here, we consider several dissipative mechanisms that affect the propagation of the strain field in adhered cells and consider these effects on the interaction between force dipoles and their resulting mutual orientations. This is a first step in understanding the development of orientational (nematic) or layering (smectic) order in the cytoskeleton. We use the theory to estimate the propagation time of the strain fields over a cellular distance for different mechanisms and find that in some cases it can be of the order of seconds, thus competing with the cytoskeletal relaxation time. Furthermore, for a simple system of two force dipoles, we predict that in some cases the orientation of force dipoles might change significantly with time, e.g., for short times the dipoles exhibit parallel alignment while for later times they align perpendicularly.

  12. Orientation of ripples induced by ultrafast laser pulses on copper in different liquids

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Elkalash, Abdallah; Gurevich, Evgeny L.

    2017-12-01

    Formation of laser-induced periodic surface structures (LIPSS or ripples) was studied on a metallic surface of polished copper using irradiation with multiple femtosecond laser pulses in different environmental conditions (air, water, ethanol and methanol). Uniform LIPSS have been achieved by controlling the peak fluence and the overlapping rate. Ripples in both orientations, perpendicular and parallel to laser polarization, were observed in all liquids simultaneously. The orientation of these ripples in the center of the ablated line was changing with the incident light intensity. For low intensities the orientation of the ripples is perpendicular to the laser polarization, whereas for high intensities it turns parallel to it without considerable changes in the period. Multi-directional LIPSS formation was also observed for moderate peak fluence in liquid environments.

  13. Flux-lattice melting, anisotropy, and the role of interlayer coupling in Bi-Sr-Ca-Cu-O single crystals

    NASA Astrophysics Data System (ADS)

    Duran, C.; Yazyi, J.; de La Cruz, F.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1991-10-01

    We have used the high-Q mechanical-oscillator technique to probe the vortex-lattice structure in high-quality Bi-Sr-Ca-Cu-O single crystals over a wide range of magnetic fields (200 Oe to 40 kOe), and relative orientations θ between the magnetic field and the crystalline c^ axis. In addition to the large softening and dissipation peak previously observed and interpreted as due to flux-lattice melting, another distinctly different peak at higher temperatures is seen. The temperatures where the dissipation peaks take place are solely defined by the parallel component of the field cosθ, while the restoring force on the oscillator is due to both field components. We suggest that the two peaks are due to the softening of interplanar coupling at the low-temperature peak, and melting or depinning of the two-dimensional pancake vortices at the higher-temperature peak.

  14. In vivo and ex vivo imaging with ultrahigh resolution full-field OCT

    NASA Astrophysics Data System (ADS)

    Grieve, Kate; Moneron, Gael; Schwartz, Wilfrid; Boccara, Albert C.; Dubois, Arnaud

    2005-08-01

    Imaging of in vivo and ex vivo biological samples using full-field optical coherence tomography is demonstrated. Three variations on the original full-field optical coherence tomography instrument are presented, and evaluated in terms of performance. The instruments are based on the Linnik interferometer illuminated by a white light source. Images in the en face orientation are obtained in real-time without scanning by using a two-dimensional parallel detector array. An isotropic resolution capability better than 1 μm is achieved thanks to the use of a broad spectrum source and high numerical aperture microscope objectives. Detection sensitivity up to 90 dB is demonstrated. Image acquisition times as short as 10 μs per en face image are possible. A variety of in vivo and ex vivo imaging applications is explored, particularly in the fields of embryology, ophthalmology and botany.

  15. Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Krämer, Florian; Gratz, Micha; Tschöpe, Andreas

    2016-07-01

    The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.

  16. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE PAGES

    Sutherland, John C.

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  17. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John C.

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  18. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear.

    PubMed

    Sutherland, John C

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonal orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configurations. Approaches for measuring the dichroic increment ratio with modern dichrometers are discussed. Copyright © 2017. Published by Elsevier Inc.

  19. Paleomagnetism and magnetic fabric of the Triassic rocks from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Dudzisz, K.; Szaniawski, R.; Michalski, K.; Manby, G.

    2017-12-01

    Understanding the origin and directions of the natural remanent magnetization and the tectonic deformation pattern reflected in magnetic fabric is of importance for investigation of the West Spitsbergen Fold and Thrust Belt (WSFTB) and its foreland. Previous research carried out on Triassic rocks from the study area concluded that these rocks record a composite magnetization of both, normal and reverse polarity, consisting of a primary Triassic remanence that is overlapped by a secondary post-folding component. Standard paleomagnetic procedures were conducted in order to determine the remanence components and a low-field AMS was applied to assess the degree and pattern of deformation. The AMS results from the WSFTB reveal a magnetic foliation that parallels the bedding planes and a dominantly NNW-SSE oriented magnetic lineation that is sub-parallel to the regional fold axial trend. These results imply a low to moderate degree of deformation and a maximum strain orientation parallel to that of the fold belt. These data are consistent with an orthogonal convergence model for the WSFTB formation. In turn, the magnetic fabric on the undeformed foreland displays a distinct NNE-SSW orientation that we attribute to the paleocurrent direction. Rock-magnetic analyses reveal that the dominant ferrimagnetic carriers are magnetite and titanomagnetite. The Triassic rocks are characterised by complicated NRM patterns often with overlapping unblocking temperature spectra of particular components. The dominant magnetisation is characterised, however, by a steep inclination of 70-80º. The derived paleomagnetic direction from the WSFTB falls on the Jurassic - recent sector of the apparent polar wander path (APWP) of Baltica after tectonic unfolding. These data imply that at least some of the identified secondary components could have originated before the Eurekan folding event (K/Pg), for example, in Early Cretaceous time which corresponds to the period of rifting events on Barents Sea and emplacement of dolerite intrusions. In contrast, paleomagnetic data from the foreland coincides with the APWP for Triassic - recent sector and partly matches previously published data.

  20. Use of inertial properties to orient tomatoes

    USDA-ARS?s Scientific Manuscript database

    Recent theoretical and experimental results have demonstrated that it is possible to orient quasi-round objects such as apples by taking advantage of inertial-effects during rotation. In practice, an apple rolled down a track consisting of two parallel rails tends to move to an orientation where the...

  1. Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry

    NASA Astrophysics Data System (ADS)

    Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.

    2013-12-01

    The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than the other two orientations. This anisotropy and variability in fracture properties is seen to cause deviation of the fracture direction during experiments on Arrester and Short-Transverse oriented samples, and can be expected to influence the geometry of propagating fractures. A comparison between the anisotropic tensile strength of the material and the crack-tip stress field in a transversely isotropic material has been used to develop a crack-tip deflection criterion in terms of the elasticity theory of cracks. This criterion suggests that a small perturbation in the incident angle of a mode-I crack propagating perpendicular to the bedding is likely to lead to a substantial deflection towards bedding-parallel (Short-Transverse) propagation. Further experimental work is currently underway on anisotropic Fracture Toughness measurements at elevated pressures and temperatures, simulating conditions in Shale Gas reservoirs at depths up to around 4km.

  2. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision.

    PubMed

    Cheney, Frank; Thibos, Larry; Bradley, Arthur

    2015-01-01

    We examined the effect of transverse chromatic aberration (TCA) on detection acuity for white-light interference fringes seen in Maxwellian view at various orientations and locations in the visual field. A circular patch (3.5° diameter, 3.2 log Trolands) of nominally high-contrast fringes was produced on the retina by a commercial instrument (the Lotmar Visometer, Haag Streit) mounted on a gimbal for controlled positioning of the stimulus in the visual field from 0° to 35° eccentricity. Detection acuity for white light fringes for all meridians and eccentricities ≥15° was maximum when fringes were oriented parallel to the visual meridian line. This meridional effect disappeared when a narrow-band filter was used to eliminate TCA. The meridional effect also disappeared when the interferometric stimulator was displaced laterally to align the instrument with the eye's local achromatic axis. Modelling confirmed that TCA is the major factor responsible for white-light meridional bias, with minor contribution arising from higher-order monochromatic aberrations and neural factors. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  3. Effective g factor of low-density two-dimensional holes in a Ge quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, T. M.; Harris, C. T.; Huang, S. -H.

    Here we report the measurements of the effective g factor of low-density two-dimensional holes in a Ge quantum well. Using the temperature dependence of the Shubnikov-de Haas oscillations, we extract the effective g factor in a magnetic field perpendicular to the sample surface. Very large values of the effective g factor, ranging from ~13 to ~28, are observed in the density range of 1.4×10 10 cm -2– 1.4×10 11 cm -2. When the magnetic field is oriented parallel to the sample surface, the effective g factor is obtained from a protrusion in the magneto-resistance data that signify full spin polarization.more » In the latter orientation, a small effective g factor, ~1.3-1.4, is measured in the density range of 1.5×10 10 cm -2–2×10 10 cm -2. Finally, this very strong anisotropy is consistent with theoretical predictions and previous measurements in other 2D hole systems, such as InGaAs and GaSb.« less

  4. Effective g factor of low-density two-dimensional holes in a Ge quantum well

    DOE PAGES

    Lu, T. M.; Harris, C. T.; Huang, S. -H.; ...

    2017-09-04

    Here we report the measurements of the effective g factor of low-density two-dimensional holes in a Ge quantum well. Using the temperature dependence of the Shubnikov-de Haas oscillations, we extract the effective g factor in a magnetic field perpendicular to the sample surface. Very large values of the effective g factor, ranging from ~13 to ~28, are observed in the density range of 1.4×10 10 cm -2– 1.4×10 11 cm -2. When the magnetic field is oriented parallel to the sample surface, the effective g factor is obtained from a protrusion in the magneto-resistance data that signify full spin polarization.more » In the latter orientation, a small effective g factor, ~1.3-1.4, is measured in the density range of 1.5×10 10 cm -2–2×10 10 cm -2. Finally, this very strong anisotropy is consistent with theoretical predictions and previous measurements in other 2D hole systems, such as InGaAs and GaSb.« less

  5. Motion streaks in fast motion rivalry cause orientation-selective suppression.

    PubMed

    Apthorp, Deborah; Wenderoth, Peter; Alais, David

    2009-05-14

    We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.

  6. Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys.

    PubMed

    Li, W; Thier, P; Wehrhahn, C

    2000-02-01

    We studied the effects of various patterns as contextual stimuli on human orientation discrimination, and on responses of neurons in V1 of alert monkeys. When a target line is presented along with various contextual stimuli (masks), human orientation discrimination is impaired. For most V1 neurons, responses elicited by a line in the receptive field (RF) center are suppressed by these contextual patterns. Orientation discrimination thresholds of human observers are elevated slightly when the target line is surrounded by orthogonal lines. For randomly oriented lines, thresholds are elevated further and even more so for lines parallel to the target. Correspondingly, responses of most V1 neurons to a line are suppressed. Although contextual lines inhibit the amplitude of orientation tuning functions of most V1 neurons, they do not systematically alter the tuning width. Elevation of human orientation discrimination thresholds decreases with increasing curvature of masking lines, so does the inhibition of V1 neuronal responses. A mask made of straight lines yields the strongest interference with human orientation discrimination and produces the strongest suppression of neuronal responses. Elevation of human orientation discrimination thresholds is highest when a mask covers only the immediate vicinity of the target line. Increasing the masking area results in less interference. On the contrary, suppression of neuronal responses in V1 increases with increasing mask size. Our data imply that contextual interference observed in human orientation discrimination is in part directly related to contextual inhibition of neuronal activity in V1. However, the finding that interference with orientation discrimination is weaker for larger masks suggests a figure-ground segregation process that is not located in V1.

  7. Orientation-specific contextual modulation of the fMRI BOLD response to luminance and chromatic gratings in human visual cortex.

    PubMed

    McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G

    2009-05-01

    The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.

  8. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    PubMed

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  9. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  10. Dual-keel electrodynamic maglev system

    DOEpatents

    He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.

    1996-12-24

    A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.

  11. A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Mishchenko, M. I.

    2011-01-01

    A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.

  12. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

  13. Cross-polarised and parallel-polarised light: Viewing and photography for examination and documentation of biological materials in medicine and forensics.

    PubMed

    Hanlon, Katharine L

    2018-01-01

    Cross-polarisation, with regard to visible light, is a process wherein two polarisers with perpendicular orientation to one another are used on the incident and reflected lights. Under cross-polarised light birefringent structures which are otherwise invisible become apparent. Cross-polarised light eliminates glare and specular highlights, allowing for an unobstructed view of subsurface pathology. Parallel-polarisation occurs when the polarisers are rotated to the same orientation. When cross- or parallel-polarisation is applied to photography, images can be generated which aid in visualisation of surface and subsurface elements. Improved access to equipment and education has the potential to benefit practitioners, researchers, investigators and patients.

  14. Transition from eruptive to confined flares in the same active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F. P.; Chandra, R.; Schmieder, B.; Aulanier, G.; Joshi, R.

    2017-05-01

    Context. Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided into two classes: eruptive flares, where plasma is ejected from the solar atmosphere resulting in a coronal mass ejection (CME), and confined flares, where no CME is associated with the flare. Aims: We present a case study showing the evolution of key topological structures, such as spines and fans, which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares followed by confined flares, which all originate from the same site. Methods: To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation. Results: The change in behavior of the flares from one day to the next - from eruptive to confined - can be attributed to the change in orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine rather than an overall change in the stability of the large-scale field. Conclusions: Flares tend to be more confined when the field that supports the filament and the overlying field gradually becomes less anti-parallel as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations. Movies associated to Figs. 2, 3, and 5 are available at http://www.aanda.org

  15. Orientation and Order in Shear-Aligned Thin Films of Cylinder-Forming Block Copolymers

    NASA Astrophysics Data System (ADS)

    Register, Richard

    The regularity and tunability of the nanoscale structure in block copolymers makes their thin films attractive as nanolithographic templates; however, in the absence of a guiding field, self-assembly produces a polygrain structure with no particular orientation and a high density of defects. As demonstrated in the elegant studies of Ed Kramer and coworkers, graphoepitaxy can provide local control over domain orientation, with a dramatic reduction in defect density. Alternatively, cylindrical microdomains lying in the plane of the film can be aligned over macroscopic areas by applying shear stress at the film surface. In non-sheared films of polystyrene-poly(n-hexylmethacrylate) diblocks, PS-PHMA, the PS cylinder axis orientation relative to the surface switches from parallel to perpendicular as a function of film thickness; this oscillation is damped out as the fraction of the PS block increases, away from the sphere-cylinder phase boundary. In aligned films, thicknesses which possess the highest coverage of parallel cylinders prior to shear show the highest quality of alignment post-shear, as measured by the in-plane orientational order parameter. In well-aligned samples of optimal thickness, the quality of alignment is limited by isolated dislocations, whose density is highest at high PS contents, and by undulations in the cylinders' trajectories, whose impact is most severe at low PS contents; consequently, polymers whose compositions lie in the middle of the cylinder-forming region exhibit the highest quality of alignment. The dynamics of the alignment process are also investigated, and fit to a melting-recrystallization model which allows for the determination of two key alignment parameters: the critical stress needed for alignment, and an orientation rate constant. For films containing a monolayer of cylindrical domains, as PS weight fraction or overall molecular weight increases, the critical stress increases moderately, while the rate of alignment drastically decreases. As the number of layers of cylinders in the film increases, the critical stress decreases modestly, while the rate remains unchanged; substrate wetting condition has no measurable influence on alignment response. [Work of Raleigh Davis, in collaboration with Paul Chaikin.

  16. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  17. SU-F-T-324: Experimental Measurement of Optically Stimulated Luminescence Detectors in a MR-IGRT Environment Toward Assessing Magnetic Field Effects On These Devices and Their Use as An In-Vivo Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, M; Curcuru, A; Yaddanapudi, S

    Purpose: To characterize magnetic field effects on Optically Stimulated Luminescence Detectors (OSLDs) for use as an in-vivo dosimeter in an MRIGRT machine. Methods: Landauer OSLD nano-dots and the MicroStar II reader were used to measure and record OSLDs exposed in and on a solid water phantom in a 10.5 × 10.5 cm{sup 2} field, Co-60, 0.32-Tesla MR-IGRT machine - with and without the presence of the magnetic field. Two orthogonal gantry angles were considered to assess orientation effects on the OSLDs with respect to the incident angle of the radiation beam and magnetic field. The same OSLDs were then usedmore » (after readout and bleaching) when the magnetic field was restored. Results: The measured surface dose decreased by 14.1 ± 1.8% when magnetic field was ’on’ due to contamination electrons being swept away by the field. Doses at both 0.5 cm and 5 cm depth increased by 6.5 ± 0.9% and 8.8 ± 0.5% respectively when the magnetic field was present and the OSLDs oriented with their long axis parallel with the incident beam. This contrasts with an increased dose of 2.7 ± 1.1% when the magnetic field was present and the OSLDs were oriented with their long axis perpendicular to the incident beam. Conclusion: Previous works have shown that OSLDs have a dependence on beam incidence angle. Our current work suggests an additional dependence on the presence of the magnetic field when the beam is not perpendicular to the plane of the detector and this effect needs to be considered. Furthermore, the use of an in-vivo dosimeter was shown to have no effect on image quality during the use of MR guidance. Future work will focus on the use of an electromagnet with a linear accelerator to further characterize these effects.« less

  18. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  19. Inland fields of dispersed cobbles and boulders as evidence for a tsunami on Anegada, British Virgin Islands

    USGS Publications Warehouse

    Jaffe, Bruce E.; Watt, Steve; Buckley, Mark

    2012-01-01

    Marine overwash from the north a few centuries ago transported hundreds of angular cobbles and boulders tens to hundreds of meters southward from limestone outcrops in the interior of Anegada, 140 km east–northeast of Puerto Rico. We examined two of several cobble and boulder fields as part of an effort to interpret whether the overwash resulted from a tsunami or a storm in a location where both events are known to occur. One of the cobble and boulder field extends 200 m southward from limestone outcrops that are 300 m inland from the island’s north shore. The other field extends 100 m southward from a limestone knoll located 800 m from the nearest shore. In the two fields, we measured the size, orientation, and spatial distribution of a total of 161 clasts and determined their stratigraphic positions with respect to an overwash sand and shell sheet deposit. In both fields, we found the spacing between clasts increased southward and that clast long-axis orientations are consistent with a transport trending north–south. Almost half the clasts are partially buried in a landward thinning and fining overwash sand and none were found embedded in the shelly mud of a pre-overwash marine pond. The two cobble and boulder fields resemble modern tsunami deposits in which dispersed clasts extend inland as a single layer. The fields contrast with coarse clast storm deposits that often form wedge-shaped shore-parallel ridges. These comparisons suggest that the overwash resulted from a tsunami and not from a storm.

  20. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  1. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films.

    PubMed

    Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique

    2012-01-01

    We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE

  2. Vacuum-barrier window for wide-bandwidth high-power microwave transmission

    DOEpatents

    Caplan, M.; Shang, C.C.

    1996-08-20

    A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric. 4 figs.

  3. Vacuum-barrier window for wide-bandwidth high-power microwave transmission

    DOEpatents

    Caplan, Malcolm; Shang, Clifford C.

    1996-01-01

    A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.

  4. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  5. Formation of organic layer on femtosecond laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Yasumaru, Naoki; Sentoku, Eisuke; Kiuchi, Junsuke

    2017-05-01

    Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  6. Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Geoffroy, L.; Angelier, J.; Bonin, B.; Callot, J. P.; Gélard, J. P.; Aubourg, C.

    2012-12-01

    We characterize and map the stress fields acting during plate breakup along the West Greenland volcanic margin. The determination of interpolated stress fields is based on an inversion of fault-slip data sets and magma-driven fractures, crosscutting mainly an exposed inner seaward-dipping basaltic wedge (i.e., SDRi: inner Seaward Dipping Reflectors). This SDRi is segmented along-strike, with differently oriented segments. Relative chronology of stress fields is inferred from published age results on oriented dykes. We identify two distinct tectonic episodes (P1 and P2) with a P1-P2 change over at ~ 54 Ma, i.e. during magnetic chron C24R. P1 is syn-magmatic and purely extensional. It is associated with the major crustal stretching event affecting the margin. P1 probably acted as early as the Late Palaeocene. This stress field was first homogeneous with the minimum principal stress σ3 trending ~ N060E, defining a P1A stage. During development of the SDRi, σ3 locally reoriented to become orthogonal to each margin segment and, thus, to the continentward-dipping detachment faults bounding the SDRi (P1B). P1 is coeval with lithosphere breakup and is associated with an extension orthogonal to the Labrador-Baffin axis, which is inherited from the Mesozoic. A regional and radical change of σ3 to a ~ NS trend takes place during P2, which follows on immediately from P1. P2 is also syn-magmatic. It is associated with only minor extension. σ3 runs parallel to the North American (NAM)/Greenland (GR) kinematic vector from C24R to C13. We establish therefore that the minimum horizontal stress σ3 for P1 and P2 is parallel to the relative displacement of Greenland related to NAM but not to its absolute displacement during the Tertiary. Taking into account those results as well as variations in magma chemistry from P1 to P2, we suggest that tectonic stresses at a volcanic margin could arise from the local dynamics of the melting mantle.

  7. Bondi-Hoyle accretion in an isothermal magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbersmore » of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by Bondi-Hoyle rates. Our results should find application in numerical codes, enabling accurate sub-grid models of sink particles accreting from magnetized media.« less

  8. Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin

    2015-01-01

    The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.

  9. Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.

    2018-05-01

    The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.

  10. Self-assembly of metal nanowires induced by alternating current electric fields

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio

    2015-01-01

    We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.

  11. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  12. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  13. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  14. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  15. 7 CFR 29.3046 - Oriented.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Oriented. A term applied to Type 31 untied tobacco which denotes the arrangement of leaves in a straight and orderly manner. Oriented includes: (a) Any lot of baled tobacco in which the leaves are packed parallel to the length of the bale with the butts to the outside and the tips of the leaves overlapping...

  16. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  17. Texture inheritance from austenite to 7 M martensite in Ni-Mn-Ga melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Jiang, Yiwen; Li, Zhenzhuang; Yang, Yiqiao; Yang, Bo; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    In this work, Ni53Mn22Ga25 and Ni51Mn27Ga22 ribbons with austenite and 7 M martensite at room temperature respectively, were prepared by melt-spinning. Through the detailed crystallographic analyses, the preferred orientation in ribbons was confirmed. It is shown that the austenite in Ni53Mn22Ga25 ribbons forms a preferred orientation with {4 0 0}A in parallel to ribbon plane, whereas the 7 M martensite in Ni51Mn27Ga22 ribbons develops the preferred orientation with {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M crystallographic planes parallel to the ribbon plane. Since {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M are originated from {4 0 0}A, the preferred orientation in ribbons thus can be inherited after the martensitic transformation. Such texture inheritance is attributed to the intrinsic orientation relationship between austenite and 7 M martensite.

  18. Biaxial ferromagnetic liquid crystal colloids

    PubMed Central

    Liu, Qingkun; Ackerman, Paul J.; Lubensky, Tom C.; Smalyukh, Ivan I.

    2016-01-01

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed “director,” whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  19. Angular trapping of anisometric nano-objects in a fluid.

    PubMed

    Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi

    2012-11-14

    We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.

  20. Fine-scale characteristics of interplanetary sector

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Neubauer, F. M.; Barnstoff, H.

    1980-01-01

    The structure of the interplanetary sector boundaries observed by Helios 1 within sector transition regions was studied. Such regions consist of intermediate (nonspiral) average field orientations in some cases, as well as a number of large angle directional discontinuities (DD's) on the fine scale (time scales 1 hour). Such DD's are found to be more similar to tangential than rotational discontinuities, to be oriented on average more nearly perpendicular than parallel to the ecliptic plane to be accompanied usually by a large dip ( 80%) in B and, with a most probable thickness of 3 x 10 to the 4th power km, significantly thicker previously studied. It is hypothesized that the observed structures represent multiple traversals of the global heliospheric current sheet due to local fluctuations in the position of the sheet. There is evidence that such fluctuations are sometimes produced by wavelike motions or surface corrugations of scale length 0.05 - 0.1 AU superimposed on the large scale structure.

  1. Theory of fluorescence polarization in magnetically oriented photosynthetic systems.

    PubMed Central

    Knox, R S; Davidovich, M A

    1978-01-01

    Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283

  2. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  3. The role of basement inheritance faults in the recent fracture system of the inner shelf around Alboran Island, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Maestro-González, A.; Bárcenas, P.; Vázquez, J. T.; Díaz-Del-Río, V.

    2008-02-01

    Fractures associated with volcanic rock outcrops on the inner shelf of Alboran Island, Western Mediterranean, were mapped on the basis of a side-scan sonar mosaic. Absolute maximum fracture orientation frequency is NW SE to NNW SSE, with several sub-maxima oriented NNE SSW, NE SW and ENE WSW. The origin of the main fracture systems in Neogene and Quaternary rocks of the Alboran Basin (south Spain) appears to be controlled by older structures, namely NE SW and WNW ESE to NW SE faults which cross-cut the basement. These faults, pre-Tortonian in origin, have been reactivated since the early Neogene in the form of strike-slip and extensional movements linked to the recent stress field in this area. Fracture analysis of volcanic outcrops on the inner continental shelf of Alboran Island suggests that the shelf has been deformed into a narrow shear zone limited by two NE SW-trending, sub-parallel high-angle faults, the main orientation and density of which have been influenced by previous WNW ESE to NW SE basement fractures.

  4. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1995-06-01

    Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. The authors report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 {mu}T) and AC (60.0 Hz at 10.0 {mu}T{sub peak}) magnetic fields applied in parallel was found to be significantly delayed (Pmore » {much_lt} 0.001) by 48 {+-} 1 h relative to two different types of control populations (MRT {minus}140 {+-} 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca{sup 2+} cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation.« less

  5. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE PAGES

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; ...

    2018-01-17

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  6. Enhanced critical current in superconducting FeSe 0.5 Te 0.5 films at all magnetic field orientations by scalable gold ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng

    The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density J c, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe 0.5Te 0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe 0.5Te 0.5 film exhibits a low anisotropy in the angular dependence of J c. A clear improvement in the J c is observed upon Au-ion irradiation for all field orientations at 4.2more » K. Furthermore, a nearly 70% increase in J c is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature T c. Our studies show that a dose of 1×10 12 Au cm –2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.« less

  7. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  8. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  9. Method for adhering a coating to a substrate structure

    DOEpatents

    Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey

    2015-02-17

    A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.

  10. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less

  11. Neural network architecture for form and motion perception (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen

    1991-08-01

    Evidence is given for a new neural network theory of biological motion perception, a motion boundary contour system. This theory clarifies why parallel streams V1 yields V2 and V1 yields MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The motion boundary contour system consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a motion oriented contrast (MOC) filter, for preprocessing moving images; and a cooperative-competitive feedback (CC) loop, for generating emergent boundary segmentations of the filtered signals. The present work uses the MOC filter to explain a variety of classical and recent data about short-range and long- range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed- up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte''s Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90 degree(s), whereas opposite directions differ by 180 degree(s), and why a cortical stream V1 yields V2 yields MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the motion boundary contour system design.

  12. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  13. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  14. Enceladus Jet Orientations: Effects of Surface Structure

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Porco, C.; DiNino, D.

    2013-12-01

    Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally crossing azimuths for Damascus and Baghdad suggest that cross-cutting fractures may significantly control jet orientations. At the 100 m/pixel scale of our Enceladus basemap at least 24% of the jets have azimuth orientations that point along or parallel to nearby fractures or fabrics of parallel fractures that approach or intersect the tiger stripe. Structural control of jet orientations by local tectonism is especially suggested by a systematic pattern of jet orientations at the distal end of Damascus Sulcus where it bifurcates into a northern and a southern branch, respectively. The five most distal jets along the northern branch are nearly parallel and point northward while the three most distal jets along the southern branch are also nearly parallel, but they point in the opposite direction. Additional work is needed to show the extent to which jet orientations may be affected at smaller scales by quasi-parallel systems of cross-cutting gossamer fractures or by curving axial discontinuities along the tiger stripes (cf. Helfenstein et al. 2011, http://encfg.ciclops.org/reg/uploads/20110425220109_helfenstein_enceladus_workshop_2011.pdf).

  15. On the measurement of fiber orientation in fiberboard

    Treesearch

    Otto Suchsland; Charles W. McMillin

    1983-01-01

    An attempt to measure the vertical component of fiber orientation in fiberboard is described. The experiment is based on the obvious reduction of the furnish fiber length which occurs by cutting thin microtome sections of the board parallel to the board plane. Only when no vertical fiber orientation component is present will the fibers contained in these sections have...

  16. Texture-dependent motion signals in primate middle temporal area

    PubMed Central

    Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G

    2013-01-01

    Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175

  17. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  18. Microwave Power Combiners for Signals of Arbitrary Amplitude

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce; Hoppe, Daniel

    2009-01-01

    Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.

  19. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation

    PubMed Central

    Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin

    2016-01-01

    Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425

  20. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress.

    PubMed

    Tondon, Abhishek; Kaunas, Roland

    2014-01-01

    Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.

  1. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    PubMed Central

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850

  2. Electric alignment of plate shaped clay aggregates in oils

    NASA Astrophysics Data System (ADS)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  3. STS studies of the pi-band superconductivity in MgB2 in a transverse field

    NASA Astrophysics Data System (ADS)

    Griggs, C.; Eskildsen, M. R.; Zhigadlo, N. D.; Karpinski, J.

    2012-02-01

    Since being discovered MgB2 has become the paradigm for two-band/two-gap superconductivity. Early scanning tunneling spectroscopy (STS) measurements, showed a rapid suppression of the superconductivty in the isotropic π-band for modest applied fields H c. These measurements were performed with the tunnel current (It) parallel to the crystalline c-axis which couple, almost exclusively, to the π-band, and with the suppression attributed to vortex core overlap. Here we report STS measurements performed in a transverse field, such that Itc H. In this configuration no vortices are cutting through the image plane, and instead the superconducting phase is affected by the Meissner currents running within one penetration depth of the sample surface. Within this field orientation we observe far less suppression of the superconducting state in the π-band compared to the earlier measurements with H c. A clear gap is seen up to H= 0.9 T.

  4. Study of grain boundary transparency in (Y b1 -xC ax) B a2C u3O bicrystal thin films over a wide temperature, field, and field orientation range

    NASA Astrophysics Data System (ADS)

    Li, Pei; Abraimov, Dmytro; Polyanskii, Anatolii; Kametani, Fumitake; Larbalestier, David

    2015-03-01

    The residual low-angle grain boundary (GB) network is still the most important current-limiting mechanism operating in biaxially textured rare-earth barium-copper-oxide (REBCO) coated conductors. While Ca doping is well established to improve supercurrent flow across low-angle GBs in weak fields at high temperatures, Ca doping also depresses Tc, making it so far impractical for high-temperature applications of REBCO coated conductors. On the other hand, high-field-magnet applications of REBCO require low temperatures. Here we systematically evaluate the effectiveness of Ca doping in improving the GB transparency, rGB=JcGB/ Jcgrain , of low-angle Y b1 -xC axBaCuO [001] tilt bicrystal films down to 10 K and with magnetic fields perpendicular and parallel to the film surfaces, while varying the Ca and oxygen doping level. Using low-temperature scanning laser microscopy and magneto-optical imaging, we found rGB to strongly depend on the angle between magnetic field and the GB plane and clearly identified regimes in which JcGB can exceed Jcgrain(rGB>1 ) where the GB pinning is optimized by the field being parallel to the GB dislocations. However, even in this favorable situation, we found that rGB became much smaller at lower temperatures. Calculations of the GB Ca segregation profile predict that the high-Jc channels between the GB dislocation cores are almost Ca free. It may be therefore that the positive effects of Ca doping seen by many authors near Tc are partly a consequence of the higher Tc of these Ca-free channels.

  5. Quincke rotation of an ellipsoid

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Brosseau, Quentin

    2016-11-01

    The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.

  6. Seismic Anisotropy And Upper Mantle Structure In Se Brazil

    NASA Astrophysics Data System (ADS)

    Heintz, M.; Vauchez, A.; Assumpcao, M.; Egydio-Silva, M.

    We present preliminary shear wave splitting measurements performed in south-east Brazil in a quite complex region, from a geological point of view. Seismic anisotropy is the result of a preferred orientation of anisotropic minerals (olivine) in the upper mantle, due to deformation. Splitting parameters Ø (direction of the fastest S wave) are compared to large-scale tectonic structures of the area, in order to infer to which extent the deformations in the upper mantle and in the crust are mechanically coupled. The field of study is a region of 1000 by 1000 km, along the Atlantic coast from São Paulo to 500 km north of Rio de Janeiro. This region is made up of large scale geological units as the southern termination of the São Francisco craton, from archean age, surrounded by two neoproterozoic belts (the Ribeira belt to the east and the Brasilia belt to the west), and the Parana basin, which is a vast flood basalt region. Teleseisms used were acquired by 39 seismological stations well distributed in the region of interest. The results highlight the fact that the orientations of the polarization plane of the fast split shear wave vary a lot in this region, and measurements could be splitted into 5 groups : directions are parallel to the NE-SW trending of the Ribeira belt, some are parallel to the NW-SE trending of the Brasilia belt, in the NE-SW direction of the Transbrasiliano lineament, parallel to the absolute plate maotion (APM) that is EW in this region, or turning around a cylindrical low velocity anomaly imaged in the Parana basin and supposed to be the fossil plume head conduit of the Tristan da Cunha plume head.

  7. Local spin density in the Cr 7Ni antiferromagnetic molecular ring and 53Cr-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M; Bordonali, L; Furukawa, Yuji

    We present 53Cr-NMR spectra collected at low temperature in a single crystal of the heterometallic antiferromagnetic (AF) ring Cr 7Ni in the S = 1/2 ground state with the aim of establishing the distribution of the local electronic moment in the ring. Due to the poor S/N we observed only one signal which is ascribed to three almost equivalent 53Cr nuclei in the ring. The calculated spin density in Cr 7Ni in the ground state, with the applied magnetic field both parallel and perpendicular to the plane of the ring, turns out to be AF staggered with the greatest componentmore » of the local spin {s} for the Cr 3+ ions next to the Ni 2+ ion. The 53Cr-NMR frequency was found to be in good agreement with the local spin density calculated theoretically by assuming a core polarization field of H cp =₋ 11 T/μ B for both orientations, close to the value found previously in Cr 7Cd. Lastly, the observed orientation dependence of the local spin moments is well reproduced by the theoretical calculation and evidences the importance of single-ion and dipolar anisotropies.« less

  8. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    PubMed

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  9. Predicted variation of stress orientation with depth near an active fault: application to the Cajon Pass Scientific Drillhole, southern California

    USGS Publications Warehouse

    Wesson, R.L.

    1988-01-01

    Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author

  10. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  11. A severe capacity limit in the consolidation of orientation information into visual short-term memory.

    PubMed

    Becker, Mark W; Miller, James R; Liu, Taosheng

    2013-04-01

    Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.

  12. Topographic stress perturbations in southern Davis Mountains, west Texas 1. Polarity reversal of principal stresses

    USGS Publications Warehouse

    Savage, W.Z.; Morin, R.H.

    2002-01-01

    We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.

  13. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs

    USGS Publications Warehouse

    Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.

    2007-01-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.

  14. Fault trends on the seaward slope of the Aleutian Trench: Implications for a laterally changing stress field tied to a westward increase in oblique convergence

    USGS Publications Warehouse

    Mortera-Gutierrez, C. A.; Scholl, D. W.; Carlson, R.L.

    2003-01-01

    Normal faults along the seaward trench slope (STS) commonly strike parallel to the trench in response to bending of the oceanic plate into the subduction zone. This is not the circumstance for the Aleutian Trench, where the direction of convergence gradually changes westward, from normal to transform motion. GLORIA side-scan sonar images document that the Aleutian STS is dominated by faults striking oblique to the trench, west of 179??E and east of 172??W. These images also show a pattern of east-west trending seafloor faults that are aligned parallel to the spreading fabric defined by magnetic anomalies. The stress-strain field along the STS is divided into two domains west and east, respectively, of 179??E. Over the western domain, STS faults and nodal planes of earthquakes are oriented oblique (9??-46??) to the trench axis and (69??-90??) to the magnetic fabric. West of 179??E, STS fault strikes change by 36?? from the E-W trend of STS where the trench-parallel slip gets larger than its orthogonal component of convergence. This rotation indicates that horizontal stresses along the western domain of the STS are deflected by the increasing obliquity in convergence. An analytical model supports the idea that strikes of STS faults result from a superposition of stresses associated with the dextral shear couple of the oblique convergence and stresses caused by plate bending. For the eastern domain, most nodal planes of earthquakes strike parallel to the outer rise, indicating bending as the prevailing mechanism causing normal faulting. East of 172??W, STS faults strike parallel to the magnetic fabric but oblique (10??-26??) to the axis of the trench. On the basis of a Coulomb failure criterion the trench-oblique strikes probably result from reactivation of crustal faults generated by spreading. Copyright 2003 by the American Geophysical Union.

  15. Production of yarns composed of oriented nanofibers for ophthalmological implants

    NASA Astrophysics Data System (ADS)

    Shynkarenko, A.; Klapstova, A.; Krotov, A.; Moucka, M.; Lukas, D.

    2017-10-01

    Parallelized nanofibrous structures are commonly used in medical sector, especially for the ophthalmological implants. In this research self-fabricated device is tested for improved collection and twisting of the parallel nanofibers. Previously manual techniques are used to collect the nanofibers and then twist is given, where as in our device different parameters can be optimized to obtained parallel nanofibers and further twisting can be given. The device is used to bring automation to the technique of achieving parallel fibrous structures for medical applications.

  16. Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.

    PubMed

    Grossberg, S; Mingolla, E

    1993-03-01

    A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.

  17. Distributed deformation and block rotation in 3D

    NASA Technical Reports Server (NTRS)

    Scotti, Oona; Nur, Amos; Estevez, Raul

    1990-01-01

    The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.

  18. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  19. Extended MHD modeling of tearing-driven magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Sovinec, C. R.

    2017-05-01

    Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.

  20. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    NASA Technical Reports Server (NTRS)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  1. Geopotential error analysis from satellite gradiometer and global positioning system observables on parallel architectures

    NASA Astrophysics Data System (ADS)

    Baker, Gregory Allen

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  2. Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver

    NASA Technical Reports Server (NTRS)

    Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David

    1999-01-01

    A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

  3. Fluctuations of local electric field and dipole moments in water between metal walls.

    PubMed

    Takae, Kyohei; Onuki, Akira

    2015-10-21

    We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.

  4. Layperson's preference regarding orientation of the transverse occlusal plane and commissure line from the frontal perspective.

    PubMed

    Silva, Bruno Pereira; Jiménez-Castellanos, Emilio; Finkel, Sivan; Macias, Inmaculada Redondo; Chu, Stephen J

    2017-04-01

    Facial asymmetries in features such as lip commissure and interpupillary plane canting have been described as common conditions affecting smile esthetics. When presented with these asymmetries, the clinician must choose the reference line with which to orient the transverse occlusal plane of the planned dental restorations. The purpose of the online survey described in this study was to determine lay preferences regarding the transverse occlusal plane orientation in faces that display a cant of the commissure line viewed from the frontal perspective. From a digitally created symmetrical facial model with the transverse occlusal plane and commissure line parallel to the interpupillary line (horizontal) and a model constructed in a previous study (control), a new facial model was created with 3 degrees of cant of the commissure line. Three digital tooth mountings were designed with different transverse occlusal plane orientations: parallel to the interpupillary line (A), parallel to the commissure line (B), and the mean angulation plane formed between the interpupillary and commissure line (C), resulting in a total of 4 images. All images, including the control, were organized into 6 pairs and evaluated by 247 selected laypersons through an online Web site survey. Each participant was asked to choose the more attractive face from each of the 6 pairs of images. The control image was preferred by 72.9% to 74.5% of the participants compared with the other 3 images, all of which represented a commissure line cant. Among the 3 pairs which represent a commissure line cant, 59.1% to 61.1% preferred a transverse plane of occlusion cant (B and C) compared with a plane of occlusion parallel to the interpupillary, line and 61.1% preferred a plane of occlusion parallel to the commissure line (B) compared with the mean angulation plane (C). Laypeople prefer faces with a commissure line and transverse occlusal plane parallel to the horizontal plane or horizon. When faces present a commissure line cant, laypeople prefer a transverse occlusal plane with a similar and coincident cant. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Peptide Folding and Translocation Across the Water-Membrane Interface

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The ability of small peptides to organize at aqueous interfaces was examined by performing a series of large-scale, molecular dynamics computer simulations of several peptides composed of two amino acids, nonpolar leucine (L) and polar glutamine (Q). The peptides differed in size and sequence of the amino acids. Studies on dipeptides LL, LQ, QL and QQ were extended to two heptamers, LQQLLQL and LQLQLQL, designed to maximize interfacial stability of an alpha-helix and a beta-strand, respectively, by exposing polar side chains to water and nonpolar side chains to a nonpolar phase. Finally, a transition of an undecamer, composed entirely of leucine residues, from a disordered structure in water to an alpha-helix in a nonpolar phase representing the interior of the membrane was investigated. Complete folding of a peptide in solution was accomplished for the first time in computer simulations. The simulations revealed several basic principles governing the sequence-dependent organization of peptides at interfaces. Short peptides tend to accumulate at interfaces and acquire ordered structures, providing that they have a proper sequence of polar and nonpolar amino acids. The dominant factor determining the interfacial structure of peptides is the hydrophobic effect, which is manifested at aqueous interfaces as a tendency for polar and nonpolar groups of the solute to segregate into the aqueous and nonpolar phases, respectively. If peptides consist of nonpolar residue's only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an alpha-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called 3-10-helix, which remains in equilibrium with the alpha-helix. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with changing external conditions may have provided a simple mechanism of transmitting signals from the environment to the interior of a cell.

  6. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE PAGES

    Ye, Changhuai; Wang, Chao; Wang, Jing; ...

    2017-08-17

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  7. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Changhuai; Wang, Chao; Wang, Jing

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  8. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  9. Failure modes for compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.

  10. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  11. Origin of Lamellar Magnetism (Invited)

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.; Fabian, K.; Harrison, R. J.

    2010-12-01

    The theory of lamellar magnetism arose through search for the origin of the strong and extremely stable remanent magnetization (MDF>100 mT) recorded in igneous and metamorphic rocks containing ilmenite with exsolution lamellae of hematite, or hematite with exsolution lamellae of ilmenite. Properties of rocks producing major remanent magnetic anomalies could not be explained by PM ilmenite or CAF hematite alone. Monte Carlo modeling of chemical and magnetic interactions in such intergrowths at high temperature indicated the presence of "contact layers" one cation layer thick at (001) interfaces of the two phases. Contact layers, with chemical composition different from layers in the adjacent phases, provide partial relief of ionic charge imbalance at interfaces, and can be common, not only in magnetic minerals. In rhombohedral Fe-Ti oxides, magnetic moments of 2 Fe2+Fe3+ contact layers (2 x 4.5µB) on both sides of a lamella, are balanced by the unbalanced magnetic moment of 1 Fe3+ hematite layer (1 x 5µB), to produce a net uncompensated ferrimagnetic "lamellar moment" of 4µB. Bulk lamellar moment is not proportional to the amount of magnetic oxide, but to the quantity of magnetically "in-phase" lamellar interfaces, with greater abundance and smaller thickness of lamellae, extending down to 1-2 nm. The proportion of "magnetically in-phase" lamellae relates to the orientation of (001) interfaces to the magnetizing field during exsolution, hence highest in samples with a strong lattice-preferred orientation of (001) parallel to the field during exsolution. The nature of contact layers, ~0.23 nm thick, with Fe2+Fe3+ charge ordering postulated by the Monte Carlo models, was confirmed by bond-valence and DFT calculations, and, their presence confirmed by Mössbauer measurements. Hysteresis experiments on hematite with nanoscale ilmenite at temperatures below 57 K, where ilmenite becomes AF, demonstrate magnetic exchange bias produced by strong coupling across phase interfaces. Interface coupling, with nominal magnetic moments perpendicular and parallel to (001), is facilitated by magnetic moments in hematite near interfaces that are a few degrees out of the (001) plane, proved by neutron diffraction experiments. When a ~b.y.-old sample, with a highly stable NRM, is ZF cooled below 57 K, it shows bimodal exchange bias, indicating the presence of two lamellar populations that are magnetically "out-of-phase", and incidentally proving the existence of lamellar magnetism. Lamellar magnetism may enhance the strength and stability of remanence in samples with magnetite or maghemite lamellae in pure hematite, or magnetite lamellae in ilmenite, where coarse magnetite or maghemite alone would be multi-domain. Here the "contact layers" should be a complex hybrid of 2/3-filled rhombohedral layers parallel to (001) and 3/4-filled cubic octahedral layers parallel to (111), with a common octahedral orientation confirmed by TEM observations. Here, because of different layer populations, the calculated lamellar moment may be higher than in the purely rhombohedral example.

  12. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  13. Nanotomography and Micromagnetic Modelling of Remanence Carriers in the Semarkona LL3.0 Chondrite: A New View of the Vortex State

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Einsle, J. F.; Williams, W.; Ó Conbhuí, P.; Fu, R. R.; Weiss, B. P.; Kasama, T.

    2015-12-01

    Dusty-olivine chondrules are carriers of stable pre-accretionary remanence, and have recently been used to obtain the first reliable estimate of the magnetic field of the early solar nebula. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three-dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nt), electron tomography and finite-element micromagnetic modelling. We present a 3D volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and preferred orientations. Iron particles are predominantly oblate ellipoids. Particles nucleate on dislocation networks and are loosely arranged in a series of parallel sheets with their shortest dimension oriented normal to the sheets and their longest dimensions preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with 'bulk' spins that rotate around a central vortex core. The results challenge pre-conceived ideas about the remanence carrying properties of vortex states. We find that remanence is carried by bulk spins rather than the vortex core. Although the orientation of the core is determined by the ellipsoidal geometry (parallel to the major axis for prolate ellipsoids; parallel to the minor axis for oblate ellipsoids), the remanence vectors generally lie at large angles (and in many cases antiparallel) to the core magnetisation. Even in the case of prolate particles, the resulting remanence vector can make a large angle of ~50° to the expected easy axis. The results reconcile the predicted and observed directions of remanence anisotropy, and demonstrate how this combination of nanotomography and micromagnetics will become an essential component of future single-crystal paleomagnetic studies.

  14. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  15. [CMACPAR an modified parallel neuro-controller for control processes].

    PubMed

    Ramos, E; Surós, R

    1999-01-01

    CMACPAR is a Parallel Neurocontroller oriented to real time systems as for example Control Processes. Its characteristics are mainly a fast learning algorithm, a reduced number of calculations, great generalization capacity, local learning and intrinsic parallelism. This type of neurocontroller is used in real time applications required by refineries, hydroelectric centers, factories, etc. In this work we present the analysis and the parallel implementation of a modified scheme of the Cerebellar Model CMAC for the n-dimensional space projection using a mean granularity parallel neurocontroller. The proposed memory management allows for a significant memory reduction in training time and required memory size.

  16. Serial consolidation of orientation information into visual short-term memory.

    PubMed

    Liu, Taosheng; Becker, Mark W

    2013-06-01

    Previous research suggests that there is a limit to the rate at which items can be consolidated in visual short-term memory (VSTM). This limit could be due to either a serial or a limited-capacity parallel process. Historically, it has proven difficult to distinguish between these two types of processes. In the present experiment, we took a novel approach that allowed us to do so. Participants viewed two oriented gratings either sequentially or simultaneously and reported one of the gratings' orientation via method of adjustment. Performance was worse for the simultaneous than for the sequential condition. We fit the data with a mixture model that assumes performance is limited by a noisy memory representation plus random guessing. Critically, the serial and limited-capacity parallel processes made distinct predictions regarding the model's guessing and memory-precision parameters. We found strong support for a serial process, which implies that one can consolidate only a single orientation into VSTM at a time.

  17. Compression-Induced Conformation and Orientation Changes in an n-Alkane Monolayer on a Au(111) Surface.

    PubMed

    Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki

    2017-04-25

    The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.

  18. Planck intermediate results: XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-02-09

    The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less

  20. Monte Carlo simulations in X-ray imaging

    NASA Astrophysics Data System (ADS)

    Giersch, Jürgen; Durst, Jürgen

    2008-06-01

    Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.

  1. Study on multi-satellite, multi-measurement of the structure of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The pulsation model of the earth's bow shock proposed a nonuniform shock having both perpendicular (abrupt, monotonic) and oblique (oscillatory, multigradient) properties simultaneously, depending on local orientation of the shock surface to the interplanetary field B sub sw in parallel planes defined by B sub sw and solar wind velocity. Multiple, concurrent, satellite observations of the shock and solar wind conditions were used. Twenty-six potentially useful intervals of concurrent Explorer 33 and 35 data acquisition were examined, of which six were selected for closer study. In addition, two years of OGO-5 and HEOS 1 magnetometer data were examined for possible conjunctions to these spacecraft having applicable data. One case of clear nonuniformity and several of field-dependent structure were documented. A computational aid, called pulsation index, was developed.

  2. Theory for measurements of penetration depth in magnetic superconductors by magnetic force microscopy and scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Bulaevskii, Lev N.

    2012-07-01

    The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.

  3. Parallels in Communication and Navigation Technology and Natural Phenomenon

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert

    2017-01-01

    The premise is more than art imitates life, or technology imitates nature it is a nascent step to see how we might be unwittingly inspired and influenced. An example that might immediately come to mind is a starling murmuration (a phenomenon called scale-free correlation) and Intels recent Coachella music festival drone performance. Superconductivity is a macroscopic manifestation of a quantum phenomenon - choreographed electrons (i.e. an electron murmuration) that enable astonishing devices. There is indeed an intimate connectedness between biology and electromagnetism. Our brains are complex neural circuits generating magnetic fields with a magnitude around 100 femtoTesla (roughly one billion times weaker than a typical magnet used to tack notes to a refrigerator door). Migratory birds navigate by orienteering with respect to the Earth's magnetic field. Electromagnetic field therapy is used in orthopedics to aid in bone repair. The electric eel generates a large electric field for self-defense. Sharks apparently detect extremely weak electric fields for finding prey. And so on. There are similarities between the way a field of wheat responds to a breeze and the natural restoring forces of a semiconductor crystal. And waves in a slowly moving river can lap backwards against a peninsular shoreline mimicking a diffraction effect. Getting back to the introductory sentence and mysterious links over cosmic distances, in August 2016, China launched the Quantum Experiments at Space Scale (QUESS) satellite. The technology is based on a non-linear crystal that produces pairs of entangled photons whose attributes apparently remain entwined regardless of how far apart they are separated. This paper will, no doubt superficially, attempt to enumerate and examine these types of connections and parallelisms.

  4. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    NASA Astrophysics Data System (ADS)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  5. Manifestations of Surface States in the Longitudinal Magnetoresistance of an Array of Bi Nanowires

    NASA Astrophysics Data System (ADS)

    Latyshev, Yu. I.; Frolov, A. V.; Volkov, V. A.; Wade, T.; Prudkoglyad, V. A.; Orlov, A. P.; Pudalov, V. M.; Konczykowski, M.

    2018-04-01

    The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic fields up to 14 T and at temperatures down to 0.3 K. The resistance increases with the field and reaches a broad maximum in fields about 10 T. An anomalous increase in the resistance in weak fields is qualitatively consistent with the suppression of the antilocalization correction to the resistance, and the maximum is qualitatively associated with the classical size effect. Near the maximum at temperatures below 0.8 K, manifestations of reproducible magneto-oscillations of the resistance, which are periodic in field, have been detected. The period of these oscillations is close to a value corresponding to the passage of the flux quantum hc/ e through the section of a nanowire. The Fourier analysis also confirms that the oscillations are periodic. This result is similar to the manifestation the Aharonov-Bohm effect caused by conducting surface states of Dirac fermions occupying L-valleys of bismuth.

  6. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  7. Fibre Optic Connections And Method For Using Same

    DOEpatents

    Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.

    2004-03-30

    A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.

  8. Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry

    NASA Astrophysics Data System (ADS)

    Thesing, Linda V.; Küpper, Jochen; González-Férez, Rosario

    2017-06-01

    We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experimental results of one-dimensional orientation for weak dc electric fields [J. L. Hansen, J. Chem. Phys. 139, 234313 (2013)]. Moreover, they predict that using elliptically polarized laser fields or strong dc fields, three-dimensional orientation is obtained. The field-dressed dynamics of excited rotational states is characterized by highly non-adiabatic effects. We analyze the sources of these non-adiabatic effects and investigate their impact on the mixed-field orientation for different field configurations in mixed-field-orientation experiments.

  9. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  10. Parallel Volunteer Learning during Youth Programs

    ERIC Educational Resources Information Center

    Lesmeister, Marilyn K.; Green, Jeremy; Derby, Amy; Bothum, Candi

    2012-01-01

    Lack of time is a hindrance for volunteers to participate in educational opportunities, yet volunteer success in an organization is tied to the orientation and education they receive. Meeting diverse educational needs of volunteers can be a challenge for program managers. Scheduling a Volunteer Learning Track for chaperones that is parallel to a…

  11. Parallel Implementation of Triangular Cellular Automata for Computing Two-Dimensional Elastodynamic Response on Arbitrary Domains

    NASA Astrophysics Data System (ADS)

    Leamy, Michael J.; Springer, Adam C.

    In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.

  12. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    PubMed Central

    Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.

    2012-01-01

    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745

  13. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se–Te Films

    DOE PAGES

    Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...

    2015-11-23

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less

  14. Personal experiences and emotionality in health-related knowledge exchange in Internet forums: a randomized controlled field experiment comparing responses to facts vs personal experiences.

    PubMed

    Kimmerle, Joachim; Bientzle, Martina; Cress, Ulrike

    2014-12-04

    On the Internet, people share personal experiences as well as facts and objective information. This also holds true for the exchange of health-related information in a variety of Internet forums. In online discussions about health topics, both fact-oriented and strongly personal contributions occur on a regular basis. In this field experiment, we examined in what way the particular type of contribution (ie, factual information vs personal experiences) has an impact on the subsequent communication in health-related Internet forums. For this purpose, we posted parallelized queries to 28 comparable Internet forums; queries were identical with regard to the information contained but included either fact-oriented descriptions or personal experiences related to measles vaccination. In the factual information condition, we posted queries to the forums that contained the neutral summary of a scientific article. In the personal experiences condition, we posted queries to the forums that contained the same information as in the first condition, but were framed as personal experiences We found no evidence that personal experiences evoked more responses (mean 3.79, SD 3.91) from other members of the Internet forums than fact-oriented contributions (mean 2.14, SD 2.93, t26=0.126, P=.219). But personal experiences elicited emotional replies (mean 3.17, SD 1.29) from other users to a greater extent than fact-oriented contributions (mean 2.13, SD 1.29, t81=3.659, P<.001). We suggest that personal experiences elicited more emotional replies due to the process of emotional anchoring of people's own style of communication. We recommend future studies should aim at testing the hypotheses with more general and with less emotionally charged topics, constructing different fact-oriented posts, and examining additional potential factors of influence such as personality factors or particular communication situations.

  15. Constant-dose microwave irradiation of insect pupae

    NASA Astrophysics Data System (ADS)

    Olsen, Richard G.

    Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.

  16. Automated polarization control for the precise alignment of laser-induced self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Hermens, Ulrike; Pothen, Mario; Winands, Kai; Arntz, Kristian; Klocke, Fritz

    2018-02-01

    Laser-induced periodic surface structures (LIPSS) found in particular applications in the fields of surface functionalization have been investigated since many years. The direction of these ripple structures with a periodicity in the nanoscale can be manipulated by changing the laser polarization. For industrial use, it is useful to manipulate the direction of these structures automatically and to obtain smooth changes of their orientation without any visible inhomogeneity. However, currently no system solution exists that is able to control the polarization direction completely automated in one software solution so far. In this paper, a system solution is presented that includes a liquid crystal polarizer to control the polarization direction. It is synchronized with a scanner, a dynamic beam expander and a five axis-system. It provides fast switching times and small step sizes. First results of fabricated structures are also presented. In a systematic study, the conjunction of LIPSS with different orientation in two parallel line scans has been investigated.

  17. Growth of oriented polycrystalline α-HgI 2 films by ultrasonic-wave-assisted physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Nie, Lei; Li, Dongmei; Wang, Yali; Zhou, Jie; Ma, Lei; Wang, Zhenhua; Shi, Weimin

    2011-06-01

    Polycrystalline α-HgI 2 thick films have been grown on ITO-coated glass substrates using ultrasonic-wave-assisted vapor phase deposition (UWAVPD) with the different source temperatures and ultrasonic frequencies. The influence of the assisted ultrasonic wave and source temperature on the structural and electrical properties of the polycrystalline α-HgI 2 films is investigated. It is found that the assisted ultrasonic wave plays an important role in the improvement of the structural and electrical properties. An uniformly oriented polycrystalline α-HgI 2 film with clear facets and narrow size distribution can be obtained at the source temperature of 80 °C under the assistance of 59 KHz ultrasonic frequency with the ultrasonic power of 200 W, which has the lowest value of ρ=2.2×10 12 Ω cm for E-field parallel to c-axis, approaching to that of high quality α-HgI 2 single crystals (4.0×10 12 Ω cm).

  18. Topological Transformation of Defects in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pagel, Zachary; Atherton, Timothy; Guasto, Jeffrey; Cebe, Peggy

    A topological transformation around silica microsphere inclusions in nematic liquid crystal cells (LCC) is experimentally studied. Silica microspheres are coated to induce homeotropic LC anchoring to the spheres. Parallel rub directions of the alignment polymer during LCC construction create a splay wall that traps the microspheres. Application of an out-of-plane electric field then permits a transformation of hedgehog defects, reversing the orientation of the defect around microspheres. The transformation controllably reverses the microsphere's direction of travel during AC electrophoresis due to defect-dependent velocity anisotropy. A similar transformation is studied on chains of microspheres with hedgehog defects, where the defect orientation is reversed on the entire chain. Polarized and confocal microscopies are used to study the defect structures. Results contribute to recent developments in microsphere electrokinetics in nematic LCs, as the transformation adds an additional degree of control in the electrophoretic motion of microspheres and chains of microspheres with dipolar defects. The author thanks NSF Grant DMR-1608126 for funding reseearch and Tufts University for funding travel.

  19. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    NASA Astrophysics Data System (ADS)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  20. The bandwidth of consolidation into visual short-term memory (VSTM) depends on the visual feature

    PubMed Central

    Miller, James R.; Becker, Mark W.; Liu, Taosheng

    2014-01-01

    We investigated the nature of the bandwidth limit in the consolidation of visual information into visual short-term memory. In the first two experiments, we examined whether previous results showing differential consolidation bandwidth for color and orientation resulted from methodological differences by testing the consolidation of color information with methods used in prior orientation experiments. We briefly presented two color patches with masks, either sequentially or simultaneously, followed by a location cue indicating the target. Participants identified the target color via button-press (Experiment 1) or by clicking a location on a color wheel (Experiment 2). Although these methods have previously demonstrated that two orientations are consolidated in a strictly serial fashion, here we found equivalent performance in the sequential and simultaneous conditions, suggesting that two colors can be consolidated in parallel. To investigate whether this difference resulted from different consolidation mechanisms or a common mechanism with different features consuming different amounts of bandwidth, Experiment 3 presented a color patch and an oriented grating either sequentially or simultaneously. We found a lower performance in the simultaneous than the sequential condition, with orientation showing a larger impairment than color. These results suggest that consolidation of both features share common mechanisms. However, it seems that color requires less information to be encoded than orientation. As a result two colors can be consolidated in parallel without exceeding the bandwidth limit, whereas two orientations or an orientation and a color exceed the bandwidth and appear to be consolidated serially. PMID:25317065

  1. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  2. Orientation-Enhanced Parallel Coordinate Plots.

    PubMed

    Raidou, Renata Georgia; Eisemann, Martin; Breeuwer, Marcel; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

  3. Current structure and flow pattern on the electron separatrix in reconnection region

    NASA Astrophysics Data System (ADS)

    Guo, Ruilong; Pu, Zuyin; Wei, Yong

    2017-12-01

    Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.

  4. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    PubMed

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  5. The Relation between Reconnected Flux, the Parallel Electric Field, and the Reconnection Rate in a Three-Dimensional Kinetic Simulation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.

  6. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    NASA Astrophysics Data System (ADS)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  7. Palæomagnetism of Hawaiian lava flows

    USGS Publications Warehouse

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  8. ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Kelly, T. J.; Russell, C. T.

    1985-01-01

    Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.

  9. A systematic search method for the identification of tightly packed transmembrane parallel alpha-helices.

    PubMed

    Akula, Nagaraju; Pattabiraman, Nagarajan

    2005-06-01

    Membrane proteins play a major role in number of biological processes such as signaling pathways. The determination of the three-dimensional structure of these proteins is increasingly important for our understanding of their structure-function relationships. Due to the difficulty in isolating membrane proteins for X-ray diffraction studies, computational techniques are being developed to generate the 3D structures of TM domains. Here, we present a systematic search method for the identification of energetically favorable and tightly packed transmembrane parallel alpha-helices. The first step in our systematic search method is the generation of 3D models for pairs of parallel helix bundles with all possible orientations followed by an energy-based filter to eliminate structures with severe non-bonded contacts. Then, a RMS-based filter was used to cluster these structures into families. Furthermore, these dimers were energy minimized using molecular mechanics force field. Finally, we identified the tightly packed parallel alpha-helices by using an interface surface area. To validate our search method, we compared our predicted GlycophorinA dimer structures with the reported NMR structures. With our search method, we are able to reproduce NMR structures of GPA with 0.9A RMSD. In addition, by considering the reported mutational data on GxxxG motif interactions, twenty percent of our predicted dimers are within in the 2.0A RMSD. The dimers obtained from our method were used to generate parallel trimeric and tetramer TM structures of GPA and found that the structure of GPA might exist only in a dimer form as reported earlier.

  10. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    PubMed

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  11. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  12. Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2004-01-01

    Pump-and-treat systems that are installed to contain contaminated groundwater migration typically involve placement of extraction wells perpendicular to the regional groundwater flow direction at the down gradient edge of a contaminant plume. These wells capture contaminated water for above ground treatment and disposal, thereby preventing further migration of contaminated water down gradient. In this work, examining two-, three-, and four-well systems, we compare well configurations that are parallel and perpendicular to the regional groundwater flow direction. We show that orienting extraction wells co-linearly, parallel to regional flow, results in (1) a larger area of aquifer influenced by the wells at a given total well flow rate, (2) a center and ultimate capture zone width equal to the perpendicular configuration, and (3) more flexibility with regard to minimizing drawdown. Although not suited for some scenarios, we found orienting extraction wells parallel to regional flow along a plume centerline, when compared to a perpendicular configuration, reduces drawdown by up to 7% and minimizes the fraction of uncontaminated water captured.

  13. CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.; Ross, P. N.

    1985-01-01

    The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end.

  14. Exsolution of Ca-clinopyroxene from orthopyroxene aided by deformation

    USGS Publications Warehouse

    Kirby, S.H.; Etheridge, M.A.

    1981-01-01

    Monoclinic calcium-poor shear-transformation lamellae and calcium-rich exsolution lamellae occur parallel to (100) in orthopyroxene. The formation of both structures from an orthopyroxene host involves a shear on (100) parallel to [001], with additional cation exchange in the exsolution case. The shear transformation involves a macroscopic simple shear angle of 13.3?? (shear strain of 0.236) and produces a specific a-axis orientation with respect to the sense of shear; we have found that this orientation dominates in exsolution lamellae in kinked orthopyroxene, where the sense of shear is known. In undeformed orthopyroxene, there is generally no preferred sense of orientation of the monoclinic a axes. We advance a specific model for exsolution involving nucleation and growth by shear transformation combined with cation exchange, thus circumventing the classical nucleation barrier and permitting exsolution at lower solute supersaturations. ?? 1981 Springer-Verlag.

  15. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  16. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  17. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Wang, M.P.; Chen, C., E-mail: chench011-33@163.com

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compressionmore » axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.« less

  18. Manipulation of nano-entities in suspension by electric fields

    NASA Astrophysics Data System (ADS)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to transport charged Au nanowires with length longer than 4 mum. The surface of Au nanowires has been chemical functionalized by either positive or negative charges. High frequency AC electric field has been applied to align and fix the orientation of the charged nanowires, though not to induce any motions, whereas a small DC voltage causes linear motion. The velocity of nanowires increases linearly with the DC electric field. The moving direction can be either parallel or perpendicular to the orientation of nanowires. Nanowires modified with different charges behave differently due to the electroosmosis flow induced by the DC electric field on the negatively charged quartz substrate. The zeta potential of quartz surface and the ratio of Stokes coefficients for longitudinal nano-entities suspended in a low Reynolds number regime (< 10-5) has been determined. Due to the small size of the nanowires, the nanowires suspended in liquids such as DI water are in extremely low Reynolds number regime (< 10-5). Manipulation due to DEP and EP forces are versatile and precise. Nanowires have been set into motion with prescribed tracks, such as squares and zigzags. The manipulation is also so precise that oppositely charged nanowires with radius of 150 nm have been moved to contact and connected end to end. A nanowire clipper have been assembled by this technique and set into oscillation. This method is not only applicable to nanowires, it has been successfully applied to multiwall carbon nanotubes as well. To demonstrate the complete control and flexibility of manipulating nanoparticles by E field, we have programmed nanowires to dance with music by Mozart with regard to clearly demonstrating the versatility of manipulating small entities of metallic, semiconductor, and biological materials. This work has been conducted under the guidance of the author's thesis advisors, Prof. Robert C. Cammarata, chair of the Department of Materials Science and Engineering of the Johns Hopkins University, and Prof. Chia-Ling Chien in the Department of Physics and Astronomy, and the director of Materials Research Science and Engineering Center of the Johns Hopkins University.

  19. Design of object-oriented distributed simulation classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D. (Principal Investigator)

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  20. Design of Object-Oriented Distributed Simulation Classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  1. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  2. SIMOGEN - An Object-Oriented Language for Simulation

    DTIC Science & Technology

    1989-03-01

    program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A

  3. Architecture of near-surface magma transport in the Columbia River Flood Basalts as defined by a career's worth of feeder dike mapping: The legacy dataset of William H. Taubeneck

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Morriss, M. C.; Nasholds, M. W.

    2016-12-01

    The Miocene Columbia River Flood Basalts (CRFB) are the youngest, best preserved, and most thoroughly studied Large Igneous Province on Earth. The Grande Ronde basalts erupted 150,000 km3in less than 100 kyr ( 72% of the CRFB volume) from a network of feeder dikes, the Chief Joseph dike swarm, exposed in SE Washington, NE Oregon, and W Idaho, USA. William H. Taubeneck (1923-2016) spent several decades mapping CRFB dikes. His extensive, meticulous field work defined the spatial extent and dominant trends in the Chief Joseph dike swarm, providing a key constraint for theories of CRFB emplacement and their deep origin. However, these measurements were never published nor made public. We are revitalizing Taubeneck's maps, notebooks, and numerous unpublished geochemical analyses, synthesizing his work with other published and mapped dikes and field checking select measurements to ensure accurate interpretation. This dataset should lead to increased understandings of the CRFB shallow plumbing system and flood basalt eruptive dynamics in general. Preliminary analysis of 4,410 mapped CRFB feeder dike segments from Taubeneck and other workers reveals systematic trends in both dike orientation and lithology of host rock. Average dike orientation strikes to the north-northwest across 400 km. Orientations are generally parallel to the cratonic boundary, but appear generally unaffected by a major transition in craton position and also exhibit minor trends with near orthogonal orientations. Dike spatial density peaks in Paleozoic to Cenozoic accreted terranes. Exposed dikes are concentrated among Jurassic and Cretaceous plutons, which host 53% of mapped dikes and accommodate the largest variability in dike orientation. Preliminary investigations suggest variations of feeder dike thickness with depth in the plumbing system as preserved through exposure in the uplifted Wallowa Mountains, although this is complicated by evidence for dikes that accommodated multiple injections and uncertain duration of flow. Ongoing work aims to resolve these issues. Summary figure: (a) Dikes mapped by Taubeneck and others versus latitude. (b) Dike orientation. (c) Paleozoic and Mesozoic accreted terranes and the cratonic margin. Dikes are mostly exposed in the Baker and Wallowa Terranes. (d) Dike host rock lithology.

  4. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    NASA Astrophysics Data System (ADS)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.

  5. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    PubMed

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Stability improvement of a four cable-driven parallel manipulator using a center of mass balance system

    NASA Astrophysics Data System (ADS)

    Salafian, Iman; Stewart, Blake; Newman, Matthew; Zygielbaum, Arthur I.; Terry, Benjamin

    2017-04-01

    A four cable-driven parallel manipulator (CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized crop field. To obtain accurate and high quality data from the instruments, the end effector must be stable during sensing. One of the factors that reduces stability is the center of mass offset of the end effector, which can cause a pendulum effect or undesired tilt angle. The purpose of this work is to develop a system and method for balancing the center of mass of a 12th-scale CDPM to minimize vibration that can cause error in the acquired data. A simple method for balancing the end effector is needed to enable end users of the CDPM to arbitrarily add and remove sensors and imagers from the end effector as their experiments may require. A Center of Mass Balancing System (CMBS) is developed in this study which consists of an adjustable system of weights and a gimbal for tilt mitigation. An electronic circuit board including an orientation sensor, wireless data communication, and load cells was designed to validate the CMBS. To measure improvements gained by the CMBS, several static and dynamic experiments are carried out. In the experiments, the dynamic vibrations due to the translational motion and static orientation were measured with and without CMBS use. The results show that the CMBS system improves the stability of the end-effector by decreasing vibration and static tilt angle.

  7. Template-based synthesis and magnetic properties of Mn-Zn ferrite nanotube and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Wang, Xiaohui; Zhong, Caifu; Li, Longtu

    2012-01-01

    Template-based electrophoretic deposition of Mn-Zn ferrite nanotubes (NTs) and nanowires (NWs) were achieved using anodic alumina oxide (AAO) membranes. The effect of electrophoretic current and deposition time on the morphology of the tubes was investigated. The samples show cubic spinel structure with no preferred orientation. Room-temperature magnetic properties of the Mn-Zn ferrite NT/NW arrays were studied. The magnetic easy axis parallels the NT/NW's channel axis attributing to the large shape anisotropy in this direction, especially for the NTs with a small wall thickness. Magnetocrystalline anisotropy and magnetostatic interactions were found dominant in the samples when applied field was perpendicular to the channel axis.

  8. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  9. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  10. Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles

    NASA Astrophysics Data System (ADS)

    Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.

    2012-01-01

    Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.

  11. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition

    PubMed Central

    Baufeld, Bernd; van der Biest, Omer

    2009-01-01

    Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content. PMID:27877271

  12. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  13. Stress interactions among arrays of tensile cracks in 3D: Implications for the nucleation of shear failure and the orientations of faults.

    NASA Astrophysics Data System (ADS)

    Healy, D.; Davis, T.

    2017-12-01

    In low porosity rocks it is widely believed that planes of shear failure nucleate through the interaction of arrays of smaller tensile microcracks. This model has been confirmed through laboratory rock deformation experiments and detailed microstructural analyses. In this contribution we use the Boundary Element Method (BEM) to model the interactions of arrays of tensile cracks, discretised as ellipsoidal voids in three dimensions (3D). We calculate the elastic stresses in the solid matrix surrounding the cracks resulting from an applied load and include the interaction effects of each crack upon all the others. We explore the role of variations in crack shape, size, position and orientation upon the total and locally perturbed stress fields. We calculate the average crack normal stress (CNS) acting over the area of each tensile crack, and then find the locus of the maximum value of this stress throughout the modelled volume. Following Reches & Lockner (1994) and Healy et al. (2006a, 2006b), we assert that planes of shear failure will most likely nucleate on surfaces parallel to the locus of maximum average CNS. These shear planes are oblique to all three principal stresses in the far field.

  14. Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles

    DOE PAGES

    Cruz, F.; Alves, E. P.; Bamford, R. A.; ...

    2017-02-06

    We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shockmore » in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.« less

  15. Efficient receptive field tiling in primate V1

    PubMed Central

    Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.

    2017-01-01

    The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086

  16. An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods

    NASA Astrophysics Data System (ADS)

    Han, Jining; Herzfeld, Judith

    1996-03-01

    The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.

  17. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGES

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  18. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  19. Preparation and transport properties of superconducting layers in the Ca-Sr-Bi-Cu-O system

    NASA Astrophysics Data System (ADS)

    Klee, M.; Stollman, G. M.; Stotz, S.; de Vries, J. W. C.

    1988-08-01

    Superconducting layers in the CaSrBiCuO system are prepared by thermal decomposition of metal carboxylates using a spin-coating and a dip-coating method onto ceramic MgO substrates. The samples consist of a tetragonal calcium-strontium-bismuth-cuprate and two bismuth-free calcium-strontium-cuprates. A step in the resistance versus temperature curve is observed which, together with the influence of magnetic fields, is interpreted as typical for a granular superconductor. The analysis shows that the critical current density is determined by domains of the order of some unit cells. The strong dependence of the superconducting transition on the orientation of an applied magnetic field is probably caused by the anisotropic layer structure. The coherence length perpendicular to the c-axis of the material is estimated to be ξab(0) = 4.0 nm and parallel to the c-axis ξc(0) = 0.6 nm.

  20. Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.

    1994-09-01

    Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.

  1. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    NASA Astrophysics Data System (ADS)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-10-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.

  2. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    PubMed

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  3. Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation.

    PubMed

    Derbyshire, Brian

    2018-03-01

    Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient's pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective.

  4. Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation

    PubMed Central

    Derbyshire, Brian

    2018-01-01

    Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient’s pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective. PMID:29473454

  5. A Randomized Double-Blinded Trial on the Effects of Ultrasound Transducer Orientation on Teaching and Learning Ultrasound-Guided Regional Anesthesia.

    PubMed

    Lam, Nicholas C K; Baker, Elizabeth B; Fishburn, Steven J; Hammer, Angie R; Petersen, Timothy R; Mariano, Edward R

    2016-07-01

    Learning ultrasound-guided regional anesthesia skills, especially needle/ beam alignment, can be especially difficulty for trainees, who can often become frustrated. We hypothesized that teaching novices to orient the transducer and needle perpendicular to their shoulders will improve performance on a standardized task, compared to holding the transducer and needle parallel to the shoulders. This study compared the effects of transducer orientation on trainees' ability to complete a standardized ultrasound-guided nerve block simulation. The time to task completion and percentage of the attempt time without adequate needle visualization were measured. Participants were right-handed healthy adults with no previous ultrasound experience and were randomly assigned to training in either transducer and needle alignment in a coronal plane, parallel to the shoulders (parallel group) or transducer and needle alignment in a sagittal plane, perpendicular to the shoulders (perpendicular group). Participants used ultrasound to direct a needle to 3 targets in a standardized gelatin phantom and repeated this task 3 times. Their efforts were timed and evaluated by an assessor, who was blinded to group assignment. Data were analyzed on 28 participants. The perpendicular group was able to complete the task more quickly (P < .001) and with a smaller proportion of time lost to inadequate needle visualization (P < .001). Ultrasound-guided regional anesthesia trainees complete a standardized task more quickly and efficiently when instructed to hold the transducer and needle in an orientation perpendicular to their shoulders.

  6. Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application

    NASA Astrophysics Data System (ADS)

    Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.

    2009-05-01

    This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.

  7. Apparatus for reading two-dimensional electrophoretograms containing. beta. -ray-emitting labeled compounds

    DOEpatents

    Anderson, H.L.; Kinnison, W.W.; Lillberg, J.W.

    1985-04-30

    An apparatus and method for electronically reading planar two-dimensional ..beta..-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the ..beta..-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700-..mu..m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  8. Apparatus and method for reading two-dimensional electrophoretograms containing .beta.-ray-emitting labeled compounds

    DOEpatents

    Anderson, Herbert L.; Kinnison, W. Wayne; Lillberg, John W.

    1987-01-01

    Apparatus and method for electronically reading planar two dimensional .beta.-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge of the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the .beta.-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700 .mu.m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  9. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  10. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy due to the applied stress anisotropy.

  11. Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, J.; Li, P.

    2014-12-01

    The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.

  12. Anisotropy of magnetic susceptibility studies in Tertiary ridge-parallel dykes (Iceland), Tertiary margin-normal Aishihik dykes (Yukon), and Proterozoic Kenora Kabetogama composite dykes (Minnesota and Ontario)

    NASA Astrophysics Data System (ADS)

    Craddock, John P.; Kennedy, Bryan C.; Cook, Avery L.; Pawlisch, Melissa S.; Johnston, Stephen T.; Jackson, Mike

    2008-02-01

    Mafic dykes of different ages were collected from three different tectonic settings and analyzed using anisotropy of magnetic susceptibility (AMS) as a proxy for magmatic flow during intrusion. In Iceland, ridge-parallel basaltic dykes were sampled on each side of the active tectonic boundary. The dykes are < 10 m wide along a 1-2 km strike, and are the result of a single intrusion from 1-2 km deep magma chambers in oceanic crust. Thirteen samples were collected (7 N. American plate; 6 European) and 153 cores were analyzed by AMS and preserve a vertical Kmax orientation indicating vertical emplacement. The Eocene Aishihik dyke swarm intrudes the Yukon-Tanana terrane in the Yukon province, Canada over an area ~ 200 by 60 km. These dykes were intruded normal to the accretionary margin, are porphyritic andesites, and have an intermediate geochemical signature based on major and trace element analyses. Ten dykes were sampled and 111 cores analyzed using AMS, and the dykes preserve a vertical Kmax orientation, indicating intrusion was vertical through ~ 30 km of continental crust. The 2.06 Ga Kenora-Kabetogama dykes in northern Minnesota and western Ontario crosscut a variety of Archean terranes (thickness ~ 50 km) in a radiating pattern. The unmetamorphosed basaltic dykes are 1-120 m wide, 10-110 km in length, are vertical in orientation and can be grouped as either being single intrusion or multiple intrusion (composite) dykes. AMS data preserve a vertical Kmax orientation for the southerly locations (2 dykes, n = 53) and horizontal Kmax for the remainder to the northwest (15 dykes, n = 194). Maximum magnetic susceptibility axes (4 dykes, n = 92) for composite dykes are scattered and yield inconsistent flow directions with regard to the dyke margin. Almost all of our results are "normal" in that, the magnetic foliation (the plane containing Kmax and Kint, normal to Kmin) is parallel to the dyke planes, which gives us confidence that the magnetic lineations (i.e., Kmax orientations) are parallel to magmatic flow.

  13. Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth

    PubMed Central

    Kennaway, Richard; Coen, Enrico; Green, Amelia; Bangham, Andrew

    2011-01-01

    A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes. PMID:21698124

  14. Comparison of Educators' and Industrial Managers' Work Motivation Using Parallel Forms of the Work Components Study Questionnaire.

    ERIC Educational Resources Information Center

    Thornton, Billy W.; And Others

    The idea that educators would differ from business managers on Herzberg's motivation factors and Blum's security orientations was posited. Parallel questionnaires were used to measure the motivational variables. The sample was composed of 432 teachers, 118 administrators, and 192 industrial managers. Data were analyzed using multivariate and…

  15. Innovative Language-Based & Object-Oriented Structured AMR Using Fortran 90 and OpenMP

    NASA Technical Reports Server (NTRS)

    Norton, C.; Balsara, D.

    1999-01-01

    Parallel adaptive mesh refinement (AMR) is an important numerical technique that leads to the efficient solution of many physical and engineering problems. In this paper, we describe how AMR programing can be performed in an object-oreinted way using the modern aspects of Fortran 90 combined with the parallelization features of OpenMP.

  16. Parallel Implementation of the Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Baggag, Abdalkader; Atkins, Harold; Keyes, David

    1999-01-01

    This paper describes a parallel implementation of the discontinuous Galerkin method. Discontinuous Galerkin is a spatially compact method that retains its accuracy and robustness on non-smooth unstructured grids and is well suited for time dependent simulations. Several parallelization approaches are studied and evaluated. The most natural and symmetric of the approaches has been implemented in all object-oriented code used to simulate aeroacoustic scattering. The parallel implementation is MPI-based and has been tested on various parallel platforms such as the SGI Origin, IBM SP2, and clusters of SGI and Sun workstations. The scalability results presented for the SGI Origin show slightly superlinear speedup on a fixed-size problem due to cache effects.

  17. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  18. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  19. Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-05-01

    The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.

  20. Persistent quasiplanar nematic texture: Its properties and topological defects

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel; Godinho, Maria Helena; Čopar, Simon

    2016-10-01

    In the so-called quasiplanar texture of a nematic layer confined between parallel plates with homeotropic anchoring conditions, the director field rotates by π between limit surfaces so that field lines have the shape of a dowsing Y-shaped wooden tool. The orientation of the director field at midheight of the layer is arbitrary for symmetry reasons and is thus very sensitive to perturbations. We point out that contrary to accepted ideas the quasiplanar texture can be preserved infinitely in spite of its metastability with respect to the homogeneous homeotropic texture. We propose to call such a long-lived version of the quasiplanar texture the dowser texture. We demonstrate both experimentally and theoretically that in samples of variable thickness, the director field is sensitive to the gradient of the sample thickness through a linear coupling term. As a result, it has a tendency to follow the direction of the thickness gradient. Because of its sensitivity to perturbations we propose to call the midplane director field the dowser field and its tendency to follow the thickness gradient cuneitropism. Under effect of the gradient field, the dowser field obeys the sine-Gordon equation and exhibits domain walls that correspond to the well-known solitonic solutions of the sine-Gordon model.

  1. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    NASA Astrophysics Data System (ADS)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  2. Dunes and microdunes on Venus: Why were so few found in the Magellan data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle 1 images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel relfections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  3. Dunes and Microdunes on Venus: Why Were So Few Found in the Magellan Data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle I images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel reflections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be the most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  4. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  5. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.

  6. Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2016-11-01

    An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.

  7. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions?

    PubMed Central

    Nurminen, Lauri; Angelucci, Alessandra

    2014-01-01

    The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770

  8. Magnetic Topology and Ion Outflow in Mars' Magnetotail

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Xu, S.; McFadden, J. P.; Hara, T.; Luhmann, J. G.; Mazelle, C. X.; Andersson, L.; DiBraccio, G. A.; Connerney, J. E. P.

    2017-12-01

    Planetary ion outflow down the Martian magnetotail could be an important atmospheric loss mechanism. This process depends on magnetic connectivity to the day-side ionosphere and on acceleration of ions to escape velocity. The Mars Atmosphere and Volatile Evolution (MAVEN) mission has obtained comprehensive ion, electron, and magnetic field data in Mars' magnetotail. The spacecraft is in a 75°-inclination, elliptical orbit that samples altitudes from 150 to 6200 km. As the orbit precesses, it sweeps through the tail at a variety of altitudes in this range. Data from the Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) are used to determine the magnetic field topology in the tail at high cadence (every 2-4 seconds), and in particular whether field lines are open, closed, or draped, and if open whether they have access to the day-side or night-side ionosphere. Simultaneous observations by the Supra-Thermal and Thermal Ion Composition (STATIC) instrument and the Langmuir Probe and Waves (LPW) experiment are used to measure the density, composition, and velocity of planetary plasma on these field lines. We find that magnetic topology in the tail is complex and variable, and is influenced by the IMF polarity and the orientation of Mars' crustal magnetic fields with respect to the Sun. We find that planetary ion outflow occurs on both open and draped field lines. On open field lines, outflow tends to occur parallel to the field line, with colder, denser, and slower outflow on field lines connected to the day-side ionosphere (Fig. 1). On these same field lines (after correction for the spacecraft potential) a shift in the position of the He-II photoelectron feature indicates a 1-Volt parallel electric potential directed away from the planet. Except for H+ and occasionally O+, this potential is insufficient by itself to accelerate planetary ions to escape velocity. Outflow is warmer, less dense, and faster moving on draped field lines. In this case, the ion bulk velocity can be at large angles to the magnetic field, suggesting JxB acceleration. This indicates that more than one mechanism is responsible for accelerating ions into the tail.

  9. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E (sub parallel)) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E (sub parallel) events near the electron diffusion region have amplitudes on the order of 100 millivolts per meter, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E (sub parallel) events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E (sub parallel) events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  10. Molecular dynamics simulations of collagen adsorption onto grooved rutile surface: the effects of groove width.

    PubMed

    Chen, Mingjun; Zheng, Ting; Wu, Chunya; Xing, Cheng

    2014-09-01

    The early adsorption stages of collagen onto nano-grooved rutile surface without hydroxylation were studied using molecular dynamics and steered MD simulations. On the basis of plane rutile (110), two kinds of models have been adopted: single groove and parallel grooves along [1-11] crystal orientation with various width dimensions. Initially, collagens were parallel or perpendicular to the groove orientation, respectively, in order to investigate the influence of groove width on collagen adsorption. The simulation result suggests that surface grooves could exert a strong effect on collagen adsorption: when collagen was parallel to the groove direction, adsorption was favored if the groove width matched well with the dimension of collagen. However, adsorption strength may decrease as the groove width expanded. As for the condition of collagen perpendicular to the groove orientation, collagen was difficult to bend and insert into grooves in the free adsorption procedure. But the steered MD simulation results reveal that more energy was consumed for collagen to insert into narrower grooves which may be interpreted as strong barrier for adsorption. We believe that adsorption will be favored if appropriate dimension match between dimension of collagen and the groove width was approached. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    Seismic slip causes a stress drop in the upper crust, and a major stress increase at the lower termination of the fault in the middle crust. Previous numerical models show how these stresses relax during an episode of postseismic creep. Natural evidence for postseismic stress and strain transients at depth is provided by 1) the geological record of exhumed metamorphic rocks, and 2) from postseismic surface deformation transients. In the present study, we use numerical models to investigate the changes in the geometry of the mid-crustal stress field caused by seismic slip along normal faults within an extensional tectonic setting. We model a 100x30km crustal section, with a fault reaching down to 20km and dipping at 60°. A non-linear thermal gradient and constant elastic parameters are applied. Thermally activated creep is described by values derived from laboratory creep experiments on wet quartzite. The crust is loaded by horizontal extension at a constant rate, and earthquakes are triggered by a short term decrease in the frictional coefficient of the fault. During the interseismic period, this coefficient is set to high values to lock the fault. A sequence of 30 earthquakes with a constant recurrence interval of 500y is simulated, and the results for the last seismic cycle are analyzed. In such a tectonic setting, the Anderson theory predicts that the maximum principal stress is vertical. A stress field consistent to this theory is reached after an initial stage of 15ka extension without earthquake activity. The results for the 30th seismic cycle imply that seismic slip causes a major stress increase of at least 50MPa at a depth level below the brittle ductile transition, which is in accordance to reports on seismic stress increase derived from the record of metamorphic rocks. In the hanging wall, the stress increase results mainly from an increase in the maximum principal stress and the stress tensor rotates counter-clockwise by 10-30°. In the footwall the stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  12. Permanent magnet system to guide superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius stays low. A complete system will consist of another quadrupole (third cylinder) to additionally enable scaling of the gradient/force strength by another rotation. In this configuration the device could then also be used as a simple MRI machine to image the particles between movement intervals. Finally, a concept is proposed by which superparamagnetic particles can be guided in three-dimensional space.

  13. SU-F-T-472: Validation of Absolute Dose Measurements for MR-IGRT With and Without Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Li, H; Goddu, S

    Purpose: To validate absolute dose measurements for a MR-IGRT system without presence of the magnetic field. Methods: The standard method (AAPM’s TG-51) of absolute dose measurement with ionization chambers was tested with and without the presence of the magnetic field for a clinical 0.32-T Co-60 MR-IGRT system. Two ionization chambers were used - the Standard Imaging (Madison, WI) A18 (0.123 cc) and the PTW (Freiburg, Germany). A previously reported Monte Carlo simulation suggested a difference on the order of 0.5% for dose measured with and without the presence of the magnetic field, but testing this was not possible until anmore » engineering solution to allow the radiation system to be used without the nominal magnetic field was found. A previously identified effect of orientation in the magnetic field was also tested by placing the chamber either parallel or perpendicular to the field and irradiating from two opposing angles (90 and 270). Finally, the Imaging and Radiation Oncology Core provided OSLD detectors for five irradiations each with and without the field - with two heads at both 0 and 90 degrees, and one head at 90 degrees only as it doesn’t reach 0 (IEC convention). Results: For the TG-51 comparison, expected dose was obtained by decaying values measured at the time of source installation. The average measured difference was 0.4%±0.12% for A18 and 0.06%±0.15% for Farmer chamber. There was minimal (0.3%) orientation dependence without the magnetic field for the A18 chamber, while previous measurements with the magnetic field had a deviation of 3.2% with chamber perpendicular to magnetic field. Results reported by IROC for the OSLDs with and without the field had a maximum difference of 2%. Conclusion: Accurate absolute dosimetry was verified by measurement under the same conditions with and without the magnetic field for both ionization chambers and independently-verifiable OSLDs.« less

  14. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  15. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  16. Plagioclase-Hosted Magnetite Inclusions From the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Scott, G. R.; Renne, P. R.; Wenk, H.

    2004-12-01

    Gabbros from the Main Zone of the 2.064 Ga Bushveld Complex have long been known to possess unusually stable magnetizations due to the presence of high coercivity, exsolved magnetite inclusions in plagioclase and clinopyroxene. The paleomagnetic pole for these rocks has been used to anchor apparent polar wander paths for the Kaapval craton during the Early-Mid Proterozoic. To better understand the rock magnetic properties of silicate-hosted magnetite inclusions, oriented paleomagnetic samples of gabbro were collected from quarries near Belfast and Rustenberg, South Africa, sampling the eastern and western limbs of the Complex, respectively. Plagioclase composition at both sites ranges from An55 (rims) to An65 (cores) based on optical and electron microprobe data. Four kinds of inclusions are present within the plagioclase: elongate magnetite needles, nanometer-scale magnetite particles (responsible for the "cloudy" appearance of some crystals), translucent brown hematite/ilmenite platelets, and colorless euhedral inclusions of pyroxene and/or feldspar. Magnetite inclusions are most abundant at the cores of the plagioclase crystals. Orientations of the needles and the platelets are crystallographically controlled by the silicate host. Although the elongation direction of the magnetite inclusions can occur in any of five possible orientations, only two or three of these directions dominates each plagioclase crystal. Alternating field demagnetization of bulk samples (NRM = 1.5 x 101 A m-1) shows univectorial remanence with average median destructive fields (MDF) of 115 mT (Belfast) and 90 mT (Rustenberg). AF demagnetization of single plagioclase crystals (NRM = 100 A m-1) also shows single component remanence with average MDFs >150 mT. The NRM coercivity spectra of single plagioclase crystals are indistinguishable from that of the bulk samples. When normalized to their abundance in bulk samples the magnetite-bearing plagioclase fully accounts for the NRM of Bushveld gabbros at both sites. Close examination of the inclusions' interiors using magnetic force microscopy shows no ulvöspinel exsolution as observed in other silicate exsolved titanomagnetites with comparably high coercivities. Consequently, we interpret the high coercivities of the inclusions to be a product of their small size and extreme shape anisotropy. Single crystals of plagioclase demonstrate a strong anisotropy of IRM acquisition (see Scott, et al. this conference). Additionally, electron backscatter diffraction (EBSD) orientation indexing shows a strongly preferred orientation for plagioclase and pyroxene (with (010)plag and (100)pyr parallel to subhorizontal layering) consistent with gravitational settling within a magma chamber. Thus, there are two anisotropies (silicate preferred orientation and magnetite inclusion remanence) to consider when describing the ancient magnetic field present during the emplacement of the Bushveld.

  17. Dynamical Generation of Quasi-Stationary Alfvenic Double Layers and Charge Holes and Unified Theory of Quasi-Static and Alfvenic Auroral Arc Formation

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2015-12-01

    Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.

  18. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  19. MAGNETIC FLUX TUBE INTERCHANGE AT THE HELIOPAUSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florinski, V., E-mail: vaf0001@uah.edu

    2015-11-01

    The magnetic field measured by Voyager 1 prior to its heliocliff encounter on 2012.65 showed an unexpectedly complex transition from the primarily azimuthal inner-heliosheath field to the draped interstellar field tilted by some 20° to the nominal azimuthal direction. Most prominent were two regions of enhanced magnetic field strength depleted in energetic charged particles of heliospheric origin. These regions were interpreted as magnetic flux tubes connected to the outer heliosheath that provided a path for the particles to escape. Despite large increases in strength, the field’s direction did not change appreciably at the boundaries of these flux tubes. Rather, themore » field’s direction changed gradually over several months prior to the heliocliff crossing. It is shown theoretically that the heliopause, as a pressure equilibrium layer, can become unstable to interchange of magnetic fields between the inner and the outer heliosheaths. The curvature of magnetic field lines and the anti-sunward gradient in plasma kinetic pressure provide conditions favorable for an interchange. Magnetic shear between the heliosheath and the interstellar fields reduces the growth rates, but does not fully stabilize the heliopause against perturbations propagating in the latitudinal direction. The instability could create a transition layer permeated by magnetic flux tubes, oriented parallel to each other and alternately connected to the heliosheath or the interstellar regions.« less

  20. Observations of large parallel electric fields in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1976-01-01

    Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.

  1. Optical investigation of domain resonances in magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Bahlmann, N.; Gerhardt, R.; Dötsch, H.

    1996-08-01

    Magnetic garnet films of composition (Y,Bi) 3(Fe,Al) 5O 12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd 3Ga 5O 12. Lattices of parallel stripe domains are stabilized by a static induction applied in the film plane. The two branches DR ± of the domain resonance and the domain wall resonance DWR are excited by microwave magnetic fields in the frequency range up to 6 GHz. Light passing the stripe domain lattice parallel to the film normal is modulated at the excitation frequency. A modulation bandwidth of more than 2 GHz is observed. The resonances can be calculated with high accuracy by a hybridization model, if the quality factor Q of the film exceeds 0.5. For Q < 0.5 a simple approximation is used to describe the superposition of the DR + and DR - resonances. The superposition model predicts two stability states of the resonance DR + which are observed experimentally. From the optical measurements precession angles of the resonance DR - of nearly 6° and wall oscillation amplitudes up to 25 nm are derived.

  2. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    NASA Astrophysics Data System (ADS)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom decomposition is not popular due to its poor scalability. On the other hand, domain decomposition scheme is better for scalability. It still has a limitation in utilizing a large number of cores on recent petascale computers due to the requirement that the domain size is larger than the potential cutoff distance. To go beyond such a limitation, a hierarchical parallelization scheme has been adopted in this new version and implemented using MPI [7] and OPENMP [8]. Summary of revisions: (1) Object-oriented programming has been used. (2) A hierarchical parallelization scheme has been adopted. (3) SPME routine has been fully parallelized with parallel 3D FFT using volumetric decomposition scheme [9]. K.J.O. thanks Mr. Seung Min Lee for useful discussion on programming and debugging. Running time: Running time depends on system size and methods used. For test system containing a protein (PDB id: 5DHFR) with CHARMM22 force field [10] and 7023 TIP3P [11] waters in simulation box having dimension 62.23 Å×62.23 Å×62.23 Å, the benchmark results are given in Fig. 1. Here the potential cutoff distance was set to 12 Å and the switching function was applied from 10 Å for the force calculation in real space. For the SPME [12] calculation, K, K, and K were set to 64 and the interpolation order was set to 4. To do the fast Fourier transform, we used Intel MKL library. All bonds including hydrogen atoms were constrained using SHAKE/RATTLE algorithms [13,14]. The code was compiled using Intel compiler version 11.1 and mvapich2 version 1.5. Fig. 2 shows performance gains from using CUDA-enabled version [15] of mm_par for 5DHFR simulation in water on Intel Core2Quad 2.83 GHz and GeForce GTX 580. Even though mm_par2.0 is not ported yet for GPU, its performance data would be useful to expect mm_par2.0 performance on GPU. Timing results for 1000 MD steps. 1, 2, 4, and 8 in the figure mean the number of OPENMP threads. Timing results for 1000 MD steps from double precision simulation on CPU, single precision simulation on GPU, and double precision simulation on GPU.

  3. Dependence of sodium laser guide star photon return on the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Moussaoui, N.; Holzlöhner, R.; Hackenberg, W.; Bonaccini Calia, D.

    2009-07-01

    Aims: The efficiency of optical pumping that increases the backscatter emission of mesospheric sodium atoms in continuous wave (cw) laser guide stars (LGSs) can be significantly reduced and, in the worst case, eliminated by the action of the geomagnetic field. Our goal is to present an estimation of this effect for several telescope sites. Methods: Sodium atoms precess around magnetic field lines that cycle the magnetic quantum number, reducing the effectiveness of optical pumping. Our method is based on calculating the sodium magnetic sublevel populations in the presence of the geomagnetic field and on experimental measurements of radiance return from sodium LGS conducted at the Starfire optical range (SOR). Results: We propose a relatively simple semi-empirical formula for estimating the effect of the geomagnetic field on enhancing the LGSs photon return due to optical pumping with a circularly polarized cw single-frequency laser beam. Starting from the good agreement between our calculations and the experimental measurements for the geomagnetic field effect, and in order to more realistically estimate the sodium LGSs photon return, we introduce the effect of the distance to the mesospheric sodium layer and the atmospheric attenuation. The combined effect of these three factors is calculated for several telescope sites. Conclusions: In calculating the return flux of LGSs, only the best return conditions are often assumed, relying on strong optical pumping with circularly polarized lasers. However, one can only obtain this optimal return along one specific laser orientation on the sky, where the geomagnetic field lines are parallel to the laser beam. For most of the telescopes, the optimum can be obtained at telescope orientations beyond the observation limit. For the telescopes located close to the geomagnetic pole, the benefit of the optical pumping is much more important than for telescopes located close to the geomagnetic equator.

  4. Communications oriented programming of parallel iterative solutions of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  5. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  6. Preliminary bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle, Navajo and Apache Counties, northern Arizona

    USGS Publications Warehouse

    Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret

    2014-01-01

    The bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle was completed in a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This report provides baseline geologic information that will be useful in future studies of groundwater and surface water resources, geologic hazards, and the distribution of soils and plants. The west half of the Sanders quadrangle encompasses approximately 2,509 km2 (980 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°30' to 35° N., long 109°30' to 110° W. The majority of the land within the map area lies within the Navajo Nation. South of the Navajo Nation, private and State lands form a checkerboard pattern east and west of Petrified Forest National Park. In the west half of the Sanders quadrangle, Mesozoic bedrock is nearly flat lying except near folds. A shallow Cenozoic erosional basin that developed about 20 Ma in the western part of the map area cut across late Paleozoic and Mesozoic rocks that were subsequently filled with flat-lying Miocene and Pliocene mudstone and argillaceous sandstone and fluvial sediments of the Bidahochi Formation and associated volcanic rocks of the Hopi Buttes volcanic field. The Bidahochi rocks are capped by Pliocene(?) and Pleistocene fluvial sediments and Quaternary eolian and alluvial deposits. Erosion along northeast-southwest-oriented drainages have exposed elongated ridges of Bidahochi Formation and basin-fill deposits that are exposed through shallow eolian cover of similarly oriented longitudinal dunes. Stokes (1964) concluded that the accumulation of longitudinal sand bodies and the development of confined parallel drainages are simultaneous processes resulting in parallel sets of drainages and ridges oriented along the prevailing southwest wind direction on the southern Colorado Plateau.

  7. Relationship between tectonics and magmatism on Faial island (Azores, Portugal)

    NASA Astrophysics Data System (ADS)

    Trippanera, D.; Salvatore, M.; Porreca, M.; Ruch, J.; Pimentel, A.; Pacheco, J.; Acocella, V.

    2012-04-01

    The Azores Islands are located on the triple junction involving Eurasian, Nubian and North American plates. Faial is the nearest island to the Atlantic Ridge and one of the most active, with the 1957-58 Capelinhos eruption and the 1998 earthquake. Faial consists of three main structural features: a well exposed graben structure (eastern sector), a stratovolcano with a summit caldera (central part) and a fissure zone peninsula (western part). To analyse the relationships between magmatic and tectonic activity at Faial we use a multidisciplinary approach based on: 1) remote sensing analysis (DEM and aerial photographs); 2) geological field survey and 3) paleomagnetic analysis. The age of volcanism in Faial is not well constrained. Our paleomagnetic results show that the oldest rocks of the island have a reverse polarity, implying that they are older than 780 ka (Brunhes-Matuyama polarity transition). The structural data indicate that the main fault system, including the graben structure, is WNW-ESE oriented and shows a general transtensive kinematics with a dextral component and a NE-SW oriented extension direction of the island. Most of the dikes, volcanic vent alignments and extensional fractures are sub-parallel to the main fault system (WNW-ESE). A secondary system of fractures and dikes is NNE-SSW oriented. Inside the graben, the bedding attitude is parallel to the direction of the axis of the graben and dipping outward. This attitude suggests an outward tilt of the blocks between the faults and that the graben consists of two oppositely verging-dominoes. We have estimated the stretching factor (β=1,35) and the minimum extensional rate (2,54 ± 0.08 mm/a) of the graben. The obtained direction and rate of the extension within the Faial graben are similar to those of the nearby Terceira Rift. The absence of a clear westward continuity of the latter suggests that the Faial - Pico magmatic segment could be the SW continuation of the segmented Terceira Rift, above the current hot spot.

  8. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI.

    PubMed

    Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J

    2015-10-01

    To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.

  9. Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Torres-Canas, Fernando; Blanc, Christophe; Mašlík, Jan; Tahir, Said; Izard, Nicolas; Karasahin, Senguel; Castellani, Mauro; Dammasch, Matthias; Zamora-Ledezma, Camilo; Anglaret, Eric

    2017-03-01

    We show that the properties of thin conductive inkjet printed lines of single-walled carbon nanotubes (SWCNT) can be greatly tuned, using only a few deposition parameters. The morphology, anisotropy and electrical resistivity of single-stroke printed lines are studied as a function of ink concentration and drop density. An original method based on coupled profilometry-Raman measurements is developed to determine the height, mass, orientational order and density profiles of SWCNT across the printed lines with a micrometric lateral resolution. Height profiles can be tuned from ‘rail tracks’ (twin parallel lines) to layers of homogeneous thickness by controlling nanotube concentration and drop density. In all samples, the nanotubes are strongly oriented parallel to the line axis at the edges of the lines, and the orientational order decreases continuously towards the center of the lines. The resistivity of ‘rail tracks’ is significantly larger than that of homogeneous deposits, likely because of large amounts of electrical dead-ends.

  10. Rinne test: does the tuning fork position affect the sound amplitude at the ear?

    PubMed

    Butskiy, Oleksandr; Ng, Denny; Hodgson, Murray; Nunez, Desmond A

    2016-03-24

    Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear. To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology - Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert. 47.4 and 44.8% of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95% CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95% CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95% CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95% CI: -0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95% CI: 2.65, 5.90 dB; p < 0.001) and 1.93 dB (95% CI: 0.26, 3.61 dB; p = .02) for the two harmonic frequencies (500 and 4 kHz) respectively. Clinicians vary in their orientation of the tuning fork tines in relation to the EAC when performing the Rinne test. Placement of the tuning fork tines in parallel as opposed to perpendicular to the EAC results in a higher sound amplitude at the level of the tympanic membrane.

  11. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.

    2016-10-01

    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along <1 1 1> direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to <1 1 1> has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  12. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  13. Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.

    2016-12-01

    Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.

  14. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, Rik W. A. A.

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  15. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, R.W.A.A.

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  16. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOEpatents

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  17. Ferroelectricity in high-density H 2O ice

    DOE PAGES

    Caracas, Razvan; Hemley, Russell J.

    2015-04-01

    The origin of longstanding anomalies in experimental studies of the dense solid phases of H 2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. Here, the presence of local electric fields triggers the preferential parallel orientation of the watermore » molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.« less

  18. Electric dipole radiation at VLF in a uniform warm magneto-plasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.

  19. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Finnemore, Douglas K.; Gibson, Edwin D.; Ostenson, Jerome E.

    1983-03-29

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and orientated dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritric particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  20. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  1. Study of the Discipline-Based Education vs. Liberal Education in the Department of Social Sciences, S. P. J. C. [St. Petersburg Junior College, Florida].

    ERIC Educational Resources Information Center

    McCuskey, E. Scott; Worley, William E.

    The heterogeneous nature of community college populations has resulted in an academic dichotomy within two-year institutions. Most institutions offer two types of programs: (1) discipline-based, university parallel programs, oriented toward transferring students to four-year institutions; (2) vocational/technical programs, oriented toward terminal…

  2. Orientation of Ordered Structures of Cytosine and Cytidine 5'-Monophosphate Adsorbed at Au(110)/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Weightman, P.; Dolan, G. J.; Smith, C. I.; Cuquerella, M. C.; Almond, N. J.; Farrell, T.; Fernig, D. G.; Edwards, C.; Martin, D. S.

    2006-03-01

    It is demonstrated using reflection anisotropy spectroscopy that the adsorption of cytosine and cytidine 5'-monophosphate at the Au(110) 1×2/electrolyte interface gives rise to ordered structures in which the base is oriented vertical to the surface and parallel to the [11¯0] axis of the Au(110) plane.

  3. A Grounded Research Perspective for Motivating College Students' Self-Regulated Learning Behaviors: Preparing and Gaining the Cooperation, Commitment of Teachers.

    ERIC Educational Resources Information Center

    Talbot, Gilles L.

    This paper suggests that the processes one would have college teachers use to motivate students closely parallel those that should be used to gain the cooperation, commitment, and preparation of teachers for this task. It discusses the "learning orientation" versus "grading orientation" of students, along with "class-side manners" that college…

  4. Decomposing the electromagnetic response of magnetic dipoles to determine the geometric parameters of a dipole conductor

    NASA Astrophysics Data System (ADS)

    Desmarais, Jacques K.; Smith, Richard S.

    2016-03-01

    A novel automatic data interpretation algorithm is presented for modelling airborne electromagnetic (AEM) data acquired over resistive environments, using a single-component (vertical) transmitter, where the position and orientation of a dipole conductor is allowed to vary in three dimensions. The algorithm assumes that the magnetic fields produced from compact vortex currents are expressed as a linear combinations of the fields arising from dipoles in the subsurface oriented parallel to the [1, 0, 0], [0, 1, 0], and [0, 0, 1], unit vectors. In this manner, AEM responses can be represented as 12 terms. The relative size of each term in the decomposition can be used to determine geometrical information about the orientation of the subsurface conductivity structure. The geometrical parameters of the dipole (location, depth, dip, strike) are estimated using a combination of a look-up table and a matrix inverted in a least-squares sense. Tests on 703 synthetic models show that the algorithm is capable of extracting most of the correct geometrical parameters of a dipole conductor when three-component receiver data is included in the interpretation procedure. The algorithm is unstable when the target is perfectly horizontal, as the strike is undefined. Ambiguities may occur in predicting the orientation of the dipole conductor if y-component data is excluded from the analysis. Application of our approach to an anomaly on line 15 of the Reid Mahaffy test site yields geometrical parameters in reasonable agreement with previous authors. However, our algorithm provides additional information on the strike and offset from the traverse line of the conductor. Disparities in the values of predicted dip and depth are within the range of numerical precision. The index of fit was better when strike and offset were included in the interpretation procedure. Tests on the data from line 15701 of the Chibougamau MEGATEM survey shows that the algorithm is applicable to situations where three-component AEM data is available.

  5. Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields

    NASA Astrophysics Data System (ADS)

    Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo

    2018-05-01

    This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.

  6. North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere

    PubMed Central

    Leão, Pedro; Teixeira, Lia C. R. S.; Cypriano, Jefferson; Farina, Marcos; Abreu, Fernanda; Bazylinski, Dennis A.

    2016-01-01

    ABSTRACT Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim antiparallel to magnetic field lines (south-seeking [SS] polarity). Here, we report a population of an uncultured, monotrichously flagellated, and vibrioid MTB collected from a brackish lagoon in Brazil in the Southern Hemisphere that consistently exhibits NS polarity. Cells of this organism were mainly located below the oxic-anoxic interface (OAI), suggesting it is capable of some type of anaerobic metabolism. Magnetosome crystalline habit and composition were consistent with elongated prismatic magnetite (Fe3O4) particles. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that this organism belongs to a distinct clade of the Gammaproteobacteria class. The presence of NS MTB in the Southern Hemisphere and the previously reported finding of SS MTB in the Northern Hemisphere reinforce the idea that magnetotaxis is more complex than we currently understand and may be modulated by factors other than O2 concentration and redox gradients in sediments and water columns. IMPORTANCE Magnetotaxis is a navigational mechanism used by magnetotactic bacteria to move along geomagnetic field lines and find an optimal position in chemically stratified sediments. For that, magnetotactic bacteria swim parallel to the geomagnetic field lines under oxic conditions in the Northern Hemisphere, whereas those in the Southern Hemisphere swim antiparallel to magnetic field lines. A population of uncultured vibrioid magnetotactic bacteria was discovered in a brackish lagoon in the Southern Hemisphere that consistently swim northward, i.e., the opposite of the overwhelming majority of other Southern Hemisphere magnetotactic bacteria. This finding supports the idea that magnetotaxis is more complex than previously thought. PMID:27401974

  7. Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock.

    PubMed

    Bale, S D; Mozer, F S

    2007-05-18

    Large parallel (

  8. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  9. Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Carminati, Eugenio

    2016-01-01

    3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.

  10. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    NASA Astrophysics Data System (ADS)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  11. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  12. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    NASA Astrophysics Data System (ADS)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  13. A regional seismic stress field in Taiwan inferred from damped inversion of earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, P. H.; Liang, W. T.; Huang, Y. L.; Li, W. H.; Jian, P. R.; Tseng, T. L.

    2016-12-01

    We have inverted 3014 source mechanisms by applying a newly developed multiple solution method (AutoBATS) to the Broadband Array in Taiwan for Seismology (BATS) for earthquakes occurred in the Taiwan region between 1996 and 2016. To evaluate the solution reliability, we have compared our solutions with the GlobalCMT (GCMT) ones that are in common. The result shows that 83% of the Kagan angles are smaller than 35°, which is much higher than the regular BATS CMT solution and therefore indicates a good agreement among these two catalogs. In average, the Mw derived from our method is about 0.1 smaller than that obtained by the GCMT. According to the classification by Frohlich (1992), 43% of our solutions show thrusting, which is the dominant faulting type occurred mainly along the subduction zone, the eastern collision zone and the western foothill zone. A regional seismic stress field has been pursued by using a damped stress inversion algorithm over a grid whose node spacing is 0.1°. The s1 orientation is parallel to the plate motion direction of the Philippine Sea plate with respect to the Eurasian plate in the eastern offshore area. A fan-shape s1 orientation is clearly found in the western Taiwan. Across the southern Taiwan, we observed an S-shape trajectory of the s1 orientation, which may reflect the rheology contrast between the Central Range and the Pingtung Plain. In addition, we noticed that there is a singularity point of the s1 orientation at 24.3°N along the eastern coast, which may mark the transition from the effective collision to the lateral bending in the upper seismogenic layer of the crust. The inter-seismic surface GPS deformation also presents this singularity. In the north-east of this location, the s1 orientation is subparallel to the strike of the Okinawa Trough, which is almost perpendicular to the relative plate motion direction. This newly obtained CMT catalog may help decipher more sophisticated seismotectonic features in the Taiwan region.

  14. Structural basis of orientation sensitivity of cat retinal ganglion cells.

    PubMed

    Leventhal, A G; Schall, J D

    1983-11-10

    We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.

  15. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  16. The impact of magnetic fields on thermal instability

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Peng Oh, S.; McCourt, Michael

    2018-02-01

    Cold (T ˜ 104 K) gas is very commonly found in both galactic and cluster halos. There is no clear consensus on its origin. Such gas could be uplifted from the central galaxy by galactic or AGN winds. Alternatively, it could form in situ by thermal instability. Fragmentation into a multi-phase medium has previously been shown in hydrodynamic simulations to take place once tcool/tff, the ratio of the cooling time to the free-fall time, falls below a threshold value. Here, we use 3D plane-parallel MHD simulations to investigate the influence of magnetic fields. We find that because magnetic tension suppresses buoyant oscillations of condensing gas, it destabilizes all scales below l_A^cool ˜ v_A t_cool, enhancing thermal instability. This effect is surprisingly independent of magnetic field orientation or cooling curve shape, and sets in even at very low magnetic field strengths. Magnetic fields critically modify both the amplitude and morphology of thermal instability, with δρ/ρ∝β-1/2, where β is the ratio of thermal to magnetic pressure. In galactic halos, magnetic fields can render gas throughout the entire halo thermally unstable, and may be an attractive explanation for the ubiquity of cold gas, even in the halos of passive, quenched galaxies.

  17. Parallel Structures of Computer-Assisted Signature Pedagogy: The Case of Integrated Spreadsheets

    ERIC Educational Resources Information Center

    Abramovich, Sergei; Easton, Jonathan; Hayes, Victoria O.

    2012-01-01

    This article was motivated by the authors' work on a project with a group of 2nd-grade students in a computer lab of a rural school in upstate New York. From this project, one goal of which was to provide a capstone experience for a teacher candidate in teaching application-oriented mathematics with technology, the ideas about parallel structures…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Zehua; Tang Xianzhu

    Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallelmore » transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.« less

  19. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  20. Acoustic streaming, fluid mixing, and particle transport by a Gaussian ultrasound beam in a cylindrical container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Jeffrey S., E-mail: jeffm@cems.uvm.edu; Wu, Junru

    A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer tomore » as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.« less

Top