Sample records for field phase detection

  1. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Wei, L. F.; Jia, W. Z.

    2010-10-15

    Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  2. Probing amplitude, phase, and polarization of microwave field distributions in real time

    NASA Astrophysics Data System (ADS)

    King, R. J.; Yen, Y. H.

    1981-11-01

    A coherent (homodyne) detection system is used to map field distributions in real time. A key feature is the use of an electrically modulated (10-kHz) dipole scatterer which is also mechanically spun (150 Hz) to create an amplitude- and phase-modulated backscattered field. The system is monostatic. The backscattered field is coherently detected by mixing with the CW reference. A phase-insensitive detector is used, comprised of two balanced mixers which are fed in quadrature phase by one of the RF inputs followed by a phase quadrature combiner. The resulting amplitude and phase of the 10-kHz output are proportional to the square of the RF field component along the instantaneous axis of the spinning dipole. Both are measured simultaneously and independently in real time. From these, the polarization properties can also be found, so the field is uniquely described. The system's application to scanning the E-field transmitted through lossy, nonhomogeneous and anisotropic media (e.g., wood) is demonstrated. Other applications besides nondestructive testing are microwave vector holography, near-field antenna measurements, and inverse scattering.

  3. Superconducting resonator used as a beam phase detector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.

    2003-05-01

    Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phasemore » information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.« less

  4. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  5. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  6. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  7. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  8. Single-shot detection and direct control of carrier phase drift of midinfrared pulses.

    PubMed

    Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea

    2010-03-01

    We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.

  9. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; ...

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  10. Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli

    2018-02-01

    Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.

  11. Full-field swept-source optical coherence tomography with phase-shifting techniques for skin cancer detection

    NASA Astrophysics Data System (ADS)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-05-01

    The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.

  12. Phased Contrast X-Ray Imaging

    ScienceCinema

    Miller, Erin

    2018-02-07

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  13. A Matched Field Processing Framework for Coherent Detection Over Local and Regional Networks (Postprint)

    DTIC Science & Technology

    2011-12-30

    the term " superresolution "). The single-phase matched field statistic for a given template was also demonstrated to be a viable detection statistic... Superresolution with seismic arrays using empirical matched field processing, Geophys. J. Int. 182: 1455–1477. Kim, K.-H. and Park, Y. (2010): The 20

  14. Error field detection in DIII-D by magnetic steering of locked modes

    DOE PAGES

    Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...

    2014-02-20

    Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less

  15. Spatiotemporal Receptive Field Properties of a Looming-Sensitive Neuron in Solitarious and Gregarious Phases of the Desert Locust

    PubMed Central

    Harston, George W. J.; Kilburn-Toppin, Fleur; Matheson, Thomas; Burrows, Malcolm; Gabbiani, Fabrizio; Krapp, Holger G.

    2010-01-01

    Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes. PMID:19955292

  16. Digital holographic microscopy for detection of Trypanosoma cruzi parasites in fresh blood mounts

    NASA Astrophysics Data System (ADS)

    Romero, G. G.; Monaldi, A. C.; Alanís, E. E.

    2012-03-01

    An off-axis holographic microscope, in a transmission mode, calibrated to automatically detect the presence of Trypanosoma cruzi in blood is developed as an alternative diagnosis tool for Chagas disease. Movements of the microorganisms are detected by measuring the phase shift they produce on the transmitted wave front. A thin layer of blood infected by Trypanosoma cruzi parasites is examined in the holographic microscope, the images of the visual field being registered with a CCD camera. Two consecutive holograms of the same visual field are subtracted point by point and a phase contrast image of the resulting hologram is reconstructed by means of the angular spectrum propagation algorithm. This method enables the measurement of phase distributions corresponding to temporal differences between digital holograms in order to detect whether parasites are present or not. Experimental results obtained using this technique show that it is an efficient alternative that can be incorporated successfully as a part of a fully automatic system for detection and counting of this type of microorganisms.

  17. Nanoparticle detection using dual-phase interferometry

    PubMed Central

    Deutsch, Bradley; Beams, Ryan; Novotny, Lukas

    2013-01-01

    Detection and identification of nanoparticles is of growing interest in atmospheric monitoring, medicine and semiconductor manufacturing. While elastic light scattering with interferometric detection provides good sensitivity to single particles, active optical components prevent scalability realistic sizes for deployment in the field or clinic. Here we report on a simple phase-sensitive nanoparticle detection scheme with no active optical elements. Two measurements are taken simultaneously, allowing amplitude and phase to be decoupled. We demonstrate detection of 25 nm Au particles in liquid in Δt ~ 1 ms with a signal-to-noise ratio of 37. Such performance makes it possible to detect nanoscale contaminants or larger proteins in real time without the need of artificial labeling. PMID:20830181

  18. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  19. Phase seeding of a terahertz quantum cascade laser

    PubMed Central

    Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep

    2010-01-01

    The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. PMID:20842195

  20. Noise analysis for near field 3-D FM-CW radar imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of thesemore » noise sources on a fast-chirping FM-CW system.« less

  1. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  2. Few-cycle carrier envelope phase-dependent stereo detection of electrons.

    PubMed

    Verhoef, Aart J; Fernández, Alma; Lezius, Matthias; O'Keeffe, Kevin; Uiberacker, Matthias; Krausz, Ferenc

    2006-12-01

    The spatial distribution of electrons emitted from atoms by few-cycle optical fields is known to be dependent on the carrier envelope phase, i.e., the phase of the field with respect to the pulse envelope. With respect to Paulus et al. [Phys. Rev. Lett.91, 253004 (2003)] we propose a greatly simplified device to measure and control the carrier envelope phase of few-cycle pulses with an accuracy of better than pi/10 based on this principle. We compared different schemes to control the carrier envelope phase of our pulses.

  3. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    NASA Astrophysics Data System (ADS)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  4. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  5. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5more » day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.« less

  6. Monitoring/Verification using DMS: TATP Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan Weeks, Kevin Kyle, Manuel Manard

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less

  7. Gas Phase Organophosphate Detection Using Enzymes Encapsulated Within Peptide Nanotubes

    DTIC Science & Technology

    2014-03-27

    as gas and liquid chromatography, although very sensitive and reliable, have disadvantages. The US Air Force currently uses a field portable gas...biosensors to detect OPCs in liquid (Park et al., 2011; Stevens, 2012) and gas (Baker, 2013) phases. Detection is based upon a redox reaction... injecting a known volume of gas saturated at room temperature with malathion (vapor pressure = 25 ppbv), into a 40 ml vial purged with nitrogen at constant

  8. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency

    NASA Astrophysics Data System (ADS)

    Cinar, A. F.; Barhli, S. M.; Hollis, D.; Flansbjer, M.; Tomlinson, R. A.; Marrow, T. J.; Mostafavi, M.

    2017-09-01

    Digital image correlation has been routinely used to measure full-field displacements in many areas of solid mechanics, including fracture mechanics. Accurate segmentation of the crack path is needed to study its interaction with the microstructure and stress fields, and studies of crack behaviour, such as the effect of closure or residual stress in fatigue, require data on its opening displacement. Such information can be obtained from any digital image correlation analysis of cracked components, but it collection by manual methods is quite onerous, particularly for massive amounts of data. We introduce the novel application of Phase Congruency to detect and quantify cracks and their opening. Unlike other crack detection techniques, Phase Congruency does not rely on adjustable threshold values that require user interaction, and so allows large datasets to be treated autonomously. The accuracy of the Phase Congruency based algorithm in detecting cracks is evaluated and compared with conventional methods such as Heaviside function fitting. As Phase Congruency is a displacement-based method, it does not suffer from the noise intensification to which gradient-based methods (e.g. strain thresholding) are susceptible. Its application is demonstrated to experimental data for cracks in quasi-brittle (Granitic rock) and ductile (Aluminium alloy) materials.

  9. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    NASA Astrophysics Data System (ADS)

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-03-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

  10. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    PubMed Central

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-01-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles. PMID:24358054

  11. Detection and characterization of elongated bubbles and drops in two-phase flow using magnetic fields

    NASA Astrophysics Data System (ADS)

    Wiederhold, A.; Boeck, T.; Resagk, C.

    2017-08-01

    We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.

  12. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  13. Phase-sensitive atomic dynamics in quantum light

    NASA Astrophysics Data System (ADS)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  14. Electric field detection of phase-locked near-infrared pulses using photoconductive antenna.

    PubMed

    Katayama, I; Akai, R; Bito, M; Matsubara, E; Ashida, M

    2013-07-15

    We have demonstrated that a photoconductive antenna gated with 5-fs ultrashort laser pulses can detect electric field transients of near-infrared pulses at least up to 180 THz. Measured sensitivity spectrum of the antenna shows a good agreement with a simple calculation, demonstrating the promising capability of the antenna to near infrared spectroscopy. Using this setup, near-infrared time-domain spectroscopy and characterization of phase controlled near-infrared pulses are demonstrated. Observed absorption spectrum of a polystyrene film and complex refractive index dispersion of a fused silica plate both agree well with those obtained by the conventional methods.

  15. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  16. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  17. The Direct Detection of a Single Evoked Action Potential with Magnetic Resonance Spectroscopy in Lumbricus Terrestris

    PubMed Central

    Poplawsky, Alexander J.; Dingledine, Raymond

    2011-01-01

    Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204

  18. Time domain para hydrogen induced polarization.

    PubMed

    Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd

    2012-01-01

    Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography.

    PubMed

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E

    2007-03-01

    A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc

  20. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  1. Detection of piperonal emitted from polymer controlled odor mimic permeation systems utilizing Canis familiaris and solid phase microextraction-ion mobility spectrometry.

    PubMed

    Macias, Michael S; Guerra-Diaz, Patricia; Almirall, José R; Furton, Kenneth G

    2010-02-25

    Currently, in the field of odor detection, there is generally a wider variation in limit of detections (LODs) for canines than instruments. The study presented in this paper introduces an improved protocol for the creation of controlled odor mimic permeation system (COMPS) devices for use as standards in canine training and discusses the canine detection thresholds of piperonal, a starting material for the illicit drug 3,4-methylenedioxymethamphetamine (MDMA), when exposed to these devices. Additionally, this paper describes the first-ever reported direct comparison of solid phase microextraction-ion mobility spectrometry (SPME-IMS) to canine detection for the MDMA odorant, piperonal. The research presented shows the reliability of COMPS devices as low cost field calibrants providing a wide range of odorant concentrations for biological and instrumental detectors. The canine LOD of piperonal emanating from the 100 ng s(-1) COMPS was found to be 1 ng as compared to the SPME-IMS LOD of piperonal in a static, closed system at 2 ng, with a linear dynamic range from 2 ng to 11 ng. The utilization of the COMPS devices would allow for training that will reduce the detection variability between canines and maintain improved consistency for training purposes. Since both SPME and IMS are field portable technologies, it is expected that this coupled method will be useful as a complement to canine detection for the field detection of MDMA. 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  3. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  4. Phase-sensitive detection of acoustically stimulated electromagnetic response in steel

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Yotsuji, Junichi; Ikushima, Kenji

    2018-07-01

    The signal amplitude and the phase of acoustically stimulated electromagnetic (ASEM) response have been investigated in steel. In the ASEM method, magnetization is temporally modulated with the radio frequency (rf) of irradiated ultrasonic waves through magnetomechanical coupling. The first-harmonic components of the induced rf dipolar magnetic fields are detected using a resonant loop antenna. The signal amplitude of ASEM waves is determined by the magnitude of local piezomagnetic coefficients on an acoustically excited spot. Here, we divided the ASEM waves into the “in-phase” and “quadrature” components by phase-sensitive detection (PSD). On the basis of the linear response theory, we provided the theoretical formalism of ASEM response by introducing local complex piezomagnetic coefficients, d loc = d‧ + id‧‧. We investigated the magnetic field (H) dependence of the individual components on the different surface conditions of steel plates. The in-phase component [∝ d‧(H)] shows a hysteresis loop on the machined surface of a steel plate, in which d‧(H) switches sign at two finite field values, ±H 0. The inversion of magnetization associated with the applied static fields is thus definitely observed in the PSD measurements. In addition, we measured the hysteresis behaviors on a steel surface with a thin mill scale (iron oxide layers). The hysteresis loop broadens and a significant contribution of the quadrature component [∝ d‧‧(H)] is found. We discuss the origin of the hysteresis behaviors of d‧ and d‧‧ using the Debye relaxation model.

  5. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less

  6. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  7. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  8. Quantum Polarization Spectroscopy of Ultracold Spinor Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, K.; Zawitkowski, L.; Sanpera, A.

    2007-03-09

    We propose a method for the detection of ground state quantum phases of spinor gases through a series of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses through the gas. Signatures of various mean-field as well as strongly correlated phases of F=1 and F=2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of transmitted light are identified.

  9. Hapsite Gas Chromatography - Mass Spectrometry with Solid Phase Microextraction

    DTIC Science & Technology

    2005-07-18

    Polydimethylsiloxane /Divinylbenzene (PDMS/DVB) 65um/partially crosslinked*** Polar volatiles 60urn/ partially crosslinked General purpose (for HPLC ... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GCUMS... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GC/MS instrument coupled

  10. Phase definition to assess synchronization quality of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Freitas, Leandro; Torres, Leonardo A. B.; Aguirre, Luis A.

    2018-05-01

    This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.

  11. Phase definition to assess synchronization quality of nonlinear oscillators.

    PubMed

    Freitas, Leandro; Torres, Leonardo A B; Aguirre, Luis A

    2018-05-01

    This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.

  12. Geometric phase for a static two-level atom in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Cai, Huabing; Ren, Zhongzhou

    2018-05-01

    We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.

  13. Field demonstration of CO2 leakage detection and potential impacts on groundwater quality at Brackenridge Field Laboratory

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Yang, C.; Guzman, N.; Delgado, J.; Mickler, P. J.; Horvoka, S.; Trevino, R.

    2015-12-01

    One concern related to GCS is possible risk of unintended CO2 leakage from the storage formations into overlying potable aquifers on underground sources of drinking water (USDW). Here we present a series of field tests conducted in an alluvial aquifer which is on a river terrace at The University of Texas Brackenridge Field Laboratory. Several shallow groundwater wells were completed to the limestone bedrock at a depth of 6 m and screened in the lower 3 m. Core sediments recovered from the shallow aquifer show that the sediments vary in grain size from clay-rich layers to coarse sandy gravels. Two main types of field tests were conducted at the BFL: single- (or double-) well push-pull test and pulse-like CO2 release test. A single- (or double-) well push-pull test includes three phases: the injection phase, the resting phase and pulling phase. During the injection phase, groundwater pumped from the shallow aquifer was stored in a tank, equilibrated with CO2 gasand then injected into the shallow aquifer to mimic CO2 leakage. During the resting phase, the groundwater charged with CO2 reacted with minerals in the aquifer sediments. During the pulling phase, groundwater was pumped from the injection well and groundwater samples were collected continuously for groundwater chemistry analysis. In such tests, large volume of groundwater which was charged with CO2 can be injected into the shallow aquifer and thus maximize contact of groundwater charged with CO2. Different than a single- (or double-) well push-pull test, a pulse-like CO2 release test for validating chemical sensors for CO2 leakage detection involves a CO2 release phase that CO2 gas was directly bubbled into the testing well and a post monitoring phase that groundwater chemistry was continuously monitored through sensors and/or grounder sampling. Results of the single- (or double-) well push-pull tests conducted in the shallow aquifer shows that the unintended CO2 leakage could lead to dissolution of carbonates and some silicates and mobilization of heavy metals from the aquifer sediments to groundwater, however, such mobilization posed no risks on groundwater quality at this site. The pulse-like tests have demonstrated it is plausible to use chemical sensors for CO2 leakage detection in groundwater.

  14. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  15. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  16. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE PAGES

    Vianello, G.; Omodei, N.; Chiang, J.; ...

    2017-05-20

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  17. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, G.; Omodei, N.; Chiang, J.

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  18. Photothermal nanoparticles as molecular specificity agents in interferometric phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.

    2017-02-01

    I review our latest advances in wide-field interferometric imaging of biological cells with molecular specificity, obtained by time-modulated photothermal excitation of gold nanoparticles. Heat emitted from the nanoparticles affects the measured phase signal via both the nanoparticle surrounding refractive-index and thickness changes. These nanoparticles can be bio-functionalized to bind certain biological cell components; thus, they can be used for biomedical imaging with molecular specificity, as new nanoscopy labels, and for photothermal therapy. Predicting the ideal nanoparticle parameters requires a model that computes the thermal and phase distributions around the particle, enabling more efficient phase imaging of plasmonic nanoparticles, and sparing trial and error experiments of using unsuitable nanoparticles. We thus developed a new model for predicting phase signatures from photothermal nanoparticles with arbitrary parameters. We also present a dual-modality technique based on wide-field photothermal interferometric phase imaging and simultaneous ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. We experimentally demonstrated our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. This demonstration established an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the photothermal phase profile of the sample, and provides the ability of both detection and ablation of chosen cells after their selective imaging.

  19. Many-body localization in a long range XXZ model with random-field

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-12-01

    Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.

  20. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection

    NASA Astrophysics Data System (ADS)

    Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu

    2017-09-01

    We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.

  1. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    DTIC Science & Technology

    2005-07-09

    This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Higher spatial harmonics of photorefractive gratings written by phase-locked detection

    NASA Astrophysics Data System (ADS)

    Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.

    1992-11-01

    The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.

  3. Random phase detection in multidimensional NMR.

    PubMed

    Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C

    2011-10-04

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.

  4. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  5. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    PubMed

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  7. Dynamic speckle illumination wide-field reflection phase microscopy

    PubMed Central

    Choi, Youngwoon; Hosseini, Poorya; Choi, Wonshik; Dasari, Ramachandra R.; So, Peter T. C.; Yaqoob, Zahid

    2014-01-01

    We demonstrate a quantitative reflection-phase microscope based on time-varying speckle-field illumination. Due to the short spatial coherence length of the speckle field, the proposed imaging system features superior lateral resolution, 520 nm, as well as high-depth selectivity, 1.03 µm. Off-axis interferometric detection enables wide-field and single-shot imaging appropriate for high-speed measurements. In addition, the measured phase sensitivity of this method, which is the smallest measurable axial motion, is more than 40 times higher than that available using a transmission system. We demonstrate the utility of our method by successfully distinguishing the motion of the top surface from that of the bottom in red blood cells. The proposed method will be useful for studying membrane dynamics in complex eukaryotic cells. PMID:25361156

  8. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  9. Phase Coexistence in a Dynamic Phase Diagram.

    PubMed

    Gentile, Luigi; Coppola, Luigi; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2015-08-03

    Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Probing topological order with Rényi entropy

    NASA Astrophysics Data System (ADS)

    Halász, Gábor B.; Hamma, Alioscia

    2012-12-01

    We present an analytical study of the quantum phase transition between the topologically ordered toric-code-model ground state and the disordered spin-polarized state. The phase transition is induced by applying an external magnetic field, and the variation in topological order is detected via two nonlocal quantities: the Wilson loop and the topological Rényi entropy of order 2. By exploiting an equivalence with the transverse-field Ising model and considering two different variants of the problem, we investigate the field dependence of these quantities by means of an exact treatment in the exactly solvable variant and complementary perturbation theories around the limits of zero and infinite fields in both variants. We find strong evidence that the phase transition point between topological order and disorder is marked by a discontinuity in the topological Rényi entropy and that the two phases around the phase transition point are characterized by its different constant values. Our results therefore indicate that the topological Rényi entropy is a proper topological invariant: its allowed values are discrete and can be used to distinguish between different phases of matter.

  11. First measurements of error fields on W7-X using flux surface mapping

    DOE PAGES

    Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...

    2016-08-03

    Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less

  12. Oriented xenon hydride molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Buck, Udo; Fárník, Michal

    The production of the xenon hydride molecules HXeX with X = I and Cl in the gas phase is reviewed. These molecules are generated by the photolysis of the hydrogen halide HI and HCl molecules on the surface of large xenon Xen clusters. Molecular dynamics simulations show that the flexible H atoms react with the heavy XeX moiety and form the desired molecules with nearly no rotational motion. They are observed by photodissociation with subsequent detection of the kinetic energy of the H atom fragment. During the generating process, the cluster starts to evaporate and the hydride molecule is left essentially free. For further discrimination against the H atom fragments from HX, the HXeX molecules are oriented in a combined pulsed laser field and a weak electrostatic field. The three topics which represent the background of our experiments are briefly reviewed: the nature and generation of rare gas hydrides, the alignment and orientation of molecules in electric fields, and the photodissociation of selected molecules in rare gas clusters. The conditions for detecting them in the gas phase are discussed. This is the trade off between the stability, which requires high electron affinity, and the conditions for orientation, which necessitate large polarizability anisotropies and dipole moments. Finally the prospects of detecting other classes of molecules are discussed.

  13. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes.

    PubMed

    Xu, Xiaoji G; Tanur, Adrienne E; Walker, Gilbert C

    2013-04-25

    We propose a practical method to obtain near-field infrared absorption spectra in apertureless near-field scanning optical microscopy (aNSOM) through homodyne detection with a specific choice of reference phase. The underlying mechanism of the method is illustrated by theoretical and numeric models to show its ability to obtain absorptive rather than dispersive profiles in near-field infrared vibrational microscopy. The proposed near-field nanospectroscopic method is applied to obtain infrared spectra from regions of individual multiwall boron nitride nanotubes (BNNTs) in spatial regions smaller than the diffraction limit of the light source. The spectra suggest variations in interwall spacing within the individual tubes probed.

  14. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  15. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  17. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    NASA Astrophysics Data System (ADS)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  18. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    PubMed Central

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-01-01

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138

  19. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  20. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  1. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.

    PubMed

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-03-16

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  2. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    PubMed

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detecting topological phases in silicene by anomalous Nernst effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yafang; Zhou, Xingfei; Jin, Guojun, E-mail: gjin@nju.edu.cn

    2016-05-16

    Silicene undergoes various topological phases under the interplay of intrinsic spin-orbit coupling, perpendicular electric field, and off-resonant light. We propose that the abundant topological phases can be distinguished by measuring the Nernst conductivity even at room temperature, and their phase boundaries can be determined by differentiating the charge and spin Nernst conductivities. By modulating the electric and light fields, pure spin polarized, valley polarized, and even spin-valley polarized Nernst currents can be generated. As Nernst conductivity is zero for linear polarized light, silicene can act as an optically controlled spin and valley field-effect transistor. Similar investigations can be extended frommore » silicene to germanene and stanene, and a comparison is made for the anomalous thermomagnetic figure of merits between them. These results will facilitate potential applications in spin and valley caloritronics.« less

  4. Negative Oxygen Isotope Effect in Manganites with an Ordered Cation Arrangement in a High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Taldenkov, A. N.; Snegirev, V. V.; Babushkina, N. A.; Kalitka, V. S.; Kaul', A. R.

    2018-03-01

    The oxygen isotope effect in PrBaMn2 16-18 O5.97 manganite with an ordered cation arrangement is studied. The field dependences of magnetic susceptibility and magnetization are measured in the temperature range 100-270 K and magnetic fields up to 32 T. A significant increase in the temperature of the spin-reorientation antiferromagnet-ferromagnet phase transition is detected in samples enriched in heavy oxygen 18O (negative isotope effect). The transition temperature and the isotope effect depend strongly on the magnetic field. An H-T phase diagram is plotted for samples with various isotope compositions. An analysis of the experimental results demonstrates that the detected negative isotope effect and the giant positive isotope effect revealed earlier in doped manganites have the same nature. The mechanisms of appearance of isotope effects are discussed in terms of the double exchange model under a polaron narrowing of the free carrier band.

  5. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    PubMed

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  7. Novel ways of creating and detecting topological order with cold atoms and ions

    NASA Astrophysics Data System (ADS)

    Lewenstein, Maciej

    2015-03-01

    In my talk I will focus on novel physics and novel quantum phases that are expected in lattice systems of ultra-cold atoms or ions in synthetic gauge fields, generated via lattice modulations and shaking. I will discuss fractal energy spectra and topological phases in long-range spin chains realized with trapped ions or atoms in nanofibers, and synthetic gauge fields in synthetic dimensions. I will spend large part of the talk discussing the ways to detect topological effects and order, via tomography of band insulators from quench dynamics, or via direct imaging of topological edge states. This work was supported by ERC AdG OSYRIS, EU IP SIQS, EU STREP EQUAM and Spanish Ministry Grant FOQUS.

  8. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  9. A statistical model of false negative and false positive detection of phase singularities.

    PubMed

    Jacquemet, Vincent

    2017-10-01

    The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.

  10. Narrow phase-dependent features in X-ray dim isolated neutron stars: a new detection and upper limits

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Turolla, R.; Zane, S.

    2017-07-01

    We report on the results of a detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs). Our analysis revealed a narrow and phase-variable absorption feature in the X-ray spectrum of RX J1308.6+2127. The feature has an energy of ˜740 eV and an equivalent width of ˜15 eV. It is detected only in ˜1/5 of the phase cycle, and appears to be present for the entire timespan covered by the observations (2001 December to 2007 June). The strong dependence on the pulsar rotation and the narrow width suggest that the feature is likely due to resonant cyclotron absorption/scattering in a confined high-B structure close to the stellar surface. Assuming a proton cyclotron line, the magnetic field strength in the loop is Bloop ˜ 1.7 × 1014 G, about a factor of ˜5 higher than the surface dipolar magnetic field (Bsurf ˜ 3.4 × 1013 G). This feature is similar to that recently detected in another XDINS, RX J0720.4-3125, showing (as expected by theoretical simulations) that small-scale magnetic loops close to the surface might be common to many highly magnetic neutron stars (although difficult to detect with current X-ray instruments). Furthermore, we investigated the available XMM-Newton data of all XDINSs in search for similar narrow phase-dependent features, but could derive only upper limits for all the other sources.

  11. Chemical Vapor Identification Using Field-Based Attenuated Total Reflectance Fourier Transform Infrared Detection and Solid Phase Microextraction

    DTIC Science & Technology

    2005-01-01

    Index IMS Ion Mobility Spectrometry IR Infrared IRE Internal Reflection Element KBr Potassium Bromide LOD Limit of Detection MS Mass Spectrometer NB...Kaiser Bryant, Master of Science in Public Health, 2005 Directed By: Peter T. LaPuma, LtCol, USAF, BSC Assistant Professor, Department of Prey Med and...hereby certifies that the use of any copyrighted material in the thesis manuscript entitled: Chemical Agent Identification Using Field-Based Attenuated

  12. Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.

    PubMed

    Geraci, Andrew A; Derevianko, Andrei

    2016-12-23

    We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.

  13. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor.

    PubMed

    Matsuura, Koji; Asano, Yuka; Yamada, Akira; Naruse, Keiji

    2013-02-18

    Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium. 

  14. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    PubMed

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  15. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE PAGES

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; ...

    2017-12-19

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  16. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  17. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase.

    PubMed

    Wang, Bin; Cancilla, John C; Torrecilla, Jose S; Haick, Hossam

    2014-02-12

    The use of molecularly modified Si nanowire field effect transistors (SiNW FETs) for selective detection in the liquid phase has been successfully demonstrated. In contrast, selective detection of chemical species in the gas phase has been rather limited. In this paper, we show that the application of artificial intelligence on deliberately controlled SiNW FET device parameters can provide high selectivity toward specific volatile organic compounds (VOCs). The obtained selectivity allows identifying VOCs in both single-component and multicomponent environments as well as estimating the constituent VOC concentrations. The effect of the structural properties (functional group and/or chain length) of the molecular modifications on the accuracy of VOC detection is presented and discussed. The reported results have the potential to serve as a launching pad for the use of SiNW FET sensors in real-world counteracting conditions and/or applications.

  18. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    NASA Astrophysics Data System (ADS)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  19. Coaxial cable sensors and sensing instrument for crack detection in bridge structures--phase I : field qualification/validation planning.

    DOT National Transportation Integrated Search

    2009-11-01

    The objectives of this study are to pre-test analyze a decommissioned reinforced concrete (RC) bridge that is selected in consultation with the New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge fo...

  20. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  1. Wireless Intrusion Detection

    DTIC Science & Technology

    2007-03-01

    32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable

  2. Maximum-Likelihood Estimation for Frequency-Modulated Continuous-Wave Laser Ranging using Photon-Counting Detectors

    DTIC Science & Technology

    2013-03-21

    instruments where frequency estimates are calcu- lated from coherently detected fields, e.g., coherent Doppler LIDAR . Our CRB results reveal that the best...wave coherent lidar using an optical field correlation detection method,” Opt. Rev. 5, 310–314 (1998). 8. H. P. Yuen and V. W. S. Chan, “Noise in...2170–2180 (2007). 13. T. J. Karr, “Atmospheric phase error in coherent laser radar,” IEEE Trans. Antennas Propag. 55, 1122–1133 (2007). 14. Throughout

  3. Development of a Small, Inexpensive, and Field-deployable Gas Chromatograph for the Automated Collection, Separation, and Analysis of Gas-phase Organic Compounds

    NASA Astrophysics Data System (ADS)

    Skog, K.; Xiong, F.; Gentner, D. R.

    2017-12-01

    The identification and quantification of gas-phase organic compounds, like volatile organic compounds (VOCs), in the atmosphere relies on separation of complex mixtures and sensitive detection. Gas chromatography (GC) is widely applied, but relies on the need for high-purity compressed gases for separation and, often for detection. We have developed a low-cost, compact GC-based system for the collection and quantitative chemical speciation of complex mixtures of common atmospheric VOCs without the need for compressed high-purity gases or expensive detectors. We present results of lab and field testing against a commercially-available GC system. At optimized linear velocities challenging VOC pairs of similar volatility were resolved within 30 minutes, including n- and i-pentane; n-pentane and isoprene; and ethylbenzene and m/p-xylene. For 5-30 minute samples, we observe ppt-level detection limits for common VOCs such as benzene, toluene, ethylbenzene, xylenes, alpha-pinene, and limonene. We also present results of in-field use for VOC measurements. In all, this instrument is accurate, precise, small, and inexpensive (<$2500). Its lack of compressed gas cylinders make it ideal for field deployment and has been demonstrated to produce similar quality data to available GC technology.

  4. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields.

    PubMed

    Biswas, Sagor; Kranz, William L; Shapiro, Charles A; Snow, Daniel D; Bartelt-Hunt, Shannon L; Mamo, Mitiku; Tarkalson, David D; Zhang, Tian C; Shelton, David P; van Donk, Simon J; Mader, Terry L

    2017-02-15

    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17β-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL -1 . Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Practical scheme for optimal measurement in quantum interferometric devices

    NASA Astrophysics Data System (ADS)

    Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide

    2003-06-01

    We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.

  6. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  7. The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Baker, M. M.; Lapotre, M. G. A.; Bridges, N. T.; Minitti, M. E.; Newman, C. E.; Ehlmann, B. L.; Vasavada, A. R.; Edgett, K. S.; Lewis, K. W.

    2017-12-01

    Since its landing at Gale crater five years ago, the Curiosity rover has provided us with unparalleled data to study active surface processes on Mars. Repeat imaging campaigns (i.e. "change-detection campaigns") conducted with the rover's cameras have allowed us to study Martian atmosphere-surface interactions and characterize wind-driven sediment transport from ground-truth observations. Utilizing the rover's periodic stops to image identical patches of ground over multiple sols, these change-detection campaigns have revealed sediment motion over a wide range of grain sizes. These results have been corroborated in images taken by the rover's hand lens imager (MAHLI), which have captured sand transport occurring on the scale of minutes. Of particular interest are images collected during Curiosity's traverse across the Bagnold Dune Field, the first dune field observed to be active in situ on another planet. Curiosity carried out the first phase of the Bagnold Dunes campaign (between Ls 72º and 109º) along the northern edge of the dune field at the base of Aeolis Mons, where change-detection images showed very limited sediment motion. More recently, a second phase of the campaign was conducted along the southern edge of the dune field between Ls 312º to 345º; here, images captured extensive wind-driven sand motion. Observations from multiple cameras show ripples migrating to the southwest, in agreement with predicted net transport within the dune field. Together with change-detection observations conducted outside of the dune field, the data show that ubiquitous Martian landscapes are seasonally active within Gale crater, with the bulk of the sediment flux occurring during southern summer.

  8. Landau level splitting in Cd3As2 under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Cao, Junzhi; Liang, Sihang; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-03-01

    Three-dimensional (3D) topological Dirac semimetals (TDSs) are a new kind of Dirac materials that adopt nontrivial topology in band structure and possess degenerated massless Dirac fermions in the bulk. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport evidence of Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry (TRS). The observed Landau level splitting is originated from the joint contributions of orbit and Zeeman splitting in Cd3As2. In addition, the detected Berry phase is found to vary from nontrivial to trivial at different field directions, revealing a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results demonstrate a feasible path to generate a Weyl semimetal phase based on the TDSs by breaking TRS.

  9. Landau level splitting in Cd3As2 under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  10. Landau level splitting in Cd3As2 under high magnetic fields.

    PubMed

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-13

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  11. Landau level splitting in Cd3As2 under high magnetic fields

    PubMed Central

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-01-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry. PMID:26165390

  12. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  13. Coaxial cable sensors and sensing instrument for crack detection in bridge structures--phase I : field qualification/validation planning : final report.

    DOT National Transportation Integrated Search

    2009-11-06

    The objectives of this study are to pre-test analyze a decommissioned RC bridge that is selected in consultation : with New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge : for the performance qual...

  14. Grain coarsening in two-dimensional phase-field models with an orientation field

    NASA Astrophysics Data System (ADS)

    Korbuly, Bálint; Pusztai, Tamás; Henry, Hervé; Plapp, Mathis; Apel, Markus; Gránásy, László

    2017-05-01

    In the literature, contradictory results have been published regarding the form of the limiting (long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a log-normal distribution, other works including theoretical studies based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of OF models [R. Kobayashi, J. A. Warren, and W. C. Carter, Physica D 140, 141 (2000), 10.1016/S0167-2789(00)00023-3; H. Henry, J. Mellenthin, and M. Plapp, Phys. Rev. B 86, 054117 (2012), 10.1103/PhysRevB.86.054117] that an insufficient resolution of the small angle grain boundaries leads to a log-normal distribution close to those seen in the experiments and the molecular scale PFC simulations. Our paper indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process, and raises the possibility that the differences among the LGSD results from different sources may originate from differences in the detection of small angle grain boundaries.

  15. Field ion spectrometry: a new technology for cocaine and heroin detection

    NASA Astrophysics Data System (ADS)

    Carnahan, Byron L.; Day, Stephen; Kouznetsov, Viktor; Tarassov, Alexandre

    1997-02-01

    Field ion spectrometry, also known as transverse field compensation ion mobility spectrometry, is a new technique for trace gas analysis that can be applied to the detection of cocaine and heroin. Its principle is based on filtering ion species according to the functional dependence of their mobilities with electric field strength. Field ion spectrometry eliminates the gating electrodes needed in conventional IMS to pulse ions into the spectrometer; instead, ions are injected in to the spectrometer and reach the detector continuously, resulting in improved sensitivity. The technique enables analyses that are difficult with conventional constant field strength ion mobility spectrometers. We have shown that a filed ion spectrometer can selectively detect the vapors from cocaine and heroin emitted from both their base and hydrochloride forms. The estimated volumetric limits of detection are in the low pptv range, based on testing with standardized drug vapor generation systems. The spectrometer can detect cocaine base in the vapor phase, at concentrations well below its estimated 100 pptv vapor pressure equivalent at 20 degrees C. This paper describes the underlying principles of field ion spectrometry in relation to narcotic drug detection, and recent results obtained for cocaine and heroin. The work has been sponsored in part by the United States Advanced Research Projects Agency under contract DAAB10-95C-0004, for the DOD Counterdrug Technology Development Program.

  16. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.

  17. Towards laboratory detection of topological vortices in superfluid phases of QCD

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  18. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  19. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  20. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  1. Electron spin resonance for the detection of long-range spin nematic order

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.

  2. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  3. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  4. Video content analysis of surgical procedures.

    PubMed

    Loukas, Constantinos

    2018-02-01

    In addition to its therapeutic benefits, minimally invasive surgery offers the potential for video recording of the operation. The videos may be archived and used later for reasons such as cognitive training, skills assessment, and workflow analysis. Methods from the major field of video content analysis and representation are increasingly applied in the surgical domain. In this paper, we review recent developments and analyze future directions in the field of content-based video analysis of surgical operations. The review was obtained from PubMed and Google Scholar search on combinations of the following keywords: 'surgery', 'video', 'phase', 'task', 'skills', 'event', 'shot', 'analysis', 'retrieval', 'detection', 'classification', and 'recognition'. The collected articles were categorized and reviewed based on the technical goal sought, type of surgery performed, and structure of the operation. A total of 81 articles were included. The publication activity is constantly increasing; more than 50% of these articles were published in the last 3 years. Significant research has been performed for video task detection and retrieval in eye surgery. In endoscopic surgery, the research activity is more diverse: gesture/task classification, skills assessment, tool type recognition, shot/event detection and retrieval. Recent works employ deep neural networks for phase and tool recognition as well as shot detection. Content-based video analysis of surgical operations is a rapidly expanding field. Several future prospects for research exist including, inter alia, shot boundary detection, keyframe extraction, video summarization, pattern discovery, and video annotation. The development of publicly available benchmark datasets to evaluate and compare task-specific algorithms is essential.

  5. Low temperature anomalous field effect in SrxBa1-xNb2O6 uniaxial relaxor ferroelectric seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2012-04-01

    Sr0.75Ba0.25Nb2O6 [100]-oriented uniaxial tungsten bronze relaxor crystals have been studied by means of dedicated acoustic emission during their thermal cycling in 150-300 K temperature range under dc electric field (E). A 1st order transition in a modulated incommensurate tetragonal phase has been successfully detected at Tmi = 198 K on heating and Tmi = 184 K on cooling, respectively. As field E enhances, a thermal hysteresis gradually narrows and vanishes in the critical point at Eth = 0.31 kV/cm, above which a phase transition becomes to 2nd order. The Tmi(E) dependence looks as a V-shape dip, not similar that previously has been looked as a smeared minimum between both the two polar and nonpolar tetragonal phases near Tm = 220 ÷ 230 K in the same crystals (Dul'kin et al., J Appl. Phys. 110, 044106 (2011)). Due to such a V-shape dip is characteristic for Pb-based multiaxial perovskite relaxor, a rhombohedral phase is waited to be induced by a field E in the critical point temperature range. The emergence of this rhombohedral phase as a crucial evidence of an orthorhombic phase presumably existing within the modulated incommensurate tetragonal phase in tungsten bronze SrxBa1-xNb2O6 relaxor is discussed.

  6. Relation between the Li spots, dipolar magnetic field and other variable phenomena in the roAp star HD 83368

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.

    The detection of remarkable variations in the profile of the resonance doublet Li I 6708 Å with rotational phase of the roAp star HD 83368 (North et al. 1998) prompted us to consider the behaviour of other characteristics of this star. The observational data on magnetic field (Heff), brightness and amplitude of rapid light oscillations of HD 83368 are analyzed. A clear synchronism appears between the variations of the Li line intensity, brightness, magnetic field and pulsation amplitude with rotational phase, which can be explained in terms of a spotted rotator model. Reference: North P., Polosukhina N., Malanushenko V., Hack M., 1998, A&A 333, 644

  7. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  9. Particulate-Phase Carbonyls: Laboratory and Pacific 2001 Field Measurements

    NASA Astrophysics Data System (ADS)

    Liggio, J.; McLaren, R.

    2002-12-01

    Atmospheric aldehydes and ketones are important constituents of the gas phase. They are emitted from athropogenic and biogenic sources directly, but are also formed as secondary oxidation products of a variety of saturated and unsaturated hydrocarbons. Although their gas phase occurrence and chemistry is well known, the presence of these compounds in the particulate phase is not completely understood. A method has been developed to measure particulate phase carbonyls. Analysis was performed by a simultaneous extraction and derivatization of carbonyls by 2,4-dinitrophenylhydrazine. The subsequent derivatives are pre-concentrated and injected onto an HPLC and detected by UV absorption. Laboratory studies of the extraction kinetics, suggest that partitioning of even highly volatile carbonyls may be possible. Also, experiments performed to determine the extent of positive artifacts on Teflon coated filters, indicate that measurements of these volatile carbonyls are likely not a result of gas-phase adsorption to the filter. These studies also indicate that sampling on quartz fiber filters may introduce significantly more uncertainty with respect to positive artifacts. The analytical method was used to analyze filters sampled during the Pacific 2001 field campaign. Particulate samples were collected on Teflon coated glass-fiber filters. Samples were collected at an urban site (Slocan Park,Vancouver), a rural site (Langley) and an elevated rural mountain site (Eagle Ridge, Sumas). Preliminary results show several carbonyls present in aerosols, at pg/m3 to ng/m3 levels. Detected carbonyls of possible anthropogenic origin include formaldehyde, acetaldehyde, acetone, propanal, glyoxal and methylglyoxal. Detected carbonyls of biogenic origin include pinonaldehyde and nopinone, known oxidation products of the biogenically emitted a-pinene and b-pinene. Possible mechanisms for carbonyl partitioning and implications for their contribution to aerosols in the Lower Fraser Valley will be presented.

  10. Continuous low-level aquatic monitoring (CLAM) samplers for pesticide contaminant screening in urban runoff: Analytical approach and a field test case.

    PubMed

    Ensminger, Michael P; Vasquez, Martice; Tsai, Hsing-Ju; Mohammed, Sarah; Van Scoy, A; Goodell, Korena; Cho, Gail; Goh, Kean S

    2017-10-01

    Monitoring of surface waters for organic contaminants is costly. Grab water sampling often results in non-detects for organic contaminants due to missing a pulse event or analytical instrumentation limitations with a small sample size. Continuous Low-Level Aquatic Monitoring (CLAM) samplers (C.I.Agent ® Solutions) continually extract and concentrate organic contaminants in surface water onto a solid phase extraction disk. Utilizing CLAM samplers, we developed a broad spectrum analytical screen for monitoring organic contaminants in urban runoff. An intermediate polarity solid phase, hydrophobic/lipophilic balance (HLB), was chosen as the sorbent for the CLAM to target a broad range of compounds. Eighteen urban-use pesticides and pesticide degradates were targeted for analysis by LC/MS/MS, with recoveries between 59 and 135% in laboratory studies. In field studies, CLAM samplers were deployed at discrete time points from February 2015 to March 2016. Half of the targeted chemicals were detected with reporting limits up to 90 times lower than routine 1-L grab samples with good precision between field replicates. In a final deployment, CLAM samplers were compared to 1-L water samples. In this side-by-side comparison, imidacloprid, fipronil, and three fipronil degradates were detected by the CLAM sampler but only imidacloprid and fipronil sulfone were detected in the water samples. However, concentrations of fipronil sulfone and imidacloprid were significantly lower with the CLAM and a transient spike of diuron was not detected. Although the CLAM sampler has limitations, it can be a powerful tool for development of more focused and informed monitoring efforts based on pre-identified targets in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Optical Gravitational Lensing Experiment. Gaia South Ecliptic Pole Field as Seen by OGLE-IV

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Skowron, J.

    2012-09-01

    We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. To provide empirical data for the Gaia Science Alert system we also conducted a search for optical transients. We discovered two firm type Ia supernovae and nine additional supernova candidates. To facilitate future Gaia supernovae detections we prepared a list of more than 1900 galaxies to redshift about 0.1 located in the GSEP field. Finally, we present the results of astrometric study of the GSEP field. With the 26 months time base of the presented here OGLE-IV data, proper motions of stars could be detected with the accuracy reaching 2 mas/yr. Astrometry allowed to distinguish galactic foreground variable stars detected in the GSEP field from LMC objects and to discover about 50 high proper motion stars (proper motion ≥ 100 mas/yr). Among them three new nearby white dwarfs were found. All data presented in this paper are available to the astronomical community from the OGLE Internet archive.

  12. Photon Counting as a Probe of Superfluidity in a Two-Band Bose-Hubbard System Coupled to a Cavity Field

    NASA Astrophysics Data System (ADS)

    Rajaram, Sara; Trivedi, Nandini

    2013-12-01

    We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.

  13. Neuronal current detection with low-field magnetic resonance: simulations and methods.

    PubMed

    Cassará, Antonino Mario; Maraviglia, Bruno; Hartwig, Stefan; Trahms, Lutz; Burghoff, Martin

    2009-10-01

    The noninvasive detection of neuronal currents in active brain networks [or direct neuronal imaging (DNI)] by means of nuclear magnetic resonance (NMR) remains a scientific challenge. Many different attempts using NMR scanners with magnetic fields >1 T (high-field NMR) have been made in the past years to detect phase shifts or magnitude changes in the NMR signals. However, the many physiological (i.e., the contemporarily BOLD effect, the weakness of the neuronal-induced magnetic field, etc.) and technical limitations (e.g., the spatial resolution) in observing the weak signals have led to some contradicting results. In contrast, only a few attempts have been made using low-field NMR techniques. As such, this paper was aimed at reviewing two recent developments in this front. The detection schemes discussed in this manuscript, the resonant mechanism (RM) and the DC method, are specific to NMR instrumentations with main fields below the earth magnetic field (50 microT), while some even below a few microteslas (ULF-NMR). However, the experimental validation for both techniques, with differentiating sensitivity to the various neuronal activities at specific temporal and spatial resolutions, is still in progress and requires carefully designed magnetic field sensor technology. Additional care should be taken to ensure a stringent magnetic shield from the ambient magnetic field fluctuations. In this review, we discuss the characteristics and prospect of these two methods in detecting neuronal currents, along with the technical requirements on the instrumentation.

  14. Effect of the axial magnetic field on a metallic gas-puff pinch implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Frolova, V.

    2016-06-15

    The effect of an axial magnetic field B{sub z} on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field B{sub z} was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh–Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for B{sub z} < 1.1 T. For B{submore » z} = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation.« less

  15. Homodyning and heterodyning the quantum phase

    NASA Technical Reports Server (NTRS)

    Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.

    1994-01-01

    The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.

  16. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    PubMed

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  17. Optical studies of blue phase III, twist-bend and bent-core nematic liquid crystals in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Challa, Pavan Kumar

    This dissertation is mainly divided into three parts. First, the dynamic light scattering measurements on both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory, Tallahassee is discussed. In a nematic liquid crystal the molecules tend to be aligned along a constant direction, labeled by a unit vector (or "director") n. However, there are fluctuations from this average configuration. These fluctuations are very large for long wavelengths and give rise to a strong scattering of light. The magnetic field reduces the fluctuations of liquid crystal director n. Scattered light was detected at each scattering angle ranging from 0° to 40°. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 Tesla. We also observe evidence of field dependence of certain nematic material parameters. In the second part of the dissertation, magneto-optical measurements on two liquid crystals that exhibit a wide temperature-range amorphous blue phase (BPIII) are discussed. Blue phase III is one of the phases that occur between chiral nematic and isotropic liquid phases. Samples were illuminated with light from blue laser; the incident polarization direction of the light was parallel to the magnetic field. The transmitted light was passed through another polarizer oriented at 90° with respect to the first polarizer and was detected by a photo-detector. Magnetic fields up to 25Tesla are found to suppress the onset of BPIII in both materials by almost 1 degree celcius. This effect appears to increase non-linearly with the field strength. The effect of high fields on established BPIII's is also discussed, in which we find significant hysteresis and very slow dynamics. Possible explanations of these results are discussed. In the third part of the dissertation, magneto-optic measurements on two odd-numbered dimer molecules that form the recently discovered twist-bend nematic (NTB) phase, which represents a new type of 3-dimensional anisotropic fluid with about 10 nm periodicity and accompanied optical stripes are discussed. In twist-bend nematic phase the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The pitch of the oblique helocoid is in the nanometer range. Light from a red laser was passed normally through the sample placed between crossed polarizers oriented at 45° with respect to the vertical magnetic field. Optical birefringence was measured from the transmitted light. Magnetic field of B=25T shifts downward the N-NTB phase transitions by almost 1 Celsius. We also show that the optical stripes can be unwound by a temperature and material dependent magnetic induction in the range of B=5-25T. Finally, we propose a Helfrich-Hurault type mechanism for the optical stripe formation. Based on this model we calculate the magnetic field unwinding the optical scale stripes, and find agreement with our experimental results.

  18. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  19. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  20. Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun

    2014-05-01

    By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.

  1. Dirty bosons in a three-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Khellil, Tama; Pelster, Axel

    2017-09-01

    We study a three-dimensional Bose-Einstein condensate in an isotropic harmonic trapping potential with an additional delta-correlated disorder potential and investigate the emergence of a Bose-glass phase for increasing disorder strength. At zero temperature a first-order quantum phase transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder strength, which agrees with the findings in the literature. Afterwards, we study the interplay between temperature and disorder fluctuations on the respective components of the particle density. In particular, we find for smaller disorder strengths that a superfluid region, a Bose-glass region, and a thermal region coexist. Furthermore, depending on the respective system parameters, three phase transitions are detected, namely, one from the superfluid to the Bose-glass phase, another one from the Bose-glass to the thermal phase, and finally one from the superfluid to the thermal phase. All these results are obtained by extending a quite recent Hartree-Fock mean-field theory for the dirty boson problem, which is based on the replica method, from the homogeneous case to a harmonic confinement.

  2. Fast uncooled module 32×32 array of polycrystalline PbSe used for muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Trzaskawka, Piotr; Bieszczad, Grzegorz

    2011-06-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe uncooled 32×32 detectors array. This system for muzzle flash detection works in MWIR (3 - 5 microns) region and it is based on VPD (Vapor Phase Deposition) technology. The low density uncooled 32×32 array is suitable for being used in low cost IR imagers sensitive in the MWIR band with frame rates exceeding 1.000 Hz. The FPA detector, read-out electronics and processing electronics (allowing the implementation of some algorithms for muzzle flash detection) has been presented. The system has been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The initial results of testing of some algorithms for muzzle flash detection have been also presented.

  3. Effect of the carrier-envelope phase of the driving laser field on the high-order harmonic attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhinan; Li Ruxin; Yu Wei

    2003-01-01

    The effect of the carrier-envelope phase of a few-cycle driving laser field on the generation and measurement of high-order harmonic attosecond pulses is investigated theoretically. We find that the position of the generated attosecond soft-x-ray pulse in the cutoff region is locked to the oscillation of the driving laser field, but not to the envelope of the laser pulse. This property ensures the success of the width measurement of an attosecond soft-x-ray pulse based on the cross correlation between the attosecond pulse and its driving laser pulse [M. Hentschel et al., Nature (London) 414, 509 (2001)]. However, there still existsmore » a timing jitter of the order of tens of attoseconds between the attosecond pulse and its driving laser field. We also propose a method to detect the carrier-envelope phase of the driving laser field by measuring the spatial distribution of the photoelectrons induced by the attosecond soft-x-ray pulse and its driving laser pulse.« less

  4. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  5. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  6. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images

    PubMed Central

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315

  7. Fast and sensitive detection of an oscillating charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X.; Hasko, D. G.; Milne, W. I.

    We investigate the high-frequency operation of a percolation field effect transistor to monitor microwave excited single trapped charge. Readout is accomplished by measuring the effect of the polarization field associated with the oscillating charge on the AC signal generated in the channel due to charge pumping. This approach is sensitive to the relative phase between the polarization field and the pumped current, which is different from the conventional approach relying on the amplitude only. Therefore, despite the very small influence of the single oscillating trapped electron, a large signal can be detected. Experimental results show large improvement in both signal-to-noisemore » ratio and measurement bandwidth.« less

  8. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

  9. Design of an Evolutionary Approach for Intrusion Detection

    PubMed Central

    2013-01-01

    A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives, and a dataset can be represented in the form of labelled instances in terms of its features. PMID:24376390

  10. Development of Laser Based Remote Sensing System for Inner-Concrete Defects

    NASA Astrophysics Data System (ADS)

    Shimada, Yoshinori; Kotyaev, Oleg

    Laser-based remote sensing using a vibration detection system has been developed using a photorefractive crystal to reduce the effect of concrete surface-roughness. An electric field was applied to the crystal and the reference beam was phase shifted to increase the detection efficiency (DE). The DE increased by factor of 8.5 times compared to that when no voltage and no phase shifting were applied. Vibration from concrete defects can be detected at a distance of 5 m from the system. A vibration-canceling system has also developed that appears to be promising for canceling vibrations between the laser system and the concrete. Finally, we have constructed a prototype system that can be transported in a small truck.

  11. Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete

    NASA Astrophysics Data System (ADS)

    Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren

    2018-03-01

    Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.

  12. The use of dopants in high field asymmetric waveform spectrometry.

    PubMed

    Ross, Stuart K; McDonald, Gwenda; Marchant, Sarah

    2008-05-01

    Ion mobility spectrometry (IMS) is proven core technology for the gas-phase detection of chemical warfare (CW) agents. One disadvantage of IMS technology is that ions of similar mobility cannot readily be resolved, resulting in false alarm responses and a loss of user confidence. High field asymmetric waveform spectrometry (HiFAWS) is an emerging technology for the gas-phase detection of CW agents. Of particular interest is the potential of a HiFAWS-based platform to reduce the number of false alarms by resolving ions that cannot be discriminated using IMS. It has been demonstrated that a water clustering/declustering mechanism can be a dominant process in HiFAWS. Ions that cannot be discriminated in IMS because they possess the same low field mobility value can be resolved using HiFAWS due to differences in the extent of low field ion solvation and high field ion desolvation. When operating in complex environments such as those potentially experienced in military and security arenas, IMS systems commonly employ internal dopants to reduce the number of background responses. It is possible that HiFAWS systems may also require the use of internal dopants for the same reason. It has been demonstrated that dopants employed for use in IMS may not be suitable for use in HiFAWS.

  13. Novel Electronic States of Heavy Fermion Compound YbCo2Zn20

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Taga, Yuki; Hirose, Yusuke; Yoshiuchi, Shingo; Tomooka, Yoshiharu; Ohya, Masahiro; Sakaguchi, Jyunya; Takeuchi, Tetsuya; Settai, Rikio; Shimura, Yasuyuki; Sakakibara, Toshiro; Sheikin, Ilya; Tanaka, Toshiki; Kubo, Yasunori; Ōnuki, Yoshichika

    2014-04-01

    We studied the heavy fermion compound YbCo2Zn20 with an electronic specific heat coefficient γ ≃ 8000 mJ/(K2·mol) by measuring the de Haas-van Alphen (dHvA) oscillation, Hall effect, magnetic susceptibility, and magnetization at ambient pressure, as well as the electrical resistivity in magnetic fields of up to 320 kOe and at pressures of up to 5 GPa. The detected Fermi surfaces are small in volume, reflecting the small Brillouin zone based on the large cubic lattice constant a = 14.005 Å. The cyclotron effective masses, which were determined from the dHvA experiment, are found to be markedly reduced in magnetic fields. In other words, the detected cyclotron masses of 2.2-8.9 m0 (m0: the rest mass of an electron) at Hav = 117 kOe are enhanced to 100-500 m0 at 0 kOe. By applying pressure, the heavy fermion state disappears at Pc ≃ 1.8 GPa and orders antiferromagnetically for P > Pc. The field-induced antiferroquadrupolar phase, which is observed only for Hallel < 111> in the magnetic field range from HQ = 60 kOe to H'Q = 210 kOe, is found to shift to lower magnetic fields and merge with theantiferromagnetic phase at 4.5 GPa.

  14. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides anmore » assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.« less

  15. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    PubMed Central

    Hu, Xueqi; Wang, Jingang; Wei, Gang; Deng, Xudong

    2016-01-01

    In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field. PMID:27754340

  16. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  18. Dissipation of Pendimethalin in Soybean Crop Under Field Conditions.

    PubMed

    Tandon, Shishir

    2016-05-01

    Persistence of pendimethalin was studied in soil, soybean pods, straw and water under field conditions. Pendimethalin was applied at 1 and 2 kg a.i. ha(-1). Residues in soil were detected up to 60 and 90 days at the recommended and double dose, respectively. Dissipation followed first order kinetics and was accounted for by a biphasic pattern. The half-life for the initial phase and later phase was 12.73 and 26.60 days, respectively, for recommended and 7.25 and 37.91 days, respectively, for double dose. The limit of quantification was 0.005 µg g(-1) of sample. Percent recovery from soil, oil, defatted cake, straw and water samples fortified with 0.01-1.0 mg kg(-1) varied from 84.5 %-89.6 %, 84.6 %-88.7 %, 79.4 %-86.0 %, 78.2 %-85.6 % and 90.2 %-93.0 %, respectively. At harvest, pendimethalin residue in soybean pods, straw, and soil were below detectable limits. No residues of pendimethalin were detected in ground water. Current application of pendimethalin in the environment is not expected to cause adverse health effects form the consumption of soybeans.

  19. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  20. Development of a near-field/confocal polarization microscope for local measurements of anisotropy in organic films

    NASA Astrophysics Data System (ADS)

    Kosterin, Andrey Valentinovich

    2000-10-01

    Polarization microscopy is a powerful technique for imaging structure and stress distributions in many transparent materials, and has been particularly useful in morphology studies of polymer films. Recently the possibility of combining polarization imaging with near-field scanning optical microscopy (NSOM) has been demonstrated, offering new opportunities for studying molecular organization with better than 50 nm resolution. However, there are challenges associated with near-field polarization experiments on organic films: (1) the films are susceptible to damage by the near-field probe; (2) the phase shift or retardation (80) is small, often <0.1 rad; (3) interpretation of near-field images is complicated by topography and probe-sample coupling. To address these challenges, we have developed a new combined near-field/confocal polarization microscope and tested its sensitivity to linear birefringence in thin polymer films. For near-field imaging, the microscope employs a commercially available scanhead with cantilevered (bent) optical fiber probes. To study soft samples (point 1), we have modified the scanhead for tapping mode feedback, which eliminates probe-sample shear forces and prolongs the lifetime of the probe, while minimizing damage to the sample. To achieve sensitivity to small phase shifts (point 2), we have implemented the phase modulation (PM) technique in the optical path. Enhanced sensitivity relative to the standard crossed polarizers scheme is achieved because of the better signal-to-noise discrimination common to lock-in detection and because the detected first harmonic intensity, Io , is linearly proportional to deltatheta instead of (deltatheta) 2. To facilitate interpretation of near-field contrast (point 3), we have incorporated near-field and confocal channels in one instrument. This allows consecutive acquisition of both near-field and far-field images on the same sample area. Since the far-field images do not suffer from the same artifacts, they can be used as a source of independent information on sample optical properties. The combined near-field/confocal polarization microscope is discussed in this thesis as well as some of its applications. Specifically we consider the results of polyethylene oxide (PEO) and crosslinked polybutadiene (PB) thin film imaging.

  1. Sensing Floquet-Majorana fermions via heat transfer

    NASA Astrophysics Data System (ADS)

    Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.

    2017-09-01

    Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.

  2. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio

  3. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroyanagi, Sachiko; Hiramatsu, Takashi; Yokoyama, Jun'ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reactsmore » to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.« less

  4. Solitonic excitations in collisions of superfluid nuclei a qualitatively new phenomenon distinct from the Josephson effect

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki; Wlazłowski, Gabriel; Magierski, Piotr

    2017-11-01

    Recently, we have reported a novel role of pairing in low-energy heavy ion reactions at energies above the Coulomb barrier, which may have a detectable impact on reaction outcomes, such as the kinetic energy of fragments and the fusion cross section [arXiv:1611.10261, arXiv:1702.00069]. The phenomenon mimics the one studied experimentally with ultracold atomic gases, where two clouds of fermionic superfluids with different phases of the pairing fields are forced to merge, inducing various excitation modes of the pairing field. Although it originates from the phase difference of the pairing fields, the physics behind it is markedly different from the so-called Josephson effect. In this short contribution, we will briefly outline the results discussed in our recent papers and explain relations with the field of ultracold atomic gases.

  5. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  6. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  7. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    NASA Astrophysics Data System (ADS)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  8. EGRET observations of the BL Lacertae objects 0716+714 and 0521-365

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Mayer-Hasselwander, H. A.

    1995-01-01

    During the Compton Observatory's viewing programs Phase 1 (1991 April to 1992 November, also known as the All-Sky Survey) and Phase 2 (1992 November to 1993 September), the BL Lac object 0716+714 was in the field of view of the EGRET telescope a total of six times, three times in Phase 1 and three more times in Phase 2, while the BL Lac object 0521-365 was in the field of view of EGRET only once in Phase 1. The source 0716+714 was detected in high-energy gamma rays by EGRET at a flux level of (2.0 +/- 0.4) x 10(exp -7) photons/sq cm/s for E greater than 100 MeV with a 6 sigma significance when it was first observed by EGRET in 1992 January 10 to 23. The corresponding spectral slope of the photon number distribution is determined to be -2.04 +/- 0.33. The gamma-ray flux of 0716+714 showed considerable time variability in subsequent EGRET observations. But the spectral slope stayed about the same within the statistical uncertainties of the EGRET data. The average spectral slope of the four viewing periods during which the photon flux of 0716+714 stayed above the EGRET detection threshold is found to be -1.85 +/- 0.20 from the combined data. The source 0521+365 was detected by EGRET in 1992 May 14 to June 4 at a flux level of (1.8 +/- 0.5) x 10(exp -7) photons/sq cm/s for E greater than 100 MeV with a 4 sigma significance. The corresponding spectral slope of the photon number distribution is found to be 2.16 +/- 0.36. Details of the observations of these two BL Lac objects with the EGRET telescope are presented.

  9. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography.

    PubMed

    Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori

    2014-05-01

    Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.

  10. Optical Readout System for Bi-Material Terahertz Sensors

    DTIC Science & Technology

    2011-09-01

    CCD Charged-Coupled Device DFG Difference-Frequency Generation FOV Field of View FPA Focal Plane Array fps Frames Per Second FTIR Fourier ...techniques in the THz range may be classified as either coherent or incoherent. Basically, coherent detection measures the amplitude and phase of the field...using a lock-in amplifier. In a piezoresistive detector, two electrodes are connected to two deformable temperature–sensitive legs. Monitoring the

  11. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  12. Method and apparatus for inspecting reflection masks for defects

    DOEpatents

    Bokor, Jeffrey; Lin, Yun

    2003-04-29

    An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.

  13. Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva

    2018-01-15

    Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.

  14. Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows

    NASA Astrophysics Data System (ADS)

    Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu

    2018-07-01

    Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.

  15. Surface-enhanced Raman scattering detection of ammonium nitrate samples fabricated using drop-on-demand inkjet technology.

    PubMed

    Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M

    2014-01-01

    The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

  16. Enhancement of quantum-enhanced LADAR receiver in nonideal phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    The phase-sensitive amplification (PSA) with an injected squeezed vacuum field is theoretically investigated in quantum-enhanced laser detection and ranging (LADAR) receiver. The theoretical model of the amplified process is derived to investigate the quantum fluctuations in detail. A new method of mitigating the unflat gain of nonideal PSA is proposed by adjusting the squeezed angle of the squeezed vacuum field. The simulation results indicate that signal-noise ratio (SNR) of system can be efficiently improved and close to the ideal case by this method. This research will provide an important potential in the applications of quantum-enhanced LADAR receiver.

  17. Acoustic detection of roller bearing defects. Phase II, Field test.

    DOT National Transportation Integrated Search

    2000-08-01

    The Transportation Technology Center, Inc. (TTCI), a subsidiary of the Association of American Railroads (AAR) Research and Test Department, conducted a series of simulated revenue service tests with a train of eight cars containing wheel sets with s...

  18. Detection of sinkholes or anomalies using full seismic wave fields : phase II [summary].

    DOT National Transportation Integrated Search

    2016-09-01

    Florida geology with its non-uniform rock and soil layers, variable deposits of poor soils (clay, organics, etc.), and weathered (and possibly voided) limestone is a major concern for design engineers, contractors, and maintenance personnel. However,...

  19. Assessing the occurrence and distribution of pyrethroids in water and suspended sediments

    USGS Publications Warehouse

    Hladik, M.L.; Kuivila, K.M.

    2009-01-01

    The distribution of pyrethroid insecticides in the environment was assessed by separately measuring concentrations in the dissolved and suspended sediment phases of surface water samples. Filtered water was extracted by HLB solid-phase extraction cartridges, while the sediment on the filter was sonicated and cleaned up using carbon and aluminum cartridges. Detection limits for the 13 pyrethroids analyzed by gas chromatography-tandem mass spectrometry were 0.5 to 1 ng L-1 for water and 2 to 6 ng g for the suspended sediments. Seven pyrethroids were detected in six water samples collected from either urban or agricultural creeks, with bifenthrin detected the most frequently and at the highest concentrations. In spiked water samples and field samples, the majority of the pyrethroids were associated with the suspended sediments.

  20. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  1. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  2. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less

  3. Coherent infrared emission from myoglobin crystals: An electric field measurement

    PubMed Central

    Groot, Marie-Louise; Vos, Marten H.; Schlichting, Ilme; van Mourik, Frank; Joffre, Manuel; Lambry, Jean-Christophe; Martin, Jean-Louis

    2002-01-01

    We introduce coherent infrared emission interferometry as a χ(2) vibrational spectroscopy technique and apply it to studying the initial dynamics upon photoactivation of myoglobin (Mb). By impulsive excitation (using 11-fs pulses) of a Mb crystal, vibrations that couple to the optical excitation are set in motion coherently. Because of the order in the crystal lattice the coherent oscillations of the different proteins in the crystal that are associated with charge motions give rise to a macroscopic burst of directional multi-teraHertz radiation. This radiation can be detected in a phase-sensitive way by heterodyning with a broad-band reference field. In this way both amplitude and phase of the different vibrations can be obtained. We detected radiation in the 1,000–1,500 cm−1 frequency region, which contains modes sensitive to the structure of the heme macrocycle, as well as peripheral protein modes. Both in carbonmonoxy-Mb and aquomet-Mb we observed emission from six modes, which were assigned to heme vibrations. The phase factors of the modes contributing to the protein electric field show a remarkable consistency, taking on values that indicate that the dipoles are created “emitting” at t = 0, as one would expect for impulsively activated modes. The few deviations from this behavior in Mb-CO we propose are the result of these modes being sensitive to the photodissociation process and severely disrupted by it. PMID:11818575

  4. Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field

    NASA Astrophysics Data System (ADS)

    Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Ko, Pyungwon; Matsui, Toshinori

    2017-03-01

    We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.

  5. Fast island phase identification for tearing mode feedback control on J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B., E-mail: borao@hust.edu.cn; Li, D.; Hu, F. R.

    A new method to control the tearing mode (TM) in tokamaks has been proposed [Q. Hu and Q. Yu, Nucl. Fusion 56, 034001 (5pp.) (2016)], according to which, the external resonant magnetic perturbation needs to be applied in certain magnetic island phase regions. Therefore, it is very important to identify the helical phase of magnetic islands in real time. The TM in tokamak plasmas is normally rotating and carries magnetic oscillations, which are known as Mirnov oscillations and can be detected by Mirnov probes. When the O-point or X-point of the magnetic island passes through the probe, the signal willmore » experience a zero-crossing. A poloidal Mirnov probe array and a corresponding island phase identification method are presented. A field-programmable gate array is used to provide the magnetic island helical phase in real time by using multichannel zero crossing detection. This system has been developed on the J-TEXT tokamak and works well. This paper introduces the establishment of the fast magnetic island phase identifying system.« less

  6. Electric field-induced coherent control in GaAs: polarization dependence and electrical measurement [Invited].

    PubMed

    Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T

    2011-11-07

    A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.

  7. Direct magnetic field estimation based on echo planar raw data.

    PubMed

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  8. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    PubMed

    Troja, E; Lipunov, V M; Mundell, C G; Butler, N R; Watson, A M; Kobayashi, S; Cenko, S B; Marshall, F E; Ricci, R; Fruchter, A; Wieringa, M H; Gorbovskoy, E S; Kornilov, V; Kutyrev, A; Lee, W H; Toy, V; Tyurina, N V; Budnev, N M; Buckley, D A H; González, J; Gress, O; Horesh, A; Panasyuk, M I; Prochaska, J X; Ramirez-Ruiz, E; Lopez, R Rebolo; Richer, M G; Román-Zúñiga, C; Serra-Ricart, M; Yurkov, V; Gehrels, N

    2017-07-26

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent-consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  9. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    NASA Astrophysics Data System (ADS)

    Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.

    2017-07-01

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  10. Iron Atoms in Cr-Mn Antiferromagnetic Matrix

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.

    2002-06-01

    The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.

  11. Aureole radiance field about a source in a scattering-absorbing medium.

    PubMed

    Zachor, A S

    1978-06-15

    A technique is described for computing the aureole radiance field about a point source in a medium that absorbs and scatters according to an arbitrary phase function. When applied to an isotropic source in a homogenous medium, the method uses a double-integral transform which is evaluated recursively to obtain the aureole radiances contributed by successive scattering orders, as in the Neumann solution of the radiative transfer equation. The normalized total radiance field distribution and the variation of flux with field of view and range are given for three wavelengths in the uv and one in the visible, for a sea-level model atmosphere assumed to scatter according to a composite of the Rayleigh and modified Henyey-Greenstein phase functions. These results have application to the detection and measurement of uncollimated uv and visible sources at short ranges in the lower atmosphere.

  12. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  13. Adaptive Nulling for Interferometric Detection of Planets

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Peters, Robert D.

    2010-01-01

    An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.

  14. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  15. Cost-effective and label-free holographic biosensor for detection of herpes simplex virus (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Ho, Ha; Daloglu, Mustafa; Torres, Avee; McLeod, Euan; Ozcan, Aydogan

    2017-03-01

    Herpes is one of the most widespread sexually transmitted viral diseases. Timely detection of Herpes Simplex Virus (HSV) can help prevent the rampant spreading of the virus. Current detection techniques such as viral culture, immuno-assays or Polymerase-Chain-Reaction, are time extensive and require expert handling. Here we present a field-portable, easy-to-use, and cost-effective biosensor for the detection of HSV based on holographic imaging. The virus is first captured from a target solution onto specifically developed substrates, prepared by coating glass coverslips with HSV-specific antibodies, and imaged using a lensfree holographic microscope. Several light-emitting-diodes (LEDs), coupled to multi-mode optical-fibers, are used to illuminate the sample containing the viruses. A micro-controller is used to activate the LEDs one at a time and in-line holograms are recorded using a CMOS imager placed immediately above the substrate. These sub-pixel shifted holograms are used to generate a super-resolved hologram, which is reconstructed to obtain the phase and amplitude images of the viruses. The signal of the viruses is enhanced using self-assembled PEG-based nanolenses, formed around the viral particles. Based on the phase information of the reconstructed images we can estimate the size of the viral particles, with an accuracy of +/- 11 nm, as well as quantify the viral load. The limit-of-detection of this system is estimated to be <500 viral copies per 100 μL sample volume that is imaged over 30 mm^2 field-of-view. This holographic microscopy based biosensor is label-free, cost-effective and field-portable, providing results in 2 hours, including sample preparation and imaging time.

  16. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  17. Monitoring/Verification Using DMS: TATP Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kyle; Stephan Weeks

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operationsmanagement systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less

  18. A novel CMOS transducer for giant magnetoresistance sensors.

    PubMed

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  19. Using a plenoptic sensor to reconstruct vortex phase structures.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-07-15

    A branch point problem and its solution commonly involve recognizing and reconstructing a vortex phase structure around a singular point. In laser beam propagation through random media, the destructive phase contributions from various parts of a vortex phase structure will cause a dark area in the center of the beam's intensity profile. This null of intensity can, in turn, prevent the vortex phase structure from being recognized. In this Letter, we show how to use a plenoptic sensor to transform the light field of a vortex beam so that a simple and direct reconstruction algorithm can be applied to reveal the vortex phase structure. As a result, we show that the plenoptic sensor is effective in detecting branch points and can be used to reconstruct phase distortion in a beam in a wide sense.

  20. Easy-Going On-Spectrometer Optimisation of Phase Modulated Homonuclear Decoupling Sequences in Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Vasa, Suresh K.; Meerts, W. Leo; Kentgens, P. M.

    2011-06-01

    A global optimisation scheme for phase modulated proton homonuclear decoupling sequences in solid-state NMR is presented. Phase modulations, parameterised by DUMBO Fourier coefficients, were optimized using a Covariance Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-GOING homonuclear decoupling, starts with featureless spectra and optimises proton-proton decoupling, during either proton or carbon signal detection. On the one hand, our solutions closely resemble (e)DUMBO for moderate sample spinning frequencies and medium radio-frequency (rf) field strengths. On the other hand, the EASY-GOING approach resulted in a superior solution, achieving significantly better resolved proton spectra at very high 680 kHz rf field strength. N. Hansen, and A. Ostermeier. Evol. Comput. 9 (2001) 159-195 B. Elena, G. de Paepe, L. Emsley. Chem. Phys. Lett. 398 (2004) 532-538

  1. Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2

    NASA Technical Reports Server (NTRS)

    Suchy, Slawomir; Fuerst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Joern; Markowitz, Alex; Rothschild, Richard E.

    2012-01-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a CRSF, multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  2. Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir; Fürst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Jörn; Markowitz, Alex; Rothschild, Richard E.

    2012-02-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  3. The value of automated gel column agglutination technology in the identification of true inherited D blood types in massively transfused patients.

    PubMed

    Summers, Thomas; Johnson, Viviana V; Stephan, John P; Johnson, Gloria J; Leonard, George

    2009-08-01

    Massive transfusion of D- trauma patients in the combat setting involves the use of D+ red blood cells (RBCs) or whole blood along with suboptimal pretransfusion test result documentation. This presents challenges to the transfusion service of tertiary care military hospitals who ultimately receive these casualties because initial D typing results may only reflect the transfused RBCs. After patients are stabilized, mixed-field reaction results on D typing indicate the patient's true inherited D phenotype. This case series illustrates the utility of automated gel column agglutination in detecting mixed-field reactions in these patients. The transfusion service test results, including the automated gel column agglutination D typing results, of four massively transfused D- patients transfused D+ RBCs is presented. To test the sensitivity of the automated gel column agglutination method in detecting mixed-field agglutination reactions, a comparative analysis of three automated technologies using predetermined mixtures of D+ and D- RBCs is also presented. The automated gel column agglutination method detected mixed-field agglutination in D typing in all four patients and in the three prepared control specimens. The automated microwell tube method identified one of the three prepared control specimens as indeterminate, which was subsequently manually confirmed as a mixed-field reaction. The automated solid-phase method was unable to detect any mixed fields. The automated gel column agglutination method provides a sensitive means for detecting mixed-field agglutination reactions in the determination of the true inherited D phenotype of combat casualties transfused massive amounts of D+ RBCs.

  4. Low power multi-camera system and algorithms for automated threat detection

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak; Chen, Yang; Van Buer, Darrel J.; Martin, Kevin

    2013-05-01

    A key to any robust automated surveillance system is continuous, wide field-of-view sensor coverage and high accuracy target detection algorithms. Newer systems typically employ an array of multiple fixed cameras that provide individual data streams, each of which is managed by its own processor. This array can continuously capture the entire field of view, but collecting all the data and back-end detection algorithm consumes additional power and increases the size, weight, and power (SWaP) of the package. This is often unacceptable, as many potential surveillance applications have strict system SWaP requirements. This paper describes a wide field-of-view video system that employs multiple fixed cameras and exhibits low SWaP without compromising the target detection rate. We cycle through the sensors, fetch a fixed number of frames, and process them through a modified target detection algorithm. During this time, the other sensors remain powered-down, which reduces the required hardware and power consumption of the system. We show that the resulting gaps in coverage and irregular frame rate do not affect the detection accuracy of the underlying algorithms. This reduces the power of an N-camera system by up to approximately N-fold compared to the baseline normal operation. This work was applied to Phase 2 of DARPA Cognitive Technology Threat Warning System (CT2WS) program and used during field testing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less

  6. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    DOT National Transportation Integrated Search

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  7. Silicon Nanowire-Based Devices for Gas-Phase Sensing

    PubMed Central

    Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699

  8. Real time in situ detection of organic nitrates in atmospheric aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, Andrew W.; Smith, Jared D.; Wilson, Kevin R.

    2010-06-11

    A new field instrument is described that quantifies total particle phase organic nitrates. The instrument is based on the thermal dissociation laser induced fluorescence (TD-LIF) method that thermally converts nitrates to NO2 which is then detected by LIF. This instrument is unique in its ability to provide fast sensitive measurements of particle phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in SOA generated from high-NOx photooxidation of limonene, a-pinene, D-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15percent of the total SOA mass, depending on themore » organic precursor.« less

  9. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure

    PubMed Central

    Lv, Bing; Deng, Liangzi; Gooch, Melissa; Wei, Fengyan; Sun, Yanyi; Meen, James K.; Xue, Yu-Yi; Lorenz, Bernd; Chu, Ching-Wu

    2011-01-01

    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe2As2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field < 4 Oe, and the other at 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (Tc) only up to 38 K and pressurization has been reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K phase detected will be discussed. PMID:21911404

  10. Passive monitoring for near surface void detection using traffic as a seismic source

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  11. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

  12. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.

    PubMed

    Liu, Wenjia; Warden, Antony; Sun, Jiahui; Shen, Guangxia; Ding, Xianting

    2018-03-01

    Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products. Microfluidic chips are utilized to partition different samples into individual bottom-wells. The oil phase in the main channel contains multi-walled carbon nanotubes which were used as a heat transfer medium that absorbs energy from the IR-light-emitting diode (LED) and transfers heat to the water phase below. Cyclical rapid heating and cooling necessary for PCR are achieved by alternative power switching of the IR-LED and Universal Serial Bus (USB) mini-fan with a pulse width modulation scheme. This design of the IR-LED PCR platform is economic, compact, and fully portable, making it a promising application in the field of PoNT. The bottom-well microfluidic chip and IR-LED PCR platform were combined to fulfill a three-stage thermal cycling PCR for 40 cycles within 90 min for Human Papilloma Virus (HPV) detection. The PCR fluorescent signal was successfully captured at the end of each cycle. The technique introduced here has broad applications in nucleic acid amplification and PoNT devices.

  13. FAST TRACK COMMUNICATION Far-field x-ray phase contrast imaging has no detailed information on the object

    NASA Astrophysics Data System (ADS)

    Kohn, V. G.; Argunova, T. S.; Je, J. H.

    2010-11-01

    We show that x-ray phase contrast images of some objects with a small cross-section diameter d satisfy a condition for a far-field approximation d Lt r1 where r1 = (λz)1/2, λ is the x-ray wavelength, z is the distance from the object to the detector. In this case the size of the image does not match the size of the object contrary to the edge detection technique. Moreover, the structure of the central fringes of the image is universal, i.e. it is independent of the object cross-section structure. Therefore, these images have no detailed information on the object.

  14. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi

    2008-10-01

    It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.

  15. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  16. Dynamic depinning phase transition in magnetic thin film with anisotropy

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Zheng, B.; Jin, M. H.; Wang, L.; Zhou, N. J.

    2018-02-01

    The dynamic pinning effects induced by quenched disorder are significant in manipulating the domain-wall motion in nano-magnetic materials. Through numerical simulations of the nonstationary domain-wall dynamics with the Landau-Lifshitz-Gilbert equation, we confidently detect a dynamic depinning phase transition in a magnetic thin film with anisotropy, which is of second order. The transition field, static and dynamic exponents are accurately determined, based on the dynamic scaling behavior far from stationary.

  17. Berry phase and anomalous transport of the composite fermions at the half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Pan, W.; Kang, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2017-12-01

    The fractional quantum Hall effect (FQHE) in two-dimensional electron systems is an exotic, superfluid-like matter with an emergent topological order. From the consideration of the Aharonov-Bohm interaction between electrons and magnetic field, the ground state of a half-filled lowest Landau level is mathematically transformed to a Fermi sea of composite objects of electrons bound to two flux quanta, termed composite fermions (CFs). A strong support for the CF theories comes from experimental confirmation of the predicted Fermi surface at ν = 1/2 (where ν is the Landau level filling factor) from the detection of the Fermi wavevector in semi-classical geometrical resonance experiments. Recent developments in the theory of CFs have led to the prediction of a π Berry phase for the CF circling around the Fermi surface at half-filling. In this paper we provide experimental evidence for the detection of the Berry phase of CFs in the fractional quantum Hall effect. Our measurements of the Shubnikov-de Haas oscillations of CFs as a function carrier density at a fixed magnetic field provide strong support for the existence of a π Berry phase at ν = 1/2. We also discover that the conductivity of composite fermions at ν = 1/2 displays an anomalous linear density dependence, whose origin remains mysterious yet tantalizing.

  18. Topographic profiling and refractive-index analysis by use of differential interference contrast with bright-field intensity and atomic force imaging.

    PubMed

    Axelrod, Noel; Radko, Anna; Lewis, Aaron; Ben-Yosef, Nissim

    2004-04-10

    A methodology is described for phase restoration of an object function from differential interference contrast (DIC) images. The methodology involves collecting a set of DIC images in the same plane with different bias retardation between the two illuminating light components produced by a Wollaston prism. These images, together with one conventional bright-field image, allows for reduction of the phase deconvolution restoration problem from a highly complex nonlinear mathematical formulation to a set of linear equations that can be applied to resolve the phase for images with a relatively large number of pixels. Additionally, under certain conditions, an on-line atomic force imaging system that does not interfere with the standard DIC illumination modes resolves uncertainties in large topographical variations that generally lead to a basic problem in DIC imaging, i.e., phase unwrapping. Furthermore, the availability of confocal detection allows for a three-dimensional reconstruction with high accuracy of the refractive-index measurement of the object that is to be imaged. This has been applied to reconstruction of the refractive index of an arrayed waveguide in a region in which a defect in the sample is present. The results of this paper highlight the synergism of far-field microscopies integrated with scanned probe microscopies and restoration algorithms for phase reconstruction.

  19. A Matched Field Processing Framework for Coherent Detection Over Local and Regional Networks

    DTIC Science & Technology

    2011-06-01

    Northern Finland Seismological Network, FN) and to the University of Helsinki for data from the VRF and HEF stations (part of the Finnish seismograph ...shows the results of classification with the FK measurement . Most of the events are incorrectly assigned to one particular mine (K2 – Rasvumchorr...generalization of the single-phase matched field processing method that encodes the full structure of the entire wavefield? What would this

  20. Quantum limits to gravity estimation with optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, F.; Latmiral, L.; Plato, A. D. K.; Kim, M. S.

    2017-10-01

    We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle.

  1. Solid oxygen revisited

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.; Jodl, H. J.; Crespo, Yanier

    2018-05-01

    The paper provides an up-to-date review of the experimental and theoretical works on solid oxygen published over the past decade. The most important results presented in this review are the following: Detection of magnetic collapse in neutron studies under the delta-epsilon transition. Identification of the lattice structure of the ɛ phase. In this structure the O2 molecules retain their individuality, but there is an additional link leading to the formation of clusters of molecular quartets with the structural formula (O2)4. Discovery of the unique magnetic properties of the delta phase, which hosts three different magnetic structures in the domain of the same crystallographic structure. The extension of the phase diagram to the high-pressure high-temperature region which was previously beyond the reach for experiment; the molecular η and η‧ phases were found and their structures were identified. Behavior of the melting line up to 60 GPa (1750 K). Discovery of a new molecular θ phase in ultrahigh magnetic fields up to over 190 T and the construction of the thermodynamical magnetic-field-temperature H- T phase diagram on the base of the ultrahigh-field magnetization, optical magneto-transmission, and adiabatic magnetocaloric effect measurements. Prediction of the persistence of the molecular state of solid oxygen up to the pressure of 1.9 TPa which is significantly higher than the corresponding limits in solid hydrogen and nitrogen, other generic molecular solids.

  2. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress field in the central Southern Alps.

  3. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    PubMed

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  4. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  5. Bioprofiling of unknown antibiotics in herbal extracts: Development of a streamlined direct bioautography using Bacillus subtilis linked to mass spectrometry.

    PubMed

    Jamshidi-Aidji, Maryam; Morlock, Gertrud E

    2015-11-13

    Working in the field of profiling and identification of bioactive compounds in herbal extracts is faced with the challenge that common chromatographic methods do not directly link to bioactive compounds. Direct bioautography, the combination of TLC/HPTLC with bioassays, linked to structure elucidating techniques is demonstrated to overcome this challenge. The combination of TLC and Bacillus subtilis bioassay was already demonstrated to detect the antibiotics in samples. However, previous studies in this field were faced with some challenges, like being time-consuming, leading not to a homogenous plate background or being restricted to a non-acidic mobile phase. In this study, these aspects were investigated and a streamlined HPTLC-B. subtilis bioassay was developed that generated a homogenous plate background, which was crucial to yield a good baseline for biodensitometry. Two commonly used broths for B. subtilis and a self-designed medium were compared with regard to their capability of detection and baseline noise. The workflow developed allowed the use of acidic mobile phases for the first time. To prove this, 20 herbal extracts were screened for antimicrobial substances developed in parallel with an acidic mobile phase. The main antimicrobial substance in Salvia officinalis tincture detected was further characterized by microchemical reactions, Aliivibrio fischeri, β-glucosidase and acetylcholinesterase (bio)assays as well as mass spectrometry. Scientists looking for new herbal-based medicine may benefit from this time-saving and streamlined bioactivity profiling. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  7. Liquid chromatographic-diode-array detection multiresidue determination of rice herbicides in drinking and paddy-field water.

    PubMed

    Roehrs, Rafael; Zanella, Renato; Pizzuti, Ionara; Adaime, Martha B; Pareja, Lucía; Niell, Silvina; Cesio, María V; Heinzen, Horacio

    2009-01-01

    A sensitive, rapid, and simple multiresidue method for the simultaneous determination of six postemergence herbicides currently used in rice cultivation--metsulfuron methyl, bensulfuron methyl, pyrazosulfuron ethyl, bentazone, bispyribac sodium, and cyhalofop butyl--in drinking and paddy-field water is presented. Water samples were extracted with solid-phase extraction cartridges. Final determination was made by LC with diode-array detection. The extraction efficiencies of C18 and HLB cartridges were compared. The average recovery obtained for these compounds for the lowest spiked level (0.1 microg/L) varied from 70 to 122% for C18 and 75-119% for HLB, with RSDs of 11 and 8.3%, respectively. The method had good linearity, and the lower detection limit for the pesticides studied varied from 0.03 to 0.04 microg/L. The proposed method was also tested in paddy-field water, with recovery studies giving good results with low RSDs at 1.0 microg/L.

  8. Detection of ionized gas molecules in air by graphene and carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Hao, Ji; Li, Bo; Yung, Hyun Young; Liu, Fangze; Hong, Sanghyung; Jung, Yung Joon; Kar, Swastik

    The liquid phase ions sensing by graphene and carbon nanotube has been demonstrated in many publications due to the minimum gate voltage easily shift induced by ionic gating effect, but it is still unclear for vapor phase ions sensing. Here we want to report that the ionized gas molecules in air can be also very sensitively detected by graphene and carbon nanotube networks under very low applied voltage, which shows the very high charge to current amplification factor, the value can be up to 108 A/C, and the direction of current-change can be used to differentiate the positive and negative ions. In further, the field effect of graphene device induced by vapor phase ions was discussed. NSF ECCS 1202376, NSF ECCS CAREER 1351424 and NSF DMREF 1434824, a Northeastern University Provost's Tier-1 seed Grant for interdisciplinary research, Technology Innovation Program (10050481) from Ministry of Trade, Industry & Energy of Republic of Korea.

  9. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  10. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.

  12. NANOSTRUCTURED PLANAR WAVEGUIDE DEVICE FOR MOLECULAR IDENTIFICATION OF HAZARDOUS COMPOUNDS IN WATER BY EVANESCENT SURFACE ENHANCED RAMAN SPECTROSCOPY - PHASE I

    EPA Science Inventory

    Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...

  13. A simple low cost latent fingerprint sensor based on deflectometry and WFT analysis

    NASA Astrophysics Data System (ADS)

    Dhanotia, Jitendra; Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2018-02-01

    In criminal investigations, latent fingerprints are one of the most significant forms of evidence and most commonly used forensic investigation tool worldwide. The existing non-contact latent fingerprint detection systems are bulky, expensive and require environment which is shock and vibration resistant, thereby limiting their usability outside the laboratory. In this article, a compact, full field, low cost technique for profiling of fingerprints using deflectometry is proposed. Using inexpensive mobile phone screen based structured illumination, and windowed Fourier transform (WFT) based phase retrieval mechanism, the 2D and 3D phase plots reconstruct the profile information of the fingerprint. The phase information is also used to confirm a match between two fingerprints in real time. Since the proposed technique is non-interferometric, the measurements are least affected by environmental perturbations. Using the proposed technique, a portable sensor capable of field deployment has been realized.

  14. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  15. BROADBAND SPECTROSCOPY USING TWO SUZAKU OBSERVATIONS OF THE HMXB GX 301-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchy, Slawomir; Markowitz, Alex; Rothschild, Richard E.

    2012-02-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set ofmore » geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.« less

  16. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Eiichirou, Kawamori

    2018-04-01

    We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

  17. Molecular interferometric imaging study of molecular interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2008-02-01

    Molecular Interferometric Imaging (MI2) is a sensitive detection platform for direct optical detection of immobilized biomolecules. It is based on inline common-path interferometry combined with far-field optical imaging. The substrate is a simple thermal oxide on a silicon surface with a thickness at or near the quadrature condition that produces a π/2 phase shift between the normal-incident wave reflected from the top oxide surface and the bottom silicon surface. The presence of immobilized or bound biomolecules on the surface produces a relative phase shift that is converted to a far-field intensity shift and is imaged by a reflective microscope onto a CCD camera. Shearing interferometry is used to remove the spatial 1/f noise from the illumination to achieve shot-noise-limited detection of surface dipole density profiles. The lateral resolution of this technique is diffraction limited at 0.4 micron, and the best longitudinal resolution is 10 picometers. The minimum detectable mass at the metrology limit is 2 attogram, which is 8 antibody molecules of size 150 kDa. The corresponding scaling mass sensitivity is 5 fg/mm compared with 1 pg/mm for typical SPR sensitivity. We have applied MI2 to immunoassay applications, and real-time binding kinetics has been measured for antibody-antigen reactions. The simplicity of the substrate and optical read-out make MI2 a promising analytical assay tool for high-throughput screening and diagnostics.

  18. Inertial aided cycle slip detection and identification for integrated PPP GPS and INS.

    PubMed

    Du, Shuang; Gao, Yang

    2012-10-25

    The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system.

  19. Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.

    2016-06-01

    Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  20. Benford's law gives better scaling exponents in phase transitions of quantum XY models.

    PubMed

    Rane, Ameya Deepak; Mishra, Utkarsh; Biswas, Anindya; Sen De, Aditi; Sen, Ujjwal

    2014-08-01

    Benford's law is an empirical law predicting the distribution of the first significant digits of numbers obtained from natural phenomena and mathematical tables. It has been found to be applicable for numbers coming from a plethora of sources, varying from seismographic, biological, financial, to astronomical. We apply this law to analyze the data obtained from physical many-body systems described by the one-dimensional anisotropic quantum XY models in a transverse magnetic field. We detect the zero-temperature quantum phase transition and find that our method gives better finite-size scaling exponents for the critical point than many other known scaling exponents using measurable quantities like magnetization, entanglement, and quantum discord. We extend our analysis to the same system but at finite temperature and find that it also detects the finite-temperature phase transition in the model. Moreover, we compare the Benford distribution analysis with the same obtained from the uniform and Poisson distributions. The analysis is furthermore important in that the high-precision detection of the cooperative physical phenomena is possible even from low-precision experimental data.

  1. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  2. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detectionmore » was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.« less

  3. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  4. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Field-induced polarization rotation and phase transitions in 0.70 Pb ( M g 1 / 3 N b 2 / 3 ) O 3 – 0.30 PbTi O 3 piezoceramics observed by in situ high-energy x-ray scattering

    DOE PAGES

    Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro; ...

    2018-06-12

    Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less

  6. Field-induced polarization rotation and phase transitions in 0.70 Pb ( M g 1 / 3 N b 2 / 3 ) O 3 – 0.30 PbTi O 3 piezoceramics observed by in situ high-energy x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro

    Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less

  7. Field-induced polarization rotation and phase transitions in 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 piezoceramics observed by in situ high-energy x-ray scattering

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Usher, Tedi-Marie; Fulanovic, Lovro; Vrabelj, Marko; Otonicar, Mojca; Ursic, Hana; Malic, Barbara; Levin, Igor; Jones, Jacob L.

    2018-06-01

    Changes to the crystal structure of 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic C m at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF results show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. This study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-x PT piezoceramics.

  8. Detection of reflector surface from near field phase measurements

    NASA Technical Reports Server (NTRS)

    Ida, Nathan

    1991-01-01

    The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.

  9. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  10. Layover and shadow detection based on distributed spaceborne single-baseline InSAR

    NASA Astrophysics Data System (ADS)

    Huanxin, Zou; Bin, Cai; Changzhou, Fan; Yun, Ren

    2014-03-01

    Distributed spaceborne single-baseline InSAR is an effective technique to get high quality Digital Elevation Model. Layover and Shadow are ubiquitous phenomenon in SAR images because of geometric relation of SAR imaging. In the signal processing of single-baseline InSAR, the phase singularity of Layover and Shadow leads to the phase difficult to filtering and unwrapping. This paper analyzed the geometric and signal model of the Layover and Shadow fields. Based on the interferometric signal autocorrelation matrix, the paper proposed the signal number estimation method based on information theoretic criteria, to distinguish Layover and Shadow from normal InSAR fields. The effectiveness and practicability of the method proposed in the paper are validated in the simulation experiments and theoretical analysis.

  11. Ultrafast optical excitation of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-04-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.

  12. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    PubMed

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  13. Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Dan, Yuichiro; Ikeda, Ryusuke

    2015-10-01

    Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.

  14. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Jacobs, Paul

    2013-06-24

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The {approx}3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  15. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Jacobs, Paul; Zhao, Hui; Smirl, Arthur L.

    2013-06-01

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The ˜3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  16. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman

    2016-02-29

    We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.

  17. Topological transport in Dirac nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  18. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE PAGES

    Matzel, Eric; White, Joshua; Templeton, Dennise; ...

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  19. Laser-stimulated desorption of organic molecules from surfaces, as a method of increasing the efficiency of ion mobility spectrometry analysis.

    PubMed

    Akmalov, Artem E; Chistyakov, Alexander A; Kotkovskii, Gennadii E

    2017-08-01

    Application of laser-induced desorption was investigated as a method of increasing the efficiency of gas phase analyzers on principles of field asymmetric ion mobility spectrometry. Mass spectrometric data of investigations of laser desorption of pentaerythritoltetranitrate molecules and cyclotetramethylenetetranitramine molecules from quartz substrate under vacuum were obtained. Laser sources a Nd 3+ :YAG with nanosecond pulse duration (λ = 532 nm) and a continuous wave diode laser (λ = 440 nm) were used. It was shown that both laser sources have different desorption abilities. This is expressed in various time of appearance of desorbed products that is caused by different heating mechanisms of surface layer. The desorbed quantity under action of both laser sources exceeds the detection threshold for all modern gas phase analyzers. It should be noted that despite the presence of surface dissociation of explosives under laser radiation, the quantity of nondissociated molecules is large enough for detection by ion mobility and field asymmetric ion mobility spectrometers. The optimal parameters of laser radiation for effective removal (evaporation) molecules of low-volatile compounds from surfaces are defined. The conclusion about preferable use of a Nd 3+ :YAG laser for increasing the detection ability of detectors based on ion mobility spectrometry was made.

  20. The upper critical field of filamentary Nb3Sn conductors

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Jewell, M. C.; Fischer, C. M.; Squitieri, A. A.; Lee, P. J.; Larbalestier, D. C.

    2005-05-01

    We have examined the upper critical field of a large and representative set of present multifilamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero-field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90%-99% of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero-temperature critical field that is comparable to the ternary wires. The highest μ0Hc2 detected in the ternary wires are remarkably constant: The highest zero-temperature upper critical fields and zero-field critical temperatures fall within 29.5±0.3 and 17.8±0.3K, respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two-parameter fit, independent of composition, strain state, sample layout, or applied critical state criterion.

  1. Dark-field imaging in coronary atherosclerosis.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias

    2017-09-01

    Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  3. Early pathological alterations of lower lumbar cords detected by ultrahigh-field MRI in a mouse multiple sclerosis model.

    PubMed

    Mori, Yuki; Murakami, Masaaki; Arima, Yasunobu; Zhu, Dasong; Terayama, Yasuo; Komai, Yutaka; Nakatsuji, Yuji; Kamimura, Daisuke; Yoshioka, Yoshichika

    2014-02-01

    Magnetic resonance imaging (MRI) is widely employed for the diagnosis of multiple sclerosis (MS). However, sometimes, the lesions found by MRI do not correlate with the neurological impairments observed in MS patients. We recently showed autoreactive T cells accumulate in the fifth lumbar cord (L5) to pass the blood-brain barrier and cause inflammation in the central nervous system of experimental autoimmune encephalomyelitis (EAE) mice, an MS model. We here investigated this early event using ultrahigh-field MRI. T2-weighted image signals, which conform to the water content, increased in L4 and L5 during the development of EAE. At the same time, the sizes of L4 and L5 changed. Moreover, angiographic images of MRI showed branch positions of the blood vessels in the lower lumbar cords were significantly altered. Interestingly, EAE mice showed occluded and thickened vessels, particularly during the peak phase, followed by reperfusion in the remission phase. Additionally, demyelination regions of some MS patients had increased lactic acid content, suggesting the presence of ischemic events. These results suggest that inflammation-mediated alterations in the lower lumbar cord change the homeostasis of the spinal cord and demonstrate that ultrahigh-field MRI enables the detection of previously invisible pathological alterations in EAE.

  4. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water.

    PubMed

    Quinn, Casey W; Cate, David M; Miller-Lionberg, Daniel D; Reilly, Thomas; Volckens, John; Henry, Charles S

    2018-03-20

    Metal contamination of natural and drinking water systems poses hazards to public and environmental health. Quantifying metal concentrations in water typically requires sample collection in the field followed by expensive laboratory analysis that can take days to weeks to obtain results. The objective of this work was to develop a low-cost, field-deployable method to quantify trace levels of copper in drinking water by coupling solid-phase extraction/preconcentration with a microfluidic paper-based analytical device. This method has the advantages of being hand-powered (instrument-free) and using a simple "read by eye" quantification motif (based on color distance). Tap water samples collected across Fort Collins, CO, were tested with this method and validated against ICP-MS. We demonstrate the ability to quantify the copper content of tap water within 30% of a reference technique at levels ranging from 20 to 500 000 ppb. The application of this technology, which should be sufficient as a rapid screening tool, can lead to faster, more cost-effective detection of soluble metals in water systems.

  5. Topological phase transition of decoupling quasi-two-dimensional vortex pairs in La1- y Sm y MnO3 + δ ( y = 0.85, 1.0)

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2016-10-01

    Characteristic signs of the universal Nelson-Kosterlitz jump of the superconducting liquid density in the temperature dependences of the magnetization of La1- y Sm y MnO3 + δ samples with samarium concentrations y = 0.85 and 1.0, which are measured in magnetic fields 100 Oe ≤ H ≤ 3.5 kOe, are detected. As the temperature increases, the sample with y = 0.85 exhibits a crescent-shaped singularity in the dc magnetization curve near the critical temperature of decoupling vortex-antivortex pairs ( T KT ≡ T c ≈ 43 K), which is independent of measuring magnetic field H and is characteristic of the dissociation of 2D vortex pairs. A similar singularity is also detected in the sample with a samarium concentration y = 1.0 at a significantly lower temperature ( T KT ≈ 12 K). The obtained experimental results are explained in terms of the topological Kosterlitz-Thouless phase transition of dissociation of 2D vortex pairs in a quasi-two-dimensional weak Josephson coupling network.

  6. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  7. Electro-Optic Analog/Digital Converter.

    DTIC Science & Technology

    electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical

  8. Coherent detection of THz-induced sideband emission from excitons in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Tanaka, K.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Hirori, H.

    2018-04-01

    Strong interaction of a terahertz (THz) wave with excitons induces nonperturbative optical effects such as Rabi splitting and high-order sideband generation. Here, we investigated coherent properties of THz-induced sideband emissions from GaAs/AlGaAs multiquantum wells. With increasing THz electric field, optical susceptibility of the THz-dressed exciton shows a redshift with spectral broadening and extraordinary phase shift. This implies that the field ionization of the 1 s exciton modifies the THz-dressed exciton in the nonperturbative regime.

  9. A Deterministic Methodology for Discriminating between Earthquakes and Underground Nuclear Explosions

    DTIC Science & Technology

    1976-07-01

    rupture (right) to represent a bilat- eral rupture is described in the text Page 48 50 51 56 60 3.11 Far-field radiation patterns for the bi ...particularly effective for detecting, isolating and timing the various seismic phases ^g’ p*’ pn’ Sg’ s*’ Sn , etc.) that are recorded on event seismograms in...of the stress field during rupture. 5. A criterion allowing the rupture to heal . All earthquake models must, implicitly or explicitly, deal with

  10. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity

    PubMed Central

    Mamede, Joao I.; Hope, Thomas J.

    2016-01-01

    Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704

  11. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  12. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  13. Local measurement of error field using naturally rotating tearing mode dynamics in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Sweeney, R. M.; Frassinetti, L.; Brunsell, P.; Fridström, R.; Volpe, F. A.

    2016-12-01

    An error field (EF) detection technique using the amplitude modulation of a naturally rotating tearing mode (TM) is developed and validated in the EXTRAP T2R reversed field pinch. The technique was used to identify intrinsic EFs of m/n  =  1/-12, where m and n are the poloidal and toroidal mode numbers. The effect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in particular on amplitude modulation, is modeled with a first-order solution of the modified Rutherford equation. In the experiment, the TM amplitude is measured as a function of the toroidal angle as the TM rotates rapidly in the presence of an unknown EF and a known, deliberately applied RMP. The RMP amplitude is fixed while the toroidal phase is varied from one discharge to the other, completing a full toroidal scan. Using three such scans with different RMP amplitudes, the EF amplitude and phase are inferred from the phases at which the TM amplitude maximizes. The estimated EF amplitude is consistent with other estimates (e.g. based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A passive variant of this technique is also presented, where no RMPs are applied, and the EF phase is deduced.

  14. Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7

    NASA Astrophysics Data System (ADS)

    Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu

    2018-04-01

    In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.

  15. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  16. Design and implementation of a low-cost multiple-range digital phase detector

    NASA Astrophysics Data System (ADS)

    Omran, Hesham; Albasha, Lutfi; Al-Ali, A. R.

    2012-06-01

    This article describes the design, simulation, implementation and testing of a novel low-cost multiple-range programmable digital phase detector. The detector receives two periodic signals and calculates the ratio of the time difference to the time period to measure and display the phase difference. The resulting output values are in integer form ranging from -180° to 180°. Users can select the detector pre-set operation frequency ranges using a three-bit pre-scalar. This enables to use the detector for various applications. The proposed detector can be programmed over a frequency range of 10 Hz to 25 kHz by configuring its clock divider circuit. Detector simulations were conducted and verified using ModelSim and the design was implemented and tested using an Altera Cyclone II field-programmable gate array board. Both the simulation and actual circuit testing results showed that the phase detector has a magnitude of error of only 1°. The detector is ideal for applications such as power factor measurement and correction, self-tuning resonant circuits and in metal detection systems. Unlike other stand-alone phase detection systems, the reported system has the ability to be programmed to several frequency ranges, hence expanding its bandwidth.

  17. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.

  18. Phase sensitive reconstruction of T1-weighted inversion recovery in the evaluation of the cervical cord lesions in multiple Sclerosis; is it similarly eligible in 1.5 T magnet fields?

    PubMed

    Shayganfar, A; Sarrami, A H; Fathi, S; Shaygannejad, V; Shamsian, S

    2018-04-22

    In primary studies with 3 T Magnets, phase sensitive reconstruction of T1-weighted inversion recovery (PSIR) have showed ability to depict the cervical multiple sclerosis (MS) lesions some of which may not be detected by short tau inversion recovery (STIR). Regarding to more availability of 1.5 T MRI, this study was designed to evaluate the eligibility of PSIR in 1.5 T for detection of spinal cord MS lesions. In a study between September 2016 till March 2017 the patients with proven diagnosis of MS enrolled to the study. The standard protocol (sagittal STIR and T2W FSE and axial T2W FSE) as well as sagittal PSIR sequences were performed using a 1.5 T magnet. The images were studied and the lesions were localized and recorded as sharp or faint on each sequence. Of 25 patients (22 females and 3 males, with mean age of 33.5 ± 9.8 years and mean disease duration of 5.4 ± 3.9 years) 69 lesions in STIR, 53 lesions in T2W FSE, 47 lesions in Magnitude reconstruction of PSIR (Magnitude), and 30 lesions in phase sensitive (real) reconstruction PSIR were detected. A Wilcoxon signed-rank test showed STIR has a statistically significant higher detection rate of the plaques rather than other three sequences. (STIR and T2W FSE, Z = -4.000, p < 0.0001, STIR and Magnitude, Z = -4.690, p < 0.0001, STIR and PSIR, Z = -6.245, p = 0.002) Also, STIR had a statistically significant superiority in the boundary definition of the plaques rather than other three sequences. This study shows that in the setting of a 1.5 T magnet field, STIR significantly has a superiority over both of the PSIR reconstructions (i.e. real and magnitude) for the detection as well as the boundary definition of the cervical cord lesions of MS. These results have a good relevance to clinical practice by using MRI scanners and sequences routinely available, however, it is discrepant with other reports performed by 3 T Magnet fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A New Narrowbeam, Multi-Frequency Scanning Radiometer and Its Application to In-Flight Icing Detection

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Solheim, Frederick; Ware, Randolph; Politovich, Marcia K.; Brunkow, David; Bowie, Robert

    2010-01-01

    A narrow-beam (1 degree beamwidth), multi-channel (20 to 30 and 89 GHz), polarized (89 vertical and horizontal) radiometer with full azimuth and elevation scanning capabilities has been built with the purpose of improving the detection of in-flight icing hazards to aircraft in the near airport environment. This goal was achieved by co-locating the radiometer with Colorado State University's CHILL polarized Doppler radar and taking advantage of similar beamwidth and volume scan regiments. In this way, the liquid water path and water vapor measurements derived from the radiometer were merged with CHILL's moment fields to provide diagnoses of water phase and microphysics aloft. The radiometer was field tested at Colorado State University's CHILL radar site near Greeley, Colorado, during the summer of 2009. Instrument design, calibration and initial field testing results are discussed in this paper

  20. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    PubMed Central

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  1. High quality 3D shape reconstruction via digital refocusing and pupil apodization in multi-wavelength holographic interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Li

    Multi-wavelength holographic interferometry (MWHI) has good potential for evolving into a high quality 3D shape reconstruction technique. There are several remaining challenges, including I) depth-of-field limitation, leading to axial dimension inaccuracy of out-of-focus objects; and 2) smearing from shiny smooth objects to their dark dull neighbors, generating fake measurements within the dark area. This research is motivated by the goal of developing an advanced optical metrology system that provides accurate 3D profiles for target object or objects of axial dimension larger than the depth-of-field, and for objects with dramatically different surface conditions. The idea of employing digital refocusing in MWHI has been proposed as a solution to the depth-of-field limitation. One the one hand, traditional single wavelength refocusing formula is revised to reduce sensitivity to wavelength error. Investigation over real example demonstrates promising accuracy and repeatability of reconstructed 3D profiles. On the other hand, a phase contrast based focus detection criterion is developed especially for MWHI, which overcomes the problem of phase unwrapping. The combination for these two innovations gives birth to a systematic strategy of acquiring high quality 3D profiles. Following the first phase contrast based focus detection step, interferometric distance measurement by MWHI is implemented as a next step to conduct relative focus detection with high accuracy. This strategy results in +/-100mm 3D profile with micron level axial accuracy, which is not available in traditional extended focus image (EFI) solutions. Pupil apodization has been implemented to address the second challenge of smearing. The process of reflective rough surface inspection has been mathematically modeled, which explains the origin of stray light and the necessity of replacing hard-edged pupil with one of gradually attenuating transmission (apodization). Metrics to optimize pupil types and parameters have been chosen especially for MWHI. A Gaussian apodized pupil has been installed and tested. A reduction of smearing in measurement result has been experimentally demonstrated.

  2. Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes

    2014-08-01

    We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.

  3. Quantum detection of wormholes.

    PubMed

    Sabín, Carlos

    2017-04-06

    We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measurements after long propagation lengths for a wide range of throat radii and distances to the wormhole, even if the detection takes place very far away from the throat, where the spacetime is very close to a flat geometry. We use realistic parameters from state-of-the-art long-baseline laser interferometry, both Earth-based and space-borne. The scheme is, in principle, robust to optical losses and initial mixedness.

  4. Detection of Second Order Melting Transitions in the HTSC's by Specific Heat Measurements?

    NASA Astrophysics Data System (ADS)

    Pierson, Stephen W.; Valls, Oriol T.

    1997-03-01

    The finite magnetic field phase transition in the high-temperature superconductors from the solid vortex lattice to the liquid has been under intense study recently. Detection of this melting is difficult but has been seen in magnetization and resistivity measurements. It has also been reported recently in specific heat measurements. In particular, in one case, evidence for a second order melting phase transition has been presented based on specific heat measurements.(M. Roulin, A. Junod, and E. Walker. Science 273), 1210 (1996). However, we present evidence that the feature in the specific heat data can be explained using a theory derived using the lowest-Landau-level approximation(Z. Tes)anović and A. V. Andreev, Phys. Rev. B 49, 4064 (1994) that does not invoke flux lattice melting arguments.

  5. Optical nanofiber temperature monitoring via double heterodyne detection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Jalnapurkar, S.; Moiseev, E. S.; Chang, D.; Barclay, P. E.; Lezama, A.; Lvovsky, A. I.

    2018-05-01

    Tapered optical fibers (nanofibers) whose diameters are smaller than the optical wavelength are very fragile and can be easily destroyed if excessively heated by energy dissipated from the transmitted light. We present a technique for monitoring the nanofiber temperature using two-stage heterodyne detection. The phase of the heterodyne output signal is determined by that of the transmitted optical field, which, in turn, depends on the temperature through the refractive index. From the phase data, by numerically solving the heat exchange equations, the temperature distribution along the nanofiber is determined. The technique is applied to the controlled heating of the nanofiber by a laser in order to remove rubidium atoms adsorbed on its surface that substantially degrade its transmission. Almost 90% of the nanofiber's original transmission is recovered.

  6. Monitoring of Land Deformation Due to Oil Production by InSAR Time Series Analysis Using PALSAR Data in Bolivarian Republic of Venezuela

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori; Narita, Tatsuhiko

    2015-05-01

    The target area of this study is the Maracaibo sedimentary basin located in the western part of Bolivarian Republic of Venezuela. The full-scale exploration and development for oil resources in Venezuela which was the greatest oil-producing country in South America had begun at the Maracaibo sedimentary basin in the 1910s, and it was a center of the oil product in Venezuela until the 1980s. But, in most of oil fields in the Maracaibo sedimentary basin, there is concern over the drain on recoverable reserves due to deterioration, and the production amount of petroleum in Venezuela has been diminishing these days. Leveling and GPS surveying were carried out in the past, and they revealed that the large-scale subsidence phenomenon of which cumulative subsidence amount was approximately 5 meter had occurred. The authors applied the vertical displacement measurement by InSAR time series analysis using PALSAR data obtained in the Fine-beam and ScanSAR observation mode. As a result, it could be confirmed clear ground deformation in the surrounding of three oil fields (Tia Juana, Lagunillas and Bachaquero) and easily recognized that the areas of phase anomalies detected by this analysis had expanded and the number of interference fringes had increased over time. The annual velocity of vertical ground surface displacement measured by InSAR time series analysis was -51 mm per year, -103 mm per year and -58 mm per year in Tia Juana, Lagunillas and Bachaquero oil field respectively. The tendency that an earth surface shifted towards the center of phase anomalies was detected from the result of the horizontal ground change measurement. It was interpreted from Google Earth and Landsat images that oil-related facilities (mainly bowling stations) were built intensively over the areas where phase anomalies were detected. Therefore, it was inferred that there was a high association between the operation activity of the oil field and ground deformation. In addition, the deterioration is remarkable in the oil fields of the Maracaibo basin and oil production volume has been declining, on the other hand the spatial volume of the ground surface deformation also showed a clear decreasing trend.

  7. Nonlinear Dirac cones

    NASA Astrophysics Data System (ADS)

    Bomantara, Raditya Weda; Zhao, Wenlei; Zhou, Longwen; Gong, Jiangbin

    2017-09-01

    Physics arising from two-dimensional (2D) Dirac cones has been a topic of great theoretical and experimental interest to studies of gapless topological phases and to simulations of relativistic systems. Such 2D Dirac cones are often characterized by a π Berry phase and are destroyed by a perturbative mass term. By considering mean-field nonlinearity in a minimal two-band Chern insulator model, we obtain a different type of Dirac cone that is robust to local perturbations without symmetry restrictions. Due to a different pseudospin texture, the Berry phase of the Dirac cone is no longer quantized in π , and can be continuously tuned as an order parameter. Furthermore, in an Aharonov-Bohm (AB) interference setup to detect such Dirac cones, the adiabatic AB phase is found to be π both theoretically and computationally, offering an observable topological invariant and a fascinating example where the Berry phase and AB phase are fundamentally different. We hence discover a nonlinearity-induced quantum phase transition from a known topological insulating phase to an unusual gapless topological phase.

  8. Label-free protein sensing by employing blue phase liquid crystal.

    PubMed

    Lee, Mon-Juan; Chang, Chung-Huan; Lee, Wei

    2017-03-01

    Blue phases (BPs) are mesophases existing between the isotropic and chiral nematic phases of liquid crystals (LCs). In recent years, blue phase LCs (BPLCs) have been extensively studied in the field of LC science and display technology. However, the application of BPLCs in biosensing has not been explored. In this study, a BPLC-based biosensing technology was developed for the detection and quantitation of bovine serum albumin (BSA). The sensing platform was constructed by assembling an empty cell with two glass slides coated with homeotropic alignment layers and with immobilized BSA atop. The LC cells were heated to isotropic phase and then allowed to cool down to and maintained at distinct BP temperatures for spectral measurements and texture observations. At BSA concentrations below 10 -6 g/ml, we observed that the Bragg reflection wavelength blue-shifted with increasing concentration of BSA, suggesting that the BP is a potentially sensitive medium in the detection and quantitation of biomolecules. By using the BPLC at 37 °C and the same polymorphic material in the smectic A phase at 20 °C, two linear correlations were established for logarithmic BSA concentrations ranging from 10 -9 to 10 -6 g/ml and from 10 -6 to 10 -3 g/ml. Our results demonstrate the potential of BPLCs in biosensing and quantitative analysis of biomolecules.

  9. The magnetic fields at the surface of active single G-K giants

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo, possibly of α-ω origin since Ro is in general smaller than unity. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, η Psc) are detected with magnetic field strength at the sub-Gauss level. Besides Arcturus, these stars were not considered to be active giants before this study and are very similar in other respects to ordinary giants, with S-index indicating consistency with basal chromospheric flux. Tables 6-8 are available in electronic form at http://www.aanda.orgBased on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, CNRS/INSU and the University of Hawaii.

  10. Use and environmental occurrence of pharmaceuticals in freestall dairy farms with manured forage fields

    USGS Publications Warehouse

    Watanabe, Naoko; Bergamaschi, Brian A.; Loftin, Keith A.; Meyer, Michael T.; Harter, Thomas

    2010-01-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels.

  11. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields.

    PubMed

    Watanabe, Naoko; Bergamaschi, Brian A; Loftin, Keith A; Meyer, Michael T; Harter, Thomas

    2010-09-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels.

  12. Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields

    PubMed Central

    2010-01-01

    Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels. PMID:20698525

  13. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising potential of the algorithm.

  14. Pressure-induced topological phase transitions and strongly anisotropic magnetoresistance in bulk black phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hong; Long, Yu-Jia; Zhao, Ling-Xiao; Shan, Lei; Ren, Zhi-An; Zhao, Jian-Zhou; Weng, Hong-Ming; Dai, Xi; Fang, Zhong; Ren, Cong; Chen, Gen-Fu

    2017-03-01

    We report the anisotropic magnetotransport measurement on a noncompound band semiconductor black phosphorus (BP) with magnetic field B up to 16 Tesla applied in both perpendicular and parallel to electric current I under hydrostatic pressures. The BP undergoes a topological Lifshitz transition from band semiconductor to a zero-gap Dirac semimetal state at a critical pressure Pc, characterized by a weak localization-weak antilocalization transition at low magnetic fields and the emergence of a nontrivial Berry phase of π detected by SdH magneto-oscillations in magnetoresistance curves. In the transition region, we observe a pressure-dependent negative MR only in the B ∥I configuration. This negative longitudinal MR is attributed to the Adler-Bell-Jackiw anomaly (topological E .B term) in the presence of weak antilocalization corrections.

  15. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  16. Anomalous Quantum Correlations of Squeezed Light

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  17. Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-07-01

    The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.

  18. Double tuning a single input probe for heteronuclear NMR spectroscopy at low field.

    PubMed

    Tadanki, Sasidhar; Colon, Raul D; Moore, Jay; Waddell, Kevin W

    2012-10-01

    Applications of PASADENA in biomedicine are continuing to emerge due to recent demonstrations that hyperpolarized metabolic substrates and the corresponding reaction products persist sufficiently long to be detected in vivo. Biomedical applications of PASADENA typically differ from their basic science counterparts in that the polarization endowed by addition of parahydrogen is usually transferred from nascent protons to coupled storage nuclei for subsequent detection on a higher field imaging instrument. These pre-imaging preparations usually take place at low field, but commercial spectrometers capable of heteronuclear pulsed NMR at frequencies in the range of 100 kHz to 1 MHz are scarce though, in comparison to single channel consoles in that field regime. Reported here is a probe circuit that can be used in conjunction with a phase and amplitude modulation scheme we have developed called PANORAMIC (Precession And Nutation for Observing Rotations At Multiple Intervals about the Carrier), that expands a single channel console capability to double or generally multiple resonance with minimal hardware modifications. The demands of this application are geared towards uniform preparation, and since the hyperpolarized molecules are being detected externally at high field, detection sensitivity is secondary to applied field uniformity over a large reaction volume to accommodate heterogeneous chemistry of gas molecules at a liquid interface. The probe circuit was therefore configured with a large (40 mL) Helmholtz sample coil for uniformity, and double-tuned to the Larmor precession frequencies of (13)C/(1)H (128/510 kHz) within a custom solenoidal electromagnet at a static field of 12 mT. Traditional (on-resonant) as well as PANORAMIC NMR signals with signal to noise ratios of approximately 75 have been routinely acquired with this probe and spectrometer setup from 1024 repetitions on the high frequency channel. The proton excitation pulse width was 240 μs at 6.31 W, compared to a carbon-13 pulse width of 220 μs at 2.51 W. When PANORAMIC refocusing waveforms were transmitted at a carrier frequency of 319 kHz, integrated signal intensities from a spin-echo sequence at both proton (510 kHz) and carbon-13 (128 kHz) frequencies were within experimental error to block pulse analogs transmitted on resonance. We anticipate that this probe circuit design could be extended to higher and lower frequencies, and that when used in conjunction with PANORAMIC phase and amplitude modulated arrays, will enable low field imaging consoles to serve as multinuclear consoles. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    PubMed

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  20. Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.

    2016-12-01

    The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.

  1. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  2. Silicon carbide nanomaterial as a coating for solid-phase microextraction.

    PubMed

    Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan

    2018-01-26

    Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detection and analysis of a transient energy burst with beamforming of multiple teleseismic phases

    NASA Astrophysics Data System (ADS)

    Retailleau, Lise; Landès, Matthieu; Gualtieri, Lucia; Shapiro, Nikolai M.; Campillo, Michel; Roux, Philippe; Guilbert, Jocelyn

    2018-01-01

    Seismological detection methods are traditionally based on picking techniques. These methods cannot be used to analyse emergent signals where the arrivals cannot be picked. Here, we detect and locate seismic events by applying a beamforming method that combines multiple body-wave phases to USArray data. This method explores the consistency and characteristic behaviour of teleseismic body waves that are recorded by a large-scale, still dense, seismic network. We perform time-slowness analysis of the signals and correlate this with the time-slowness equivalent of the different body-wave phases predicted by a global traveltime calculator, to determine the occurrence of an event with no a priori information about it. We apply this method continuously to one year of data to analyse the different events that generate signals reaching the USArray network. In particular, we analyse in detail a low-frequency secondary microseismic event that occurred on 2010 February 1. This event, that lasted 1 d, has a narrow frequency band around 0.1 Hz, and it occurred at a distance of 150° to the USArray network, South of Australia. We show that the most energetic phase observed is the PKPab phase. Direct amplitude analysis of regional seismograms confirms the occurrence of this event. We compare the seismic observations with models of the spectral density of the pressure field generated by the interferences between oceanic waves. We attribute the observed signals to a storm-generated microseismic event that occurred along the South East Indian Ridge.

  4. Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information.

    PubMed

    Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco

    2013-01-01

    During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.

  5. Magnetic Fields And The Formation Of Aspherical Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Leal Ferreira, Marcelo L.

    2014-11-01

    The general evolution of stars with initial mass between 0.8 and 8 solar masses is believed to be well understood until the last stages, when significant mass loss starts. However, an initially spherical star may evolve into an asymmetrical planetary nebula (PN), whereas the underlying mechanism to this process remains as a puzzle. Until about a decade ago, it was believed that stars in the asymptotic giant branch (AGB) phase were still spherically symmetric. Nevertheless, observations performed in the last years show that, for some sources, elongated and asymmetrical envelopes can already be detected during the AGB phase. In the following pre-PN and planetary nebula phases, a variety of morphologies is observed, and the sources are classified into round, elliptical/elongated, bipolar, quadrupolar, multipolar, spiral, collimated lobes and irregular. It is unknown which mechanism or set of mechanisms is responsible for this change of morphology, making this topic to be one of the most discussed by the evolved stars community. To shed some light on this problem, three AGB stars (IK Tau, R Scl, and V644 Sco) and one red supergiant (VY CMa) were observed at optical wavelengths. We analyzed their dust scattered emission and searched for signs of upcoming asymmetries in their circumstellar envelope. The observations in R band reveal that the dust envelope of the AGB star IK Tau has a global elliptical morphology, and the presence of a central waist is discussed. The observation of VY CMa shows a complex morphology in the very extended nebula that surrounds the source. Furthermore, for the first time the detached shell around the AGB star V644 Sco was imaged, allowing a better investigation of the mass-loss episodes of the source. The detached shell around R Scl was also imaged and analyzed. The results reported in this thesis add together with previous works, confirming that the loss of spherical symmetry in the circumstellar envelope of evolved stars can already start during the AGB phase. Moreover, we studied one of the mechanisms that can play a role in the shaping process of the circumstellar envelope of these sources: magnetic fields. For this purpose, we investigated 22 GHz H2O maser observations around five sources: four AGB stars (IK Tau, RT Vir, IRC+60370, and AP Lyn) and one pre-PN (OH231.8+4.2). By analyzing the linear and circular polarization in the masers, we detected the presence of magnetic field in four of these five sources. We measured the field strengths to be from a few tens up to a few hundreds of milligauss in the H2O maser region (at a few tens of astronomical units from the star). Comparing our results with magnetic field measurements from the literature, obtained at different distances with respect to the stars, we tried to determine the most plausible geometry of the magnetic fields for the observed sources. However, it is not yet definitive if the observed fields are toroidal, poloidal, or dipole. The influence of magnetic fields on the shaping process of the circumstellar envelope of evolved stars is still unclear, but their detection around AGB stars, pre-PNe and PNe supports that they might play a role in the process. More measurements of the strength of the fields, also at different distances to the stars, and the investigation of the geometry of the fields are fundamental for providing better constraints to models, and for the better understanding of this subject.

  6. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  7. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis.

    PubMed

    Rosenberg, Erwin

    2003-06-06

    The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion-biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.

  8. Quantum magnetic phase transition in square-octagon lattice.

    PubMed

    Bao, An; Tao, Hong-Shuai; Liu, Hai-Di; Zhang, XiaoZhong; Liu, Wu-Ming

    2014-11-05

    Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon lattice, we presented the phase diagrams of this splendid many particle system. The competition between the temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the anisotropic parameter λ and the on-site repulsive interaction U while the other phases still can be detected at T = 0.17. The results found in this work may contribute to understand well the properties of some consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.

  9. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  10. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System

    NASA Astrophysics Data System (ADS)

    Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.

    2017-08-01

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  11. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System.

    PubMed

    Jurcevic, P; Shen, H; Hauke, P; Maier, C; Brydges, T; Hempel, C; Lanyon, B P; Heyl, M; Blatt, R; Roos, C F

    2017-08-25

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  12. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  13. Space time neural networks for tether operations in space

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.

  14. High-Pressure Phase Transition of Iron: A Combined Magnetic Remanence and Mössbauer Study

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; McCammon, Catherine; Gilder, Stuart Alan

    2017-12-01

    We measured Mössbauer spectra and the acquisition of saturation isothermal remanent magnetization in alternating steps on the same sample of polycrystalline, multidiron metal powder in a diamond anvil cell across the body centered cubic (bcc) to hexagonal closed packed (hcp) phase transition at room temperature up to 19.2 GPa. Within the bcc stability field indicated by the presence of magnetic hyperfine splitting, saturation remanent magnetization and sextet area were well correlated during compression and decompression. The areas and dips of the outer (first and sixth) and middle (second and fifth) components of the sextet changed in relative proportion as a function of pressure, which was attributed to rotation of the magnetization direction perpendicular to the gamma-ray source. Sextet peaks disappeared above ˜15 GPa, yet magnetic remanence persisted. Magnetic remanence intensity divided by the fractional area of the sextet, taken to represent bcc Fe, attained maxima at pressures near the boundaries of the hysteretic transition, which we attribute to strain-related magnetostriction effects associated with a distorted bcc-hcp phase. Magnetic remanence observed within the hcp stability field, as defined by the absence of sextet peaks, could be due to a previously described, distorted bcc-hcp phase whose hyperfine field was below detection limits of Mössbauer spectroscopy. Our study suggests that distorted bcc-hcp Fe holds magnetic remanence and leaves open the possibility that this phase carries magnetic remanence into the pressure range where only pure hcp Fe is considered stable.

  15. An explanation of auroral intensification during the substorm expansion phase

    NASA Astrophysics Data System (ADS)

    Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.

    2017-08-01

    A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.

  16. Filamentary field-aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation

    PubMed Central

    Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje

    2017-01-01

    ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833

  17. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing

    2014-09-05

    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  19. Near-Field Diffraction Imaging from Multiple Detection Planes

    NASA Astrophysics Data System (ADS)

    Loetgering, L.; Golembusch, M.; Hammoud, R.; Wilhein, T.

    2017-06-01

    We present diffraction imaging results obtained from multiple near-field diffraction constraints. An iterative phase retrieval algorithm was implemented that uses data redundancy achieved by measuring near-field diffraction intensities at various sample-detector distances. The procedure allows for reconstructing the exit surface wave of a sample within a multiple constraint satisfaction framework neither making use of a priori knowledge as enforced in coherent diffraction imaging (CDI) nor exact scanning grid knowledge as required in ptychography. We also investigate the potential of the presented technique to deal with polychromatic radiation as important for potential application in diffraction imaging by means of tabletop EUV and X-ray sources.

  20. Scale-invariant scalar field dark matter through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-05-01

    We discuss the dynamics and phenomenology of an oscillating scalar field coupled to the Higgs boson that accounts for the dark matter in the Universe. The model assumes an underlying scale invariance such that the scalar field only acquires mass after the electroweak phase transition, behaving as dark radiation before the latter takes place. While for a positive coupling to the Higgs field the dark scalar is stable, for a negative coupling it acquires a vacuum expectation value after the electroweak phase transition and may decay into photon pairs, albeit with a mean lifetime much larger than the age of the Universe. We explore possible astrophysical and laboratory signatures of such a dark matter candidate in both cases, including annihilation and decay into photons, Higgs decay, photon-dark scalar oscillations and induced oscillations of fundamental constants. We find that dark matter within this scenario will be generically difficult to detect in the near future, except for the promising case of a 7 keV dark scalar decaying into photons, which naturally explains the observed galactic and extra-galactic 3.5 keV X-ray line.

  1. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  2. Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish.

    PubMed

    Zhou, Simon Ningsun; Oakes, Ken D; Servos, Mark R; Pawliszyn, Janusz

    2008-08-15

    Previous field studies utilizing solid-phase microextraction (SPME) predominantly focused on volatile and semivolatile compounds in air or water. Earlier in vivo sampling studies utilizing SPME were limited to the liquid matrix (blood). The present study has expanded the SPME technique to semisolid tissues under laboratory and field conditions through the investigation of both theoretical and applied experimental approaches. Pre-equilibrium extraction and desorption were performed in vivo in two separate animals. Excellent linearity was found between the amounts extracted by SPME from the muscle of living fish and the waterborne concentrations of pharmaceuticals. A simple SPME method is also described to simultaneously determine free and total analyte concentrations in living tissue. The utility of in vivo SPME sampling was evaluated in wild fish collected from a number of different river locations under varying degrees of influence from municipal wastewater effluents. Diphenhydramine and diltiazem were detected in the muscle of fish downstream of a local wastewater treatment plant. Based on this study, SPME demonstrated several important advantages such as simplicity, sensitivity, and robustness under laboratory and in vivo field sampling conditions.

  3. VizieR Online Data Catalog: OGLE: Gaia South Ecliptic Pole Field (Soszynski+, 2012)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Poleski, R.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Ulaczyk, K.; Skowron, J.

    2013-03-01

    We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. (9 data files).

  4. Wireless gas detection with a smartphone via rf communication

    PubMed Central

    Azzarelli, Joseph M.; Mirica, Katherine A.; Ravnsbæk, Jens B.; Swager, Timothy M.

    2014-01-01

    Chemical sensing is of critical importance to human health, safety, and security, yet it is not broadly implemented because existing sensors often require trained personnel, expensive and bulky equipment, and have large power requirements. This study reports the development of a smartphone-based sensing strategy that employs chemiresponsive nanomaterials integrated into the circuitry of commercial near-field communication tags to achieve non-line-of-sight, portable, and inexpensive detection and discrimination of gas-phase chemicals (e.g., ammonia, hydrogen peroxide, cyclohexanone, and water) at part-per-thousand and part-per-million concentrations. PMID:25489066

  5. Detection and recognition of simple spatial forms

    NASA Technical Reports Server (NTRS)

    Watson, A. B.

    1983-01-01

    A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.

  6. Active polarization imaging system based on optical heterodyne balanced receiver

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  7. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    NASA Astrophysics Data System (ADS)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.

  8. Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer

    NASA Astrophysics Data System (ADS)

    Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.

    2017-06-01

    Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.

  9. WFIRST: Project Overview and Status

    NASA Astrophysics Data System (ADS)

    Kruk, Jeffrey; WFIRST Formulation Science Working Group, WFIRST Project Team

    2018-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) will be the next Astrophysics flagship mission to follow JWST. The observatory payload consists of a Hubble-size telescope aperture with a wide-field NIR instrument and a coronagraph operating at visible wavelengths and employing state-of-the-art wavefront sensing and control. The Wide-field instrument is optimized for large area NIR imaging and spectroscopic surveys, with performance requirements driven by programs to study cosmology and exoplanet detection via gravitational microlensing. All data will be public immediately, and a substantial guest observer program will be supported.The WFIRST Project is presently in Phase A, with a transition to Phase B expected in early to mid 2018. Candidate observing programs are under detailed study in order to inform the mission design, but the actual science investigations will not be selected until much closer to launch. We will present an overview of the present mission design and expected performance, a summary of Project status, and plans for selecting the observing programs.

  10. Acrylamide: formation, occurrence in food products, detection methods, and legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Dionisopoulou, Niki

    2014-01-01

    This review aims at summarizing the most recent updates in the field of acrylamide (AA) formation (mechanism, conditions) and the determination of AA in a number of foods (fried or baked potatoes, chips, coffee, bread, etc). The methods applied for AA detection [Capillary Electrophoresis-Mass Spectrometry (CE-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), Non-Aqueous Capillary Electrophoresis (NACE), High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Pressurized Fluid Extraction (PFE), Matrix Solid-Phase Dispersion (MSPD), Gas Chromatography-Mass Spectrometry (GC-MS), Solid-Phase MicroExtraction-Gas Chromatography (SPME-GC), Enzyme Linked Immunosorbent Assay (ELISA), and MicroEmulsion ElectroKinetic Chromatography (MEEKC) are presented and commented. Several informative figures and tables are included to show the effect of conditions (temperature, time) on the AA formation. A section is also included related to AA legislation in EU and US.

  11. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  12. Comparative Study of Fault Diagnostic Methods in Voltage Source Inverter Fed Three Phase Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Dhumale, R. B.; Lokhande, S. D.

    2017-05-01

    Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.

  13. Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study.

    PubMed

    Martinez-Mateu, Laura; Romero, Lucia; Ferrer-Albero, Ana; Sebastian, Rafael; Rodríguez Matas, José F; Jalife, José; Berenfeld, Omer; Saiz, Javier

    2018-03-01

    Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35-94% of the simulation time, depending on the basket's position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures.

  14. Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

    PubMed Central

    Romero, Lucia; Rodríguez Matas, José F.; Berenfeld, Omer; Saiz, Javier

    2018-01-01

    Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35–94% of the simulation time, depending on the basket’s position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures. PMID:29505583

  15. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Taylor, Henry F.

    2005-05-01

    The use of an optical fiber as a distributed sensor for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR). Light pulses from a cw laser operating in a single longitudinal mode and with low (MHz/min range) frequency drift are injected into one end of the single mode fiber, and the backscattered light is monitored with a photodetector. In laboratory tests with 12 km of fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on Φ-OTDR traces were characterized. In field tests in which the sensing element is a single mode fiber in a 3-mm diameter cable buried in a 20-46 cm deep, 10 cm wide trench in clay soil, detection of intruders on foot up to 4.6 m from the cable line was achieved. In desert terrain field tests in which the sensing fiber is in a 4.5-mm diameter cable buried in a 30 cm deep, 75 cm wide trench filled with loose sand, high sensitivity and consistent detection of intruders on foot and of vehicles traveling down a road near the cable line was realized over a cable length of 8.5 km and a total fiber path of 19 km. Based on these results, this technology may be regarded as a candidate for providing low-cost perimeter security for nuclear power plants, electrical power distribution centers, storage facilities for fuel and volatile chemicals, communication hubs, airports, government offices, military bases, embassies, and national borders.

  16. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  17. Emergence of higher order rotational symmetry in the hidden order phase of URu 2Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanchanavatee, N.; Janoschek, M.; Huang, K.

    2016-09-30

    Electrical resistivity measurements were performed in this paper as functions of temperature, magnetic field, and angle θ between the magnetic field and the c-axis of a URu 2Si 2 single crystal. The resistivity exhibits a two-fold oscillation as a function of θ at high temperatures, which undergoes a 180°-phase shift (sign change) with decreasing temperature at around 35 K. The hidden order transition is manifested as a minimum in the magnetoresistance and amplitude of the two-fold oscillation. Interestingly, the resistivity also showed four-fold, six-fold, and eight-fold symmetries at the hidden order transition. These higher order symmetries were also detected atmore » low temperatures, which could be a sign of the formation of another pseudogap phase above the superconducting transition, consistent with recent evidence for a pseudogap from point-contact spectroscopy measurements and NMR. Measurements of the magnetisation of single crystalline URu 2Si 2 with the magnetic field applied parallel and perpendicular to the crystallographic c-axis revealed regions with linear temperature dependencies between the hidden order transition temperature and about 25 K. Finally, this T-linear behaviour of the magnetisation may be associated with the formation of a precursor phase or ‘pseudogap’ in the density of states in the vicinity of 30–35 K.« less

  18. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  19. Heterogeneous reactivity of sea spray particles during the CalNex field campaign: Insight from single particle measurements and correlations with gas phase measurements

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2011-12-01

    Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.

  20. Resonance fluorescence and quantum interference of a single NV center

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.

    2017-11-01

    The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.

  1. Tracking Objects with Networked Scattered Directional Sensors

    NASA Astrophysics Data System (ADS)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  2. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    NASA Astrophysics Data System (ADS)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  3. Development and Field Test of the Trial Battery for Project A

    DTIC Science & Technology

    1987-05-01

    cognitive, temperament, biographical data, and vocational interest) were investigated to detect excessive redundancy among the PB measures, especially ...abili- ties. The literature review procedures were described earlier. Almost no literature was available on computerized, especially microprocessor-driven...Lhese questions, and it is acknowledged that research is necessary to obtain answers, especially with micropro- cessor-driven testing methods. Phase 3

  4. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5

    PubMed Central

    Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E. D.; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J. D.; Steglich, Frank; Si, Qimiao; Yuan, H. Q.

    2015-01-01

    Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas–van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs. PMID:25561536

  5. Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Luke, E. P.; Seifert, P.

    2017-12-01

    The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.

  6. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  7. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  8. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  9. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  10. Applications of polarization speckle in skin cancer detection and monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil

    2018-01-01

    Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.

  11. Full Stokes IQUV spectropolarimetry of AGB and post-AGB stars: probing surface magnetism and atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Lèbre, Agnès; Aurière, Michel; Fabas, Nicolas; Gillet, Denis; Josselin, Eric; Mathias, Philippe; Petit, Pascal

    2015-10-01

    Full Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2 588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.

  12. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  13. MeerLICHT and BlackGEM: custom-built telescopes to detect faint optical transients

    NASA Astrophysics Data System (ADS)

    Bloemen, Steven; Groot, Paul; Woudt, Patrick; Klein Wolt, Marc; McBride, Vanessa; Nelemans, Gijs; Körding, Elmar; Pretorius, Margaretha L.; Roelfsema, Ronald; Bettonvil, Felix; Balster, Harry; Bakker, Roy; Dolron, Peter; van Elteren, Arjen; Elswijk, Eddy; Engels, Arno; Fender, Rob; Fokker, Marc; de Haan, Menno; Hagoort, Klaas; de Hoog, Jasper; ter Horst, Rik; van der Kevie, Giel; Kozłowski, Stanisław; Kragt, Jan; Lech, Grzegorz; Le Poole, Rudolf; Lesman, Dirk; Morren, Johan; Navarro, Ramon; Paalberends, Willem-Jelle; Paterson, Kerry; Pawłaszek, Rafal; Pessemier, Wim; Raskin, Gert; Rutten, Harrie; Scheers, Bart; Schuil, Menno; Sybilski, Piotr W.

    2016-07-01

    We present the MeerLICHT and BlackGEM telescopes, which are wide-field optical telescopes that are currently being built to study transient phenomena, gravitational wave counterparts and variable stars. The telescopes have 65 cm primary mirrors and a 2.7 square degree field-of-view. The MeerLICHT and BlackGEM projects have different science goals, but will use identical telescopes. The first telescope, MeerLICHT, will be commissioned at Sutherland (South Africa) in the first quarter of 2017. It will co-point with MeerKAT to collect optical data commensurate with the radio observations. After careful analysis of MeerLICHT's performance, three telescopes of the same type will be commissioned in La Silla (Chile) in 2018 to form phase I of the BlackGEM array. BlackGEM aims at detecting and characterizing optical counterparts of gravitational wave events detected by Advanced LIGO and Virgo. In this contribution we present an overview of the science goals, the design and the status of the two projects.

  14. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hua; Zhang, Jialin, E-mail: jialinzhang@hunnu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn

    We study the geometric phase of a uniformly accelerated two-level atom coupled with vacuum fluctuations of electromagnetic fields in the presence of a perfectly reflecting plane. We find that the geometric phase difference between the accelerated and inertial atoms which can be observed by atom interferometry crucially depends on the polarizability of the atom and the distance to the boundary and it can be dramatically manipulated with anisotropically polarizable atoms. In particular, extremely close to the boundary, the phase difference can be increased by two times as compared to the case without any boundary. So, the detectability of the effectsmore » associated with acceleration using an atom interferometer can be significantly increased by the presence of a boundary using atoms with anisotropic polarizability.« less

  16. Topological phase in a two-dimensional metallic heavy-fermion system

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio

    2013-04-01

    We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.

  17. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.

  18. Taking the temperature of the interiors of magnetically heated nanoparticles.

    PubMed

    Dong, Juyao; Zink, Jeffrey I

    2014-05-27

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.

  19. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    NASA Astrophysics Data System (ADS)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  20. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing.

    PubMed

    Pontin, A; Lang, J E; Chowdhury, A; Vezio, P; Marino, F; Morana, B; Serra, E; Marin, F; Monteiro, T S

    2018-01-12

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  1. Phase transitions in community detection: A solvable toy model

    NASA Astrophysics Data System (ADS)

    Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen

    2014-05-01

    Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.

  2. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime.

    PubMed

    Palacino-González, Elisa; Gelin, Maxim F; Domcke, Wolfgang

    2017-12-13

    We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a chromophore with a Franck-Condon-active vibrational mode. We establish several signatures of these signals which are characteristic for the weak-field regime. The signatures include the quenching of vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency and relative shift of the potential energy surfaces) affect the signals.

  3. Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries

    NASA Astrophysics Data System (ADS)

    Murphy, A.; Bezryadin, A.

    2017-09-01

    We study nanostructures based on two ultrathin superconducting nanowires connected in parallel to form a superconducting quantum interference device (SQUID). The measured function of the critical current versus magnetic field, IC(B ) , is multivalued, asymmetric, and its maxima and minima are shifted from the usual integer and half integer flux quantum points. We also propose a low-temperature-limit model which generates accurate fits to the IC(B ) functions and provides verifiable predictions. The key assumption of our model is that each wire is characterized by a sample-specific critical phase ϕC defined as the phase difference at which the supercurrent in the wire is the maximum. For our nanowires ϕC is much greater than the usual π /2 , which makes a qualitative difference in the behavior of the SQUID. The nanowire current-phase relation is assumed linear, since the wires are much longer than the coherence length. The model explains single-valuedness regions where only one vorticity value nv is stable. Also, it predicts regions where multiple vorticity values are stable because the Little-Parks (LP) diamonds, which describe the region of stability for each winding number nv in the current-field diagram, can overlap. We also observe and explain regions in which the standard deviation of the switching current is independent of the magnetic field. We develop a technique that allows a reliable detection of hidden phase slips and use it to determine the boundaries of the LP diamonds even at low currents where IC(B ) is not directly measurable.

  4. Vacuum birefringence detection in all-optical scenarios

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2018-06-01

    In this paper we propose an all-optical vacuum birefringence experiment and evaluate its feasibility for various scenarios. Many petawatt-class lasers became operational and many more are expected to enter operation in the near future, therefore unprecedented electromagnetic fields (EL˜1014-1015 V/m and intensities IL˜1021-1023W/cm 2 ) will become available for experiments. In our proposal a petawatt-class laser disturbs the quantum vacuum and creates a delay in a counterpropagating probe laser beam. Placing this delayed beam in one arm of a Mach-Zehnder interferometer (MZI), allows the measurement of the vacuum refraction coefficient via a phase shift. Coherent as well as squeezed light are both considered and the minimum phase sensitivity evaluated. We show that using existing technology with some moderately optimistic assumptions, at least part of the discussed scenarios are feasible for a vacuum birefringence detection experiment.

  5. The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey

    NASA Astrophysics Data System (ADS)

    Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.

    2017-05-01

    We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.

  6. Numerical detection of the Gardner transition in a mean-field glass former.

    PubMed

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  7. Hazard Detection Analysis for a Forward-Looking Interferometer

    NASA Technical Reports Server (NTRS)

    West, Leanne; Gimmestad, Gary; Herkert, Ralph; Smith, William L.; Kireev, Stanislav; Schaffner, Philip R.; Daniels, Taumi S.; Cornman, Larry B.; Sharman, Robert; Weekley, Andrew; hide

    2010-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining the measurements required to alert flight crews to potential weather hazards to safe flight. To meet the needs of the commercial fleet, such a sensor should address multiple hazards to warrant the costs of development, certification, installation, training, and maintenance. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing. These technologies have also been applied to the detection of aerosols and gases for other purposes. The FLI concept is being evaluated for its potential to address multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing during all phases of flight (takeoff, cruise, and landing). The research accomplished in this second phase of the FLI project was in three major areas: further sensitivity studies to better understand the potential capabilities and requirements for an airborne FLI instrument, field measurements that were conducted in an effort to provide empirical demonstrations of radiometric hazard detection, and theoretical work to support the development of algorithms to determine the severity of detected hazards

  8. Detection With Rhessi of High Frequency X-ray Oscillations in the Tail of the 2004 Hyperflare From SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.

    2005-01-01

    The recent discovery of high frequency oscillations in giant flares from SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. Using timing data from RHESSI, we have confirmed the detection of a 92.5 Hz Quasi-Periodic Oscillation (QPO) in the tail of the SGR 1806-20 giant flare. We also find another, stronger, QPO at higher energies, at 626.5 Hz. Both QPOs are visible only at particular (but different) rotational phases, implying an association with a specific area of the neutron star surface or magnetosphere. At lower frequencies we confirm the detection of an 18 Hz QPO, at the same rotational phase as the 92.5 Hz QPO, and report the additional presence of a broad 26 Hz QPO. We are however unable to make a robust confirmation of the presence of a 30 Hz QPO, despite higher count rates. We discuss our results in the light of neutron star vibration models.

  9. Identification of crop cultivars with consistently high lignocellulosic sugar release requires the use of appropriate statistical design and modelling

    PubMed Central

    2013-01-01

    Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment. PMID:24359577

  10. High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation.

    PubMed

    Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J

    2017-10-01

    Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

  11. Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives.

    PubMed

    Guerra-Diaz, Patricia; Gura, Sigalit; Almirall, José R

    2010-04-01

    A preconcentration device that targets the volatile chemical signatures associated with illicit drugs and explosives (high and low) has been designed to fit in the inlet of an ion mobility spectrometer (IMS). This is the first reporting of a fast and sensitive method for dynamic sampling of large volumes of air using planar solid phase microextraction (PSPME) incorporating a high surface area for absorption of analytes onto a sol-gel polydimethylsiloxane (PDMS) coating for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties at ambient temperature, resulting in the detection of analyte concentrations in the parts per trillion range when as low as 3.5 L of air are sampled over the course of 10 s (absolute mass detection of less than a nanogram). Dynamic PSPME was used to sample the headspace over the following: 3,4-methylenedioxymethamphetamine (MDMA) tablets resulting in the detection of 12-40 ng of piperonal, high explosives (Pentolite) resulting in the detection of 0.6 ng of 2,4,6-trinitrotoluene (TNT), and low explosives (several smokeless powders) resulting in the detection of 26-35 ng of 2,4-dinitrotoluene (2,4-DNT) and 11-74 ng of diphenylamine (DPA).

  12. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  13. Coherent generation of symmetry-forbidden phonons by light-induced electron-phonon interactions in magnetite

    NASA Astrophysics Data System (ADS)

    Borroni, S.; Baldini, E.; Katukuri, V. M.; Mann, A.; Parlinski, K.; Legut, D.; Arrell, C.; van Mourik, F.; Teyssier, J.; Kozlowski, A.; Piekarz, P.; Yazyev, O. V.; Oleś, A. M.; Lorenzana, J.; Carbone, F.

    2017-09-01

    Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the ordering field are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3O4 ) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions.

  14. Fisher information as a generalized measure of coherence in classical and quantum optics.

    PubMed

    Luis, Alfredo

    2012-10-22

    We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.

  15. Research on aircraft trailing vortex detection based on laser's multiplex information echo

    NASA Astrophysics Data System (ADS)

    Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

    2010-10-01

    Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

  16. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  17. Can even-order laser harmonics exhibited by Bohmian trajectories in symmetric potentials be observed?

    PubMed

    Peatross, J; Johansen, J

    2014-01-13

    Strong-field laser-atom interactions provide extreme conditions that may be useful for investigating the de Broglie-Bohm quantum interpretation. Bohmian trajectories representing bound electrons in individual atoms exhibit both even and odd harmonic motion when subjected to a strong external laser field. The phases of the even harmonics depend on the random initial positions of the trajectories within the wave function, making the even harmonics incoherent. In contrast, the phases of odd harmonics remain for the most part coherent regardless of initial position. Under the conjecture that a Bohmian point particle plays the role of emitter, this suggests an experiment to determine whether both even and odd harmonics are produced at the atomic level. Estimates suggest that incoherent emission of even harmonics may be detectable out the side of an intense laser focus interacting with a large number of atoms.

  18. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    PubMed

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  19. The rotationally modulated Zeeman spectrum at nearly 10 to the 9th Gauss of the white dwarf PG 1031 + 234

    NASA Technical Reports Server (NTRS)

    Latter, William B.; Schmidt, Gary D.; Green, Richard F.

    1987-01-01

    Detailed analyses are performed of high-quality, phase-resolved CCD spectroscopy of the absorption-line spectrum throughout its rotation period of the new white dwarf PG 1031 + 234. The spectral variations are discussed and compared with new theoretical calculations of the behavior of hydrogen in strong magnetic fields. This analysis is then extended through a modeling procedure which produces a synthetic magnetically distorted spectrum for a star of arbitrary field strength and structure. The results confirm that PG 1031 + 234 possesses the strongest field yet detected on a white dwarf, with regions on the surface spanning the range of about 200 to nearly 1000 MG. The spectroscopic data reflect a field pattern containing a slightly offset global component of polar field strength of about 500 MG together with a localized magnetic 'spot' whose central field approaches 2000 MG.

  20. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  1. Various Ambiguities in Re-constructing Laser Pulse Parameters

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasa, Narasimha

    2006-01-01

    We think that mode lock laser pulses are generated by the summation process that take place between the monochromatic EM filed frequencies as if they interact with each other as shown in equation 1. In reality, the pulse generation is a collaborative interaction process between EM fields and various material medium. When we carry out the actual mode lock analysis, we do take into account of interpaly between all the temporal dynamics of the cavity gain medium, cavity round trip time and the response time of the intra cavity element (saturable absorber, Kerr medium, etc.). that really enforces the locking of the phase of the cavity spontaneous emissions. On a conceptual level, this simplistic representation of the mode locking by Eq.1 ignores all these critical physical processes. When we try to analyze a pulsed field, again we start by representing it very much like this equation, even though we can only detect the square modulus of this complex field and loose a lot of phase related information to the detectors quantum whims and their time constants. The key parameters for a light pulse are as follows. Foremost is the (i) carrier frequency, which cannot be described or imagined without its state of undulation expressed as its (ii) phase. Next is our imagined time finite (iii) carrier envelope that provides the temporal boundary of the field amplitude strength of the undulating E-field. The final parameter is the (iv) state of polarization or the unique plane along which the strength of the E-field gradient undulates. None of these filed characteristics are made self-evident to us by the fields themselves. We do not see light. Light does not see light. Light beams pass through each other without altering each others energy distribution unless there are interacting material molecules (dipoles) within the physical volume of superposition of the beams. In contrast, we can sense the material particles. Material particles sense each other and they cannot pass through each other without interacting with (scattering from) each other. Thus the interpretation of the superposition phenomenon of multiple fields on detectors should not be lumped under the mysterious "wave-particle duality" philosophy. The phenomenon of superposition can be understood better when we focus on the actual process experienced by the detecting dipoles when allowed by QM rules, they respond to and sum all the induced stimulations due to all the superposed fields followed by the proportionate energy absorption giving rise to the fringes we observe. We will present various experimental results to illustrate our arguments. Our position is that such detector behavior driven interpretations rather than the generally implied field-field interaction driven explanations, will help us better understand the ultimate nature of light and hence invent better and newer devices and instruments.

  2. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  3. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  4. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  5. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    PubMed Central

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  6. Iterative Strategies for Aftershock Classification in Automatic Seismic Processing Pipelines

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Harris, David B.; Dodge, Douglas A.

    2016-04-01

    Aftershock sequences following very large earthquakes present enormous challenges to near-realtime generation of seismic bulletins. The increase in analyst resources needed to relocate an inflated number of events is compounded by failures of phase association algorithms and a significant deterioration in the quality of underlying fully automatic event bulletins. Current processing pipelines were designed a generation ago and, due to computational limitations of the time, are usually limited to single passes over the raw data. With current processing capability, multiple passes over the data are feasible. Processing the raw data at each station currently generates parametric data streams which are then scanned by a phase association algorithm to form event hypotheses. We consider the scenario where a large earthquake has occurred and propose to define a region of likely aftershock activity in which events are detected and accurately located using a separate specially targeted semi-automatic process. This effort may focus on so-called pattern detectors, but here we demonstrate a more general grid search algorithm which may cover wider source regions without requiring waveform similarity. Given many well-located aftershocks within our source region, we may remove all associated phases from the original detection lists prior to a new iteration of the phase association algorithm. We provide a proof-of-concept example for the 2015 Gorkha sequence, Nepal, recorded on seismic arrays of the International Monitoring System. Even with very conservative conditions for defining event hypotheses within the aftershock source region, we can automatically remove over half of the original detections which could have been generated by Nepal earthquakes and reduce the likelihood of false associations and spurious event hypotheses. Further reductions in the number of detections in the parametric data streams are likely using correlation and subspace detectors and/or empirical matched field processing.

  7. Cine phase contrast MRI to measure continuum Lagrangian finite strain fields in contracting skeletal muscle.

    PubMed

    Zhou, Hehe; Novotny, John E

    2007-01-01

    To measure the complex mechanics and Lagrangian finite strain of contracting human skeletal muscle in vivo with cine phase contrast MRI (CPC-MRI) applied to the human supraspinatus muscle of the shoulder. Processing techniques are applied to transform velocities from CPC-MRI images to displacements and planar Lagrangian finite strain. An interpolation method describing the continuity of the velocity field and forward-backward and Fourier transform methods were used to track the displacement of regions of interest during a cyclic abduction motion of a subject's arm. The components of the Lagrangian strain tensor were derived during the motion and principal and maximum in-plane shear strain fields calculated. Derived displacement and strain fields are shown that describe the contraction mechanics of the supraspinatus. Strains vary over time during the cyclic motion and are highly nonuniform throughout the muscle. This method presented overcomes the physical resolution of the MRI scanner, which is crucial for the detection of detailed information within muscles, such as the changes that might occur with partial tears of the supraspinatus. These can then be used as input or validation data for modeling human skeletal muscle.

  8. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  9. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  10. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less

  11. Natural Scales in Geographical Patterns

    NASA Astrophysics Data System (ADS)

    Menezes, Telmo; Roth, Camille

    2017-04-01

    Human mobility is known to be distributed across several orders of magnitude of physical distances, which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community detection to movement networks constrained by increasing percentiles of the distance distribution. Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in the community partition space. The detection of these phases constitutes the first objective method of characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging from cities to countries of various sizes and a transnational area. For all regions, the number of natural scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural contagion where the introduction of spatial boundaries is pivotal.

  12. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-02-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patent technique that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera (IMSS Image Multi-spectral Sensing). This camera has been tested at Dugway Proving Ground and Dstl Porton Down facility looking at Chemical and Biological agent simulants. The camera has been used to investigate surfaces contaminated with chemical agent simulants. In addition to Chemical and Biological detection the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. The camera contains an embedded Power PC and a real time image processor for performing image processing algorithms to assist in the detection and identification of gas phase species in real time. In this paper we will present an over view of the technology and show how it has performed for different applications, such as gas leak detection, surface contamination, remote sensing and surveillance applications. In addition a sampling of the results form TRE field testing at Dugway in July of 2002 and Dstl at Porton Down in September of 2002 will be given.

  13. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  14. DISENTANGLING CONFUSED STARS AT THE GALACTIC CENTER WITH LONG-BASELINE INFRARED INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Jordan M.; Eisner, J. A.; Monnier, J. D.

    2012-08-01

    We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY observations of mock star fields in orbit within {approx}50 mas of Sgr A*. Dual-field phase referencing techniques, as implemented on ASTRA and planned for GRAVITY, will provide the sensitivity to observe Sgr A* with long-baseline infrared interferometers. Our results show an improvement in the confusion noise limit over current astrometric surveys, opening a window to study stellar sources in the region. Since the Keck Interferometer has only a single baseline, the improvement in the confusion limit depends on source position angles. The GRAVITY instrument will yield a more compact andmore » symmetric point-spread function, providing an improvement in confusion noise which will not depend as strongly on position angle. Our Keck results show the ability to characterize the star field as containing zero, few, or many bright stellar sources. We are also able to detect and track a source down to m{sub K} {approx} 18 through the least confused regions of our field of view at a precision of {approx}200 {mu}as along the baseline direction. This level of precision improves with source brightness. Our GRAVITY results show the potential to detect and track multiple sources in the field. GRAVITY will perform {approx}10 {mu}as astrometry on an m{sub K} = 16.3 source and {approx}200 {mu}as astrometry on an m{sub K} = 18.8 source in 6 hr of monitoring a crowded field. Monitoring the orbits of several stars will provide the ability to distinguish between multiple post-Newtonian orbital effects, including those due to an extended mass distribution around Sgr A* and to low-order general relativistic effects. ASTRA and GRAVITY both have the potential to detect and monitor sources very close to Sgr A*. Early characterizations of the field by ASTRA, including the possibility of a precise source detection, could provide valuable information for future GRAVITY implementation and observation.« less

  15. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    NASA Astrophysics Data System (ADS)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, David T.

    We extend and generalize previous work on the interference of light from independent cavities that began with the suggestion of Pfleegor and Mandel [Phys. Rev. 159, 1084 (1967)] that their observed interference of laser beams should not be associated too closely with particular states of the beams but more with the detection process itself. In particular we examine how the detection of interference induces a nonrandom-phase difference between internal cavity states with initial random phases for a much broader range of such states than has previously been considered. We find that a subsequent interference measurement should give results consistent withmore » the induced phase difference. The inclusion of more cavities in the interference measurements enables the construction in principle of a laboratory in the sense used by Aharonov and Susskind, made up of cavity fields that can serve as frames of phase reference. We also show reasonably simply how intrinsic phase coherence of a beam of light leaking from a single cavity arises for any internal cavity state, even a photon number state. Although the work presented here may have some implications for the current controversy over whether or not a typical laboratory laser produces a coherent state, it is not the purpose of this paper to enter this controversy; rather it is to examine the interesting quantum physics that arises for cavities with more general internal states.« less

  17. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.

    PubMed

    Ulloa, Camilo; Duine, R A

    2018-04-27

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  18. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet

    NASA Astrophysics Data System (ADS)

    Ulloa, Camilo; Duine, R. A.

    2018-04-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  19. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Lu, Bin; Zheng, Hanrong; Ye, Qing; Pan, Zhengqing; Cai, Haiwen; Qu, Ronghui; Fang, Zujie; Zhao, Howell

    2017-04-01

    High-speed railway is being developed rapidly; its safety, including infrastructure and train operation, is vital. This paper presents a railway-subgrade vibration monitoring scheme based on phase-sensitive OTDR for railway safety. The subgrade vibration is detected and rebuilt. Multi-dimension comprehensive analysis (MDCA) is proposed to identify the running train signals and illegal constructions along railway. To our best knowledge, it is the first time that a railway-subgrade vibration monitoring scheme is proposed. This scheme is proved effective by field tests for real-time train tracking and activities monitoring along railway. It provides a new passive distributed way for all-weather railway-subgrade vibration monitoring.

  20. Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2013-07-01

    We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.

  1. Phase-coherent engineering of electronic heat currents with a Josephson modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  2. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Bauer, J.

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4more » and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.« less

  4. Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses

    PubMed Central

    McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon

    2013-01-01

    The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm2. Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes. PMID:23592185

  5. Detection of Primordial Magnetic Fields in TeV gamma-ray data

    NASA Astrophysics Data System (ADS)

    Wingler, A.

    The analysis of the time-variable flux of γ-ray photons from extragalactic sources is currently the only proposed way to directly determine the magnetic field strengths in intergalactic space - far away from galaxies and clusters (in the cosmological "voids") - in the range below about 10,10 Gauss (Plaga 1995). Remnant magnetic fields with field strengths much below this, which may well have formed in early cosmological times, could exist in these voids. Due to their interaction with infrared photons TeV gamma-rays induce pair production in intergalactic space. The electrons and positrons are deflected by ambient magnetic fields and produce γ-rays via inverse Compton scattering that are delayed with respect to the original photons in an energy-dependent, characteristic manner. A standard method to identify these delayed events in a data sample of a source with a variable VHE γ-ray flux (as available from several Cherenkov telescope experiments for the high-emission phase of the AGN Mrk 501 in 1997) is described. Monte-Carlo simulations of existing data sets (taking into backgrounds and instrumental limitations) are used to explore how sensitive data sets similar to the existing ones are to primordial magnetic fields. We find that about 22000 (15000) events from a source with characteristics similar to Mrk 501 are needed to detect a primordial B field of 3 (10) atto Gauss (10,18 G) with a 3 significance.

  6. Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses.

    PubMed

    McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2013-06-07

    The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm(2). Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes.

  7. Probing the size of extra dimensions with gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Tanahashi, Norihiro; Tanaka, Takahiro

    2011-04-01

    In the Randall-Sundrum II braneworld model, it has been conjectured, according to the AdS/CFT correspondence, that a brane-localized black hole (BH) larger than the bulk AdS curvature scale ℓ cannot be static, and it is dual to a four-dimensional BH emitting Hawking radiation through some quantum fields. In this scenario, the number of the quantum field species is so large that this radiation changes the orbital evolution of a BH binary. We derived the correction to the gravitational waveform phase due to this effect and estimated the upper bounds on ℓ by performing Fisher analyses. We found that the Deci-Hertz Interferometer Gravitational Wave Observatory and the Big Bang Observatory (DECIGO/BBO) can give a stronger constraint than the current tabletop result by detecting gravitational waves from small mass BH/BH and BH/neutron star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 105 BH/NS binaries per year. Taking this advantage, we find that DECIGO/BBO can actually measure ℓ down to ℓ=0.33μm for a 5 yr observation if we know that binaries are circular a priori. This is about 40 times smaller than the upper bound obtained from the tabletop experiment. On the other hand, when we take eccentricities into binary parameters, the detection limit weakens to ℓ=1.5μm due to strong degeneracies between ℓ and eccentricities. We also derived the upper bound on ℓ from the expected detection number of extreme mass ratio inspirals with LISA and BH/NS binaries with DECIGO/BBO, extending the discussion made recently by McWilliams [Phys. Rev. Lett. 104, 141601 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.141601]. We found that these less robust constraints are weaker than the ones from phase differences.

  8. Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening

    NASA Astrophysics Data System (ADS)

    Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry

    2011-05-01

    In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera-Palmer, Belkis

    Predicting the performance of radiation detection systems at field sites based on measured performance acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and depends on the signal generated by the detector for the given measurement configuration (i.e., source strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. Detector performance is usually evaluated in the performance and operationalmore » testing phases, where the measurement configurations are selected to represent radiation source and background configurations of interest to security applications.« less

  10. On the reach of perturbative descriptions for dark matter displacement fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors ormore » transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.« less

  11. FIBER AND INTEGRATED OPTICS: Modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation

    NASA Astrophysics Data System (ADS)

    Belovolov, M. I.; Vitrik, O. B.; Dianov, Evgenii M.; Kulchin, Yurii N.; Obukh, V. F.

    1989-11-01

    An investigation was made of modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation. The simplest and most convenient (for analysis) controlled interference pattern was obtained on addition, at the exit from a waveguide, of the fields of two modes of different order or of components of two orthogonally polarized waves of the same mode when an additional phase shift between these waves was induced by deformation. The two investigated schemes were suitable for the construction of simple and highly sensitive sensors capable of detecting small strains with characteristics which could be varied by suitable selection of the waveguide parameters and of the signal processing method.

  12. Cosmological Implications of Electroweak Monopole

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.

    2018-01-01

    In this talk we review the basic features of the electroweak monopole, and estimate the remnant electroweak monopole density of the standard model in the present universe. We show that, although the electroweak phase transition is of the first order, the monopole production comes from the thermal fluctuations of the Higgs field after the phase transition, not the vacuum bubble collisions during the phase transition. Moreover, most of the monopoles produced initially are annihilated as soon as created, and this annihilation continues very long time, longer than the muon pair annihilation time. As the result the remnant monopole density at present universe becomes very small, of 10-11 of the critical density, too small to be the dark matter. We discuss the physical implications of our results on the ongoing monopole detection experiments.

  13. [Imaging origins and characteristics analysis of acute and chronic aspiration pneumonia].

    PubMed

    Wang, Kang; Li, Ming; Wang, Xiongbiao; Qin, Jianmin; Wang, Zhi; Zhao, Zehua; Qin, Le; Hua, Yanqing

    2014-11-11

    To discuss about the pathologic and imaging origins and characteristics of CT scaning and X-ray radiography for acute and chronic aspiration pneumonia. Imaging data from 30 patients with aspiration pneumonia were retrospectively analyzed, CT scaning was performed in 27 patients, which PMVR reconstruction was performed in 21 cases;3 exammed by X-ray with 2 used by esophagography. Opaque bodies were detected in trachea by CT scaning in 12 patients.7 patients in acute phase rapidly developed into acute respiratory distress syndrome(ARDS). CT signs of 30 patients with acute and chronic aspiration pneumonia included: centrilobular nodules were detected in 2 cases with acute phase, 4 cases with subacute phase and 4 cases with chronic phase; the imaging of ground glass opacity were detected in 9 cases with acute phase, 2 cases with subacute phase and 3 cases with chronic phase; the imaging of bronchiectasis was detected in 8 cases with chronic phase, which mucilage embolism was detected in 3 of 8 cases; the imaging of atelectasis was detected in 6 cases with chronic phase; the imaging of sheeted consolidation was detected in 5 cases with chronic phase, 8 case with acute phase; the imaging of interstitial fibrosis was detected in 3 cases with chronic phase. Lesions of inferior lobe of right lung were detected in 9 cases with chronic phase, 4 cases with subacute phase, 11 case with acute phase;lesions of inferior lobe of left lung were detected in 6 cases with chronic phase and 3 cases with subacute group, 11 case with acute phase. The imaging features of acute and chronic aspiration pneumonia overlap with GGO and centrilobular nodules in every group. While the imaging features of atelectasis, bronchiectasis or mucilage embolism are found in chronic phase. The chest CT scaning may accurately evaluate the dynamic change of aspiration pneumonia.

  14. The Effect of Ocean Currents on Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Leeuwenburgh, Olwijn

    2000-01-01

    We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.

  15. Magnetic and electrical properties in Co-doped KNbO3 bulk samples

    NASA Astrophysics Data System (ADS)

    Astudillo, Jairo A.; Dionizio, Stivens A.; Izquierdo, Jorge L.; Morán, Oswaldo; Heiras, Jesús; Bolaños, Gilberto

    2018-05-01

    Multiferroic materials exhibit in the same phase at least two of the ferroic properties: ferroelectricity, ferromagnetism, and ferroelasticity, which may be coupled to each other. In this work, we investigated bulk materials with a nominal composition KNb0.95Co0.05O3 (KN:Co) fabricated by the standard solid-state reaction technique. X-ray diffraction analysis of the polycrystalline sample shows the respective polycrystalline perovskite structure of the KNbO3 phase with only small variation due to the Co doping. No secondary or segregated phases are observed. The values of the extracted lattice parameters are very close to those reported in the literature for KNbO3 with orthorhombic symmetry (a = 5.696 Å, b = 3.975 Å, and c = 5.721 Å) with space group Bmm2. Measurements of the electric polarization as a function of the electric field at different temperatures indicate the presence of ferroelectricity in our samples. Magnetic response of the pellets, detected by high sensitivity measurements of magnetization as a function of field, reveal weak ferromagnetic behavior in the doped sample at room temperature. Also, ferroelectric hysteresis loops were measured in a magnetic field of 1 T, applied perpendicular to the plane of the sample. Values of the remnant polarization as high as 7.19 and 7.69 μC/cm2 are obtained for 0 applied field and for 1 T, respectively; the value for the strength of the magnetoelectric coupling obtained is 6.9 %.

  16. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.

  17. Fiber Optic Magnetic Field Sensors Using Metallic Glass Coatings.

    NASA Astrophysics Data System (ADS)

    Wang, Yu.

    1990-01-01

    In this thesis we have investigated the use of a magnetostrictive material with a single-mode optical fiber for detecting weak magnetic fields. The amorphous alloy Metglas^circler 2605SC (Fe_{81}B_ {13.5}Si_{3.5} C_2) was chosen as the magnetostrictive material because of the combination of its large magnetostriction and small magnetic anisotropy field among all available metals. For efficient coupling between the magnetostrictive material and the optical fiber, the magnetostrictive material was directly deposited onto the single-mode optical fiber. The coated fibers were used as the sensing element in the fiber optic magnetic field sensor (FOMS). Very high quality thick metallic glass films of the Metglas 2605 SC have been deposited using triode-magneton sputtering. This is the first time such material has been successfully deposited onto an optical fiber or onto any other substrate. The films were also deposited onto glass slides to allow the study of the magnetic properties of the film. The thicknesses of these films were 5-15 mum. The magnetic property of primary interest for our sensor application is the induced longitudinal magnetostrictive strain. However, the other magnetic properties such as magnetic anisotropy, surface and bulk coercivities, magnetic homogeneity and magnetization all affect the magnetostrictive response of the material. We have used ferromagnetic resonance (FMR) at microwave frequencies to study the magnetic anisotropy and homogeneity; vibrating sample magnetometry (VSM) to study the bulk magnetic hysteresis responses and coercivity; and the longitudinal magneto-optic kerr effect (LMOKE) to study the surface magnetic hysteresis responses and coercivity. The isothermalmagnetic annealing effect on these properties has also been studied in detail. The fiber optic magnetic field sensor constructed using the metallic-glass-coated fiber was tested. An electronic feedback control loop using a PZT cylinder was constructed for stabilizing the sensor operation. Magnetic field detection at different dither frequencies was studied in detail. The estimated minimum detectable magnetic field was about 3 times 10^{-7 } Oe. A simplified elastic model was used for the theoretical calculation of the phase shift induced in a metallic-glass -coated optical fiber with a longitudinal applied magnetic field. The phase shift as a function of coating thickness was calculated, and the experimental results at certain thicknesses were compared with the calculation. The frequency response of the FOMS was also studied in some detail. Three different configurations were used for the study of the frequency response. The results indicate that the resonances observed in the FOMS are most likely related to the mechanical resonance of the optical fiber.

  18. Lidar/DIAL detection of bomb factories

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Puiu, Adriana; Rosa, Olga; Palucci, Antonio

    2013-10-01

    One of the aims of the project BONAS (BOmb factory detection by Networks of Advanced Sensors) is to develop a lidar/DIAL (differential absorption lidar) to detect precursors employed in the manufacturing of improvised explosive devices (IEDs). At first, a spectroscopic study has been carried out: the infrared (IR) gas phase spectrum of acetone, one of the more important IED precursors, has been procured from available databases and checked with cell measurements. Then, the feasibility of a lidar/DIAL for the detection of acetone vapors has been shown in laboratory, simulating the experimental conditions of a field campaign. Eventually, having in mind measurements in a real scenario, an interferent study has been performed, looking for all known compounds that share with acetone IR absorption in the spectral band selected for its detection. Possible interfering species were investigated, simulating both urban and industrial atmospheres and limits of acetone detection in both environments were identified. This study confirmed that a lidar/DIAL can detect low concentration of acetone at considerable distances.

  19. Enumerating Pathogenic Microorganism Surrogates for Groundwater Experiments Using Solid-Phase Cytometry

    NASA Astrophysics Data System (ADS)

    Stevenson, M. E.; Blaschke, A. P.; Kirschner, A.

    2010-12-01

    Regulators need a dependable method that would enable them to calculate with confidence the setback distance of a drinking water well from a potential point of contamination. Since it is not permissible to perform field tests using pathogenic microorganisms, it is necessary to predict the transport of dangerous microbes in a different way, using surrogates. One such surrogate method involves using bacteriophages, which are viruses that are pathogenic to bacteria, but are not dangerous to humans. Another possible surrogate to model the potential travel time of microbial contamination is the use of synthetic microspheres; we will test microspheres ranging in size from 0.025 to 1 µm. The constraining factor for comparing the transport of microspheres and bacteriophages is the detection limit of the measuring apparatus. Appropriate measuring techniques are mandatory for a comparison. Traditionally, bacteriophages are measured using plaque forming analysis, the detection limit being one plaque forming unit per petri dish. In our study, the use of solid-phase cytometry for enumerating microspheres for wellhead protection projects is being investigated, as the detection limit using this technology is one cell per filter. To the best of our knowledge, there is no other technique available that enables a comparable detection limit. The solid-phase cytometer used for this study is a ChemScan RDI (Chemunex, France). For comparison, epifluorescence microscopy will also be used. The ChemScan RDI device automatically drives an epifluorescent microscope to the site of each cell detected, in order to confirm the validity of the reading. In this way, it is possible to observe whether clumping together of microspheres is a problem or if non-target cells were labelled. Keywords: Microspheres, Solid-phase cytometry, ChemScan, Drinking water protection Acknowledgements: We would like to thank the Austrian Science Fund (FWF) for financial support as part of the Doctoral Program on Water Resource Systems (DK Plus W1219-N22) and the Vienna Waterworks (MA 31) as part of the GWRS-Vienna project.

  20. Montanoa frutescens and Montanoa grandiflora extracts reduce anxiety-like behavior during the metestrus-diestrus phase of the ovarian cycle in Wistar rats.

    PubMed

    Rodríguez-Landa, Juan Francisco; Vicente-Serna, Julio; Rodríguez-Blanco, Luis Alfredo; Rovirosa-Hernández, María de Jesús; García-Orduña, Francisco; Carro-Juárez, Miguel

    2014-01-01

    In previous studies, the anxiolytic-like effects of Montanoa tomentosa and Montanoa frutescens were reported in male rats, but the potential anxiolytic-like effects of Montanoa plants during the different phases of the ovarian cycle in rats remain to be explored. The anxiolytic-like effects of the aqueous crude extracts of M. frutescens (25 and 50 mg/kg) and M. grandiflora (25 and 50 mg/kg) in the elevated plus maze were investigated in Wistar rats during the estrous cycle and compared with 2 mg/kg diazepam as a reference anxiolytic drug. To investigate any motor effect (i.e., hyperactivity, no changes, or hypoactivity) associated with the treatments, the rats were evaluated in the open field test. The M. frutescens (25 and 50 mg/kg) and M. grandiflora (50 mg/kg) extracts exerted anxiolytic-like effects during the metestrus-diestrus phase, similar to diazepam, without disrupting spontaneous motor activity. No significant effects of the extracts were detected in either behavioral test during the proestrus-estrus phase, whereas diazepam produced motor hypoactivity in the open field test. These results indicate that the M. frutescens and M. grandiflora extracts possess anxiolytic-like effects that depend on the ovarian cycle phase, supporting the Mexican ancient medicinal use of these plants to ameliorate anxiety disorders.

  1. Montanoa frutescens and Montanoa grandiflora Extracts Reduce Anxiety-Like Behavior during the Metestrus-Diestrus Phase of the Ovarian Cycle in Wistar Rats

    PubMed Central

    Rodríguez-Landa, Juan Francisco; Vicente-Serna, Julio; Rodríguez-Blanco, Luis Alfredo; Rovirosa-Hernández, María de Jesús; García-Orduña, Francisco; Carro-Juárez, Miguel

    2014-01-01

    In previous studies, the anxiolytic-like effects of Montanoa tomentosa and Montanoa frutescens were reported in male rats, but the potential anxiolytic-like effects of Montanoa plants during the different phases of the ovarian cycle in rats remain to be explored. The anxiolytic-like effects of the aqueous crude extracts of M. frutescens (25 and 50 mg/kg) and M. grandiflora (25 and 50 mg/kg) in the elevated plus maze were investigated in Wistar rats during the estrous cycle and compared with 2 mg/kg diazepam as a reference anxiolytic drug. To investigate any motor effect (i.e., hyperactivity, no changes, or hypoactivity) associated with the treatments, the rats were evaluated in the open field test. The M. frutescens (25 and 50 mg/kg) and M. grandiflora (50 mg/kg) extracts exerted anxiolytic-like effects during the metestrus-diestrus phase, similar to diazepam, without disrupting spontaneous motor activity. No significant effects of the extracts were detected in either behavioral test during the proestrus-estrus phase, whereas diazepam produced motor hypoactivity in the open field test. These results indicate that the M. frutescens and M. grandiflora extracts possess anxiolytic-like effects that depend on the ovarian cycle phase, supporting the Mexican ancient medicinal use of these plants to ameliorate anxiety disorders. PMID:24800255

  2. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    PubMed Central

    Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.; Sanders, Melinda; Harvey, Sara; Gore, John C.; Yankeelov, Thomas E.

    2015-01-01

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm)3 and (0.6 mm)3. In images acquired at 7 T with voxel sizes of (0.2 mm)3–(0.4 mm)3, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm)3–(0.6 mm)3, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance. PMID:25735297

  3. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragmentsmore » within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12 min, and voxel sizes of (0.4 mm){sup 3}–(0.6 mm){sup 3}, simulated microcalcifications with sizes of 0.6–1.0 mm were detected with a sensitivity, specificity, and AUC of 75%–87%, 54%–87%, and 0.76%–0.90%, respectively. However, different microcalcification shapes were indistinguishable. Conclusions: The new method is promising for detecting relatively large microcalcifications (i.e., 0.6–0.9 mm) within the breast at 7 T in reasonable times. Detection of smaller deposits at high field may be possible with higher spatial resolution, but such images require relatively long scan times. Although mammography can detect and distinguish the shape of smaller microcalcifications with superior sensitivity and specificity, this alternative method does not expose tissue to ionizing radiation, is not affected by breast density, and can be combined with other MRI methods (e.g., dynamic contrast-enhanced MRI and diffusion weighted MRI), to potentially improve diagnostic performance.« less

  4. Performance Evaluation of an Air-Coupled Phased-Array Radar for Near-Field Detection of Steel

    DTIC Science & Technology

    2014-05-01

    Corrosion Process Metals tend to corrode in acids. The concrete mixture is made up of a Portland cement solution which is a strong alkaline that preserves...suggestions they made throughout the thesis process . Lastly, I would also like to thank the UVM colleagues that shared their knowledge, and helped me conduct...4 2.2. Concrete/Pavement Damage .................................................................................. 4 2.3. Steel Corrosion Process

  5. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).

    PubMed

    Frada, Miguel J; Bidle, Kay D; Probert, Ian; de Vargas, Colomban

    2012-06-01

    The cosmopolitan coccolithophore Emiliania huxleyi is characterized by a strongly differentiated haplodiplontic life cycle consisting of a diploid phase, generally bearing coccoliths (calcified) but that can be also non-calcified, and a non-calcified biflagellated haploid phase. Given most studies have focused on the bloom-producing calcified phase, there is little-to-no information about non-calcified cells in nature. Using field mesocoms as experimental platforms, we quantitatively surveyed calcified and non-calcified cells using the combined calcareous detection fluorescent in situ hybridization (COD-FISH) method and qualitatively screened for haploid specific transcripts using reverse transcription-PCR during E. huxleyi bloom successions. Diploid, calcified cells formed dense blooms that were followed by the massive proliferation of E. huxleyi viruses (EhVs), which caused bloom demise. Non-calcified cells were also detected throughout the experiment, accounting for a minor fraction of the population but becoming progressively more abundant during mid-late bloom periods concomitant with EhV burst. Non-calcified cell growth also paralleled a distinct window of haploid-specific transcripts and the appearance of autotrophic flagellates morphologically similar to haploid cells, both of which are suggestive of meiosis and sexual life cycling during natural blooms of this prominent marine phytoplankton species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. The Astrophysics of Visible-light Orbital Phase Curves in the Space Age

    NASA Astrophysics Data System (ADS)

    Shporer, Avi

    2017-07-01

    The field of visible-light continuous time series photometry is now at its golden age, manifested by the continuum of past (CoRoT, Kepler), present (K2), and future (TESS, PLATO) space-based surveys delivering high precision data with a long baseline for a large number of stars. The availability of the high-quality data has enabled astrophysical studies not possible before, including, for example, detailed asteroseismic investigations and the study of the exoplanet census including small planets. This has also allowed to study the minute photometric variability following the orbital motion in stellar binaries and star-planet systems which is the subject of this review. We focus on systems with a main sequence primary and a low-mass secondary, from a small star to a massive planet. The orbital modulations are induced by a combination of gravitational and atmospheric processes, including the beaming effect, tidal ellipsoidal distortion, reflected light, and thermal emission. Therefore, the phase curve shape contains information about the companion’s mass and atmospheric characteristics, making phase curves a useful astrophysical tool. For example, phase curves can be used to detect and measure the mass of short-period low-mass companions orbiting hot fast-rotating stars out of reach of other detection methods. Another interesting application of phase curves is using the orbital phase modulations to look for non-transiting systems, which comprise the majority of stellar binary and star-planet systems. We discuss the science done with phase curves, the first results obtained so far, and the current difficulties and open questions related to this young and evolving subfield.

  7. On the estimation of phase synchronization, spurious synchronization and filtering

    NASA Astrophysics Data System (ADS)

    Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  8. Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.-X.; Zhao, D. H.; Zhang, S.-N.; Osborne, J. P.; O'Brien, P.; Willingale, R.; Lapington, J.

    2016-02-01

    Stars are tidally disrupted and accreted when they approach massive black holes (MBHs) closely, producing a flare of electromagnetic radiation. The majority of the (approximately two dozen) tidal disruption events (TDEs) identified so far have been discovered by their luminous, transient X-ray emission. Once TDEs are detected in much larger numbers, in future dedicated transient surveys, a wealth of new applications will become possible. Here, we present the proposed Einstein Probe mission, which is a dedicated time-domain soft X-ray all-sky monitor aiming at detecting X-ray transients including TDEs in large numbers. The mission consists of a wide-field micro-pore Lobster-eye imager (60° × 60°), and is designed to carry out an all-sky transient survey at energies of 0.5-4 keV. It will also carry a more sensitive telescope for X-ray follow-ups, and will be capable of issuing public transient alerts rapidly. Einstein Probe is expected to revolutionise the field of TDE research by detecting several tens to hundreds of events per year from the early phase of flares, many with long-term, well sampled lightcurves.

  9. Simulation of free energies of bicontinuous morphologies formed through block copolymer/homopolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Martinez-Veracoechea, Francisco; Escobedo, Fernando

    Different types of bicontinuous phases can be formed from A-B diblock copolymers by the addition of A-type homopolymers over a range of compositions and relative chain lengths. Particle-based molecular simulations were used to study three bicontinuous phases - double gyroid (G), double diamond (D) and plumber's nightmare (P) - near their triple point of coexistence. For 3-D ordered phases, the stability of the morphology formed in simulation is highly sensitive to box size whose exact size is unknown a-priori. Accurate free energy estimates are required to ascertain the stable phase, particularly when multiple competing phases spontaneously form at the conditions of interest. A variant of thermodynamic integration was implemented to obtain free energies and hence identify the stable phases and their optimal box sizes by tracing a reversible path that connects the ordered and disordered phases. Clear evidence was found of D-G and D-P phase coexistence, consistent with previous predictions for the same blend using Self-consistent field theory. Our simulations also allowed us to examine the microscopic details of these coexisting bicontinuous phases and detect key differences between the microstructure of their nodes and struts.

  10. Nature and Intensity of the 22-23 April 2015 Eruptions of Volcán Calbuco, Chile, from Satellite, Lightning, and Field Observations

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.

    2015-12-01

    On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning data may provide a useful approach to constrain near real-time inputs for ash dispersal models and hazard warnings.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Eric; Boreman, Glenn, E-mail: gboreman@uncc.edu; D'Archangel, Jeffrey

    Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.

  12. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    PubMed

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  13. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE PAGES

    Xu, Yilun; Wilcox, Russell; Byrd, John; ...

    2017-11-20

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  14. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yilun; Wilcox, Russell; Byrd, John

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  15. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.

    2017-04-01

    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  16. Selected aspects of wide-field stellar interferometry

    NASA Astrophysics Data System (ADS)

    D'Arcio, Luigi Arsenio

    1999-11-01

    In Michelson stellar interferometry, the high-resolution information about the source structure is detected by performing observations with widely separated telescopes, interconnected to form an interferometer. At optical wavelengths, this method provides a technically viable approach for achieving angular resolutions in the milliarcsecond range, comparable to those of a 100 m diameter telescope, whose realization is beyond the immediate engineering capabilities. Considerable efforts are currently devoted to the definition of dedicated interferometric instruments, which will allow to address ambitious astronomical tasks such as high-resolution imaging, astrometry at microarcsecond level, and the direct detection of exoplanets. Astrometry and related techniques employ the so-called wide field-of-view interferometric mode, where phase measurements are performed simultaneously at two (or more) sources; often, the actual observable is the instantaneous phase difference of the two object signals. The future success of wide-field interferometry critically depends on the development of techniques for the accurate control of field-dependent (anisoplanatic) phase errors. In this thesis, we address two aspects of this problem in detail. The first one is theoretical in nature. For ground-based measurements, atmospheric turbulence is the largest source of random phase fluctuations between the on- and the off-axis fringes. We developed a model of the temporal power spectrum of this disturbance, whose validity is not limited to low frequencies only, as it is the case with earlier models. This extension opens the possibility of the analysis of dynamic issues, such as the determination of the allowable coherent integration time T for the off-axis fringes. The spectrum turns out to be well approximated by a sequences of four power-law branches. In first instance, its overall form is determined by the values of the baseline length, telescope diameter, and average beam separation in the atmosphere. Due to the rapid decorrelation of the on- and off-axis phases for increasing star separation theta, the useful field for wide-field interferometry is limited to about |theta|<1', the so-called very narrow angle regime. For high-accuracy applications, this range decreases to a few arcseconds. We estimated that for the VLTI along baselines operating at lambda=2.2 mu, a turbulence-related error of less than lambda/10 rms is only available for field angles smaller than 7.3'' and 5.8'', for UT-UT and AT-AT pairs respectively. The bulk of the spectral power is confined at relatively low frequencies, typically below 1 Hz. Both smaller star separations and larger telescope sizes contribute in lowering the spectral content at hight frequencies. We found that in general, as compared to blind observations, wide-field measurements can make use of significantly longer off-axis integration times T, even at rather big star separations. For the long UT-UT baseline operating at lambda=2.2 mu, we have calculated a 5 % fringe visibility loss is reached for T=740 ms, 2.1 s and 12.7 s for star separations of 30'', 10'', and 5'', respectively. These figures are about 2, 5 and 32 times higher than for a blind observation. Finally, we point out that for large telescopes a significant fraction of the total phase error due to anisoplanatic turbulence is contributed by wavefront modes higher than piston. Therefore, we generalized the formalism used in out study to the analysis of (Zernike) wavefront modes of arbitrary order. This thesis also addresses an instrumental aspect of the problem of the control of anisoplanatic phase errors. A Michelson interferometric imager is suitable for wide-field operation only if the configuration of the pupil images forms a scaled replica of the total array aperture. This implies the factual coincidence of the magnification factors M and pupil rotations phi of all interferometric arms: for the VLTI, the matching accuracy requirements are as severe as dM< 1.9e-3, dphi < 3.8''. We addressed the problem of measuring dM, dphi, to the accuracies expressed here above. In the selected approach, this is done by measuring the difference of the star separation vectors for the two interferometer arms, as measured at the corresponding pupil images. Variations of M and phi affect this quantity in orthogonal directions, which allows the simultaneous determination of both unknowns. The measurement makes use of two two-axis tilt sensors, that determine the angular separation vectors of the on- and off-axis beams, respectively, from the two interferometric arms. A 0.0075'' single-axis accuracy is required, together with a sufficiently high sensitivity for astronomical applications. This led to the choice of implementing the sensors as pupil plane devices, using the same interferometric tilt-detection principle as applied in Fine Guidance Sensors of the Hubble Space Telescope. The main challenge was to ensure equal responses for the two sensors, to within 0.0075''. Test measurements have shown that we succeeded in controlling mismatches between the sensors (including their mutual orientations, electronic gain and phase, linearity and signal normalization) a the 0.004'' level, and in performing beam recombination without introducing errors exceeding 0.006''. Pupil rotation alignment runs confirmed a 2'' overall measurement uncertainty for dphi, about half the 3.8'' calibration requirement. Finally, in this thesis we also developed a near-filed propagation method, intended for the diffraction-based analysis of optical systems with extremely high accuracy requirements (typically 1 deg in phase and 1.e-3 in field amplitude). Examples thereof are the nulling optics for planet detection and, outside the field of stellar interferometry, systems for the determination of the shape of mirrors for extreme-UV lithographic projection systems. The method is based on the local Fresnel approximation of the propagation integral, that we have solved analytically for rectangular domains and for triangular ones with an arched hypotenuse. This allows for an accurate computation of the field diffracted at the edges of complicated aperture shapes, without having to recur to time-consuming numerical quadrature techniques. The method has shown the ability to provide complex amplitude estimates that are consistently accurate to the specifications given above, and this in reasonable times. In a series of comparative tests, our method outperformed the Hopkins algorithm by typically a factor of fifty with respect to the computational speed.

  17. Electric field imaging of single atoms

    PubMed Central

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  18. Adaptive tracking of a time-varying field with a quantum sensor

    NASA Astrophysics Data System (ADS)

    Bonato, Cristian; Berry, Dominic W.

    2017-05-01

    Sensors based on single spins can enable magnetic-field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with nonperiodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field based on measurement outcomes and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor of four compare with protocols that do not take this information into account.

  19. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  20. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; hide

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  1. Effects of loss on the phase sensitivity with parity detection in an SU(1,1) interferometer

    NASA Astrophysics Data System (ADS)

    Li, Dong; Yuan, Chun-Hua; Yao, Yao; Jiang, Wei; Li, Mo; Zhang, Weiping

    2018-05-01

    We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can still beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $\\otimes$ squeezed state input.

  2. Linking Deep Astrometric Standards to the ICRF

    NASA Astrophysics Data System (ADS)

    Frey, S.; Platais, I.; Fey, A. L.

    2007-07-01

    The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.

  3. Intruder signature analysis from a phase-sensitive distributed fiber-optic perimeter sensor

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Bae, T.; Snider, T.

    2007-09-01

    Using a phase-sensitive optical time-domain reflectometer developed at Texas A&M University, this paper reports on recent advances in intruder detection and classificatoin for long perimeters or borders. The system uses light pulses from a narrow linewidth CW laser with low frequency drift to interrogate an optical fiber. The backscattered light is detected, and real-time processing of the received signal is performed. Signatures from single and multiple humans on foot, nearby vehicle traffic on a road, construction-like vehicle activity, and animals have been obtained. Individual footsteps are clearly identified and the cadence readily observed. Time-frequency plots are used to compare the signatures. The detected signal contains information regarding the weight of the intruder as well. An adult weighing around 60kg may produce several π-radian shifts in the optical phase, which is detected by the system. While distances up to 20km have been monitored in previous remote field tests, we report measurements on a local test site with a total fiber length of 12km. A 3-mm diameter fiber cable is buried at a depth of 20-46 cm over a distance of 44m, with a 2km spool of fiber attached prior to the buried fiber and a 10km fiber spool connected in series after the buried section. Recent advances in data acquisition and signal processing allow us to avoid false alarms due to drifts in the laser center frequency and greatly improve the probability of detection. With these advancements, this technology is prime for low-cost perimeter monitoring of high-value and high-security installations such as nuclear power plants and military bases as well as national borders.

  4. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  5. Detection of HLA Antibodies in Organ Transplant Recipients – Triumphs and Challenges of the Solid Phase Bead Assay

    PubMed Central

    Tait, Brian D.

    2016-01-01

    This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10–15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the “gold standard” for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the “virtual crossmatch” whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques. PMID:28018342

  6. Robust speaker's location detection in a vehicle environment using GMM models.

    PubMed

    Hu, Jwu-Sheng; Cheng, Chieh-Cheng; Liu, Wei-Han

    2006-04-01

    Abstract-Human-computer interaction (HCI) using speech communication is becoming increasingly important, especially in driving where safety is the primary concern. Knowing the speaker's location (i.e., speaker localization) not only improves the enhancement results of a corrupted signal, but also provides assistance to speaker identification. Since conventional speech localization algorithms suffer from the uncertainties of environmental complexity and noise, as well as from the microphone mismatch problem, they are frequently not robust in practice. Without a high reliability, the acceptance of speech-based HCI would never be realized. This work presents a novel speaker's location detection method and demonstrates high accuracy within a vehicle cabinet using a single linear microphone array. The proposed approach utilize Gaussian mixture models (GMM) to model the distributions of the phase differences among the microphones caused by the complex characteristic of room acoustic and microphone mismatch. The model can be applied both in near-field and far-field situations in a noisy environment. The individual Gaussian component of a GMM represents some general location-dependent but content and speaker-independent phase difference distributions. Moreover, the scheme performs well not only in nonline-of-sight cases, but also when the speakers are aligned toward the microphone array but at difference distances from it. This strong performance can be achieved by exploiting the fact that the phase difference distributions at different locations are distinguishable in the environment of a car. The experimental results also show that the proposed method outperforms the conventional multiple signal classification method (MUSIC) technique at various SNRs.

  7. Defect imaging in composite structures

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Endrizzi, Marco; Olivo, Alessandro

    2018-04-01

    Carbon fiber laminate composites offer advantages including a good strength to weight ratio for aerospace structures. However, manufacturing imperfections and impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Incorrect ply lay-up during the manufacturing process can result in fiber misalignment or in-plane and out-of-plane waviness. Impact, such as bird strike, during the service life can lead to delamination and cracking, reducing the load carrying capacity of the structure. Both ultrasonic and X-ray techniques have a good track record for the nondestructive testing of composite structures; for the latter, phase-based approaches provide additional advantages due to their enhanced sensitivity. Bulk and guided ultrasonic waves propagating in the composite panel were employed for defect imaging. Ultrasonic immersion C-scans of a composite panel with barely visible impact damage were taken to characterize the size and shape of damage (delamination). The first antisymmetric A0 Lamb wave mode was excited experimentally using piezoelectric transducers and measured using a laser vibrometer. X-ray phase-contrast and dark field imaging, implemented through the edge-illumination (EI) approach, were used for the detailed visualization of the damages in the composite material. The Edge-illumination approach is multi-modal and provides three representations of the sample: absorption, differential phase and dark-field. The latter is of particular interest to detect cracks and voids of dimensions that are smaller than the actual spatial resolution of the imaging system. Application examples for carbon fiber composite plates with barely visible impact damage are shown.

  8. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  9. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.

  10. Discrete wavelet transform and energy eigen value for rotor bars fault detection in variable speed field-oriented control of induction motor drive.

    PubMed

    Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness

    2018-05-03

    This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.

  11. On precise phase difference measurement approach using border stability of detection resolution.

    PubMed

    Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan

    2015-01-01

    For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.

  12. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Yen, Hung-Kai; Lin, Tsair-Fuh; Liao, Pao-Chi

    2011-08-01

    A solid-phase extraction (SPE)-liquid chromatography (LC)-mass spectrometry (MS) method was developed to concentrate and detect nine cyanotoxins simultaneously, including six microcystins (MCs) congeners, nodularin (NOD), anatoxin-a (ATX) and cylindrospermopsin (CYN), in pure and natural waters. A dual cartridge SPE assembly was tested for the operating parameters of cyanotoxin extraction. A surrogate standard (SS), 1,9-diaminononane, was spiked in all the samples before the SPE extraction, and an internal standard (IS), 2,3,5-trimethylphenyl methyl carbamate, was spiked before LC/MS analysis. The method detection limit (MDL) was 2-100 ng/L for nine cyanotoxins in pure water and was increased by a factor of three to ten in a more complicated water matrix. The recoveries based on SS were between 83 and 104%, while those based on IS were 80-120%. The developed method was successfully employed in analyzing 33 water samples collected from eutrophic lakes, water treatment plants and distribution taps. MCs, NOD, and CYN were detected in the reservoir water, with concentrations as high as 36 μg/L. In addition, for the first time in Taiwan's tap water, CYN was detected at concentrations as high as 8.6 μg/L. Quality control data for the field samples shows that the analytical scheme developed is appropriate for monitoring cyanotoxins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. [Rapid laboratory detection of antigens of infective agents of infections and technical means for their realization].

    PubMed

    Kal'noĭ, S M

    2003-01-01

    A system of new accelerated and rapid methods for the detection of the antigens of the infective agents of plague, cholera, tularemia and brucellosis were developed on the basis of solid phase immunosuspension tests: the passive hemagglutination (PHA) test and the latex agglutination (LA) test. The immunological and physico-chemical properties of suspensions in the PHA and LA tests made it possible to use extraneous sources of energy (centrifugal acceleration and the electric field) to accelerate these tests. The results of the PHA and LA tests were registered with the use of a densitometer, model Ultrascan 2202, and a tester, model C 34014.2. To apply centrifugal acceleration and the electric field, a laboratory centrifuge and an electrophoretic microchamber were designed. Densitometry was carried out on modified plates and conductometry, with the use of modified electrodes. The time of obtaining the results of the PHA and LA tests was 15-30 minutes with the use of centrifugation and 2-5 minutes in the electric field, which made it possible to regard these tests as rapid.

  14. Magnetic field feature extraction and selection for indoor location estimation.

    PubMed

    Galván-Tejada, Carlos E; García-Vázquez, Juan Pablo; Brena, Ramon F

    2014-06-20

    User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices, which allows us to exploit not only infrastructures made for everyday use, such as WiFi, but also natural infrastructure, as is the case of natural magnetic field. In this paper we present an extension and improvement of our current indoor localization model based on the feature extraction of 46 magnetic field signal features. The extension adds a feature selection phase to our methodology, which is performed through Genetic Algorithm (GA) with the aim of optimizing the fitness of our current model. In addition, we present an evaluation of the final model in two different scenarios: home and office building. The results indicate that performing a feature selection process allows us to reduce the number of signal features of the model from 46 to 5 regardless the scenario and room location distribution. Further, we verified that reducing the number of features increases the probability of our estimator correctly detecting the user's location (sensitivity) and its capacity to detect false positives (specificity) in both scenarios.

  15. Kiso Supernova Survey (KISS): Survey strategy

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Tominaga, Nozomu; Tanaka, Masaomi; Mori, Kensho; Matsumoto, Emiko; Kikuchi, Yuki; Shibata, Takumi; Sako, Shigeyuki; Aoki, Tsutomu; Doi, Mamoru; Kobayashi, Naoto; Maehara, Hiroyuki; Matsunaga, Noriyuki; Mito, Hiroyuki; Miyata, Takashi; Nakada, Yoshikazu; Soyano, Takao; Tarusawa, Ken'ichi; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Sarugaku, Yuki; Richmond, Michael W.; Akitaya, Hiroshi; Aldering, Greg; Arimatsu, Ko; Contreras, Carlos; Horiuchi, Takashi; Hsiao, Eric Y.; Itoh, Ryosuke; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kitagawa, Yutaro; Kokubo, Mitsuru; Kuroda, Daisuke; Mazzali, Paolo; Misawa, Toru; Moritani, Yuki; Morrell, Nidia; Okamoto, Rina; Pavlyuk, Nikolay; Phillips, Mark M.; Pian, Elena; Sahu, Devendra; Saito, Yoshihiko; Sano, Kei; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Tateuchi, Ken; Tomita, Akihiko; Tsvetkov, Dmitry; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-12-01

    The Kiso Supernova Survey (KISS) is a high-cadence optical wide-field supernova (SN) survey. The primary goal of the survey is to catch the very early light of a SN, during the shock breakout phase. Detection of SN shock breakouts combined with multi-band photometry obtained with other facilities would provide detailed physical information on the progenitor stars of SNe. The survey is performed using a 2.2° × 2.2° field-of-view instrument on the 1.05-m Kiso Schmidt telescope, the Kiso Wide Field Camera (KWFC). We take a 3-min exposure in g-band once every hour in our survey, reaching magnitude g ˜ 20-21. About 100 nights of telescope time per year have been spent on the survey since 2012 April. The number of the shock breakout detections is estimated to be of the order of 1 during our three-year project. This paper summarizes the KISS project including the KWFC observing setup, the survey strategy, the data reduction system, and CBET-reported SNe discovered so far by KISS.

  16. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests,more » there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.« less

  17. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  18. Optical probing of electric fields with an electro-acoustic effect toward integrated circuit diagnosis.

    PubMed

    Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo

    2010-02-15

    Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.

  19. Early detection of sporadic pancreatic cancer: strategic map for innovation--a white paper.

    PubMed

    Kenner, Barbara J; Chari, Suresh T; Cleeter, Deborah F; Go, Vay Liang W

    2015-07-01

    Innovation leading to significant advances in research and subsequent translation to clinical practice is urgently necessary in early detection of sporadic pancreatic cancer. Addressing this need, the Early Detection of Sporadic Pancreatic Cancer Summit Conference was conducted by Kenner Family Research Fund in conjunction with the 2014 American Pancreatic Association and Japan Pancreas Society Meeting. International interdisciplinary scientific representatives engaged in strategic facilitated conversations based on distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. Ideas generated from the summit have led to the development of a Strategic Map for Innovation built upon 3 components: formation of an international collaborative effort, design of an actionable strategic plan, and implementation of operational standards, research priorities, and first-phase initiatives. Through invested and committed efforts of leading researchers and institutions, philanthropic partners, government agencies, and supportive business entities, this endeavor will change the future of the field and consequently the survival rate of those diagnosed with pancreatic cancer.

  20. Early Detection of Sporadic Pancreatic Cancer

    PubMed Central

    Kenner, Barbara J.; Chari, Suresh T.; Cleeter, Deborah F.; Go, Vay Liang W.

    2015-01-01

    Abstract Innovation leading to significant advances in research and subsequent translation to clinical practice is urgently necessary in early detection of sporadic pancreatic cancer. Addressing this need, the Early Detection of Sporadic Pancreatic Cancer Summit Conference was conducted by Kenner Family Research Fund in conjunction with the 2014 American Pancreatic Association and Japan Pancreas Society Meeting. International interdisciplinary scientific representatives engaged in strategic facilitated conversations based on distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. Ideas generated from the summit have led to the development of a Strategic Map for Innovation built upon 3 components: formation of an international collaborative effort, design of an actionable strategic plan, and implementation of operational standards, research priorities, and first-phase initiatives. Through invested and committed efforts of leading researchers and institutions, philanthropic partners, government agencies, and supportive business entities, this endeavor will change the future of the field and consequently the survival rate of those diagnosed with pancreatic cancer. PMID:25938853

  1. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  2. Lack of multiferroic behavior in BaCuSi 2O 6 is consistent with the frustrated magnetic scenario for this material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapf, Vivien; Jaime, Marcelo; Chikara, Shalinee

    2017-03-01

    BaCuSi 2O 6 is a well-known quantum magnet that exhibits a Bose-Einstein Condensation quantum phase transition in applied magnetic fields. It contains Cu dimers that form singlets in zero magnetic field, and in applied fields as the singlet-triplet gap is suppressed a quantum phase transition occurs to canted XY antiferromagnetism between critical fields H c1 = 23 T and H c2 = 59 T. In addition, as the temperature is lowered, a rare frustrationinduced dimensional reduction has been proposed from three to two dimensions. Recently, however, a controversy has arisen about the details of the magnetic ordering due to themore » discovery of a tetragonal to orthorhombic structural transition at 100 K with an incommensurate modulation along the b-axis. Multiple magnon modes were observed in neutron diffraction studies, while NMR found modulation of the spin structure along both the ab plane and the c-axis. In this scenario the material is still a Bose-Einstein condensate system but the frustration is not perfect, calling into question the dimension reduction scenario. A recent study of BaCuSi 2O 6 combining inelastic neutron diffraction and density functional theory suggest that the material isn’t even frustrated at all and that the spins are ordered ferromagnetically in the a-b plane and antiferromagnetically along the c-axis. After a detailed symmetry analysis we have concluded that the magnetic scenario postulated by this most recent unfrustrated theory6 will render BaCuSi 2O 6 a multiferroic between H c1 and H c2, with electric polarization in easy axis of the a-b plane for magnetic fields along the c-axis via an inverse Dzyaloshinskii-Moriya mechanism. Electric polarization is a sensitive symmetry probe of magnetic order, since magnetic systems that break spatial inversion symmetry can induce an overall ferroelectricity in the crystalline lattice. In pulsed magnetic fields we can detect electric polarizations with unique sensitivity to sub-pC/m 2, which is orders of magnitude more sensitive than what can be detected in DC magnetic field.« less

  3. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  4. CRREL Technical Publications. Supplement 1976-1990

    DTIC Science & Technology

    1990-01-01

    course and water heading, and ship speed on the airborne detection of high resistivity areas The longed wastewater application at the sites No...enplsTes by rered-phase high - performance iq- MILITARY OPERATION, SNOW COVER EF- 14 and 21 days at -10 C A field test was conducted uid chromato;raphy...effects of thawing and freezing soil. deep snow, irplines freezing front. Temperature sensors were placed within overlay files into a high - speed graphical

  5. Shipboard Elevator Magnetic Sensor Development. Phase I, Laboratory Investigations.

    DTIC Science & Technology

    1981-08-19

    greater detail. The principles studied were those of the flux-meter and the flux-gate magnetometer . Of these two, the flux-gate magnetometer principle was...Abstract (Continued) Flux-gate magnetometers continuously sense the component of a stationary or slowly varying magnetic field along a chosen axis. The...distance of the sensor from the target’s line of travel, while precisely indicating displacements along the line. The modes of detection include level

  6. A Fully Integrated Materials Framework for Enabling the Wireless Detection of Micro-defects in Aging and Battle-worn Structures

    DTIC Science & Technology

    2012-05-01

    field-programmable gate array (FPGA) uses digital signal processing (DSP) algorithms to decode echo-location information from the backscattered signal ...characterizing and understanding of the physical properties of the BST and PZT thin films. Using microwave reflection spectroscopy, the complex...acoustic data, , would be encoded in the reflected MW signal by means of phase modulation (PM). By using high-Q resonators as the reactive

  7. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks

    PubMed Central

    Alanazi, Adwan; Elleithy, Khaled

    2016-01-01

    Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048

  8. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks.

    PubMed

    Alanazi, Adwan; Elleithy, Khaled

    2016-09-07

    Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.

  9. Application of Phase-Weighted Stacking to Low-Frequency Earthquakes near the Alpine Fault, Central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Townend, J.; Chamberlain, C. J.; Savage, M. K.

    2015-12-01

    Characterising seismicity in the vicinity of the Alpine Fault, a major transform boundary late in its typical earthquake cycle, may provide constraints on the state of stress preceding a large earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated major rupture. We work with a continuous seismic dataset collected between 2009 and 2012 from a network of short-period seismometers, the Southern Alps Microearthquake Borehole Array (SAMBA). Fourteen primary LFE templates have been used to scan the dataset using a matched-filter technique based on an iterative cross-correlation routine. This method allows the detection of similar signals and establishes LFE families with common hypocenter locations. The detections are then combined for each LFE family using phase-weighted stacking (Thurber et al., 2014) to produce a signal with the highest possible signal to noise ratio. We find this method to be successful in increasing the number of LFE detections by roughly 10% in comparison with linear stacking. Our next step is to manually pick polarities on first arrivals of the phase-weighted stacked signals and compute preliminary locations. We are working to estimate LFE focal mechanism parameters and refine the focal mechanism solutions using an amplitude ratio technique applied to the linear stacks. LFE focal mechanisms should provide new insight into the geometry and rheology of the Alpine Fault and the stress field prevailing in the central Southern Alps.

  10. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    NASA Astrophysics Data System (ADS)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  11. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches.

    PubMed

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-15

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    DOE PAGES

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-07-30

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templatesmore » that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2–M0.8. Here, the increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.« less

  13. Visualizing the knowledge structure and evolution of big data research in healthcare informatics.

    PubMed

    Gu, Dongxiao; Li, Jingjing; Li, Xingguo; Liang, Changyong

    2017-02-01

    In recent years, the literature associated with healthcare big data has grown rapidly, but few studies have used bibliometrics and a visualization approach to conduct deep mining and reveal a panorama of the healthcare big data field. To explore the foundational knowledge and research hotspots of big data research in the field of healthcare informatics, this study conducted a series of bibliometric analyses on the related literature, including papers' production trends in the field and the trend of each paper's co-author number, the distribution of core institutions and countries, the core literature distribution, the related information of prolific authors and innovation paths in the field, a keyword co-occurrence analysis, and research hotspots and trends for the future. By conducting a literature content analysis and structure analysis, we found the following: (a) In the early stage, researchers from the United States, the People's Republic of China, the United Kingdom, and Germany made the most contributions to the literature associated with healthcare big data research and the innovation path in this field. (b) The innovation path in healthcare big data consists of three stages: the disease early detection, diagnosis, treatment, and prognosis phase, the life and health promotion phase, and the nursing phase. (c) Research hotspots are mainly concentrated in three dimensions: the disease dimension (e.g., epidemiology, breast cancer, obesity, and diabetes), the technical dimension (e.g., data mining and machine learning), and the health service dimension (e.g., customized service and elderly nursing). This study will provide scholars in the healthcare informatics community with panoramic knowledge of healthcare big data research, as well as research hotspots and future research directions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.

  15. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): Performance for Imaging of Earth-like Exoplanets.

    NASA Astrophysics Data System (ADS)

    Martinache, F.; Guyon, O.; Pluzhnik, E.; Ridgway, S.; Galicher, R.

    2004-12-01

    PIAA is one of the powerful applications of pupil remapping. A set of two aspheric mirrors changes the distribution of light and provides an apodized pupil, suitable for coronagraphy, without light loss on an absorbing mask. Deployed on to a space telescope with coronagraphic quality optics, it may allow planet detection from a 1.2 λ /d inner working distance and a full working field. We describe the performance of a PIAA version of NASA's Terrestrial Planet Finder (TPF) in terms of Signal to Noise Ratio and compare it to Classical Pupil Apodization (CPA) performance. We also discuss the necessity of using different occulting masks and give an estimate of the total exposure time for the planet detection phase of the TPF mission. This study is based on realistic Monte Carlo simulations of terrestrial planets orbiting around F, G, K stars within 30 pc around the solar system and includes planet phase and angular separation probabilities. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  16. A Motion Detection Algorithm Using Local Phase Information

    PubMed Central

    Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin

    2016-01-01

    Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882

  17. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm basedmore » on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.« less

  18. The metal-insulator transition in a phase-separated manganite studied by in situ STS

    NASA Astrophysics Data System (ADS)

    Snijders, P. C.; Gao, M.; Guo, H.; Ward, T. Z.; Gao, H.-J.; Shen, J.; Gai, Z.

    2012-02-01

    Electronic phase separation (EPS) is a key feature at the heart of the wide variety of electronic and magnetic properties in complex oxides. One consequence of EPS is that electronic transport experiments in bulk materials or 2D films mostly probe the low resistivity electronic phases due to the percolative path of the current. We study oxygen deficient La5/8-xPrxCa3/8M nO3 (LPCMO) thin films using both in situ scanning tunneling spectroscopy (STS) and ex situ transport experiments. The oxygen deficiency is known to decrease the metal-insulator transition (MIT) temperature or even completely suppress the MIT in conventional transport experiments. We show that in situ STS is able to detect the MIT even in systems where conventional transport experiments do not show an MIT at zero magnetic field.

  19. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.

  20. Quantum oscillations in strong magnetic fields, berry phase, and superconductivity in three-dimensional topological Bi{sub 2–x}Cu{sub x}Se{sub 3} insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedeneev, S. I., E-mail: vedeneev@sci.lebedev.ru; Knyazev, D. A.; Prudkoglyad, V. A.

    2015-07-15

    Two-dimensional (2D) Shubnikov–de Haas oscillations and 2D Hall oscillations are observed in 3D copper-doped Bi{sub 2}Se{sub 3} single crystals in magnetic fields up to 19.5 T at temperatures down to 0.3 K. Three samples with a high bulk carrier concentration (n ≈ 10{sup 19}–10{sup 20} cm{sup –3}) are studied. The rotation of the samples in a magnetic field shows that these oscillations are related to numerous parallel 2D conducting channels 1–5 nm thick. Their basic kinetic parameters are found. Quantized Hall resistance R{sub xy} is detected in 1-nm-thick 2D conducting channels at high fields. The distance Δ(1/R{sub xy}) between themore » steps in the field dependence of 1/R{sub xy} is found to be constant for different Landau levels, 1.3e{sup 2}/h per 1-nm-thick layer. The constructed fan diagrams of 2D Landau levels for various angles of sample inclination with respect to the magnetic field direction allowed us to conclude that the Berry phase in the 2D conducting channels is γ ≈ π and independent of the magnetic field direction. When studying the angular dependence of upper resistive critical magnetic field H{sub c2} in one of the superconducting samples, we showed that it can be considered as a bulk superconductor consisting of superconducting layers with an effective thickness of about 50 nm.« less

  1. Real-time Microseismic Processing for Induced Seismicity Hazard Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzel, Eric M.

    Induced seismicity is inherently associated with underground fluid injections. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could both damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterizationmore » phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.« less

  2. Assessment of a field-aligned ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Brunner, D.; Ennever, P.

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.« less

  3. Design and field application of a UV-LED based optical fiber biofilm sensor.

    PubMed

    Fischer, Matthias; Wahl, Martin; Friedrichs, Gernot

    2012-03-15

    Detecting changes in the formation dynamics of biofilms stemming from bacteria and unicellular microorganisms in their natural environment is of prime interest for biological, ecological as well as anti-fouling technology research. We developed a robust optical fiber-based biofilm sensor ready to be applied in natural aquatic environments for on-line, in situ and non-destructive monitoring of large-area biofilms. The device is based on the detection of the natural fluorescence of microorganisms constituting the biofilm. Basically, the intrinsic fluorescence of the amino acid tryptophan is excited at a wavelength of λ=280 nm and detected at λ=350 nm utilising a numerically optimized sensor head equipped with a UV-LED light source and optical fiber bundles for efficient fluorescence light collection. Calibration was carried out with tryptophan solutions and two characteristic marine bacteria strains revealing linear signal response, satisfactory background suppression, wide dynamic range, and an experimental detection limit of 4 × 10(3)cells/cm(2). Successful field experiments in the Baltic Sea accomplished over a period of twenty-one days provided for the first time continuous observation of biofilm formation dynamics in a natural habitat. Starting from the first adhering bacteria, the measurement yielded the characteristic three phases of biofilm formation up to a fully developed biofilm. The sensor system holds potential for applications in aquatic sciences including deep sea research and, after further miniaturisation, in the industrial and biomedical field. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Self-mixing interferometry: a novel yardstick for mechanical metrology

    NASA Astrophysics Data System (ADS)

    Donati, Silvano

    2016-11-01

    A novel configuration of interferometry, SMI (self-mixing interferometry), is described in this paper. SMI is attractive because it doesn't require any optical part external to the laser and can be employed in a variety of measurements - indeed it is sometimes indicated as the "interferometer for measuring without an interferometer". On processing the phase carried by the optical field upon propagation to the target under test, a number of applications have been developed, including traditional measurements related to metrology and mechanical engineering - like displacement, distance, small-amplitude vibrations, attitude angles, velocity, as well as new measurements, like mechanical stress-strain hysterisis and microstructure/MEMS electro-mechanical response. In another field, sensing of motility finds direct application in a variety of biophysical measurements, like blood pulsation, respiratory sounds, chest acoustical impedance, and blood velocity profile. And, we may also look at the amplitude of the returning signal in a SMI, and we can measure weak optical echoes - for return loss and isolation factor measurements, CD readout and scroll sensing, and THz-wave detection. Last, the fine details of the SMI waveform reveal physical parameters of the laser like the laser linewidth, coherence length, and alpha factor. Worth to be noted, SMI is also a coherent detection scheme, and measurement close to the quantum limit of received field with minimum detectable displacements of 100 pm/√Hz are currently achieved upon operation on diffusive targets, whereas in detection mode returning signal can be sensed down to attenuations of -80dB.

  5. Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    2011-05-01

    The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5

  6. Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim

    2017-07-01

    The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.

  7. Monitoring the interfacial electric field in pure and doped SrTiO3 surfaces by means of phase-resolved optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Rubano, Andrea; Mou, Sen; Paparo, Domenico

    2018-05-01

    Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.

  8. Spectral Analysis of Vector Magnetic Field Profiles

    NASA Technical Reports Server (NTRS)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  9. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  10. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  11. Faraday signature of magnetic helicity from reduced depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter.more » The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.« less

  12. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  13. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  14. Resonant fiber optic gyro based on a sinusoidal wave modulation and square wave demodulation technique.

    PubMed

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2016-04-20

    New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.

  15. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    PubMed

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  16. Validation of powder X-ray diffraction following EN ISO/IEC 17025.

    PubMed

    Eckardt, Regina; Krupicka, Erik; Hofmeister, Wolfgang

    2012-05-01

    Powder X-ray diffraction (PXRD) is used widely in forensic science laboratories with the main focus of qualitative phase identification. Little is found in literature referring to the topic of validation of PXRD in the field of forensic sciences. According to EN ISO/IEC 17025, the method has to be tested for several parameters. Trueness, specificity, and selectivity of PXRD were tested using certified reference materials or a combination thereof. All three tested parameters showed the secure performance of the method. Sample preparation errors were simulated to evaluate the robustness of the method. These errors were either easily detected by the operator or nonsignificant for phase identification. In case of the detection limit, a statistical evaluation of the signal-to-noise ratio showed that a peak criterion of three sigma is inadequate and recommendations for a more realistic peak criterion are given. Finally, the results of an international proficiency test showed the secure performance of PXRD. © 2012 American Academy of Forensic Sciences.

  17. Gamma-ray bursts and their use as cosmic probes

    PubMed Central

    2017-01-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data. PMID:28791158

  18. Spacecraft Observations of a ULF Wave Injected Onto Field Lines by SPEAR

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Yeoman, T. K.; Clausen, L. B.; Fear, R. C.; Fazakerley, A. N.; Lucek, E. A.

    2008-12-01

    SPEAR (Space Exploration by Active Radar) is an ionospheric heating facility situated on Svalbard which is capable of exciting ULF waves on local magnetic field lines. Field-guided ULF waves can interact with the ionospheric Alfvén resonator (IAR) and produce parallel electric fields, which then accelerate electrons along the field line. Detection and study of these waves thus provides information on the properties of the IAR and auroral acceleration processes. We examine an interval from 1 February 2006 when SPEAR was transmitting with a 5 min on-off cycle. During this interval the Cluster spacecraft passed over the heater site. We discuss signatures of the SPEAR-generated wave identified in the Cluster field and electron measurements. One feature of interest is the periodic enhancement of electron fluxes in two broad energy bands (~10-100 eV and ~100-1000 eV) which occur out of phase with each other in the two different energy bands.

  19. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes

    NASA Astrophysics Data System (ADS)

    Engel, Nicole Y.; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2017-01-01

    In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling.

  20. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.

    PubMed

    Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung

    2011-09-15

    Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.

Top