NASA Astrophysics Data System (ADS)
Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.
2016-09-01
In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.
Comparing viewer and array mental rotations in different planes
NASA Technical Reports Server (NTRS)
Carpenter, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2001-01-01
Participants imagined rotating either themselves or an array of objects that surrounded them. Their task was to report on the egocentric position of an item in the array following the imagined rotation. The dependent measures were response latency and number of errors committed. Past research has shown that self-rotation is easier than array rotation. However, we found that imagined egocentric rotations were as difficult to imagine as rotations of the environment when people performed imagined rotations in the midsagittal or coronal plane. The advantages of imagined self-rotations are specific to mental rotations performed in the transverse plane.
Flow field survey near the rotational plane of an advanced design propeller on a JetStar airplane
NASA Technical Reports Server (NTRS)
Walsh, K. R.
1985-01-01
An investigation was conducted to obtain upper fuselage surface static pressures and boundary layer velocity profiles below the centerline of an advanced design propeller. This investigation documents the upper fuselage velocity flow field in support of the in-flight acoustic tests conducted on a JetStar airplane. Initial results of the boundary layer survey show evidence of an unusual flow disturbance, which is attributed to the two windshield wiper assemblies on the aircraft. The assemblies were removed, eliminating the disturbances from the flow field. This report presents boundary layer velocity profiles at altitudes of 6096 and 9144 m (20,000 and 30,000 ft) and Mach numbers from 0.6 to 0.8, and it investigated the effects of windshield wiper assemblies on these profiles. Because of the unconventional velocity profiles that were obtained with the assemblies mounted, classical boundary layer parameters, such as momentum and displacement thicknesses, are not presented. The effects of flight test variables (Mach number and angles of attack and sideslip) and an advanced design propeller on boundary layer profiles - with the wiper assemblies mounted and removed - are presented.
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2016-07-01
Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.
Angle measures, general rotations, and roulettes in normed planes
NASA Astrophysics Data System (ADS)
Balestro, Vitor; Horváth, Ákos G.; Martini, Horst
2016-11-01
In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.
Apodised aperture using rotation of plane of polarization
Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.
1975-09-01
An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Examination into the maximum rotational frequency for an in-plane switched active waveplate device
NASA Astrophysics Data System (ADS)
Davidson, A. J.; Elston, S. J.; Raynes, E. P.
2005-05-01
An examination of an active waveplate device using a one-dimensional model, giving numerical and analytical results, is presented. The model calculates the director and twist configuration by minimizing the free energy of the system with simple homeotropic boundary conditions. The effect of varying the in-plane electric field in both magnitude and direction is examined, and it is shown that the twist through the cell is constant in time as the field is rotated. As the electric field is rotated, the director field lags behind by an angle which increases as the frequency of the electric field rotation increases. When this angle reaches approximately π/4 the director field no longer follows the electric field in a uniform way. Using mathematical analysis it is shown that the conditions on which the director profile will fail to follow the rotating electric field depend on the frequency of electric field rotation, the magnitude of the electric field, the dielectric anisotropy and the viscosity of the liquid crystal.
Design of two-mirror scanner with axes of rotation not in plane of mirrors
NASA Astrophysics Data System (ADS)
Antonov, Y. I.; Tkachev, A.; Ridiger, V. V.
1984-11-01
Design equations are derived for a pair of rotating wedge as scanner mirrors. Any spiral or rosette trajectory of the light spot can be achieved with the proper speed ratio and senses of rotation. Aberration, caused mainly by chromatism, is eliminated by rotating the mirrors about axes not in their plane but parallel to one another. Calculations are shown for a typical configuration in a stationary in a stationary reference system of Cartesian coordinates. The light path with reflections and the light spot trajectory on the target are calculated by the matrix method, assuming that each wedge constitutes a plane mirror. A spiral trajectory inscribes an elliptical field with variable pitch when the speed ratio C lies with he 1 C 2 range, but the field approaches a circular one as the angle between light path and axes of rotation increases. The maximum pitch of the spiral trajectory and the alloable divergence angle of the light beam each determine the other, both also depending on the speed ratio. Design and performance calculations made on a Besm-6 high-speed computer are shown for C = 1.05 and C = 1.3 with a theta = 0.66' angle between the axes of rotation and normals to the mirror surfaces.
Split-field pupil plane determination apparatus
Salmon, Joseph T.
1996-01-01
A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).
Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows
NASA Astrophysics Data System (ADS)
Gai, Jie; Xia, Zhenhua; Cai, Qingdong; Chen, Shiyi
2016-09-01
A series of direct numerical simulations of spanwise-rotating turbulent plane Couette flows at a Reynolds number of 1300 with rotation numbers Ro between 0 and 0.9 is carried out to investigate the effects of anticyclonic rotation on turbulent statistics and flow structures. Several typical turbulent statistics are presented, including the mean shear rate at the centerline, the wall-friction Reynolds number, and volume-averaged kinetic energies with respect to the secondary flow field, turbulent field, and total fluctuation field. Our results show that the rotation changes these quantities in different manners. Volume-averaged balance equations for kinetic energy are analyzed and it turns out that the interaction term acts as a kinetic energy bridge that transfers energy from the secondary flow to the turbulent fluctuations. Several typical flow regimes are identified based on the correlation functions across the whole channel and flow visualizations. The two-dimensional roll cells are observed at weak rotation Ro=0.01 , where alternant clustering of vortices appears. Three-dimensional roll cells emerge around Ro≈0.02 , where the clustering of vortices shows the meandering and bifurcating behavior. For moderate rotation 0.07 ≲Ro≲0.36 , well-organized structures are observed, where the herringbonelike vortices are clustered between streaks from the top view of three-dimensional flow visualization and form annuluses. More importantly, the vortices are rather confined to one side of the walls when Ro≤0.02 and are inclined from the bottom to upper walls when Ro≥0.07 .
Nester, C
2000-12-01
The purpose of this study was to test the clinical hypothesis that the magnitude and temporal characteristics of rearfoot complex motion are closely correlated with those of the transverse plane motion at the knee and hip. Twenty subjects underwent kinematic assessment during walking at 108 steps/minute. The transverse plane rotation of the leg relative to the foot was used to indicate rearfoot complex pronation and supination. Taking into account errors inherent in kinematic assessment involving skin mounted markers, it is unlikely that a correlation exists between the range of internal leg rotation during the contact phase and the total range of transverse plane leg rotation during gait and the corresponding values for the transverse plane motion at the knee and hip. Correlation tests were performed to assess the temporal characteristics of the motions at the joints that showed that there was no correlation between the transverse plane motion in the rearfoot complex, knee and hip. Thus the hypothesis that the magnitude and temporal characteristics of rearfoot complex motion are closely correlated with the transverse plane motion at the knee and hip was rejected.
Kumar, B V; Ng, T K
1996-04-10
The circular-harmonic-function correlation filter originally proposed by Hsu and Arsenault [Appl. Opt. 21, 4016 (1982)] for in-plane rotation invariance uses only one harmonic, which results in poor discrimination capability of the filter. Various methods to use multiple harmonics were explored previously by different researchers. We present a new method to combine multiple circular harmonics into a single filter that can provide the desired correlation response to in-plane rotation while minimizing the correlation-plane energy. Since multiple harmonics are included, the filter can discriminate well, and since correlation-plane energy is minimized, correlation peaks tend to be sharp. Since the designer can specify the desired in-plane rotation response, a variety of filter behaviors (including complete invariance to input rotations) can be obtained. Underlying theory is discussed, and simulation results are presented.
PLANE SPIRAL SPRING UNDER UNIFORM ROTATION ABOUT ITS ARBOR,
SPRINGS, *MECHANICAL ENGINEERING, ELASTIC PROPERTIES, ELASTIC PROPERTIES, HELICAL SPRINGS, ROTATION, MOMENTUM, LOADS(FORCES), DEFORMATION, GEOMETRIC FORMS, MATHEMATICAL ANALYSIS, INDUSTRIAL EQUIPMENT.
Dai, Ming; Gao, Cun-Fa; Ru, C. Q.
2015-01-01
Multiple elastic inclusions with uniform internal stress fields in an infinite elastic matrix are constructed under given uniform remote in-plane loadings. The method is based on the sufficient and necessary condition imposed on the boundary value of a holomorphic function that guarantees the existence of the holomorphic function in a multiply connected region. The unknown shape of each of the multiple inclusions is characterized by a conformal mapping. This work focuses on a major large class of multiple inclusions characterized by a simple condition that covers and is much beyond the known related results reported in previous works. Extensive examples of multiple inclusions with or without geometrical symmetry are shown. Our results showed that the inclusion shapes obtained for the uniformity of internal stress fields are independent of the remote loading only when all of the multiple inclusions have the same shear modulus as that of the matrix. Moreover, specific conditions are derived on remote loading, elastic constants of the inclusions and uniform internal stress fields, which guarantee the existence of multiple symmetric inclusions or multiple rotationally symmetrical inclusions with uniform internal stress fields. PMID:27547096
Flow Transitions in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
1996-01-01
Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.
Far-field patterns of spaceborne antennas from plane-polar near-field measurements
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Gatti, M. S.
1985-01-01
Certain unique features of a recently constructed plane-polar near-field measurement facility for determining the far-field patterns of large and fragile spaceborne antennas are described. In this facility, the horizontally positioned antenna rotates about its axis while the measuring probe is advanced incrementally in a fixed radial direction. The near-field measured data is then processed using a Jacobi-Bessel expansion to obtain the antenna far fields. A summary of the measurement and computational steps is given. Comparisons between the outdoor far-field measurements and the constructed far-field patterns from the near-field measured data are provided for different antenna sizes and frequencies. Application of the substitution method for the absolute gain measurement is discussed. In particular, results are shown for the 4.8-m mesh-deployable high-gain antenna of the Galileo spacecraft which has the mission of orbiting Jupiter in 1988.
Far-field patterns of spaceborne antennas from plane-polar near-field measurements
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Gatti, M. S.
1985-01-01
Certain unique features of a recently constructed plane-polar near-field measurement facility for determining the far-field patterns of large and fragile spaceborne antennas are described. In this facility, the horizontally positioned antenna rotates about its axis while the measuring probe is advanced incrementally in a fixed radial direction. The near-field measured data is then processed using a Jacobi-Bessel expansion to obtain the antenna far fields. A summary of the measurement and computational steps is given. Comparisons between the outdoor far-field measurements and the constructed far-field patterns from the near-field measured data are provided for different antenna sizes and frequencies. Application of the substitution method for the absolute gain measurement is discussed. In particular, results are shown for the 4.8-m mesh-deployable high-gain antenna of the Galileo spacecraft which has the mission of orbiting Jupiter in 1988.
The effect of axial rotation of the anterior resection plane in patellofemoral arthroplasty.
Cho, K J; Erasmus, P J; Müller, J H
2016-10-01
Patellofemoral arthroplasty (PFA) has a small but definite place in replacement surgery of the knee, especially in young patients. The main surgical considerations in PFA are the patient's anatomy, the type of prosthesis and the surgical technique. The surgical technique and PFA success rely heavily on the anterior resection. In this study we investigate the effect of axial rotation of the anterior resection plane. We tested the outcome of PFA fit based on resection footprint measurements, axial and coronal groove angles, and lateral trochlear inclination (LTI) angle in a virtual PFA model. The range of anterior resection plane axial rotations was from five degree internal to five degree external with an increment of one degree. Axial rotation of anterior resection plane changes the resection footprint dimension, which leads to coronal rotation of the femoral component. External rotation of the resection plane results in valgus rotation of the trochlear groove and decreased LTI after PFA and the opposite was observed for internal rotation. Our study showed that by changing the axial rotation of the anterior cut, the coronal groove of the prosthesis can be altered to lie more closely with the native groove line without compromising the prosthesis-cartilage transition. Copyright © 2016 Elsevier B.V. All rights reserved.
Hartsell, H D; Forwell, L
1997-01-01
Considerable variability exists for isokinetic testing of the shoulder rotators, leaving the clinician in a quandry concerning the most appropriate method for patient evaluation. The purpose of this study was to evaluate concentric and eccentric rotational strength in the scapular and neutral planes for the surgical and nonsurgical shoulders. Fifteen males consented to be tested during a 90-minute isokinetic session. Both shoulders for each patient were tested concentrically (240 degrees/sec) and eccentrically (120 degrees/sec) in the scapular and neutral planes. Patient positioning was maintained through the use of a goniometer, plumb line, and floor grid system. Following a warmup, five maximal effort reciprocal internal and external rotation concentric and eccentric contractions were evaluated using multiple two-way analyses of variance (shoulder x plane) with repeated measures. Results indicated no statistically significant differences between the surgical or nonsurgical shoulders for either concentric (p = .063-.247) or eccentric (p = .460-.840) modes, regardless of test plane. No statistically significant differences were observed eccentrically between test planes (p = .06-.470), but the scapular plane produced significantly higher (p = .005) peak torques concentrically. Generally, the external rotators were 53.0% (concentrically) and 63.0% (eccentrically) of the internal rotator strength for either shoulder. Clinically, concentric and eccentric testing of the postoperative shoulder patient can occur in either the scapular or the neutral plane. However, the scapular plane may be preferred since it is more functionally relevant and less injurious to the rotator cuff. A full, functional recovery may be expected for the rotator cuff repair patient.
NASA Astrophysics Data System (ADS)
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
Basu, Rajratan Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-14
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
In-plane rotation of the doubly coupled photonic crystal nanobeam cavities
NASA Astrophysics Data System (ADS)
Lin, Tong; Tian, Feng; Zhang, Wei; Zou, Yongchao; Chau, Fook Siong; Deng, Jie; Zhou, Guangya
2016-05-01
In this letter, a nano-electro-mechanical-systems (NEMS) mechanism is proposed to drive the in-plane rotation of the doubly coupled photonic crystal (PhC) nanobeam cavities. The corresponding interactions between optical resonances and rotations are investigated. This is the first in-plane rotational tuning of the PhC cavities, which benefits from the flexible design of NEMS actuators. In experiments, more than 18 linewidths of the third order TE even mode corresponding to 0.037 mrad of the shrinking angle between the two nanobeam cavities are demonstrated; this study provides one more mechanical degree of freedom for the practical optomechanical interactions.
Muaidi, Qassim I
2016-11-21
Knee proprioception in the sagittal plane has been widely investigated in prospective studies, however limited information is known about proprioceptive acuity during active knee rotation and the way most commonly injured. To investigate whether proprioceptive acuity during active internal and external knee rotation varies at different ranges in the transverse plane. Healthy volunteers (N: 26) without previous injury or surgery of the knee joint participated in the study.Knee rotation proprioceptive acuity was measured using a custom-designed device. The measure of proprioceptive acuity used in this study was the just-noticeable-difference (JND). Participants actively rotated the knee at different intervals(initial, mid, and terminal internal or external rotation range) to one of four movement blocks and the magnitude of the permitted motion was judged. The means of the JND for proprioceptive acuity at initial internal rotation (0.80° ± 0.06) were significantly (p< 0.002) lower than for mid (1.62° ± 0.18), and terminal (2.08° ± 0.35) internal rotation. The means of the JND for proprioceptive acuity at initial external rotation (1.16° ± 0.10) were significantly (p< 0.04) lower than for mid (1.95° ± 0.30), and terminal (1.97° ± 0.24) internal rotation. Participants perceived smaller differences between active internal and external rotation movements at initial rotation range than at the mid and terminal rotation range of movement. This suggests better proprioceptive acuity at the initial rotation range of movement in the transverse plane.
Rotationally Vibrating Electric-Field Mill
NASA Technical Reports Server (NTRS)
Kirkham, Harold
2008-01-01
A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.
Magnetic field generation by rotating black holes
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Vilenkin, A.
1981-01-01
A new mechanism of cosmic magnetic field generation is discussed. Neutrinos asymmetrically emitted by rotating black holes scatter on protons and produce a proton current which generates the magnetic field. It is shown that this mechanism can in principle produce a seed field sufficiently strong to account for present galactic fields.
Rhomboid prism pair for rotating the plane of parallel light beams
NASA Technical Reports Server (NTRS)
Orloff, K. L. (Inventor); Yanagita, H.
1982-01-01
An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.
Instability of a thin film flowing on a rotating horizontal or inclined plane.
Dávalos-Orozco, L A; Busse, F H
2002-02-01
In this paper the instability of a thin fluid film flowing under the effects of gravity, Coriolis, and centrifugal forces is investigated. It is supposed that the film flows far from the axis of rotation on a plane which may be horizontal or inclined with respect to the horizontal. In the former case, the flow is only driven by the centrifugal force while in the latter case, the flow is driven by the components of centrifugal force and gravity along the plane. This case may also be considered as the flow down a rotating cone but far from the apex. The stabilizing influence of rotation on the film flow increases with the rotation rate. Up to a certain critical rate of rotation, the film flowing down the rotating inclined plane (or cone) is more stable than the flow on the horizontal rotating plane while above this rate of rotation the situation is reversed. The instability above the critical rate is associated with a finite wave number in contrast to the vanishing wave number of the instability below the critical rate. The possibility of Ekman layer instabilities is also investigated. An equation describing the nonlinear evolution of surface waves is also obtained. Moreover, this equation is simplified for the case in which the amplitudes are very small. An equation including dissipation as well as dispersion is derived whose solutions may possess solitary waves, as in the case of similar equations considered in the literature. These solutions are likely to correspond to the solitary spiral waves observed in experiments.
Field-driven oscillation and rotation of a multiskyrmion cluster in a nanodisk
NASA Astrophysics Data System (ADS)
Liu, Yan; Yan, Huan; Jia, Min; Du, Haifeng; Du, An; Zang, Jiadong
2017-04-01
The field-driven magnetization dynamics of a multiskyrmion cluster in a nanodisk is investigated by micromagnetic simulation and analytical calculation. Under a weak in-plane static magnetic field, the multiskyrmion cluster shows an oscillatory motion around an equilibrium position, which resembles the dynamical behavior of the conventional torsional pendulum. We show that this oscillation is induced by restoring torque acting on the skyrmion generated by the potential energy determined by the angle of the skyrmion orientation. Moreover, the multiskyrmion cluster can be driven to rotate by an in-plane rotating magnetic field. The rotation directions and frequencies are fully determined by the number of the skyrmions.
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S; Back, Christian H; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-17
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-01
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect. PMID:28094279
NASA Astrophysics Data System (ADS)
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-01
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.
Hip rotation angle is associated with frontal plane knee joint mechanics during running.
Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo
2015-02-01
Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. Copyright © 2014 Elsevier B.V. All rights reserved.
Free-form lens for rectangular illumination with the target plane rotating at a certain angle.
Liu, Dianhong; Zhang, Xiaohui; Chen, Chen
2015-11-01
We have proposed a method for rectangular illumination in a (u, v) coordinate system with high collection efficiency and favorable uniformity. In our proposed approach, with the target plane rotating at a certain angle around the z axis, one of the diagonals on the rectangular target plane moves to the coordinate axis; then, we partition the light source and target plane into grids. The intersection points of the grids are in one-to-one correspondence from the source to the target plane. This improved method will avoid the one-to-many correspondence topological relationship in the traditional (u, v) mapping method; uniformity of the illuminance pattern will be promoted. Based on this method, lenses are designed for rectangular target plane illumination; uniformity over 0.83 and efficiency of about 0.92 are obtained with a 1 mm×1 mm LED Lambertian source.
Magnetic field in the plane of a physical dipole
NASA Astrophysics Data System (ADS)
Binder, P.-M.; Grace, Alyssa L.; Hui, Kaleonui J.; Loving, Rebekah K.
2016-07-01
We study the magnetic field in the plane of a circular current-carrying loop. We both solve Biot-Savart’s equation numerically and perform measurements with high spatial resolution. The results extend our quantitative understanding of a physical magnetic dipole by providing an accurate and complete picture of the field in this plane, which complements existing analytical expressions valid at very small and large radius, near the loop axis, and for point dipoles.
Faraday Screen and Reversal of Rotation Measure in the Local Supercluster Plane
NASA Astrophysics Data System (ADS)
Vallée, Jacques P.
2002-09-01
I investigate the possible existence, strength, and structure of magnetic fields in intergalactic space, within the Local Supercluster of galaxies (LSC), centered on the Virgo Cluster, at a distance of about 18 Mpc from us. The LSC medium has no obvious effect on the intrinsic position angle (IPA) of the polarized radio emission from more distant objects located behind it. There does not seem statistically (at the 1.6 σ level) to be a different averaged IPA for objects in different redshift ranges. I find a tantalizing structure (at the 5.5 σ level), which is like a foreground Faraday screen acting on the radio waves coming from more distant objects, in the rotation measure (RM) along the LSC plane, up to a radius of about 20° (0.35 radians, or about 6 Mpc), and this may extend to a similar distance along the line of sight. Defining the central meridian (CM) as the longitude crossing the LSC plane through the center of the Virgo Cluster of galaxies (LSC longitude lV=0°), I find a mean RM~0 within 5° (half a bin) of the CM. Going east of the CM, one finds a mean RM~+10 rad m-2 at lV~15° (LSC magnetic field is moving toward us). Going west of the CM, one finds an RM~-10 rad m-2 at lV~-15° (magnetic field is moving away from us), indicating a parity reversal in RM (same shape on both sides, but opposite in sign). The same RM structure shape can be seen in adjacent redshift ranges. For this RM, I infer a regular magnetic field of ~0.3 μG in the LSC or randomly oriented cells of magnetic field of ~2 μG (for cell sizes of about 100 kpc). Preliminary modeling suggests that the patchy 2 μG field is the likely scenario, and I speculate that the 2 μG patchy field may extend all the way to the Sun.
Verification of theoretically computed spectra for a point rotating in a vertical plane
Powell, D.C.; Connell, J.R.; George, R.L.
1985-03-01
A theoretical model is modified and tested that produces the power spectrum of the alongwind component of turbulence as experienced by a point rotating in a vertical plane perpendicular to the mean wind direction. The ability to generate such a power spectrum, independent of measurement, is important in wind turbine design and testing. The radius of the circle of rotation, its height above the ground, and the rate of rotation are typical for those for a MOD-OA wind turbine. Verification of this model is attempted by comparing two sets of variances that correspond to individual harmonic bands of spectra of turbulence in the rotational frame. One set of variances is calculated by integrating the theoretically generated rotational spectra; the other is calculated by integrating rotational spectra from real data analysis. The theoretical spectrum is generated by Fourier transformation of an autocorrelation function taken from von Karman and modified for the rotational frame. The autocorrelation is based on dimensionless parameters, each of which incorporates both atmospheric and wind turbine parameters. The real data time series are formed by sampling around the circle of anemometers of the Vertical Plane Array at the former MOD-OA site at Clayton, New Mexico.
Rotating copper plasmoid in external magnetic field
Pandey, Pramod K.; Thareja, Raj K.
2013-02-15
Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.
Route to Topological Superconductivity via Magnetic Field Rotation.
Loder, Florian; Kampf, Arno P; Kopp, Thilo
2015-10-19
The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor.
Route to Topological Superconductivity via Magnetic Field Rotation
Loder, Florian; Kampf, Arno P.; Kopp, Thilo
2015-01-01
The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field Hc2, which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor. PMID:26477669
In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong
2016-05-14
In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.
Computation of bound orbits in the plane of a galaxy with a flat rotation curve
NASA Astrophysics Data System (ADS)
Bacon, M. E.; Sharrar, Amber
2010-05-01
A standard topic in an advanced undergraduate classical mechanics course is the determination of the orbits in a gravitational field. In the present paper we report on the calculation of bound orbits in the gravitational field of a spiral galaxy. Calculations such as these could serve to focus attention on an area of cutting edge astrophysics and could serve as an instructive exercise for advanced undergraduates. In the computations given in this paper, use is made of real data on the flat rotation curve of NGC 3198 obtained by Begeman et al (van Albada et al 1985 Astrophys. J. 295 305-13 Begeman 1989 Astron. Astrophys. 223 47-60 Begeman 1987 PhD Thesis University of Groningen http://irs.ub.rug.nl/ppn/291578543), and a fitting of that data to a theoretical model outlined in a previous paper (Bacon and Sharrar 2010 Am. J. Phys. at press). The galaxy is modelled as a thin exponential disc of baryonic matter combined with a spherically symmetric dark matter halo. The bound orbits in the plane of the galaxy are investigated. The computations are carried out using an icon-driven systems-modelling program that avoids the need for extensive programming expertise. The range of orbits investigated includes bound circular orbits and bound closed and open orbits that precess. The bound closed and open orbits are bounded by circles generated by the loci of the apsides of the orbit.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field
NASA Astrophysics Data System (ADS)
Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei
2013-09-01
Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.
Rotating field mass and velocity analyzer
NASA Technical Reports Server (NTRS)
Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)
1998-01-01
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
Migliaccio, Americo A; Della Santina, Charles C; Carey, John P; Minor, Lloyd B; Zee, David S
2006-08-01
We examined how the gain of the torsional vestibulo-ocular reflex (VOR) (defined as the instantaneous eye velocity divided by inverted head velocity) in normal humans is affected by eye position, target distance, and the plane of head rotation. In six normal subjects we measured three-dimensional (3D) eye and head rotation axes using scleral search coils, and 6D head position using a magnetic angular and linear position measurement device, during low-amplitude (approximately 20 degrees ), high-velocity (approximately 200 degrees/s), high-acceleration (approximately 4000 degrees /s2) rapid head rotations or 'impulses.' Head impulses were imposed manually and delivered in five planes: yaw (horizontal canal plane), pitch, roll, left anterior-right posterior canal plane (LARP), and right anterior-left posterior canal plane (RALP). Subjects were instructed to fix on one of six targets at eye level. Targets were either straight-ahead, 20 degrees left or 20 degrees right from midline, at distance 15 or 124 cm from the subject. Two subjects also looked at more eccentric targets, 30 degrees left or 30 degrees right from midline. We found that the vertical and horizontal VOR gains increased with the proximity of the target to the subject. Previous studies suggest that the torsional VOR gain should decrease with target proximity. We found, however, that the torsional VOR gain did not change for all planes of head rotation and for both target distances. We also found a dynamic misalignment of the vertical positions of the eyes during the torsional VOR, which was greatest during near viewing with symmetric convergence. This dynamic vertical skew during the torsional VOR arises, in part, because when the eyes are converged, the optical axes are not parallel to the naso-occipital axes around which the eyes are rotating. In five of six subjects, the average skew ranged 0.9 degrees -2.9 degrees and was reduced to <0.4 degrees by a 'torsional' quick-phase (around the naso
Nonlinear Compton scattering in a strong rotating electric field
NASA Astrophysics Data System (ADS)
Raicher, Erez; Eliezer, Shalom; Zigler, Arie
2016-12-01
The nonlinear Compton scattering rate in a rotating electric field is explicitly calculated. For this purpose, an approximate solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for implementation in kinetic codes. The spectrum is numerically calculated for present-day optical and x-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Substantial deviations between the two models, in both the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonic spectrum for electrons with low asymptotic momentum compared to the field amplitude. This discrete structure is a clear imprint of the electric field frequency, as opposed to the Volkov-Ritus rate, which reduces to the constant crossed field rate for the physical conditions under consideration. Our model predictions can be tested with present-day laser facilities.
A Tilted Plane as a Gravitational Field Model.
ERIC Educational Resources Information Center
Hale, D. P.
1980-01-01
Describes an experiment for the use of a tilted plane as a two-dimensional uniform gravitational field to demonstrate the motion of projectiles, to determine the fundamental laws of mechanics, or to study the focusing properties of the uniform field. (SK)
Interaction of a Vortex Induced by a Rotating Cylinder with a Plane
NASA Astrophysics Data System (ADS)
Han, Daozhi; Hou, Yifeng; Temam, Roger
2017-09-01
In this article,we study theoretically and numerically the interaction of a vortex induced by a rotating cylinder with a perpendicular plane. We show the existence of weak solutions to the swirling vortex models by using the Hopf extension method, and by an elegant contradiction argument, respectively. We demonstrate numerically that the model could produce phenomena of swirling vortex including boundary layer pumping and two-celled vortex that are observed in potential line vortex interacting with a plane and in a tornado.
Dirac semimetal thin films in in-plane magnetic fields
NASA Astrophysics Data System (ADS)
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee
2016-10-01
In this work we study the effects of in-plane magnetic fields on thin films of the Dirac Semimetal (DSM) Na3Bi where one of the in-plane directions is perpendicular to the k-separation between the two Weyl nodes that exist for each spin orientation. We show numerically that the states localized near the surfaces of these thin films are related to the Fermi arc states in semi-infinite slabs. Due to the anisotropy between the two in-plane directions, the application of a magnetic field along these directions have differing effects. A field parallel to the k space separation between the Weyl nodes leads to a broadening of the surface state band and the formation of an energy plateau, while a perpendicular field shifts the energy where the hole and particle bands meet upwards, and sharpens the tips of the bands. We illustrate the effects of these changes to the dispersion relation by studying the transmission from a source segment without a magnetic field to a drain segment with a field, with the field and interface at various in-plane directions.
Dirac semimetal thin films in in-plane magnetic fields
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee
2016-01-01
In this work we study the effects of in-plane magnetic fields on thin films of the Dirac Semimetal (DSM) Na3Bi where one of the in-plane directions is perpendicular to the k-separation between the two Weyl nodes that exist for each spin orientation. We show numerically that the states localized near the surfaces of these thin films are related to the Fermi arc states in semi-infinite slabs. Due to the anisotropy between the two in-plane directions, the application of a magnetic field along these directions have differing effects. A field parallel to the k space separation between the Weyl nodes leads to a broadening of the surface state band and the formation of an energy plateau, while a perpendicular field shifts the energy where the hole and particle bands meet upwards, and sharpens the tips of the bands. We illustrate the effects of these changes to the dispersion relation by studying the transmission from a source segment without a magnetic field to a drain segment with a field, with the field and interface at various in-plane directions. PMID:27721387
Electromechanical effects on multilayered cells in nonuniform rotating fields.
Sebastián, José Luis; Muñoz, Sagrario; Sancho, Miguel; Martínez, Genoveva; Alvarez, Gabriel
2011-07-01
We use the Maxwell stress tensor to calculate the dielectrophoretic force and electrorotational torque acting on a realistic four-shelled model of the yeast Saccharomyces cerevisiae in a nonuniform rotating electric field generated by four coplanar square electrodes. The comparison of these results with numerical calculations of the dipolar and quadrupolar contributions obtained from an integral equation for the polarization charge density shows the effect of the quadrupole contribution in the proximity of the electrode plane. We also show that under typical experimental conditions the substitution of the multilayered cell by an equivalent cell with homogeneous permittivity underestimates the quadrupole contribution to the force and torque by 1 order of magnitude.
Critical O (N ) models in the complex field plane
NASA Astrophysics Data System (ADS)
Litim, Daniel F.; Marchais, Edouard
2017-01-01
Local and global scaling solutions for O (N ) symmetric scalar field theories are studied in the complexified field plane with the help of the renormalization group. Using expansions of the effective action about small, large, and purely imaginary fields, we obtain and solve exact recursion relations for all couplings and determine the 3 d Wilson-Fisher fixed point analytically. For all O (N ) universality classes, we further establish that Wilson-Fisher fixed point solutions display singularities in the complex field plane, which dictate the radius of convergence for real-field expansions of the effective action. At infinite N , we find closed expressions for the convergence-limiting singularities and prove that local expansions of the effective action are powerful enough to uniquely determine the global Wilson-Fisher fixed point for any value of the fields. Implications of our findings for interacting fixed points in more complicated theories are indicated.
Velocity measurements of streamwise roll cells in rotating plane Couette flow
NASA Astrophysics Data System (ADS)
Suryadi, Alexandre; Tillmark, Nils; Alfredsson, P. Henrik
2013-11-01
For the first time, quantitative velocity measurements in rotating plane Couette flow are demonstrated. Particle image velocimetry is used at a low Reynolds number with anti-cyclonic, i.e. destabilising rotation, where the instability is expected to give rise to steady streamwise-oriented roll cells. The streamwise and spanwise velocities of the roll cells were measured on the centreplane of the flow and at two planes on either side. The streamwise velocity is spanwise periodic with an amplitude variation approximately ±42 % of half the velocity difference between the moving walls. The wall-normal velocity was estimated by assuming steady, laminar and streamwise-independent flow. Despite the large amplitude of the disturbance, both the spanwise wave length and amplitude ratio between the streamwise and wall-normal components were close to what is obtained from linear theory. A splitting event of a roll cell was also captured by the velocity measurements and its development followed in time.
Nonlinear filter for pattern recognition invariant to illumination and to out-of-plane rotations.
Lefebvre, Daniel; Arsenault, Henri H; Roy, Sébastien
2003-08-10
Automatic target recognition in uncontrolled conditions is a difficult task because many parametersare involved. This study deals with the recognition of targets under limited out-of-plane rotations while maintaining invariance to ambient light illumination. Contrast invariance is achieved by using the recently developed locally adaptive contrast-invariant filter, a method that yields correlation peaks whose values are invariant under any linear transformation of intensity. To reduce the sensitivity to the orientation of the object we replace the reference in the nonlinear filter by a synthetic discriminant filter. The range used for out-of-plane rotations was 40 degrees with a depression angle of 20 degrees. We present results for unsegmented targets on complex backgrounds with the presence of false targets.
Vijaya Kumar, B K; Mahalanobis, A; Takessian, A
2000-01-01
Correlation methods are becoming increasingly attractive tools for image recognition and location. This renewed interest in correlation methods is spurred by the availability of high-speed image processors and the emergence of correlation filter designs that can optimize relevant figures of merit. In this paper, a new correlation filter design method is presented that allows one to optimally tradeoff among potentially conflicting correlation output performance criteria while achieving desired correlation peak value behavior in response to in-plane rotation of input images. Such controlled in-plane rotation response is useful in image analysis and pattern recognition applications where the sensor follows a pre-arranged trajectory while imaging an object. Since this new correlation filter design is based on circular harmonic function (CHF) theory, we refer to the resulting filters as optimal tradeoff circular harmonic function (OTCHF) filters. Underlying theory, OTCHF filter design method, and illustrative numerical results are presented.
AC electric field induced dipole-based on-chip 3D cell rotation.
Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui
2014-08-07
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
Focal-plane electric field sensing with pupil-plane holograms
NASA Astrophysics Data System (ADS)
Por, Emiel H.; Keller, Christoph U.
2016-07-01
The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.
Magneto-optic imaging: Normal and parallel field components of in-plane magnetized samples
NASA Astrophysics Data System (ADS)
Ferrari, H.; Bekeris, V.; Thibeault, M.; Johansen, T. H.
2007-06-01
Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray magnetic fields. The technique consists in measuring the Faraday rotation, θF, in the light polarization plane when light travels through a transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.
Legant, Wesley R; Choi, Colin K; Miller, Jordan S; Shao, Lin; Gao, Liang; Betzig, Eric; Chen, Christopher S
2013-01-15
Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.
Motional sideband excitation using rotating electric fields
NASA Astrophysics Data System (ADS)
Isaac, C. A.
2013-04-01
A form of motional sideband excitation is described in which a rotating dipole electric field is applied asymmetrically onto a Penning-type trap in the presence of a mechanism for cooling the axial motion of the trapped particles. In contrast to the traditional motional sideband excitation, which uses an oscillating electric field, the rotating field results in only one active sideband in each sense of rotation and so avoids accidental excitation of the other sideband making it applicable to Penning-type traps with a large degree of anharmonicity. Expressions are derived for the magnetron radius expansion and compression rates attainable, and approximations are made for the case of strong and weak drives. A comparison is made with data, taken using a two-stage positron accumulator presented by Isaac [C. A. Isaac, C. J. Baker, T. Mortensen, D. P. van der Werf, and M. Charlton, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.033201 107, 033201 (2011)], showing good agreement between the model and experiment.
Effective colloidal interactions in rotating magnetic fields
NASA Astrophysics Data System (ADS)
Coughlan, Anna C. H.; Bevan, Michael A.
2017-08-01
Non-equilibrium, steady-state effective pair potentials of micron-sized superparamagnetic particles in rotating magnetic fields are obtained vs. field frequency and amplitude. Trajectories of center-to-center distance between particle pairs from Brownian dynamic simulations, which were previously matched to experimental measurements, are analyzed to obtain local drift and diffusion coefficients. These coefficients are used to obtain effective interaction potentials from solving a one-dimensional Fokker-Planck equation. Biased sampling of the effective energy landscape was implemented by intermittent switching between the field of interest and a repulsive field. Our findings show how the shape and attractive well-depth of pair interactions can be tuned by changing field frequency and amplitude.
Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin
2017-09-14
To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.
Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.
Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik
2014-03-01
For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.
NMR in rotating magnetic fields: Magic angle field spinning
Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.
2004-09-10
Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.
In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field
NASA Astrophysics Data System (ADS)
Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong
2016-05-01
In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force
A New Model to Produce Sagittal Plane Rotational Induced Diffuse Axonal Injuries
Davidsson, Johan; Risling, Marten
2011-01-01
A new in vivo animal model that produces diffuse brain injuries in sagittal plane rearward rotational acceleration has been developed. In this model, the skull of an anesthetized adult rat is tightly secured to a rotating bar. During trauma, the bar is impacted by a striker that causes the bar and the animal head to rotate rearward; the acceleration phase last 0.4 ms and is followed by a rotation at constant speed and a gentle deceleration when the bar makes contact with a padded stop. The total head angle change is less than 30°. By adjusting the air pressure in the rifle used to accelerate the striker, resulting rotational acceleration between 0.3 and 2.1 Mrad/s2 can be produced. Numerous combinations of trauma levels, post-trauma survival times, brain and serum retrieval, and tissue preparation techniques were adopted to characterize this new model. The trauma caused subdural bleedings in animals exposed to severe trauma. Staining brain tissue with β-Amyloid Precursor Protein antibodies and FD Neurosilver that detect degenerating axons revealed wide spread axonal injuries (AI) in the corpus callosum, the border between the corpus callosum and cortex and in tracts in the brain stem. The observed AIs were apparent only when the rotational acceleration level was moderate and above. On the contrary, only limited signs of contusion injuries were observed following trauma. Macrophage invasions, glial fibrillary acidic protein redistribution or hypertrophy, and blood brain barrier (BBB) changes were unusual. S100 serum analyses indicate that blood vessel and glia cell injuries occur following moderate levels of trauma despite the absence of obvious BBB injuries. We conclude that this rotational trauma model is capable of producing graded axonal injury, is repeatable and produces limited other types of traumatic brain injuries and as such is useful in the study of injury biomechanics, diagnostics, and treatment strategies following diffuse axonal injury. PMID
NASA Astrophysics Data System (ADS)
Iwai, Kazuhiko
2010-12-01
The alignment behavior of a crystal with a magnetic anisotropy of χc < χa under the imposition of a rotating magnetic field has been investigated by numerical calculation. The promotion of the crystal alignment when the projection of the magnetically hard axis on the magnetic field rotating plane is parallel to the magnetic field direction and its suppression when the magnetically hard axis is perpendicular to the magnetic field direction can be explained by the fact that the direction of the driving torque acting on the crystal minimizes the magnetic energy. Non dimensional alignment time normalized by the alignment time under the imposition of a static field is constant in the out-of-step region where the crystal cannot follow the magnetic field rotation during its alignment. The initial phase difference between the projection of the magnetically hard axis on the magnetic field rotating plane and its direction hardly affects the alignment time in the out-of-step region but strongly affects that in the synchronous region where the crystal rotation synchronous with the magnetic field rotation. A crystal aligns quickly if the initial phase difference is between 0 and 90° in the synchronous region. The minimum alignment time is the same as that under the imposition of a static field.
Propagation of Scalar Fields in a Plane Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Celestino, Juliana; Alves, Márcio E. S.; Barone, F. A.
2016-12-01
The present article deals with solutions for a minimally coupled scalar field propagating in a static plane symmetric spacetime. The considered metric describes the curvature outside a massive infinity plate and exhibits an intrinsic naked singularity (a singular plane) that makes the accessible universe finite in extension. This solution can be interpreted as describing the spacetime of static domain walls. In this context, a first solution is given in terms of zero order Bessel functions of the first and second kind and presents a stationary pattern which is interpreted as a result of the reflection of the scalar waves at the singular plane. This is an evidence, at least for the massless scalar field, of an old interpretation given by Amundsen and Grøn regarding the behaviour of test particles near the singularity. A second solution is obtained in the limit of a weak gravitational field which is valid only far from the singularity. In this limit, it was possible to find out an analytic solution for the scalar field in terms of the Kummer and Tricomi confluent hypergeometric functions.
Brotman, David; Zhang, Ziheng; Sampath, Smita
2013-05-01
Noninvasive quantification of regional left ventricular rotation may improve understanding of cardiac function. Current methods used to quantify rotation typically acquire data on a set of prescribed short-axis slices, neglecting effects due to through-plane myocardial motion. We combine principles of slice-following tagged imaging with harmonic phase analysis methods to account for through-plane motion in regional rotation measurements. We compare rotation and torsion measurements obtained using our method to those obtained from imaging datasets acquired without slice-following. Our results in normal volunteers demonstrate differences in the general trends of average and regional rotation-time plots in midbasal slices and the rotation versus circumferential strain loops. We observe substantial errors in measured peak average rotation of the order of 58% for basal slices (due to change in the pattern of the curve), -6.6% for midventricular slices, and -8.5% for apical slices; and an average error in base-to-apex torsion of 19% when through-plane motion is not considered. This study concludes that due to an inherent base-to-apex gradient in rotation that exists in the left ventricular, accounting for through-plane motion is critical to the accuracy of left ventricular rotation quantification.
Brotman, David; Zhang, Ziheng; Sampath, Smita
2012-01-01
Non-invasive quantification of regional left ventricular (LV) rotation may improve understanding of cardiac function. Current methods employed to quantify rotation typically acquire data on a set of prescribed short-axis slices, neglecting effects due to through-plane myocardial motion. We combine principles of slice-following tagged imaging with harmonic phase analysis methods to account for through-plane motion in regional rotation measurements. We compare rotation and torsion measurements obtained using our method to those obtained from imaging datasets acquired without slice-following. Our results in normal volunteers demonstrate differences in the general trends of average and regional rotation-time plots in mid-basal slices, and of the rotation versus circumferential strain loops. We observe substantial errors in measured peak average rotation of the order of 58% for basal slices (due to change in the pattern of the curve), −6.6% for mid-ventricular slices, and −8.5% for apical slices; and an average error in base-to-apex torsion of 19% when through-plane motion is not considered. This study concludes that due to an inherent base-to-apex gradient in rotation that exists in the LV, accounting for through-plane motion is critical to the accuracy of LV rotation quantification. PMID:22700308
Kalman filtering techniques for focal plane electric field estimation.
Groff, Tyler D; Jeremy Kasdin, N
2013-01-01
For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.
NASA Astrophysics Data System (ADS)
Drerup, B.; Hierholzer, E.
1986-07-01
Radiological assessment and follow-up control of scoliosis, i.e. of a lateral and rotational deviation of the spine, is performed mainly by single plane radiographs. Additional information may be gained from these radiographs by introducing a parametrized vertebral model. By analyzing the radiographic contours according to this model, axial rotation can be determined for any position and orientation of the vertebra. In addition to rotation several other data are determined for each vertebra, such as the tilting angle and the two-dimensional coordinates of the centre. By handling the data as a function of the vertebral location in spine, characteristic curves are generated. In order to find simple shape parameters for these characteristics, a smooth curve has to be fitted to the data points by a least squares approximation. This problem may be solved by a Fourier decomposition of the spinal curves. It appears, that the Fourier coefficients (amplitudes and phases) and some derived shape parameters lend themselves to a medical interpretation, which is consistent with the existing classification of the scoliotic spine.
Radiation of Electron in the Field of Plane Light Wave
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.; /SLAC
2006-02-24
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.
Phase-stepping method for whole-field photoelastic stress analysis using plane polariscope setup
NASA Astrophysics Data System (ADS)
Zhang, Xusheng; Chen, Lingfeng; He, Chuan
2010-10-01
A new six-step phase shifting method is presented in this paper to determine the phase retardation for whole-field photoelastic stress analysis in optical glass based on the plane polariscope setup. This new phase stepping strategy is of no quarter wave plate errors and with less intensity variations of emerging light. By this method, it's not necessary to determine the isoclinic angles in advance when measuring the phase retardations, so the data processing will be simplified and the isoclinic angle errors will cause no influnces on the measurement. A plane polariscope is setup including a LED array light source, rotatable dichroic polymer film polarizer and analyser, a digital CCD camera and image grab system. Two mica waveplates with known phase retardances are measured, and the experimental results agree well with the those values. This method is expected to be used for the stress induced birefringence test in optical glass.
Electropumping of water with rotating electric fields
NASA Astrophysics Data System (ADS)
De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.
2013-04-01
Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.
Electropumping of water with rotating electric fields.
De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J
2013-04-21
Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.
Lin, Wei; Han, Jia-Xiang; Takahashi, Lynelle K; Loeser, Jennifer G; Saykally, Richard J
2007-10-04
Terahertz vibration-rotation-tunneling transitions have been measured between ca. 78.5 and 91.9 cm-1, and assigned to A-E (ortho-para) combinations of NH3 monomer states. The spectrum is complicated by inversion splittings that correlate to E symmetry monomer rovibronic states. Twenty progressions have been assigned to six excited states involving an out-of-plane vibration and an in-plane intermolecular vibration. The quality of the fit was affected by strong Coriolis interactions among these states and possibly an additional K = 2 state that was not explicitly observed in the data.
Magnetic field rotation at high solar latitudes
NASA Technical Reports Server (NTRS)
Howard, R.
1978-01-01
Measurements of the rotation rate of polar magnetic features during 1974-76 lead to a significantly slower rotation rate than that found earlier for polar faculae in 1951-54. Similarly, the rotation rate of these features is slower than the Doppler-determined rate at polar latitudes or the rotation rate of polar filaments. It is suggested that the strong latitude rotation gradient in the subsurface magnetic flux tubes which is implied by these results may presage a very active solar maximum for cycle 21.
NASA Astrophysics Data System (ADS)
Wu, Chen; Ran, Shihao; Le, Henry H.; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.
2016-03-01
The mouse is a common model for studying developmental diseases. Different optical techniques have been developed to investigate mouse embryos, but each has its own set of limitations and restrictions. In this study, we imaged the same E9.5 mouse embryo with rotational imaging Optical Coherence Tomography (RI-OCT) and Selective Plane Illumination Microscopy (SPIM), and compared the two techniques. Results demonstrate that both methods can provide images with micrometer-scale spatial resolution. The RI-OCT technique was developed to increase imaging depth of OCT by performing traditional OCT imaging at multiple sides and co-registering the images. In SPIM, optical sectioning is achieved by illuminating the sample with a sheet of light. In this study, the images acquired from both techniques are compared with each other to evaluate the benefits and drawbacks of each technique for embryonic imaging. Since 3D stacks can be obtained by SPIM from different angles by rotating the sample, it might be possible to build a hybrid setup of two imaging modalities to combine the advantages of each technique.
Scaling and excitation of combined convection in a rapidly rotating plane layer
NASA Astrophysics Data System (ADS)
Starchenko, S. V.
2017-02-01
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation ( s) and the ratio thermal convection/compositional convection ( r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ 10-3 substitutes for the generally accepted Ekman number ( E 10-15) and s 10-6 substitutes for the inverse Rayleigh number 1/Ra 10-30. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.
Rotating colloids in rotating magnetic fields: Dipolar relaxation and hydrodynamic coupling
NASA Astrophysics Data System (ADS)
Coughlan, Anna C. H.; Bevan, Michael A.
2016-10-01
Video microscopy (VM) experiments and Brownian dynamics (BD) simulations were used to measure and model superparamagnetic colloidal particles in rotating magnetic fields for interaction energies on the order of the thermal energy, kT . Results from experiments and simulations were compared for isolated particle rotation, particle rotation within doublets, doublet rotation, and separation within doublets vs field rotation frequency. Agreement between VM and BD results was obtained at all frequencies and amplitudes only by including exact two-body hydrodynamic interactions and relevant relaxation times of magnetic dipoles. Frequency-dependent particle forces and torques cause doublets to rotate at low frequencies via dipolar interactions and at high frequencies via hydrodynamic translation-rotation coupling. By matching measurements and simulations for a range of conditions, our findings unambiguously demonstrate the quantitative forms of dipolar and hydrodynamic interactions necessary to capture nonequilibrium, steady-state dynamics of Brownian colloids in magnetic fields.
The in-plane free vibration of an elastically supported thin ring rotating at high speeds revisited
NASA Astrophysics Data System (ADS)
Lu, T.; Tsouvalas, A.; Metrikine, A. V.
2017-08-01
The in-plane free vibration of a rotating thin ring is revisited in this paper. A new model is proposed which accounts for the elastic foundation and the through-thickness variation of the radial stress. The emphasis is placed on a proper consideration of the geometrical nonlinearity, which is essential for the consistent modelling of the ring stiffening resulting from the radial expansion caused by rotation. The in-plane stability of a thin ring rotating at relatively high speeds is analysed thoroughly. It is shown that the ring can become unstable should the rotational speed exceed a critical value. This result is new as in most known to the authors previous studies the stability problem is either not considered or it is stated that the in-plane vibration of a rotating ring is stable. In the studies which did address the instability, the conclusions and the employed models are prone to criticism. A parametric study is conducted to illustrate the effects of the ring properties on the in-plane stability. Finally, modes, which appear as stationary displacement patterns of the ring to an observer in the space-fixed reference system, are investigated. It is shown that the stationary patterns can occur prior to the onset of the instability for certain ring parameters.
Slowly rotating scalar field wormholes: The second order approximation
Kashargin, P. E.; Sushkov, S. V.
2008-09-15
We discuss rotating wormholes in general relativity with a scalar field with negative kinetic energy. To solve the problem, we use the assumption about slow rotation. The role of a small dimensionless parameter plays the ratio of the linear velocity of rotation of the wormhole's throat and the velocity of light. We construct the rotating wormhole solution in the second-order approximation with respect to the small parameter. The analysis shows that the asymptotical mass of the rotating wormhole is greater than that of the nonrotating one, and the null energy condition violation in the rotating wormhole spacetime is weaker than that in the nonrotating one.
NASA Astrophysics Data System (ADS)
Fendt, C.
1997-07-01
Highly collimated jets are observed in various astronomical objects, as active galactic nuclei, galactic high energy sources, and also young stellar objects. There is observational indication that these jets originate in accretion disks, and that magnetic fields play an important role for the jet collimation and plasma acceleration. The rapid disk rotation close to the central object leads to relativistic rotational velocities of the magnetic field lines. The structure of these axisymmetric magnetic flux surfaces follows from the trans-field force-balance described by the Grad-Schlueter-Shafranov equation. In this paper, we investigate the asymptotic field structure of differentially rotating magnetic jets, widening the study by Appl & Camenzind (1993A&A...270...71A, 1993A&A...274..699A). In general, our results show that, with the same current distribution, differentially rotating jets are collimated to smaller jet radii as compared with jets with rigidly rotating field. Differentially rotating jets need a stronger net poloidal current in order to collimate to the same asymptotic radius. Current-free solutions are not possible for differentially rotating disk-jet magnetospheres with cylindrical asymptotics. We present a simple analytical relation between the poloidal current distribution and magnetic field rotation law. A general relation is derived for the current strength for jets with maximum differential rotation and minimum differential rotation. Analytical solutions are also given in the case of a field rotation leading to a degeneration of the light cylinder. By linking the asymptotic solution to a Keplerian accretion disk, 'total expansion rates' for the jets, and also the flux distribution at the foot points of the flux surfaces are derived. Large poloidal currents imply a strong opening of flux surfaces, a stronger gradient of field rotation leads to smaller expansion rates. There is indication that AGN jet expansion rates are less than in the case of
Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming
2017-06-01
We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of a dual field-of-view imaging system for infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Akram, Muhammad N.
2002-09-01
In this paper, the design of a dual field-of-view optical system for 3-5 μm infra-red focal-plane arrays is described. Preliminary calculations are done to determine the first-order parameters of the narrow and the wide-field modes. To achieve a switchable dual field-of-view system, two different optical configurations, one based on the axial motion of a lens group and the other based on a rotate-in motion of two separated lens groups, are studied and compared. Diffractive and conic surfaces are used to control the color and the monochromatic aberrations with less number of total lenses used. Paraxial and real-ray modeling of the Narcissus effect is described. It is shown that the rotate- in scheme achieves better optical performance in both the narrow and the wide-field modes. The axial-motion scheme suffers from poor lateral color in the wide-angle mode. The final optical designs along with their aberrations curves and MTF plots are presented showing excellent performance.
Effect of magnetic field on the rotating filamentary molecular clouds
NASA Astrophysics Data System (ADS)
Aghili, P.; Kokabi, K.
2017-04-01
The Purpose of this work is to study the evolution of magnetized rotating filamentary molecular clouds. We consider cylindrical symmetric filamentary molecular clouds at an early stage of evolution. For the first time we consider the rotation of filamentary molecular in the presence of an axial and azimuthal magnetic field without any assumption of density and magnetic functions. We show that in addition to decreasing the radial collapse velocity, the rotational velocity is also affected by the magnetic field. The existence of rotation yields fragmentation of filaments. Moreover, we show that the magnetic field has a significant effect on the fragmentation of filamentary molecular clouds.
Note: Design of a novel rotating magnetic field device
NASA Astrophysics Data System (ADS)
Godínez, F. A.; Chávez, O.; Zenit, R.
2012-06-01
A novel device to produce a rotating magnetic field was designed, constructed, and tested. The system consists of a Helmholtz coil pair which is mechanically coupled to a dc electric motor whose angular velocity is controlled. The coil pair generates a uniform magnetic field; the whole system is rotated maintaining the coils energized using brushes. The magnetic field strength is uniform (≈5.8 mT) for a workspace of about 100 mm along the rotation axis. The system remains free of undesirable high amplitude mechanical vibrations for rotation frequencies below 10 Hz. We verified the performance of the apparatus by conducting experiments with magnetic swimmers.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2005-12-01
The Sub-grid scale modeling is required for the geodynamo simulations because the fluid motion and the magnetic field in the Earth's outer core have small scale components which cannot be resolved in numerical simulations. We model the influence of sub-grid scale motion for the momentum and heat flux, the Lorentz force, and the induction term using the nonlinear gradient model by Leonard (1974), which is a form of the scale similarity model. The result suggests that the nonlinear gradient model can represent basic characteristics of the effects of the sub-grid scale motion, but we observe some discrepancies which are due to the spatial dependence of the filter function when the grid is non-equidistant. Ghosal and Moin (1995) point out that this error arises when the order of filtering and spatial differentiation operation is changed. In the present study, we correct the commutation error specifically for the nonlinear gradient model. In this case, the commutation error can be written as the product of derivative of the second order moment of the filter function and second derivative of the field. We append this correction term to our model, and evaluate the SGS terms from a snapshot of a MHD simulation in a rotating plane layer model. The prediction shows that the correction of the commutation error substantially improves the predicted SGS terms around the boundaries when compared with a direct estimate of SGS terms on the finer grid. In fact, the magnitude of the correction for the divergence of SGS terms is comparable to the uncorrected prediction of the nonlinear gradient model. These results indicate that the addition of the present correction for the spatial derivative is necessary to obtain the correct SGS terms for unstructured grid, such as the plane layer model or spherical shell model.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Stress field rotation or block rotation: An example from the Lake Mead fault system
NASA Technical Reports Server (NTRS)
Ron, Hagai; Nur, Amos; Aydin, Atilla
1990-01-01
The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.
Phase Diagram of a 2-D Plane Rotator Model with Integer and Half-Integer Vortices
NASA Astrophysics Data System (ADS)
de Souza, Adauto J. F.; Landau, D. P.
1996-03-01
A two-dimensional plane rotator spin model is simulated by employing the single cluster embeding Monte Carlo technique and the re-weighting histogram analysis. The system is described by the Hamiltonian^1 \\cal H = -J1 sum_< i,j > Si \\cdot Sj - J2 sum_< i,j > ( Si \\cdot Sj )^2. In adition to the familiar integer vortices, this model possesses half-integer vortex excitations as well. The system exhibits three low-temperature phases which may be identified by the behavior of suitably defined two-point correlation functions. The half- and integer-vortex densities as a function of temperature are calculated for several values of the parameter α = J_2/J_1. The phase boundaries are determined and the nature of the phase transitions is investigated. Research supported in part by the CNPq and the NSF. Permanent address: Departmento de Física e Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil ^1 D.H. Lee and G. Grinstein Phys. Rev. Lett. \\underline55, 541, (1985)
Stensdotter, Ann-Katrin; Dinhoff Pedersen, Morten; Meisingset, Ingebrigt; Vasseljen, Ottar; Stavdahl, Øyvind
2016-05-01
This study repeats the experimental protocol for investigation of head stabilization in healthy humans, described by Keshner and Peterson (1995) but with a modification of the analysis. Head movements were considered with respect to the room instead of relative to the trunk. The aim was to investigate the approximate contribution of reflex and voluntary control across perturbing frequencies and conditions with modulation of visual information and mental attention and discuss the resulting outcome while comparing methods. Seventeen healthy individuals were asked to keep the head steady in space while subjected to pseudorandom rotational perturbations in the horizontal plane, firmly seated on an actuated chair. Both methods confirmed the results for gain in previous studies showing fair ability to keep the head steady in space below 1 Hz with vision. Compensation deteriorated when vision was removed and worsened further with addition of a mental task. Between 1 and 2 Hz, unity gain occurred between head and trunk movements, whereas above 2 Hz the head moved more than the trunk. For phase angles, the original method demonstrated a phase split occurring from ~1 Hz, a purely mathematical artifact that caused subjects with virtually identical movements to appear as significantly different. This artifact was eliminated by analyzing the head-room relative to trunk-room rather than head-trunk relative to trunk-room angles, thus preventing potentially erroneous interpretations of the results.
Propagation speed of rotation signals for field lines undergoing magnetic reconnection
Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano
2013-10-15
Reconnection is associated with two bending of the magnetic field lines. Considering the usual plane of a 2D reconnection simulation, the first bending is in-plane and produces the needed topological changes by bringing oppositely directed filed lines in proximity. The second is typical of fast reconnection and is out of plane, leading to the formation of the Hall magnetic field. This second rotation has recently been observed to proceed at superAlfvénic speeds and to carry substantial energy fluxes (Shay et al., Phys. Rev. Lett. 107, 065001 (2011)). We revisit these rotations with a new diagnostics based on dispersing a multitude of virtual probes into a kinetic simulation, akin the approach of multi spacecraft missions. The results of the new diagnostics are compared with the theory of characteristics applied to the two fluid model. The comparison of virtual probes and the method of characteristics confirm the findings relative to the out of plane rotation and uncover the existence of two families of characteristics. Both are observed in the simulation. The early stage of reconnection develops on the slower compressional branch and the later faster phase develops on the faster torsional branch. The superAlfvénic signal is only relevant in the second phase.
Network analysis of three-dimensional complex plasma clusters in a rotating electric field.
Laut, I; Räth, C; Wörner, L; Nosenko, V; Zhdanov, S K; Schablinski, J; Block, D; Thomas, H M; Morfill, G E
2014-02-01
Network analysis was used to study the structure and time evolution of driven three-dimensional complex plasma clusters. The clusters were created by suspending micron-size particles in a glass box placed on top of the rf electrode in a capacitively coupled discharge. The particles were highly charged and manipulated by an external electric field that had a constant magnitude and uniformly rotated in the horizontal plane. Depending on the frequency of the applied electric field, the clusters rotated in the direction of the electric field or remained stationary. The positions of all particles were measured using stereoscopic digital in-line holography. The network analysis revealed the interplay between two competing symmetries in the cluster. The rotating cluster was shown to be more cylindrical than the nonrotating cluster. The emergence of vertical strings of particles was also confirmed.
Generation of whistler waves by a rotating magnetic field source
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Gigliotti, A.; Pribyl, P.; Vincena, S.
2010-01-15
The paper discusses the generation of polarized whistler waves radiated from a rotating magnetic field source created via a novel phased orthogonal two loop antenna. The results of linear three-dimensional electron magnetohydrodynamics simulations along with experiments on the generation whistler waves by the rotating magnetic field source performed in the large plasma device are presented. Comparison of the experimental results with the simulations and linear wave properties shows good agreement. The whistler wave dispersion relation with nonzero transverse wave number and the wave structure generated by the rotating magnetic field source are also discussed. The phase velocity of the whistler waves was found to be in good agreement with the theoretical dispersion relation. The exponential decay rate of the whistler wave propagating along the ambient magnetic field is determined by Coulomb collisions. In collisionless case the rotating magnetic field source was found to be a very efficient radiation source for transferring energy along the ambient magnetic field lines.
Shui, Xiaolong; Ying, Xiaozhou; Kong, Jianzhong; Feng, Yongzeng; Hu, Wei; Guo, Xiaoshan; Wang, Gang
2015-08-01
Our objective was to measure the sagittal plane rotational (flexion and extension) displacement of hemipelvis radiologically and analyze the ratio of flexion and extension displacement of unstable pelvic fractures. We used 8 cadaveric models to study the radiographic evidence of pelvic fractures in the sagittal plane. We performed pelvic osteotomy on 8 cadavers to simulate anterior and posterior pelvic ring injury. Radiological data were measured in the flexion and extension group under different angles (5°, 10°, 15°, 20°, and 25°). We retrospectively reviewed 164 patients who were diagnosed with a unilateral fracture of the pelvis. Pelvic ring displacement was identified and recorded radiographically in cadaveric models. The flexion and extension displacement of pelvic fractures was measured in terms of the vertical distance of fracture from the top of iliac crest to the pubic tubercle (CD) or from the top of iliac crest to the lowest point of ischial tuberosity (AB). Fifty-seven pelves showed flexion displacement and 15 showed extension displacement. Closed reduction including internal fixation and external fixation was successfully used in 141 cases (86.0 %). The success rates of closed reduction in flexion and extension displacement groups were 77 and 73 %, respectively, which were lower than in unstable pelvic ring fractures. The sagittal plane rotation (flexion and extension) displacement of pelvic fractures could be measured by special points and lines on the radiographs. Minimally invasive reduction should be based on clearly identified differences between the sagittal plane rotation and the vertical displacement of pelvic fractures.
Alenabi, Talia; Dal Maso, Fabien; Tétreault, Patrice; Begon, Mickaël
2016-02-01
Arm elevations in different planes are commonly assessed in clinics and are included in rehabilitation protocols for patients with rotator cuff pathology. The aim of this study was to quantify the effect of plane and angle of elevation on shoulder muscles activity in patients with symptomatic rotator cuff tear to be used for rehabilitation purposes. Eight symptomatic patients with rotator cuff tears were assessed by using EMG (11 surface and 2 fine wire electrodes) synchronized with a motion analysis. The subjects completed five elevations in full can position (arm externally rotated and thumb up) in frontal, scapular and sagittal planes. Muscle activity in three elevation arcs of 20° (from 0° to 60°) was presented as the percentage of mean activity. Data were analyzed by mixed linear models (α=0.003), and Tuckey Post-hoc comparisons for significant effects (α=0.05). The effect of plane was significant for supraspinatus, middle trapezius, anterior, middle, and posterior deltoid, triceps, and pectoralis major (P<0.001). Supraspinatus was more active during abduction than scaption and flexion (P<0.05), and its activity did not increase significantly after 40° of elevation (P>0.05). Infraspinatus had similar activity pattern in the three planes of elevation (P>0.003) with increasing trend in accordance with the elevation angle. In any rehabilitation protocol, if less activity of supraspinatus is desired, active arm elevation should be directed toward flexion and scaption and postponed abduction to prevent high level of activity in this muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity.
Liu, Zhan; Tsai, Tsung-Yuan; Wang, Shaobai; Wu, Minfei; Zhong, Weiye; Li, Jing-Sheng; Cha, Thomas; Wood, Kirk; Li, Guoan
2016-02-08
This study investigated the center of rotation (COR) of the intervertebral segments of the lower lumbar spine (L4-L5 and L5-S1 segments) in sagittal plane during a weight-lifting (3.6 kg in each hand) extension activity performed with the pelvis constrained. Seven healthy subjects were studied using a dual fluoroscopic imaging technique. Using the non-weightbearing, supine position during MRI scan as a reference, the average intervertebral flexion angles of the L4-L5 and L5-S1 were 6.6° and 5.3° at flexion position of the body, respectively, and were -1.8° and -3.5° at extension position of the body, respectively. The CORs of the lower lumbar spine were found segment-dependent and changed with the body postures. The CORs of the L4-L5 segment were at the location about 75% posterior from the anterior edge of the disc at flexion positions of the body, and moved to about 92% of the posterior portion of the disc at extension positions of the body. The CORs of the L5-S1 segment were at 95% posterior portion of the disc at flexion positions of the body, and moved outside of the posterior edge of the disc by about 12% of the disc length at extension positions of the body. These results could help understand the physiological motion characters of the lower lumbar spine. The data could also provide important insights for future improvement of artificial disc designs and surgical implantation of the discs that are aimed to reproduce normal spinal functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ibata, Rodrigo A.; Martin, Nicolas F.; Ibata, Neil G.; Lewis, Geraint F.; Conn, Anthony; Elahi, Pascal; Arias, Veronica; Fernando, Nuwanthika
2014-03-20
In a recent contribution, Bahl and Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation and concluded that vast, thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in Λ-cold dark matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the same method as employed by Ibata et al. on the real M31 satellites. We find that 0.04% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness, and number of members rotating in the same sense. We further investigate the angular momentum properties of the co-planar satellites, and find that the median of the specific angular momentum derived from the line-of-sight velocities in the real M31 structure (1.3 × 10{sup 4} km s{sup –1} kpc) is very high compared to systems drawn from the simulations. This analysis confirms that it is highly unlikely that the observed structure around the Andromeda galaxy is due to a chance occurrence. Interestingly, the few extreme systems that are similar to M31 arise from the accretion of a massive sub-halo with its own spatially concentrated entourage of orphan satellites.
Single-Plane Magnetically Focused Elongated Small Field Proton Beams.
McAuley, Grant A; Slater, James M; Wroe, Andrew J
2015-08-01
We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams. © The Author(s) 2014.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
van den Hoorn, W; Bruijn, S M; Meijer, O G; Hodges, P W; van Dieën, J H
2012-01-10
This study investigated whether people with low back pain (LBP) reduce variability of movement between the pelvis and thorax (trunk) in the transverse plane during gait at different speeds compared to healthy controls. Thirteen people with chronic LBP and twelve healthy controls walked on a treadmill at speeds from 0.5 to 1.72 m/s, with increments of 0.11 m/s. Step-to-step variability of the trunk, pelvis, and thorax rotations were calculated. Step-to-step deviations of pelvis and thorax rotations from the average pattern (residual rotations) were correlated to each other, and the linear regression coefficients between these deviations calculated. Spectral analysis was used to determine the frequencies of the residual rotations, to infer the relation of reduced trunk variability to trunk stiffness and/or damping. Variability of trunk motion (thorax relative to pelvis) was lower (P=0.02), covariance between the residual rotations of pelvis and thorax motions was higher (P=0.03), and the linear regression coefficients were closer to 1 (P=0.05) in the LBP group. Most power of segmental residual rotations was below stride frequency (~1 Hz). In this frequency range, trunk residual rotations had less power than pelvis or thorax residual rotations. These data show that people with LBP had lower variability of trunk rotations, as a result of the coupling of deviations of residual rotations in one segment to deviations of a similar shape (correlation) and amplitude (regression coefficient) in the other segment. These results support the argument that people with LBP adopt a protective movement strategy, possibly by increased trunk stiffness.
On the Sound Field of a Rotating Propeller
NASA Technical Reports Server (NTRS)
Gutin, L.
1948-01-01
The sound field of a rotating propeller is teated theoretically on the basis of aerodynamic principles. For the lower harmonics, the directional characteristics and the radiated sound energy are determined and are in conformity with existing experimental results.
The Use of Faraday Rotation Sign Maps as a Diagnostic for Helical Jet Magnetic Fields
NASA Astrophysics Data System (ADS)
Reichstein, Andrea; Gabuzda, Denise
2012-03-01
We present maps of the sign of the Faraday Rotation measure obtained from multi-frequency radio observations made with the Very Long Baseline Array (VLBA). The Active Galactic Nuclei (AGN) considered have B-field structures with a central "spine" of B-field orthogonal to the jet and/or a longitudinal B-field near one or both edges of the jet. This structure can plausibly be interpreted as being caused by a helical/toroidal jet magnetic field. Faraday Rotation is a rotation of the plane of polarization that occurs when the polarized radiation passes through a magnetized plasma. The sign of the RM is determined by the direction of the line-of-sight B-field in the region causing the Faraday Rotation, and an ordered toroidal or helical magnetic field associated with an AGN jet will thus produce a distinctive bilateral distribution of the RMs across the jet. We present and discuss RM-sign maps and their possible interpretation regarding the magnetic field geometries for several sources.
2010-01-01
Background Intra-operative fluoroscopy for orthopaedic procedures frequently involves imaging in the horizontal plane, which requires the lower portion of the C-arm (x-ray tube) to be rotated from an unsterile zone (beneath the table) into the sterile field. To protect the integrity of the sterile field the C-arm must be draped repeatedly throughout the surgical case. The current, un-standardized, practice employs draping procedures which violate the Association of peri-Operative Registered Nurses (AORN) Standards and Recommended Practices, waste time and material, and pose an increased risk for surgical site infection. Presentation of the hypothesis Use of a novel sterile C-arm drape (C-armor) that maintains the integrity of the sterile field, will improve operating room efficiency and reduce surgical site infection risk factors. This reduction in risk factors may potentially reduce surgical site infections in orthopaedic surgical cases requiring repeated horizontal x-ray imaging. Testing the Hypothesis Savings in time and material and the reduction in surgical site infection risk factors afforded by using C-armor are intuitive to those skilled in the practice of orthopaedic surgery. Testing for a reduction in the number of microorganisms introduced to the surgical site by improved C-arm draping would be challenging due to the multiple confounding factors during a surgical operation. Determination of an absolute reduction in surgical site infections may be possible, but will require accounting for many confounding variables and a large study sample in order to achieve statistical significance. Implications of the Hypothesis Improved intraoperative workflow, healthcare savings and a reduction in surgical site infection risk factors will be achieved by utilizing a standardized and safe method of sterile field maintenance during intra-operative horizontal plane fluoroscopy. PMID:21144027
NASA Astrophysics Data System (ADS)
Sereno, M.; Lupone, S.; Debiossac, M.; Kalashnyk, N.; Roncin, P.
2016-09-01
A procedure to measure the residual tilt angle τ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle θ and readout of the azimuthal angle ϕ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only a small residual oscillation of the scattering plane remains.
The quasi-rigid rotation of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.; Shampine, L. R.
1988-01-01
Spherical harmonic analysis and numerical simulations are used to study the rotational properties of the coronal magnetic field under the assumption that it can be approximated by a current-free extension of the photospheric field. It is found that the rotation rate in the outer corona is determined, principally, by coronal filtering, the global averages of the photospheric rotation rate, and ongoing source eruptions. The present model is able to account for observationally inferred rotational properties. It is suggested that the coronal rotation rate accelerates gradually due to the equatorward migration of sunspots, and that the 27-day equatorial period is approached toward sunspot minimum as the decaying photospheric flux becomes localized near the equator.
Rotating Capacitor Measures Steady Electric Fields
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Kirkham, H.; Eng, B.
1986-01-01
Portable sensor measures electric fields created by dc powerlines or other dc-high-voltage sources. Measures fields from 70 to 50,000 V/m with linearity of 2 percent. Sensor used at any height above ground. Measures both magnitude and direction of field and provides signals representing these measurements to remote readout device. Sensor functions with minimal disturbance of field it is measuring.
New Limits on Extragalactic Magnetic Fields from Rotation Measures
NASA Astrophysics Data System (ADS)
Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.
2016-05-01
We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.
Papagiannis, Georgios I; Roumpelakis, Ilias M; Triantafyllou, Athanasios I; Makris, Ioannis N; Babis, George C
2016-08-01
Total knee arthroplasties (TKAs) using well-designed, fixed bearing prostheses, such as medial pivot (MP), have produced good long-term results. Rotating-platform, posterior-stabilized (RP-PS) mobile bearing implants were designed to decrease polyethylene wear. Sagittal and coronal plane TKA biomechanics are well examined and correlated to polyethylene wear. However, limited research findings describe this relationship in transverse plane. We assumed that although axial plane biomechanics might not be the most destructive parameters on polyethylene wear, it is important to clarify their role because both joint kinematics and kinetics in all 3 planes are important input parameters for TKA wear testing (International Organization for Standardization 14243-1 and 14343-3). Our hypothesis was that transverse plane overall range of motion (ROM) and/or peak moment show differences that reflect on wear advantages when compared RP-PS implants to MP designs. Two groups (MPs = 24 and RP-PSs = 22 subjects) were examined by using 3D gait analysis. The variables were total internal-external rotation (IER) ROM and peak IER moments. No statistically significant difference was demonstrated between the 2 groups in kinetics (P = .389) or kinematics (P = .275). In the present study, no wear advantages were found between 2 TKAs. Both designs showed identical kinetics at the transverse plane in level-ground walking. Kinematic analysis could not illustrate any statistically significant difference in terms of overall IER ROM. Nevertheless, kinematic gait pattern differences observed possibly reflect different patterns of joint surface motion or abnormal gait patterns. Thus, wear testing with various input waveforms combined with functional data analysis will be necessary to identify the actual effects of gait variability on polyethylene wear. Copyright © 2016 Elsevier Inc. All rights reserved.
Rotation invariants of vector fields from orthogonal moments
Yang, Bo; Kostková, Jitka; Flusser, Jan; ...
2017-09-11
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Satoh, Akira; Ozaki, Masataka
2006-06-15
We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.
Lin, Wei; Han, Jia-Xiang; Takahashi, Lynelle K; Loeser, Jennifer G; Saykally, Richard J
2006-07-06
The terahertz vibration-rotation-tunneling (VRT) spectrum of the ammonia dimer (NH(3))(2) has been measured between ca. 78.5 and 91.9 cm(-1). The dipole-allowed transitions are separated into three groups that correspond to the 3-fold internal rotation of the NH(3) subunits. Transitions have been assigned for VRT states of the A-A (ortho-ortho) combinations of NH(3) monomer states. The spectrum is further complicated by strong Coriolis interactions. K = 0 <-- 0, K = 1 <-- 0, K = 0 <-- 1, and K = 1 <-- 1 progressions have been assigned. The band origins, rotational constants, asymmetry doubling, centrifugal distortion, and Coriolis coupling constant have been determined from the fit to an effective Hamiltonian. These VRT transitions are tentatively assigned to an out of plane vibration with a K = 0 state at 89.141305(47) cm(-1), and a K = 1 state at 86.77785(9) cm(-1).
Electric-field-induced rotation of Brownian metal nanowires.
Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio
2013-09-01
We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found.
Plasma Rotation Control Experiment in a Strongly Diverging Magnetic Field
NASA Astrophysics Data System (ADS)
Terasaka, Kenichiro; Furuta, Kanshi; Yoshimura, Shinji; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.
2016-10-01
It has been recognized that the plasma rotation affects the plasma flow structure along the magnetic field line. However, the effect of plasma rotation on structure formation in a strongly diverging magnetic field with magnetized electrons and unmagnetized ions has not been fully understood, so far. Understanding the flow structure formation in an ion-unmagnetized plasma is essential to control ion streamline detachment from the magnetic field line and also necessary to study the astrophysical phenomena in laboratory. In order to clarify the effect of plasma rotation in a diverging magnetic field, we have performed the plasma rotation control experiment in the HYPER-II device at Kyushu Univ., Japan. A set of cylindrical electrode was utilized to control the radial electric field, and the profile of azimuthal E × B rotation has been changed. We present the experimental results on the electron density pileup and the flow reversal appeared in the rotating plasma. This study was supported by JSPS KAKENHI Grant Number 16K05633.
Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A
2011-03-01
Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.
Design of a dual field-of-view optical system for infrared focal-plane arrays
NASA Astrophysics Data System (ADS)
Akram, Muhammad N.
2002-10-01
In this paper, the design of a dual field-of-view optical system for 3-5 μm infra-red focal-plane arrays is described. Preliminary calculations are done to determine the first-order parameters of the narrow and the wide-field modes. To achieve a switchable dual field-of-view system, two different optical configurations, one based on the axial motion of a lens group and the other based on a roate-in motion of two separated lens groups, are studied and compared. Diffractive and conic surfaces are used to control the color and the monochromatic aberrations with less number of total lenses used. Paraxial and real-ray modelling of the Narcissus effect is described. It is shown that the rotate-in scheme achieves better optical performance in both the narrow and the wide-fifeld modes. The axial-motion scheme suffers from poor lateral color in the wide-angle mode. The final optical designs along with the aberrations curves and MTF plots are presented showing excellent performance.
Pulsar rotation and dispersion measures and the galactic magnetic field.
NASA Technical Reports Server (NTRS)
Manchester, R. N.
1972-01-01
Use of observations of pulsar polarization and pulse time of arrival at frequencies between 250 and 500 MHz to determine rotation and dispersion measures for 19 and 21 pulsars, respectively. These measurements have been used to calculate mean line-of-sight components of the magnetic field in the path to the pulsars. These and other observations show that there is probably no contribution to the observed rotation measure from the pulsar itself. Low-latitude, low-dispersion pulsars are observed to have strong field components, and a strong dependence of rotation-measure sign on galactic longitude has been found. The observations are consistent with a relatively uniform field of about 3.5 microgauss directed toward about l = 90 deg in the local region, but appear to be inconsistent with the helical model for the local field.
Revealing Saturn's Rotation Period from its Gravitational Field
NASA Astrophysics Data System (ADS)
Helled, Ravit; Galanti, Eli; Kaspi, Yohai
2015-04-01
Knowledge of the rotation period of a giant planet is fundamental for constraining its internal structure and atmosphere dynamics. Until the arrival of the Cassini spacecraft to Saturn, Saturn's rotation period was set to the Voyager 2 radio period, 10h 39m 22.4s that was derived from the periodicity in Saturn's kilometric radiation (SKR). Surprisingly, Cassini's SKR measured a rotation period of 10h 47m 6s using the exact same method. It was then realized that Saturn's rotation period is unknown to within a few minutes. We show that Saturn's rotation period can be determined from its measured gravitational field. We find that without imposing any constraints on the planetary shape and internal density profile the rotation rate can be determined to within several minutes, and is 10h 43m 10s ± 4m. If we include limits based on the observed shape and possible internal density profiles, the rotation period is found to be 10h 32m 45s ± 46s. The success of our method is confirmed by applying it for Jupiter and reproducing exactly its measured rotation period that is well constrained.
Microscopic Faraday rotation measurement system using pulsed magnetic fields.
Egami, Shigeki; Watarai, Hitoshi
2009-09-01
Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.
Surface chirality induced by rotational electrodeposition in magnetic fields
Mogi, Iwao; Morimoto, Ryoichi; Aogaki, Ryoichi; Watanabe, Kazuo
2013-01-01
The surfaces of minerals could serve important catalytic roles in the prebiotic syntheses of organic molecules, such as amino acids. Thus, the surface chirality is responsible for the asymmetric syntheses of biomolecules. Here, we show induction of the surface chirality of copper metal film by electrodeposition via electrochemical cell rotation in magnetic fields. Such copper film electrodes exhibit chiral behaviour in the electrochemical reaction of alanine enantiomers, and the rotating direction allows control of the chiral sign. These findings are discussed in connection with the asymmetric influence of the system rotation on the magnetohydrodynamic micro-vortices around the electrode surfaces. PMID:23999254
Analyzing Extragalactic Magnetic Fields Using Faraday Rotation Measure Synthesis
NASA Astrophysics Data System (ADS)
Pare, Dylan; Wang, Q. Daniel; Kamieneski, Patrick; Sullivan, Kendall
2017-01-01
Extragalactic magnetic fields are a poorly understood element of galaxies that are likely to play an important role in galaxy formation and evolution. Until recently, however, there was no way to observe these fields to a high level of detail, making it difficult to map the spatial distribution of these fields to any high degree of accuracy. Fortunately, a new technique known as Faraday Rotation Measure Synthesis allows for a more precise analysis of galactic magnetism. This technique uses the observed Faraday rotation of polarized emission from background sources to map the magnetic field of a foreground galaxy. This Faraday rotation occurs when the polarized emission encounters ionized, magnetized gas within the galaxy, causing the emission to be rotated by an amount proportional the magnetic field subjected to the ionized gas. Working as part of CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey), we have applied this technique in order to learn about the distribution of magnetic fields in the disks and halos of edge-on spiral galaxies. We will present maps of the galactic magnetic fields of CHANG-ES galaxies using this technique, indicating the potential of this technique in successfully mapping these distant fields.
RoboPol: first season rotations of optical polarization plane in blazars
Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Panopoulou, G.; Liodakis, I.; King, O. G.; Angelakis, E.; Baloković, M.; Das, H.; Feiler, R.; Fuhrmann, L.; Hovatta, T.; Khodade, P.; Kus, A.; Kylafis, N.; Mahabal, A.; Myserlis, I.; Modi, D.; Pazderska, B.; Pazderski, E.; Papamastorakis, I.; Pearson, T. J.; Rajarshi, C.; Ramaprakash, A.; Reig, P.; Readhead, A. C. S.; Tassis, K.; Zensus, J. A.
2015-08-26
Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.
RoboPol: first season rotations of optical polarization plane in blazars
Blinov, D.; Pavlidou, V.; Papadakis, I.; ...
2015-08-26
Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periodsmore » have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10-2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10-5) that none of our rotations is physically connected with an increase in gamma-ray activity.« less
Optimal rotations of deformable bodies and orbits in magnetic fields.
Avron, J E; Gat, O; Kenneth, O; Sivan, U
2004-01-30
Deformations can induce rotation with zero angular momentum where dissipation is a natural "cost function." This gives rise to an optimization problem of finding the most effective rotation with zero angular momentum. For certain plastic and viscous media in two dimensions the optimal path is the orbit of a charged particle on a surface of constant negative curvature with a magnetic field whose total flux is half a quantum unit.
Perception of combined translation and rotation in the horizontal plane in humans
2016-01-01
Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived. PMID:27334952
Perception of combined translation and rotation in the horizontal plane in humans.
Crane, Benjamin T
2016-09-01
Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived. Copyright © 2016 the American Physiological Society.
Investigations of Magnetically Enhanced RIE Reactors with Rotating Magnetic Fields
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu.; Kushner, Mark J.
2008-10-01
In Magnetically Enhanced Reactive Ion Etching (MERIE) reactors, a magnetic field parallel to the substrate enables higher plasma densities and control of ion energy distributions. Since it is difficult to make the B-field uniform across the wafer, the B-field is often azimuthally rotated at a few Hz to average out non-uniformities. The rotation is slow enough that the plasma is in quasi-equilibrium with the instantaneous B-field. For the pressures (10's mTorr or less) and B-fields (10's - 100's G) of interest, electrons are magnetized whereas ions are usually not. The orientation and intersection of the B-field with the wafer are important, as intersecting field lines provide a low resistance path for electron current to the substrate. We report on a modeling study of plasma properties in MERIE reactors having rotating B-fields by investigating a series of quasi-steady states of B-field profiles. To resolve side-to-side variations, computations are performed in Cartesian coordinates. The model, nonPDPSIM, was improved with full tensor conductivities in the fluid portions of the code and v x B forces in the kinetic portions. Results are discussed while varying the orientation and strength of the B-field for electropositive (argon) and electronegative (Ar/CxFy, Ar/Cl2) gas mixtures.
Protein detection with magnetic nanoparticles in a rotating magnetic field
NASA Astrophysics Data System (ADS)
Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank
2014-01-01
A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.
The Stability of Magnetized Rotating Plasmas with Superthermal Fields
NASA Astrophysics Data System (ADS)
Pessah, Martin E.; Psaltis, Dimitrios
2005-08-01
During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper we investigate the local linear stability of differentially rotating, magnetized flows and the evolution of the magnetorotational instability beyond the weak-field limit. We show that, when superthermal toroidal fields are considered, the effects of both compressibility and magnetic tension forces, which are related to the curvature of toroidal field lines, should be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a nontrivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfvén speeds exceeding the geometric mean of the sound speed and the rotational speed. For a broad range of magnetic field strengths, we also find that two additional distinct instabilities are present; they both appear as the result of coupling between the modes that become the Alfvén and the slow modes in the limit of no rotation. We discuss the significance of our findings for the stability of cold, magnetically dominated, rotating fluids and argue that, for these systems, the curvature of toroidal field lines cannot be neglected even when short-wavelength perturbations are considered. We also comment on the implications of our results for the validity of shearing box simulations in which superthermal toroidal fields are generated.
Aberration influenced generation of rotating two-lobe light fields
NASA Astrophysics Data System (ADS)
Kotova, S. P.; Losevsky, N. N.; Prokopova, D. V.; Samagin, S. A.; Volostnikov, V. G.; Vorontsov, E. N.
2016-08-01
The influence of aberrations on light fields with a rotating intensity distribution is considered. Light fields were generated with the phase masks developed using the theory of spiral beam optics. The effects of basic aberrations, such as spherical aberration, astigmatism and coma are studied. The experimental implementation of the fields was achieved with the assistance of a liquid crystal spatial light modulator HOLOEYE HEO-1080P, operating in reflection mode. The results of mathematical modelling and experiments have been qualitatively compared.
Magnetic field induced by elliptical instability in a rotating spheroid
NASA Astrophysics Data System (ADS)
Lacaze, L.; Herreman, W.; Le Bars, M.; Le Dizès, S.; Le Gal, P.
2006-10-01
The tidal or the elliptical instability of the rotating fluid flows is generated by the resonant interaction of the inertial waves. In a slightly elliptically deformed rotating sphere, the most unstable linear mode is called the spin-over mode, and is a solid body rotation versus an axis aligned with the maximum strain direction. In the non-viscous case, this instability corresponds to the median moment of the inertial instability of the solid rotating bodies. This analogy is furthermore illustrated by an elliptical top experiment, which shows the expected inviscid heteroclinic behaviour. In geophysics, the elliptical instability may appear in the molten liquid cores of the rotating planets, which are slightly deformed by the tidal gravitational effects of the close bodies. It may then participate in the general outer core dynamics and possibly the geodynamo process. In this context, Kerswell and Malkus (Kerswell, R.R. and Malkus, W.V.R., Tidal instability as the source for Io's magnetic signature. Geophys. Res. Lett., 1998, 25, 603 606) showed that the puzzling magnetic field of the Jovian satellite Io may indeed be induced by the elliptically unstable motions of its liquid core that deflect the Jupiter's magnetic field. Our magnetohydrodynamics (MHD) experiment is a toy-experiment of this geophysical situation and demonstrates for the first time the possibility of an induction of a magnetic field by the flow motions due to the elliptical instability. A full analytical calculation of the magnetic dipole induced by the spin-over is presented. Finally, exponential growths of this induced magnetic field in a slightly deformed rotating sphere filled with galinstan liquid metal are measured for different rotating rates. Their growth rates compare well with the theoretical predictions in the limit of a vanishing Lorentz force.
The Effect of Magnetic Field on Mean Flow Generation by Rotating Two-dimensional Convection
NASA Astrophysics Data System (ADS)
Currie, Laura K.
2016-11-01
Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them, leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.
Twists and rotations of solar magnetic fields
NASA Astrophysics Data System (ADS)
Piddington, J. H.
1981-04-01
A detailed review is given of evidence for the emergence of solar magnetic fields as helically twisted flux ropes, made up of hundreds of thousands of individually twisted flux fibers and reaching concentrations greater than 4000 gauss. The initial pitch angle of the twists is estimated as less than 10 deg in the submerged flux ropes and 1 deg in the fibers, with large-factor increases during (and following) emergence. The upward transmission of magnetic stresses and motions from submerged flux rope sections are major factors in solar physics, with the helical twists accounting for the creation of sunspots and for their stability, fine structure, and mode of decay. They are basic features of solar atmospheric structures, from the largest flare events and prominences to arch filaments and the smallest network components.
NASA Astrophysics Data System (ADS)
Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.
2016-10-01
We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main
Wave field reconstruction from multiple plane intensity-only data: augmented lagrangian algorithm.
Migukin, Artem; Katkovnik, Vladimir; Astola, Jaakko
2011-06-01
A complex-valued wave field is reconstructed from intensity-only measurements given at multiple observation planes parallel to the object plane. The phase-retrieval algorithm is obtained from the constrained maximum likelihood approach provided that the additive noise is gaussian. The forward propagation from the object plane to the measurement plane is treated as a constraint in the proposed variational setting of reconstruction. The developed iterative algorithm is based on an augmented lagrangian technique. An advanced performance of the algorithm is demonstrated by numerical simulations.
The effect of habituation and plane of rotation on vestibular perceptual responses.
Grunfeld, E A; Okada, T; Jáuregui-Renaud, K; Bronstein, A M
2000-01-01
A technique was applied to assess vestibular sensation without reference to external spatial, position cues. The stimuli were stopping responses to velocity-steps of 90 deg/s in the dark. Subjects indicated their perceived angular velocity by turning a flywheel connected to a tachogenerator. Two separate experiments were conducted. In one, subjects were rotated in yaw about an earth-vertical axis before and after prolonged rotational or visual (optokinetic) stimuli. In the second experiment, subjects were rotated in roll supine, with either the head ('roll centred') or the feet ('roll eccentric') on the axis of rotation. The two aims of the paper were to (i) examine the effect of repetitive vestibular and optokinetic stimulation on the time constant of decay of vestibular sensation in yaw; (ii) to compare vestibular sensation responses to rotation in roll both with and without the addition of a Z-axis centrifugal force. The pre-habituation sensation response in yaw decayed exponentially with a median time constant of 12.8 s. The duration of the sensation responses were significantly reduced following both prolonged vestibular and optokinetic stimulation. The reduction in vestibular responses following prolonged visual and vestibular stimuli, 1) is likely to occur in velocity storage mechanisms mediating ocular and perceptual responses, 2) may represent a mechanism for reducing the disorientating consequences of visual-vestibular conflict and 3) supports the use of optokinetic stimuli as a treatment for vestibular patients. The time constant of the sensation responses in roll was shorter and not significantly influenced by head position: 5.7 s in the head-centred position compared to 4.7 s in the eccentric head position. Therefore, perceptual as well as ocular responses to rotation in roll are determined primarily by cupula dynamics and not influenced by velocity storage.
JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS
Fendt, Christian
2011-08-10
In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.
Jet Rotation Driven by Magnetohydrodynamic Shocks in Helical Magnetic Fields
NASA Astrophysics Data System (ADS)
Fendt, Christian
2011-08-01
In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfvén Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.
1982-07-01
which makes no use of the hodograph transformation. The advantage of the procedure used here lies in its applicability to the plane strain Mode I problem...solutions of the displacement equation of equilibrium valid on overlapping domains . The final solution is then generated by a consistent matching...y(x)=x+u(x) for all xE%, (1.1)1 is a mappi;: of 9 onto a domain 6* in which u(x) is the displace- ment field. We assume the transformation (1.1) to be
Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming
2013-01-01
Background The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). Methods We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. Results There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). Conclusions In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level. PMID:24376634
NASA Astrophysics Data System (ADS)
Vorontsov, A. B.; Vekhter, I.
2007-06-01
We develop a fully microscopic theory for the calculations of the angle-dependent properties of unconventional superconductors under a rotated magnetic field. We employ the quasiclassical Eilenberger equations and use a variation of the Brandt-Pesch-Tewordt (BPT) method to obtain a closed-form solution for the Green’s function. The equations are solved self-consistently for quasi-two-dimensional dx2-y2(dxy) superconductors with the field rotated in the basal plane. The solution is used to determine the density of states and the specific heat. We find that applying the field along the gap nodes may result in minima or maxima in the angle-dependent specific heat, depending on the location in the T-H plane. This variation is attributed to the scattering of the quasiparticles on vortices, which depends on both the field and the quasiparticle energy, and is beyond the reach of the semiclassical approximation. We investigate the anisotropy across the T-H phase diagram and compare our results with the experiments on heavy fermion CeCoIn5 .
Inequivalence of quantum field theories on noncommutative spacetimes: Moyal versus Wick-Voros planes
Balachandran, A. P.; Ibort, A.; Marmo, G.; Martone, M.
2010-04-15
In this paper, we further develop the analysis started in an earlier paper on the inequivalence of certain quantum field theories on noncommutative spacetimes constructed using twisted fields. The issue is of physical importance. Thus it is well known that the commutation relations among spacetime coordinates, which define a noncommutative spacetime, do not constrain the deformation induced on the algebra of functions uniquely. Such deformations are all mathematically equivalent in a very precise sense. Here we show how this freedom at the level of deformations of the algebra of functions can fail on the quantum field theory side. In particular, quantum field theory on the Wick-Voros and Moyal planes are shown to be inequivalent in a few different ways. Thus quantum field theory calculations on these planes will lead to different physics even though the classical theories are equivalent. This result is reminiscent of chiral anomaly in gauge theories and has obvious physical consequences. The construction of quantum field theories on the Wick-Voros plane has new features not encountered for quantum field theories on the Moyal plane. In fact it seems impossible to construct a quantum field theory on the Wick-Voros plane which satisfies all the properties needed of field theories on noncommutative spaces. The Moyal twist seems to have unique features which make it a preferred choice for the construction of a quantum field theory on a noncommutative spacetime.
Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission
NASA Technical Reports Server (NTRS)
Dyks, J.; Harding, Alice K.
2004-01-01
We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r
ON THE ROTATION OF THE MAGNETIC FIELD ACROSS THE HELIOPAUSE
Opher, M.; Drake, J. F.
2013-12-01
Based on the difference between the orientation of the interstellar and the solar magnetic fields, there was an expectation by the community that the magnetic field direction will rotate dramatically across the heliopause (HP). Recently, the Voyager team concluded that Voyager 1 (V1) crossed into interstellar space last year. The question is then why there was no significant rotation in the direction of the magnetic field across the HP. Here we present simulations that reveal that strong rotations in the direction of the magnetic field at the HP at the location of V1 (and Voyager 2) are not expected. The solar magnetic field strongly affects the drapping of the interstellar magnetic field (B {sub ISM}) around the HP. B {sub ISM} twists as it approaches the HP and acquires a strong T component (East-West). The strong increase in the T component occurs where the interstellar flow stagnates in front of the HP. At this same location the N component B{sub N} is significantly reduced. Above and below, the neighboring B {sub ISM} lines also twist into the T direction. This behavior occurs for a wide range of orientations of B {sub ISM}. The angle δ = asin (B{sub N} /B) is small (around 10°-20°), as seen in the observations. Only after some significant distance outside the HP is the direction of the interstellar field distinguishably different from that of the Parker spiral.
Secular Motion in a 2nd Degree and Order-Gravity Field with no Rotation
NASA Astrophysics Data System (ADS)
Scheeres, D. J.; Hu, W.
2001-03-01
The motion of a particle about a non-rotating 2nd degree and order-gravity field is investigated. Averaging conditions are applied to the particle motion and a qualitative analysis which reveals the general character of motion in this system is given. It is shown that the orbit plane will either be stationary or precess about the body's axis of minimum or maximum moment of inertia. It is also shown that the secular equations for this system can be integrated in terms of trigonometric, hyperbolic or elliptic functions. The explicit solutions are derived in all cases of interest.
Suppressing the Rayleigh-Taylor instability with a rotating magnetic field.
Rannacher, Dirk; Engel, Andreas
2007-01-01
The Rayleigh-Taylor instability of a magnetic fluid superimposed on a nonmagnetic liquid of lower density may be suppressed with the help of a spatially homogeneous magnetic field rotating in the plane of the undisturbed interface. Starting from the complete set of Navier-Stokes equations for both liquids a Floquet analysis is performed which consistently takes into account the viscosities of the fluids. Using experimentally relevant values of the parameters we suggest to use this stabilization mechanism to provide controlled initial conditions for an experimental investigation of the Rayleigh-Taylor instability.
PIC simulation of electrodeless plasma thruster with rotating electric field
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-27
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
Electrodeless RF Plasma Propulsion by Rotating Magnetic Field Method
NASA Astrophysics Data System (ADS)
Furukawa, Takerku; Takizawa, Kohei; Kuwahara, Daisuke; Shinohara, Shunjiro
2016-10-01
Electric propulsion scheme is promising in the field of the space propulsion because of high fuel efficiency and long operating time. However, this time is limited due to the loss of electrodes contacting with plasmas directly. In order to solve this problem, we have proposed electrodeless acceleration schemes, e.g., a rotating magnetic field (RMF) scheme. In this RMF scheme, we use two pairs of 5 turns RMF coils with AC currents, which have a 90 deg. phase difference. The rotating magnetic field induces azimuthal current j by a nonlinear effect. Then, plasma is accelerated by the axial Lorentz force using the product of j and the radial component of external magnetic field. We have investigated the effect of the RMF current frequency f, and 24% increase of ion velocity in the case of f = 3 MHz. We will present the experimental results, using lower f and gas pressure, and also discuss the penetration of RMF into the plasma.
Andhariya, Nidhi; Chudasama, Bhupendra; Patel, Rajesh; Upadhyay, R V; Mehta, R V
2008-07-01
In the present investigation we report the effect of capillary diameter and the direction of applied magnetic field on the rotational viscosity of water and kerosene based ferrofluids. We found that changes in the field induced rotational viscosity are larger in the case of water based magnetic fluid than that of kerosene based fluid. The field induced rotational viscosity is found to be inversely proportional to the capillary diameter and it falls exponentially as a function of the angle between the direction of field and vorticity of flow. Magnetophoretic mobility and hydrodynamic volume fraction of nanomagnetic particles are determined for above cases.
Near-Field Diffraction Imaging from Multiple Detection Planes
NASA Astrophysics Data System (ADS)
Loetgering, L.; Golembusch, M.; Hammoud, R.; Wilhein, T.
2017-06-01
We present diffraction imaging results obtained from multiple near-field diffraction constraints. An iterative phase retrieval algorithm was implemented that uses data redundancy achieved by measuring near-field diffraction intensities at various sample-detector distances. The procedure allows for reconstructing the exit surface wave of a sample within a multiple constraint satisfaction framework neither making use of a priori knowledge as enforced in coherent diffraction imaging (CDI) nor exact scanning grid knowledge as required in ptychography. We also investigate the potential of the presented technique to deal with polychromatic radiation as important for potential application in diffraction imaging by means of tabletop EUV and X-ray sources.
NASA Astrophysics Data System (ADS)
Jeon, Sang Youn; Shin, Seung Hwan; Jeong, Seok Jin; Lee, Seung Hee; Jeong, Seok Ho; Lee, Young Hee; Choi, Hyun Chul; Kim, Kyeong Jin
2007-03-01
Homogeneously aligned nematic liquid crystal (LC) cells doped with carbon nanotubes (CNTs) driven by an in-plane field were fabricated and their electro-optic characteristics were investigated. The effective cell retardation values showed no difference between doped and undoped LC cells in the absence of electric field. However, in the presence of electric field, it was smaller in the CNT-doped cell than in the undoped cell, resulting in the decrease of transmittance. Furthermore, the CNT-doped cell exhibited a slight increase in the driving voltage due to the increase of the twist elastic constant (K22) and the decrease in the decay response time due to the decrease in the rotational viscosity (γ) and γ /K22 compared to the undoped cell.
NASA Astrophysics Data System (ADS)
Pinkerton I., S. F.; Rhodes, E. J., Jr.; Bogart, R. S.; Orr, M.; Martin, G.; Spinella, A.
2013-12-01
Time series of full-disk Dopplergrams were acquired at the 60-Foot Solar tower of the Mount Wilson Observatory every year between 1987 and 2009. The 60-Foot Tower was designed by George Ellery Hale to provide an image plane that did not rotate throughout each observing day. However, preliminary analyses of a portion of this archive, carried out in 2007, suggested that the focal plane of the Tower might actually be rotating slowly. If confirmed, such an instrumental rotation would suggest that the alignment of the optics has changed slightly over the years since 1907. This possible rotation of the image plane was uncovered through the computation of subsurface flow maps using the ring-diagram method of local helioseismology. Some of the initial MWO flow maps appeared to show evidence for a so-called “washing machine” effect similar to the pattern that was seen in the initial GONG flow maps. We have been working to confirm the early estimates of the focal plane rotation. The purpose of this paper is to report on the status of this endeavor as well as explore the ramifications of a rotating image plane on our anticipated meridional and zonal flow results.
Saturn's gravitational field, internal rotation, and interior structure.
Anderson, John D; Schubert, Gerald
2007-09-07
Saturn's internal rotation period is unknown, though it must be less than 10 hours, 39 minutes, and 22 seconds, as derived from magnetic field plus kilometric radiation data. By using the Cassini spacecraft's gravitational data, along with Pioneer and Voyager radio occultation and wind data, we obtain a rotation period of 10 hours, 32 minutes, and 35 +/- 13 seconds. This more rapid spin implies slower equatorial wind speeds on Saturn than previously assumed, and the winds at higher latitudes flow both east and west, as on Jupiter. Our related Saturn interior model has a molecular-to-metallic hydrogen transition about halfway to the planet's center.
Strong dipole magnetic fields in fast rotating fully convective stars
NASA Astrophysics Data System (ADS)
Shulyak, D.; Reiners, A.; Engeln, A.; Malo, L.; Yadav, R.; Morin, J.; Kochukhov, O.
2017-08-01
M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and large-scale magnetic fields1,2,3,4. Such activity is driven by a dynamo powered by the convective motions in their interiors2,5,6,7,8. Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation-activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days2,6,8. The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux9, the stellar magnetic fields will also saturate, to values around 4 kG (ref. 10). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models11,12: stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4 kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.
NASA Astrophysics Data System (ADS)
Afanasyev, Y. D.; Rhines, P. B.; Lindahl, E. G.
2009-12-01
An optical method of altimetric imaging velocimetry (AIV) for measuring the slope of the surface elevation in the rotating fluid with free surface is described. This method allows one to obtain the major dynamical fields in the fluid layer including velocity, vorticity and surface elevation. When used in combination with the Optical Thickness method the AIV can be used to render the full dynamical characteristics of a two-layer flow. Both methods allow one to achieve very high spatial resolution by rendering a velocity vector in each pixel of the image. An example of the two-layer source-driven flow on a γ-plane (also called polar β-plane) is offered to demonstrate the application of these methods. This “β-plume’ is a gyre-like response to a point source of fluid, including intense jets, eddies and Rossby waves.
Rotating field collector subsystem phase 1 study and evaluation
NASA Astrophysics Data System (ADS)
Jones, D.; Eibling, J. A.
1982-10-01
The rotating field collector system is an alternative concept in which all heliostats are mounted on a single large platform which rotates around a tower to track the azumuthal angle of the Sun. Each heliostat is mounted to the platform with appropriate pivots, linkage, and controls to provide the additional positioning required to properly direct the solar radiation onto the receiver. The results are presented of the first phase of a study to investigate the technical and economic merits of a particular type of rotating field collector subsystem. The large pie-shaped platform would revolve over an array of support pedestals by means of a roller at the top of each pedestal. Several heliostats were built to demonstrate their construction features, and the operation of both flat and amphitheater rotating fields was studied. Work included an analysis of the concepts, development of modifications and additions to make the system comply with design criteria, and cost estimates to be used for comparison with other heliostat subsystems. Because of considerably high cost estimates, the focus of a large part of the study was directed toward developing lower cost designs of major components.
Plasma rotation driven by static nonresonant magnetic fields
Garofalo, A. M.; Burrell, K. H.; DeBoo, J. C.; DeGrassie, J. S.; Jackson, G. L.; Schaffer, M. J.; Strait, E. J.; Solomon, W. M.; Park, J.-K.; Lanctot, M.; Reimerdes, H.
2009-05-15
Recent experiments in high temperature DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 64 (2002)] plasmas reported the first observation of plasma acceleration driven by the application of static nonresonant magnetic fields (NRMFs), with resulting improvement in the global energy confinement time. Although the braking effect of static magnetic field asymmetries is well known, recent theory [A. J. Cole et al., Phys. Rev. Lett. 99, 065001 (2007)] predicts that in some circumstances they lead instead to an increase in rotation frequency toward a 'neoclassical offset' rate in a direction opposed to the plasma current. We report the first experimental confirmation of this surprising result. The measured NRMF torque shows a strong dependence on both plasma density and temperature, above expectations from neoclassical theory. The consistency between theory and experiment improves with modifications to the expression of the NRMF torque accounting for a significant role of the plasma response to the external field and for the beta dependence of the plasma response, although some discrepancy remains. The magnitude and direction of the observed offset rotation associated with the NRMF torque are consistent with neoclassical theory predictions. The offset rotation rate is about 1% of the Alfven frequency or more than double the rotation needed for stable operation at high {beta}{sub N} above the n=1 no-wall kink limit in DIII-D.
NMR system and method having a permanent magnet providing a rotating magnetic field
Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA
2009-05-19
Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
Biomechanical comparison of 3 ankle braces with and without free rotation in the sagittal plane.
Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter
2014-01-01
Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion-dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Crossover study. University Movement Analysis Laboratory. Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be clinically relevant.
Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane
Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter
2014-01-01
Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be
Reconstruction of the sound field above a reflecting plane using the equivalent source method
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Jing, Wen-Qian; Zhang, Yong-Bin; Lin, Wang-Lin
2017-01-01
In practical situations, vibrating objects are usually located above a reflecting plane instead of exposing to a free field. The conventional nearfield acoustic holography (NAH) sometimes fails to identify sound sources under such situations. This paper develops two kinds of equivalent source method (ESM)-based half-space NAH to reconstruct the sound field above a reflecting plane. In the first kind of method, the half-space Green's function is introduced into the ESM-based NAH, and the sound field is reconstructed based on the condition that the surface impedance of the reflecting plane is known a prior. The second kind of method regards the reflections as being radiated by equivalent sources placed under the reflecting plane, and the sound field is reconstructed by matching the pressure on the hologram surface with the equivalent sources distributed within the vibrating object and those substituting for reflections. Thus, this kind of method is independent of the surface impedance of the reflecting plane. Numerical simulations and experiments demonstrate the feasibility of these two kinds of methods for reconstructing the sound field above a reflecting plane.
Dynamics of Magnetotactic Bacteria in a Rotating Magnetic Field
Ērglis, Kaspars; Wen, Qi; Ose, Velta; Zeltins, Andris; Sharipo, Anatolijs; Janmey, Paul A.; Cēbers, Andrejs
2007-01-01
The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of ∼40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field and an interesting diffusive wandering of the trajectory curvature centers. A new method to measure the magnetic moment of an individual bacterium is proposed based on the theory developed. PMID:17526564
Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S
2016-02-10
Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers.
NASA Astrophysics Data System (ADS)
Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.; Lambropoulos, John C.
2002-12-01
Electric fields can induce motion of polymer cholesteric liquid crystal (pCLC) flakes suspended in a fluid medium. The platelet-shaped pCLC flakes with a Grandjean texture show strong selective reflection when lying flat in the plane of a conventional cell. As their orientation with respect to normally incident light changes, their selective reflection color shifts toward the blue and diminishes until the flakes are no longer easily visible beyond 7-12° of rotation. Reproducibility and control of motion has been observed in moderately conductive host fluid. Flakes in such hosts do not respond to a DC electric field, but they rotate 90° in an AC field within a given frequency band. The response times and frequency regions for motion depend partially on the field magnitude, the dielectric properties of the host fluid and the flake geometry. We observe flakes reorienting in less than 500 ms in an electric field of 0.17 Vrms/μm, while sub-second reorientation is seen in fields as low as 5x10-2 Vrms/μm. This response time is comparable with typical electronic-paper applications, but with a significantly lower electric field. Displays using pCLC flakes would not require backlighting, sheet polarizers, color filters or alignment layers. Numerous additional applications for pCLC flakes are envisioned, including filters, polarizers, and spatial light modulators.
Large-scale velocity fields. [of solar rotation
NASA Technical Reports Server (NTRS)
Howard, Robert F.; Kichatinov, L. L.; Bogart, Richard S.; Ribes, Elizabeth
1991-01-01
The present evaluation of recent observational results bearing on the nature and characteristics of solar rotation gives attention to the status of current understanding on such large-scale velocity-field-associated phenomena as solar supergranulation, mesogranulation, and giant-scale convection. Also noted are theoretical suggestions reconciling theory and observations of giant-scale solar convection. The photosphere's global meridional circulation is suggested by solar rotation models requiring pole-to-equator flows of a few m/sec, as well as by the observed migration of magnetic activity over the solar cycle. The solar rotation exhibits a latitude and cycle dependence which can be understood in terms of a time-dependent convective toroidal roll pattern.
Discovery of Slow Rotators in The Jovian Trojan Population from Pan-STARRS Medium Deep Fields
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ip, W.; Lin, H.; Chen, Y.; Chen, W.
2013-12-01
Pan-STARRS 1 (PS1) project is the largest optical sky survey project in the current time-domain astronomy. It provides a wealth of high-cadence and high quality data for the study of solar system small bodies like asteroids and the trans-Neptunian objects. We analyzed four of the PS1 Medium Deep (MD) fields around the elliptic plane and developed a new method to determine the rotation curves and surface colors of solar system objects in those dataset. The basic concept of our method is the merge of all photometric data separated in four PS1 filters (g, r, i, z) in order to improve the time coverage of measurements available for each object. We used the predicted brightness as a standard in each epoch and calculated the difference between the apparent brightness and predicted magnitude (Δm). The Δm values of individual filter pairs can then be used to shift all of the brightness data points to the same baseline to obtain a unified time-series lightcurve and determine the brightness variation and the corresponding amplitude, sometimes even the rotation periods. In this manner, we found five slow rotators with rotation periods longer than 10 days among the 92 Jovian Trojans we have examined. Four of these slow rotators, (7543), (216421), (248978) and (343993), have large rotation amplitudes and are possibly contact binary systems. The surface colors of three of these five slow rotators belong to the C-type taxonomic class which is unusual in the L4 population.
Analytical model for electromagnetic cascades in rotating electric field
Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.
2011-08-15
Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.
Investigations on the Incompletely Developed Plane Diagonal-Tension Field
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1940-01-01
This report presents the results of an investigation on the incompletely developed diagonal-tension field. Actual diagonal-tension beams work in an intermediate stage between pure shear and pure diagonal tension; the theory developed by wagner for diagonal tension is not directly applicable. The first part of the paper reviews the most essential items of the theory of pure diagonal tension as well as previous attempts to formulate a theory of incomplete diagonal tension. The second part of the paper describes strain measurement made by the N. A. C. A. to obtain the necessary coefficients for the proposed theory. The third part of the paper discusses the stress analysis of diagonal-tension beams by means of the proposed theory.
Flexible focal plane arrays for UVOIR wide field instrumentation
NASA Astrophysics Data System (ADS)
Hugot, Emmanuel; Jahn, Wilfried; Chambion, Bertrand; Nikitushkina, Liubov; Gaschet, Christophe; Henry, David; Getin, Stephane; Moulin, Gaid; Ferrari, Marc; Gaeremynck, Yann
2016-08-01
LAM and CEA-LETI are developing the technology of deformable detectors, for UV, VIS or NIR applications. Such breakthrough devices will be a revolution for future wide field imagers and spectrographs, firstly by improving the image quality with better off-axis sharpness, resolution, brightness while scaling down the optical system, secondly by overcoming the manufacturing issues identified so far and by offering a flexibility and versatility in optical design. The technology of curved detectors can benefit of the developments of active and deformable structures, to provide a flexibility and a fine tuning of the detectors curvature by thinning down the substrate without modifying the fabrication process of the active pixels. We present studies done so far on optical design improvements, the technological demonstrators we developed and their performances as well as the future five-years roadmap for these developments.
The effect on radiated noise of non-zero propeller rotational plane attitude
NASA Astrophysics Data System (ADS)
Dobrzynski, W. M.
1986-07-01
Subsequent to CAEP's decision to introduce a new noise certification procedure, a joint attempt was made by the FAA and DFVLR to quantitatively determine the influence of a nonzero propeller-disk attitude on the resulting noise; tests were conducted with the German Dutch Wind Tunnel (DNW) in its aeroacoustic mode. It was found that the effect of propeller disk-plane attitude on maximum overall A-weighted noise levels can be related to a steady-state Mach number effect for the propeller operating at subsonic helical blade-tip (HBT) Mach-numbers exceeding a value of 0.7. For HBT Mach-numbers significantly below 0.7, additional noise radiation due to the unsteady flow properties within one propeller revolution dominate the overall A-weighted noise levels.
Traveling Internal Plane-wave Synthesis (TIPS) for uniform B1 in high field MRI.
Anderson, Adam W
2017-02-01
A new target-field approach to generating uniform radio frequency (RF) fields within the human body for high field MRI is described. The method involves producing a set of external fields which, after interaction with a dielectric object, superimpose to produce a traveling plane wave, exposing all spins to the same RF amplitude (B1) over a cycle of the harmonic field. Conceptually this is similar to conventional RF shimming, but uses a different RF source design, input data, and objective function. The method requires a detailed knowledge of the coupling between exterior field modes, produced by an array of RF sources, and field modes within the body. Given an estimate of the coupling matrix, the linear superposition of external modes that produces a desired internal target field can be determined. The new method is termed Traveling Internal Plane-wave Synthesis (TIPS). A simple design of a coil array is described that can, in principle, generate the required field modes. Simulations demonstrate that radio frequency magnetic fields of nearly uniform (<1% variation) magnitude can be produced within dielectric objects larger than a wavelength in size. If the dielectric medium has non-zero conductivity, traveling waves are attenuated as they traverse the object, but field uniformity within planar slices is preserved. For general 3D imaging, a superposition of plane waves can provide field focusing to balance conductive losses, thereby achieving nearly uniform-magnitude B1+ magnetic fields over a volume of interest.
Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet
NASA Astrophysics Data System (ADS)
Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai
2015-09-01
Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.
Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai
2015-09-01
Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.
Computation of Bound Orbits in the Plane of a Galaxy with a Flat Rotation Curve
ERIC Educational Resources Information Center
Bacon, M. E.; Sharrar, Amber
2010-01-01
A standard topic in an advanced undergraduate classical mechanics course is the determination of the orbits in a gravitational field. In the present paper we report on the calculation of bound orbits in the gravitational field of a spiral galaxy. Calculations such as these could serve to focus attention on an area of cutting edge astrophysics and…
Computation of Bound Orbits in the Plane of a Galaxy with a Flat Rotation Curve
ERIC Educational Resources Information Center
Bacon, M. E.; Sharrar, Amber
2010-01-01
A standard topic in an advanced undergraduate classical mechanics course is the determination of the orbits in a gravitational field. In the present paper we report on the calculation of bound orbits in the gravitational field of a spiral galaxy. Calculations such as these could serve to focus attention on an area of cutting edge astrophysics and…
Electron Energy Levels in a Quantum Well within an In-Plane Magnetic Field
1989-06-01
papers in theory [6-91 as well as in experiment[10-12] which study the effect of in-plane magnetic fields on two-dimensional systems. Recently Klama(8... Field by0) O H. R. Lee, H. G. Oh, Thomas F. George and C. I. Um N S Prepared for Publication O in S Journal of Applied Physics Departments of Chemistry...Arlington, Virginia 22217 11. TITLE (Include Security Classification) Electron Energy Levels in a Quantum Well Within an In-Plane Magnetic Field 12
Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields
NASA Astrophysics Data System (ADS)
Storozhenko, A. M.; Stannarius, R.; Tantsyura, A. O.; Shabanova, I. A.
2017-06-01
We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field.
OBLIQUELY ROTATING PULSARS: SCREENING OF THE INDUCTIVE ELECTRIC FIELD
Melrose, D. B.; Yuen Rai
2012-02-01
Pulsar electrodynamics has been built up by taking ingredients from two models, the vacuum-dipole model, which ignores the magnetosphere but includes the inductive electric field due to the obliquely rotating magnetic dipole, and the corotating-magnetosphere model, which neglects the vacuum inductive electric field and assumes a corotating magnetosphere. We argue that the inductive field can be neglected only if it is screened by a current, J{sub sc}, which we calculate for a rigidly rotating magnetosphere. Screening of the parallel component of the inductive field can be effective, but the perpendicular component cannot be screened in a pulsar magnetosphere. The incompletely screened inductive electric field has not been included in any model for a pulsar magnetosphere, and taking it into account has important implications. One effect is that it implies that the magnetosphere cannot be corotating, and we suggest that drift relative to corotation offers a natural explanation for the drifting of subpulses. A second effect is that this screening of the parallel inductive electric field must break down in the outer magnetosphere, and this offers a natural explanation for the acceleration of the electrons that produce pulsed gamma-ray emission.
The Rotation of the Solar Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Xu, J. C.; Gao, P. X.
2016-12-01
The rotational characteristics of the solar photospheric magnetic field at four flux ranges are investigated together with the total flux of active regions (MFar) and quiet regions (MFqr). The first four ranges (MF1-4) are (1.5-2.9) × 1018, (2.9-32.0) × 1018, (3.20-4.27) × 1019, and (4.27-38.01) × 1019, respectively (the unit is Mx per element). Daily values of the flux data are extracted from magnetograms of the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Lomb-Scargle periodograms show that only MF2, MF4, MFqr, and MFar exhibit rotational periods. The periods of the first three types of flux are very similar, i.e., 26.20, 26.23, and 26.24 days, respectively, while that of MFar is longer, 26.66 days. This indicates that active regions rotate more slowly than quiet regions on average, and strong magnetic fields tend to repress the surface rotation. Sinusoidal function fittings and cross-correlation analyses reveal that MFar leads MF2 and MF4 by 5 and 1 days, respectively. This is speculated to be related with the decaying of active regions. MF2 and MFar are negatively correlated, while both MF4 and MFqr are positively correlated with MFar. At the timescale of the solar activity cycle, MFar leads (negatively) MF2 by around one year (350 days), and leads MF4 by about 3 rotation periods (82 days). The relation between MF2 and MFar may be explained by the possibility that the former mainly comes from a higher latitude, or emerges from the subsurface shear layer. We conjecture that MF4 may partly come from the magnetic flux of active regions; this verifies previous results that were obtained with indirect solar magnetic indices.
Rotational Velocities of Field Blue Horizontal Branch Stars
NASA Astrophysics Data System (ADS)
Weafer, V. K.; Fulbright, J. P.
2001-12-01
This study is motivated by interest in the much-debated ``second-parameter" problem. Deep mixing, driven by angular momentum, has been proposed as a second parameter controlling horizontal-branch colour morphology (Sweigart & Mengel 1979). Observations of low-metallicity field giant stars show little evidence of deep mixing (Kraft 1994, Wallerstein et al. 1997, Gratton et al. 2000). We therefore expect that field horizontal branch stars may show little evidence of rotation. We have used high-resolution spectra from Keck and Lick observatories to find the projected rotational velocity (v sin i) of 44 blue (-0.04 <= B-V <= 0.20) horizontal branch stars in the halo field. Selected Fe and Ti absorption lines were co-added in velocity space to create an average line profile for each star. To find v sin i, the average profile was compared to similarly-averaged synthesised lines. We have compared the v sin i values of the sample to those of the blue horizontal branch stars in the second-parameter globular-cluster pair, M3 and M13 (Peterson et al. 1995). Although further work is needed to completely establish the velocity distribution of the sample, we have found that the sample has rotational velocities more similar to M13 than to M3, with at least 5 stars showing v sin i > = 25 km/s.
Mode Coupling Studies in an RFP with Rotating Helical Field
NASA Astrophysics Data System (ADS)
Masamune, Sadao; Iida, Motomi
2001-10-01
Nonlinear coupling of m=1 modes play essential roles in RFP dynamics such as field reversal, RFP dynamo and mode locking. In the RFP with a resistve wall, the mode coupling is enhanced because of larger saturation amplitudes of the core resonant tearing modes. The mode coupling usually brings about unfavorable effect on RFP plasmas, and therefore, studies on detailed coupling process is quite important. In this paper, we describe the mode coupling studies from STE-2 RFP (R/a=0.4m/0.1m) with rotating helical field (RHF). This machine is operated with a resistive wall and the effect of external RHF is studied on the dynamics of core resonant tearing modes. In standard RFP plasmas, the magnetic fluctuations are dominated by core resonant m=1/n=7,8,9 tearing modes which grow with the time scale of resistive wall. These modes, usually locked to the wall, start to rotate with application of the RHF when the RHF amplitude is higher than that of the intrinsic mode at the edge. In ULQ plasmas in which there is no m=0 resonant surface and the m=1 modes usually rotate, only a single mode is locked to the wall with application of the static resonant helical field. These results suggest the importance of nonlinear coupling of the m=1 and m=0 modes, and detailed measurements of the dynamics of m=1 and m=0 modes are in progress.
Cohesion induced by a rotating magnetic field in a granular material.
Peters, F; Lemaire, E
2004-06-01
We report experiments on a magnetic cohesive granular material made of steel spheres in the millimeter range. A magnetic field magnetizes the spheres, so that an interaction force between grains appears. A rotating magnetic field is applied parallel to plane of the quasi-two-dimensional cell containing the spheres so that only the time averaged force between two particles will be considered. Both maximum angle of stability and angles of repose are measured. The maximum angle of stability is found to depend linearly on the interaction force. Another noticeable feature is the lack of dependence of the maximum angle of stability on the initial height of the heap. We show that the angle of repose is less sensitive to the magnetic interaction force than the maximum of stability. At last, we discuss the importance of using a rotating field rather than a constant one. In particular, we report some measurements of both the maximum angle of stability and the angle of repose in constant field, which show a strong dependence of the angles of avalanche on the direction of the field.
The Magnetic Field of the Milky Way from Faraday Rotation of Pulsars and Extragalactic Sources
NASA Astrophysics Data System (ADS)
Noutsos, Aristeidis
2012-05-01
Faraday rotation towards polarised pulsars and extragalactic sources is the best observable for determining the configuration of the magnetic field of the Galaxy in its plane and also at high latitudes. The Galactic magnetic field plays an important role in numerous astrophysical processes, including star formation and propagation of ultrahigh-energy cosmic rays; it is also an important component in measurements of the cosmological microwave background. This review article provides a brief overview of the latest advancements in the field, from an observer's point of view. The most recent results based on pulsar rotation measures are discussed, which show that we have begun to confidently resolve the main features of the Galactic magnetic field on kiloparsec scales, both in the Solar neighbourhood and at larger distances. As we are currently in great anticipation of polarisation observations with new, state-of-the-art telescopes and hardware, a brief overview of how much this field of research will benefit from the upcoming pulsar surveys is also given.
Luo, Feilong; Goolaup, Sarjoosing; Li, Sihua; Lim, Gerard Joseph; Tan, Funan; Engel, Christian; Zhang, Senfu; Ma, Fusheng; Lew, Wen Siang; Zhou, Tiejun
2016-08-28
In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results are in agreement with the analytical calculations.
NASA Astrophysics Data System (ADS)
Luo, Feilong; Goolaup, Sarjoosing; Li, Sihua; Lim, Gerard Joseph; Tan, Funan; Engel, Christian; Zhang, Senfu; Ma, Fusheng; Zhou, Tiejun; Lew, Wen Siang
2016-08-01
In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results are in agreement with the analytical calculations.
Stellar Rotation in the Orion Nebula Cluster Flanking Fields
NASA Astrophysics Data System (ADS)
Rebull, L.
1999-12-01
We present an optical study of four 45' x 45' fields centered 35' north, south, east, and west of the Orion Nebula Cluster center. We have measured V and I C photometry for 5000 stars in three of these fields, and U photometry for 1600 of those. We have obtained spectral classifications for 300 of the stars with UVI C photometry plus an additional 200 stars located outside the area of our photometric survey. Based on these data, we find 230 active accretion disk candidates. We have also obtained time-series data for stars in each of these four fields, and 300 periods derived from these data will be presented and discussed. In recent months, several investigators have presented rotation rates for stars in the Trapezium and its immediate environs. The paradigm (e.g. Choi and Herbst 1996) until now has been that the slow rotators are still (magnetically) locked to their disks, and that the fast rotators have dissipated their disks sufficiently as to allow spinup. Herbst et al. (2000) claim they see a bimodal distribution of rotators in Orion; Stassun et al. (1999) claim not to see such a distribution in a very similar region, and in fact cast doubt on the bimodality of the original distribution. Different selection effects (as well as different numbers of stars) are likely to be affecting these conclusions; the addition of data presented here will clarify the issues. This research has made use of data taken at McDonald Observatory (by R. Makidon and M. Adams), data taken at the KPNO 0.9m (with B. Patten and C. Pavlovsky), data taken through the WIYN-Queue program, software written by B. Patten, and partial funding via NASA Origins Grants (L. Hillenbrand and S. Strom).
The Spin-Plane Double Probe Electric Field Instrument for MMS
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.
2016-03-01
The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.
Phase diagram of α -RuCl3 in an in-plane magnetic field
NASA Astrophysics Data System (ADS)
Sears, J. A.; Zhao, Y.; Xu, Z.; Lynn, J. W.; Kim, Young-June
2017-05-01
The low-temperature magnetic phases in the layered honeycomb lattice material α -RuCl3 have been studied as a function of in-plane magnetic field. In zero field this material orders magnetically below 7 K with a so-called zigzag order within the honeycomb planes. Neutron diffraction data show that a relatively small applied field of 2 T is sufficient to suppress the population of the magnetic domain in which the zigzag chains run along the field direction. We found that the intensity of the magnetic peaks due to zigzag order is continuously suppressed with increasing field until their disappearance at μoHc=8 T . At still higher fields (above 8 T) the zigzag order is destroyed, while bulk magnetization and heat capacity measurements suggest that the material enters a state with gapped magnetic excitations. We discuss the magnetic phase diagram obtained in our study in the context of a quantum phase transition.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
Taylor, Jane; Boutong, Sara; Brett, Sarah; Louis, Amal; Heppenstall, James; Morton, Allison C.; Gunn, Julian P.
2015-01-01
Objectives To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three‐dimensional anatomy. However, its value in PCI remains unknown. Methods We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre‐PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed‐over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X‐ray dose, contrast agent volume, and procedure duration were not significantly different. Conclusions Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X‐ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc. PMID:26012725
Rotating sample magnetometer for cryogenic temperatures and high magnetic fields.
Eisterer, M; Hengstberger, F; Voutsinas, C S; Hörhager, N; Sorta, S; Hecher, J; Weber, H W
2011-06-01
We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer. © 2011 American Institute of Physics
Effects of orthogonal rotating electric fields on electrospinning process
NASA Astrophysics Data System (ADS)
Lauricella, M.; Cipolletta, F.; Pontrelli, G.; Pisignano, D.; Succi, S.
2017-08-01
Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through intensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibers. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.
The temperature field around a spherical ridge or trough in a plane
Fransaer, J.; Roos, J.R. )
1992-05-01
An analytical solution, which describes the temperature field around a single spherical particle partly embedded in a plane or around a trough making an arbitrary contact angle with a plane, is presented here. The temperature distributions for three cases are studied: the temperature distribution around a conducting bowl or trough, the temperature distribution around a non-conducting bowl or trough present in a conducting plane, and the temperature profile around a conducting bowl or trough conducting heat toward a sink at infinity. The normalized heat flux distribution on the plane and particle is presented. The various incremental resistances caused by a single and a dilute planar random array of truncated spherical particles are also derived.
Dynamics of Crowd Behaviors: From Complex Plane to Quantum Random Fields
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * Complex Plane Dynamics of Crowds and Groups * Introduction * Complex-Valued Dynamics of Crowd and Group Behaviors * Kähler Geometry of Crowd and Group Dynamics * Computer Simulations of Crowds and Croups Dynamics * Braids of Agents' Behaviors in the Complex Plane * Hilbert-Space Control of Crowds and Groups Dynamics * Quantum Random Fields: A Unique Framework for Simulation, Optimization, Control and Learning * Introduction * Adaptive Quantum Oscillator * Optimization and Learning on Banach and Hilbert Spaces * Appendix * Complex-Valued Image Processing * Linear Integral Equations * Riemann-Liouville Fractional Calculus * Rigorous Geometric Quantization * Supervised Machine-Learning Methods * First-Order Logic and Quantum Random Fields
Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A
2016-06-28
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-01-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295
NASA Astrophysics Data System (ADS)
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-06-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation
2015-01-01
The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications. PMID:24597847
Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation.
Zhang, Enming; Kircher, Moritz F; Koch, Martin; Eliasson, Lena; Goldberg, S Nahum; Renström, Erik
2014-04-22
The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications.
Geodesics in the field of a rotating deformed gravitational source
NASA Astrophysics Data System (ADS)
Boshkayev, K. A.; Quevedo, H.; Abutalip, M. S.; Kalymova, Zh. A.; Suleymanova, Sh. S.
2016-01-01
We investigate equatorial geodesics in the gravitational field of a rotating and deformed source described by the approximate Hartle-Thorne metric. In the case of massive particles, we derive within the same approximation analytic expressions for the orbital angular velocity, the specific angular momentum and energy, and the radii of marginally stable and marginally bound circular orbits. Moreover, we calculate the orbital angular velocity and the radius of lightlike circular geodesics. We study numerically the frame dragging effect and the influence of the quadrupolar deformation of the source on the motion of test particles. We show that the effects originating from the rotation can be balanced by the effects due to the oblateness of the source.
Voyager measurement of the rotation period of Saturn's magnetic field
NASA Technical Reports Server (NTRS)
Desch, M. D.; Kaiser, M. L.
1981-01-01
Saturn's radio rotation period was determined using measurements made by the planetary radio astronomy experiment onboard the Voyager spacecraft. The sidereal period deduced, 10 hr 39 min 24 sec ? 7 sec, is within the 10 hr to 11 hr range of optical periods derived from a century of atmospheric spot and Doppler spectroscopy observations. The radio rotation period is presumably that of the planet's magnetic field. A provisional Saturn longitude convention is proposed and equations are provided to compute a longitude ephemeris and to transform between the proposed system and the (10 hr 14 min) system used for the Pioneer 11/Saturn encounter. The degree of longitude smearing which could result over the long term from the merging of data sets organized in this system is evaluated. No evidence of control of the radio emission by any of Saturn's satellites was found.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a
Rotational and magnetic field instabilities in neutron stars
Kokkotas, Kostas D.
2014-01-14
In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.
Rotating and binary relativistic stars with magnetic field
NASA Astrophysics Data System (ADS)
Markakis, Charalampos
We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry
Chandrasekhar's relation and stellar rotation in the Kepler field
Silva, J. R. P.; Soares, B. B.; De Freitas, D. B. E-mail: brauliosoares@uern.br
2014-11-20
According to the statistical law of large numbers, the expected mean of identically distributed random variables of a sample tends toward the actual mean as the sample increases. Under this law, it is possible to test the Chandrasekhar's relation (CR), (V) = (π/4){sup –1}(Vsin i), using a large amount of Vsin i and V data from different samples of similar stars. In this context, we conducted a statistical test to check the consistency of the CR in the Kepler field. In order to achieve this, we use three large samples of V obtained from Kepler rotation periods and a homogeneous control sample of Vsin i to overcome the scarcity of Vsin i data for stars in the Kepler field. We used the bootstrap-resampling method to estimate the mean rotations ((V) and (Vsin i)) and their corresponding confidence intervals for the stars segregated by effective temperature. Then, we compared the estimated means to check the consistency of CR, and analyzed the influence of the uncertainties in radii measurements, and possible selection effects. We found that the CR with (sin i) = π/4 is consistent with the behavior of the (V) as a function of (Vsin i) for stars from the Kepler field as there is a very good agreement between such a relation and the data.
Growth and Transverse Field Muon Spin Rotation of Cobalt Niobate
NASA Astrophysics Data System (ADS)
Munsie, Timothy; Millington, Anna; Marjerrison, Casey; Medina, Teresa; Wilson, Murray; Kermarrec, Edwin; Liu, Lian; Dabkowska, Hanna; Uemura, Yasutomo; Williams, Travis; Luke, Graeme
2014-03-01
Cobalt niobate, CoNb2O6, is a material whose spins, when in a transverse field, act like the theoretical ideal 1D-Ising model. This occurs due to the magnetic spins aligning highly anisotropically along the Co2+ chains. Because of this unique structure and material performance, the creation and characterization of this material is of both experimental and theoretical interest. The research we will present is a detailing of changes in the characteristics of the growth of the material utilizing the optical floating zone crystal growth method compared to previous growth parameters and an examination of this material in a moderately high transverse field using the technique of muon spin rotation (μSR). We have determined that the quality of crystals created by the floating zone are highly dependent on the growth parameters utilized (original ceramic shape and rotation rate) and dictate the speed at which the growth can be performed. Transverse Field μSR shows a gradual but significant change to the magnetic structure of the material below 5 K. Second Affiliation: Brockhouse Institute for Materials Research.
Comparison of potential field solutions for Carrington Rotation 2144
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong
2016-02-01
We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.
How Good a Clock is Rotation? The Stellar Rotation-Mass-Age Relationship for Old Field Stars
NASA Astrophysics Data System (ADS)
Epstein, Courtney R.; Pinsonneault, Marc H.
2014-01-01
The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M ⊙. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ~2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M ⊙ stars.
How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars
Epstein, Courtney R.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu
2014-01-10
The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.
Transport properties of bilayer graphene in a strong in-plane magnetic field
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Peeters, F. M.; Van Duppen, B.
2016-03-01
A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 π Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.
Edge states and quantum phase transition in graphene under in-plane effective exchange fields
NASA Astrophysics Data System (ADS)
Liu, Zheng-Fang; Wu, Qing-Ping; Chen, Ai-Xi; Xiao, Xian-Bo; Liu, Nian-Hua; Miao, Guo-Xing
2017-02-01
We investigated the edge states and quantum phase transition in graphene under an in-plane effective exchange field. The result shows that the combined effects of the in-plane effective exchange field and a staggered sublattice potential can induce zero-energy flat bands of edge states. Such flat-band edge states can evolve into helical-like ones in the presence of intrinsic spin-orbit coupling, with a unique spin texture. We also find that the bulk energy gap induced by the spin-orbit coupling and staggered sublattice potential can be closed and reopened with the in-plane effective exchange field, and the reopened bulk gap can be even larger than that induced by only the spin-orbit coupling and staggered sublattice potential, which is different from the case of an out-of-plane effective exchange field. The calculated spin-dependent Chern numbers suggest that the bulk gap closing and reopening is accompanied by a quantum phase transition from a trivial insulator phase across a metal phase into a spin-dependent quantum Hall phase.
The unique effect of in-plane anisotropic strain in the magnetization control by electric field
NASA Astrophysics Data System (ADS)
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.
2016-05-01
The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.
NASA Astrophysics Data System (ADS)
Liu, Xianguo; Wing Or, Siu; Ming Leung, Chung; Ho, S. L.
2013-05-01
Magnetite (Fe3O4) nanoflakes with widths of 100-200 nm and thicknesses of 10-80 nm were prepared by a hydrothermal synthesis method. Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation of flake planes of Fe3O4 nanoflakes in paraffin binder were fabricated using 35 wt. % Fe3O4 nanoflakes. The rotationally oriented composite showed higher permeability and resonance frequency than the nonoriented one, and its value of (μ0-1)fr reached 214.8 GHz and exceeded the Snoek's limit. Considering a uniform and a random distribution of flake planes of Fe3O4 nanoflakes in the oriented and nonoriented composites, respectively, the complex permeability of both composites was calculated using the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory in the 2-18 GHz microwave frequency range.
The effect of an electrostatic field on film flow down an inclined plane
Kim, H.; Bankoff, S.G. ); Miksis, M.J. )
1992-10-01
A study of the interaction of an electrostatic field with a thin liquid film flowing under gravity down an inclined plane is presented. First, the effect of the electric field on the stability of the film flow is examined. Next, several limits of the equations of motion are investigated analytically, and then compared with an explicit numerical calculation of the equations of motion. Also, applications of these calculations to a proposed electrostatic liquid film space radiator are discussed.
Characterization of rf-SSET in both in-plane and perpendicular magnetic fields
NASA Astrophysics Data System (ADS)
Tang, Chunyang; Yang, Zhen; Yuan, Mingyun; Rimberg, A. J.; Savage, D. E.; Eriksson, M. A.; Rimberg Team; Eriksson Collaboration
2013-03-01
Previous success in coupling an aluminum radio-frequency superconducting single electron transistor (rf-SSET) to quantum dots (QDs) has demonstrated use of the rf-SSET as an ultra-sensitive and fast charge sensor. Since a magnetic field is usually necessary for quantum dot qubit manipulation, it is important to understand the effect of magnetic fields, either in-plane or perpendicular, on the performance of any charge sensor near the QDs. Here we report characterization of rf-SSETs in both in-plane and perpendicular magnetic fields. The rf-SSET works well in an in-plane fields up to 1 Tesla at a temperature of 30 mK. At 0.3K, in a perpendicular field generated by a stripline located 700 nm away, the rf-SSET charge sensitivity even shows improvement for up to 2.1 mA current through the stripline (corresponding roughly to a field of 6 Gauss). This work was supported by NSA, LPS and ARO
Influence of an electric field on the ferromagnetic resonance in a plane-layered magnetic system
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2016-11-01
The influence of an electric field on the ferromagnetic resonance (FMR) in a multilayer magnetic system consisting of two magnetic layers separated by a thin nonmagnetic interlayer has been investigated. It has been shown that, upon the excitation of magnetization oscillations by a microwave magnetic field, the eigenfrequencies of the ferromagnetic resonance depend on the stationary electric field applied in the plane of the layers. It has also been demonstrated that, in this system, high-frequency magnetization oscillations can be excited by an electric microwave field. The results of the investigation of the polarization properties of the excitation mechanism indicate that this effect can be observed experimentally.
Crystal-oriented tungsten-bronze type ceramics prepared by a rotating magnetic field
NASA Astrophysics Data System (ADS)
Tanaka, S.; Doshida, Y.; Shimizu, H.; Furushima, R.; Uematsu, K.
2011-03-01
Forming and sintering of c-axis-oriented Sr2NaNb5O15 (SNN) ceramics were examined. Particle-oriented SNN was fabricated by using a rotating high magnetic field and subsequent sintering without magnetic field. SNN ceramics are tungsten-bronze-type ferroelectric materials with a tetragonal crystal system. The diamagnetic susceptibilities of the c-axis are smaller than that of the a- and b-axis (χc < χa,b < 0). SNN powder was prepared by conventional solid-state reaction. The synthesized powder was mixed with distilled water and a dispersant by using ball milling to give a slurry with solid loading of 30 vol%. The slurry was poured into a plastic mold and this was placed in a 10Tesla magnetic field in a superconducting magnet. The mold was rotated at 30 rpm while the slurry dried at room temperature. The resulting powder compact with a columnar shape was heated at 5 K/min to 1473 K, held for 6 h, and then heated at 1525 K for 2 h to prevent exaggerated grain growth. XRD patterns showed that c-axis-oriented SNN polycrystalline ceramics were produced in the presence of the rotating magnetic field. In XRD patterns viewed from the top surface of the sintered specimens, peaks from the c-planes of the crystal, such as 001 and 002, were very strong. Diffraction peaks which were very strong in the ceramics, such as 320 and 410, were absent in the specimen. Oriented microstructure was developed well by sintering. Grain-growth along to c-axis was observed in the SNN ceramics heated at 1525 K.
NASA Astrophysics Data System (ADS)
Balasoiu, Maria; Bica, Ioan
The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.
Quantitative measurement of in-plane acoustic field components using surface-mounted fiber sensors
NASA Technical Reports Server (NTRS)
Claus, Richard O.; Dhawan, Rajat R.; Gunther, Michael F.; Murphy, Kent A.
1993-01-01
Extrinsic Fabry-Perot interferometric sensors have been used to obtain calibrated, quantitative measurements of the in-plane displacement components associated with the propagation of ultrasonic elastic stress waves on the surfaces of solids. The frequency response of the sensor is determined by the internal spacing between the two reflecting fiber endface surfaces which form the Fabry-Perot cavity, a distance which is easily controlled during fabrication. With knowledge of the material properties of the solid, the out-of-plane displacement component of the wave may also be determined, giving full field data.
Rotation and magnetic field in the Be star omega Orionis
NASA Astrophysics Data System (ADS)
Neiner, C.; Hubert, A.-M.; Frémat, Y.; Floquet, M.; Jankov, S.; Preuss, O.; Henrichs, H. F.; Zorec, J.
2003-10-01
omega Ori is a B2IIIe star for which rotational modulation and non-radial pulsations (NRP) have been recently investigated from two independent observational campaigns in 1998 and 1999. Putting the data of these 2 campaigns together, and adding data obtained in 2001, we search for multiperiodicity in the line profile variations and evidence for outbursts. From new spectropolarimetric data obtained at the Télescope Bernard Lyot (TBL, Pic du Midi, France) in 2001 we also measure the Stokes V parameter in the polarised light. We find evidence for the presence of a weak magnetic field in omega Ori sinusoidally varying with a period of 1.29 d. The equivalent widths (EW) of the wind sensitive UV resonance lines also show a variation with the same period, which we identify as the rotational period of the star. We propose an oblique rotator model and derive Bpol =530 +/- 230 G to explain the observations. Moreover, we carry out an abundance analysis and find the star to be N-enriched, a property which is shared with other magnetic stars. We propose omega Ori as the first known classical Be star hosting a magnetic field. Based on observations obtained using the Musicos spectropolarimeter at the Observatoire du Pic du Midi (France), during the MuSiCoS 98 campaign \\citep{neiner}, and by \\cite{balona}. Based on INES data from the International Ultraviolet Explorer (IUE) satellite. Table 7 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/409/275
Lin, Hwai-Ting; Ko, Hsing-Tsen; Lee, Kung-Che; Chen, Ying-Cheng; Wang, Dean-Chuan
2015-01-01
[Purpose] This study aimed to investigate the effect of shoulder positions and speeds on internal and external rotation torque of college baseball players and age-matched non-players. [Subjects] Twenty first-level collegiate baseball players and 19 college students were recruited. [Methods] A dynamometer system was used to evaluate the shoulder rotation strength in sitting postures. Three testing positions, namely shoulder abduction of 45°, 70°, and 90° in the scapular plane, were combined with three testing speeds at 60°/s, 120°/s, and 210°/s. [Results] The maximum external and internal rotation torques both occurred at shoulder abduction of 70°. However, only external rotation torque was affected by the speed, with the peak value observed at 60°/s. The internal rotation torque of baseball players was larger than that of the control group under all testing conditions, but the external rotation did not show any difference. The ratio of external to internal rotation torque changed with the testing positions and speeds in both groups. The ratio in the control group was greater than that in the player group. [Conclusion] The shoulder position could affect the rotational strength, and the baseball players could strengthen their external rotators for better performance and injury prevention. PMID:26157263
Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.
NASA Astrophysics Data System (ADS)
Glasser, Alan H.
2001-10-01
I will discuss a new method for accelerating ions and electrons in the Field Reversed Configuration (FRC), using an odd-parity Rotating Magnetic Field (RMF). Our approach is based on numerical integration of individual full particle orbits for tens of thousands of cyclotron periods, using a highly accurate adaptive integrator. Odd parity of the RMF about the mid-plane rigorously preserves flux surface closure, contrary to the previously-used even-parity RMF, resulting in improved particle confinement. Strong ion heating occurs for RMF frequencies in the Ion Cyclotron Range of Frequencies (ICRF), reaching thermonuclear conditions in a modest-sized FRC. Strong variation of the magnetic field strength over the confinement region prevents a true cyclotron resonance, resulting in stochastic though effective heating. Electrons are also effectively accelerated with the same ICRF RMF, by an entirely different mechanism. An azimuthal component of the electric field near the O-point null line, induced only by odd-parity RMF, accelerates electrons, primarily in the neighborhood of the magnetic axis. At this very low frequency, the electrons feel the electric field as nearly stationary, accelerating to high energy during half of their revolution about the axis of symmetry, then decelerating during the other half, resulting in energy spikes. The magnetic moment is not conserved at the z-extrema of the flux surface, which isotropizes the energy and results in incomplete deceleration and ratcheting up the energy. An inward drift is produced by a proper choice of the sense of rotation of the RMF, improving confinement. Both ion and electron motion can be used to drive current, sustaining the FRC. Initiation of an FRC from a mirror field using only an RMF is being studied. Lyapunov exponents are computed to demonstrate chaotic orbits.
NASA Astrophysics Data System (ADS)
Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi
1984-10-01
For the therapy of diseases of spinal deformity such as scoliosis, the data of 3-dimensional and correct spinal configuration are needed. Authors developed the system of spinal configuration analysis using bi-plane X-ray photogrammetry which is strong aid for this subject. The idea of correction angle of rotation of vertebra is introduced for this system. Calculated result under this idea has the clinical meaning because the correction angle is the angle which should be corrected on the treatment such as operation or wearing the equipment. Method of 30° oblique projection which gives the apparent X-ray image and eases the measurement of the anatomically characteristic points is presented. The anatomically characteristic bony points whose images should be measured on a- or b-film are of four points. These are centers of upper and lower end plates of each vertebra the center is calculated from two points which are most distant each other on the contour of vertebral end plate ), the lower end points of root of right and left pedicles. Some clinical applications and the effectiveness of this system are presented.
Field-reversed configuration maintained by rotating magnetic field with high spatial harmonics.
Inomoto, Michiaki; Kitano, Katsuhisa; Okada, Shigefumi
2007-10-26
Field-reversed configurations (FRCs) driven by rotating magnetic fields (RMFs) with spatial high harmonics have been studied in the metal flux conserver of the FRC injection experiment. The experimental results show that the fundamental RMF component is observed to penetrate the plasma column, while the high harmonics are screened at the plasma edge due to their slower or reversed rotation. This selective penetration of the RMF provides good compatibility of radial and azimuthal force balances; significant radial inward force
NASA Astrophysics Data System (ADS)
Tkáč, V.; Orendáčová, A.; Čižmár, E.; Orendáč, M.; Feher, A.; Anders, A. G.
2015-07-01
Magnetocaloric properties of KEr(MoO4)2 single crystals were investigated using magnetization and specific heat measurements in the magnetic field applied along the easy and hard axis. Large conventional magnetocaloric effect was found around 10 K (-Δ Smax =14 J/kg K for 5 T) in the field applied along the easy axis. What is more, a huge magnetic anisotropy in the a b plane leads to a large anisotropy of magnetocaloric effect, -Δ SR ,max =10 and 13 J/kg K obtained by a simple rotating of the single crystal within the a b plane in the constant magnetic field 2 and 5 T, respectively. Large Δ SR values with no hysteresis losses and rather wide working temperature spans imply that KEr(MoO4)2 may serve as a promising candidate for the implementation of a compact rotary magnetic cryorefrigerator.
Domain wall depinning from notches using combined in- and out-of-plane magnetic fields
NASA Astrophysics Data System (ADS)
Goertz, Jelle J. W.; Ziemys, Grazvydas; Eichwald, Irina; Becherer, Markus; Swagten, Henk J. M.; Breitkreutz-v. Gamm, Stephan
2016-05-01
Controlled domain wall motion and pinning in nanowires with perpendicular magnetic anisotropy are of great importance in modern magnetic memory and logic devices. Here, we investigate by experiment the DW pinning and depinning from a notch in a magnetic nanowire, under the influence of combined in- and out-of-plane magnetic fields. In our experiment, the perpendicular magnetization of the Co/Pt nanowires is tilted with the help of sub-μs in-plane field pulses generated by an on-chip coil. Consequently, the energy density of the DW is decreased and the depinning field of the notch is reduced. A theoretical model is applied and compared to the measurement results. The DW depinning mechanism and the DW type are further investigated by micromagnetic simulations.
In-plane magneto-plasmons in grating gated double quantum well field effect transistors.
Simmons, Jerry Alvon; Wanke, Michael Clement; Peralta, Xomalin G.; Lilly, Michael Patrick; Allen, S. James; Reno, John Louis; Burke, Peter J.; Eisenstein, James Philip
2003-06-01
Coupled double quantum well field-effect transistors with a grating gate exhibit a terahertz ({approx}600 GHz) photoconductive response that resonates with standing two dimensional plasma oscillations under the gate and may be the basis for developing a fast, tunable terahertz detector. The application of a precisely aligned in-plane magnetic field produces no detectable change in the device DC conductance but produces a dramatic inversion, growth of the terahertz photoconductive response and frequency shift of the standing plasmon resonances. The frequency shift can be described by a significant mass increase produced by the in-plane field. The mass increase is substantially larger than that calculated from a single well and we presume that a proper treatment of the coupled double quantum well may resolve this discrepancy.
FFT applications to plane-polar near-field antenna measurements
NASA Technical Reports Server (NTRS)
Gatti, Mark S.; Rahmat-Samii, Yahya
1988-01-01
The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therfore been expanded to include these useful FFT applications.
Magnetic X points disturbed by the in-plane electric fields
NASA Astrophysics Data System (ADS)
Xu, Z.; Qiao, B.; Yao, W. P.; Chang, H. X.; Zhou, C. T.; Zhu, S. P.; He, X. T.
2017-09-01
As an efficient mechanism of energy release, magnetic reconnection is popular to explain many explosive events in extreme environments. In some cases, however, we show the key concept of the magnetic X and O points is ambiguous, due to its non-covariant definition. A simple model is constructed to study the case when the magnetic X point is disturbed by the in-plane electric field. The dynamics of the charged particle is investigated near the magnetic X point, where there is a localized attractive or repulsive electric potential. We find that the orbits of the particles are chaotic, which are induced by the X-type magnetic field outside the disturbed region. The chaotic motion helps the charged particles to enter into the reconnection region, though the in-plane electric field may affect the trajectory of the particle. Therefore, the particles that can approach the X point will get accelerated by the out-of-plane electric field, so long as there is an X-type magnetic field outside the disturbed region. Our results may help to clarify the concepts of X and O points in the reconnection process.
FFT applications to plane-polar near-field antenna measurements
NASA Technical Reports Server (NTRS)
Gatti, Mark S.; Rahmat-Samii, Yahya
1988-01-01
The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therfore been expanded to include these useful FFT applications.
Magnetic Field Elements at High Latitude: Lifetime and Rotation Rate
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhao, J.
2009-12-01
Using one-minute cadence time-series full disk magnetograms taken by the SOHO/MDI, we have studied the magnetic field elements at high latitude (poleward of 65° in latitude). It is found that an average lifetime of the magnetic field elements is 16.5 h during solar minimum, much longer than that during solar maximum (7.3 h). During solar minimum, number of the magnetic field elements with the dominant polarity is about 3 times as that of the opposite polarity elements. Their lifetime is 21.0 h on average, longer than that of the opposite polarity elements (2.3 h). It is also found that the lifetime of the magnetic field elements is related with their size, consistent with the magnetic field elements in the quiet sun at low latitude found by Hagenaar et al. ( Astrophys. J. 511:932, 1999). During solar maximum, the polar regions are equally occupied by magnetic field elements with both polarities, and their lifetimes are roughly the same on average. No evidence shows there is a correlation between the lifetime and size of the magnetic field elements. Using an image cross-correlation method, we also measure the solar rotation rate at high latitude, up to 85° in latitude. The rate is ω=2.914-0.342sin 2 φ-0.482sin 4 φ μrad s-1 sidereal. It agrees with previous studies using the spectroscopic and image cross-correlation methods, and also agrees with the results using the element tracking method when the sample of the tracked magnetic field elements is large. The consistency of those results strongly suggests that this rate at high latitude is reliable.
Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.; Gillies, D. C.
1999-01-01
A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.
Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Gillies, D. C.; Volz, M. P.
1999-01-01
A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.
Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.; Gillies, D. C.
1999-01-01
A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.
Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Gillies, D. C.; Volz, M. P.
1999-01-01
A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.
The use of the rotating electromagnetic field for hardening treatment of details
NASA Astrophysics Data System (ADS)
Lebedev, V. A.; Kochubey, A. A.; Kiricheck, A. V.
2017-02-01
The article discusses energy aspects of details’ hardening with convective flows of freely moving indenters under the conditions of the rotating electromagnetic field. Results of theoretical studies of the kinetics of the movement of the ferromagnetic indenters are presented and the energy model of the state of the rotating magnetic liquefied layer is proposed, formed under the influence of the rotating electromagnetic field.
NASA Astrophysics Data System (ADS)
Udagawa, Masafumi; Yanase, Youichi; Ogata, Masao
2004-11-01
We study the vortex state of a layered superconductor with vertical line nodes on its Fermi surface when a magnetic field is applied in the ab -plane direction. We rotate the magnetic field within the plane, and analyze the change of low-energy excitation spectrum. Our analysis is based on the microscopic Bogoliubov-de Gennes equation and a convenient approximate analytical method invented by Pesch and developed by Dahm Both methods give consistent results. Near the upper critical field Hc2 , we observe a larger zero-energy density of states (ZEDOS) when the magnetic field is applied in the nodal direction, while much below Hc2 , larger ZEDOS is observed under a field in the anti-nodal direction. We give a natural interpretation to this crossover behavior in terms of contributions of quasiparticles propagating parallel and perpendicular to the applied field in the plane. We examine the recent field angle variation experiments of thermal conductivity and specific heat. Comparisons with our results suggest that special care should be taken to derive the position of line nodes from the experimental data. Combining the experimental data of the specific heat and our analyses, we conclude that Sr2RuO4 has a vertical-line-node-like structure in the direction of the a axis and the b axis.
Apparatus and method for materials processing utilizing a rotating magnetic field
Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.; Wilgen, John B.
2017-04-11
An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.
NASA Technical Reports Server (NTRS)
Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent
2012-01-01
In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.
NASA Technical Reports Server (NTRS)
Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent
2012-01-01
In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.
NASA Astrophysics Data System (ADS)
Garnier, L.-C.; Eddrief, M.; Fin, S.; Bisero, D.; Fortuna, F.; Etgens, V. H.; Marangolo, M.
The magnetic properties of an iron nitride thin film obtained by ion implantation have been investigated. N2+ ions were implanted in a pristine iron layer epitaxially grown on ZnSe/GaAs(001). X-ray diffraction measurements revealed the formation of body-centered tetragonal N-martensite whose c-axis is perpendicular to the thin film plane and c-parameter is close to that of α‧-Fe8N. Magnetic measurements disclosed a weak perpendicular magnetic anisotropy (PMA) whose energy density KPMA was assessed to about 105J/m3. A sharp decline of the in-plane magnetocrystalline anisotropy (MCA) was also observed, in comparison with the body-centered cubic iron. The origin of the PMA is attributed to the MCA of N-martensite and/or stress-induced anisotropy. As a result of the PMA, weak magnetic stripe domains with a period of about 130nm aligned along the last saturating magnetic field direction were observed at remanence by magnetic force microscopy. The application of an increasing in-plane magnetic field transverse to the stripes Htrans highlighted a threshold value (μ0Htrans≈0.1T) above which these magnetic domains irreversibly rotated. Interestingly, below this threshold, the stripes do not rotate, leading to a zero remanent magnetization along the direction of the applied field. The interest of this system for magnetization dynamics is discussed.
Physical states and properties of barium titanate films in a plane electric field
NASA Astrophysics Data System (ADS)
Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.
2016-07-01
The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.
Dynamics of rotating gaseous ellipsoid in external force fields
NASA Astrophysics Data System (ADS)
Tatematsu, Yoshinori; Fujimoto, Mitsuaki
1990-04-01
General and computationally-tractable equations are presented for the large-amplitude motion of a uniform gaseous ellipsoid rotating in an external force field. When this force is expressed as a linear function of the rectangular coordinates in the space under consideration, the equation of motion is reduced to a set of ordinary differential equations for the angular velocity, semimajor-axes of the ellipsoid, circulation, and temperature of the gaseous medium; they are integrated as an initial-value problem. Ad hoc (though fairly realistic) equations are used for cooling and viscosity to reproduce the gravitational contractions of the rotating gaseous ellipsoid. As one application, a series of equilibrium states of a uniform interstellar gas cloud in the tidal force of the Galaxy was determined, and their gravitational contraction was followed to a compact elongated structure. Two types of contractions are also found; the one is smooth contraction and the other is a violent one in which the prolate ellipsoid tumbles end-over-end with large-scale gas circulation within it.
Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field
NASA Astrophysics Data System (ADS)
Li, X.; Zheng, C.; Zhou, Y.; Kubota, H.; Yuasa, S.; Pong, Philip W. T.
2016-06-01
Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.
Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field
Li, X.; Zheng, C.; Pong, Philip W. T.; Zhou, Y.; Kubota, H.; Yuasa, S.
2016-06-06
Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.
On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field
NASA Astrophysics Data System (ADS)
Xu, Lanxi; Lan, Wanli
2016-10-01
Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M , where M is the maximum of the absolute value of the velocity field of the laminar flow.
Rotating dipole and quadrupole field for a multiple cathode system
Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.
2011-03-28
A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.
Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.
2005-01-01
A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.
Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.
2004-01-01
A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.
Rotation of solar magnetic fields for the current solar cycle 24
Shi, X. J.; Xie, J. L.
2014-11-01
The rotation of solar magnetic fields for the current solar cycle 24 is investigated through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields during Carrington rotation numbers 2076-2146 (2008 October to 2014 January). The sidereal rotation rates of positive and negative magnetic fields at some latitudes are shown, and it can be found that the positive (negative) fields generally rotate faster than the negative (positive) fields in the southern (northern) hemisphere at low latitudes. The mean rotation profiles of total, positive, and negative magnetic fields between ±60° latitudes in the time interval are also obtained. It should be noted that both of the mean rotation profiles of the positive and negative magnetic fields, as well as the mean rotation profile of the total magnetic field, exhibit a quasi-rigid rotation at latitudes above about 55°. The mean rotation rates of the positive (negative) polarity reach their maximum values at about 9°(6)° latitude in the southern (northern) hemisphere. The mean rotation profile of the total magnetic field displays an obvious north-south asymmetry, where the rotation seems to be more differential in the northern hemisphere. The latitude variation in the rotation rate differences between positive and negative magnetic fields is further studied, and it is found that magnetic fields with the same polarity as the leading sunspots at a given hemisphere rotate faster than those with the opposite polarity, except for the zones around 52° latitude of the southern hemisphere and around 35° latitude of the northern hemisphere. The implication of these results is discussed. It is clear that the obtained results can provide some observational constraints on the theoretical research of the mechanisms of differential rotation and solar cycle.
Hamiltonian Formulation of the Yang-Mills field on the null-plane
NASA Astrophysics Data System (ADS)
Casana, R.; Pimentel, B. M.; Zambrano, G. E. R.
2010-02-01
We have studied the null-plane hamiltonian structure of the free Yang-Mills fields. Following the Dirac's procedure for constrained systems we have performed a detailed analysis of the constraint structure of the model and we give the generalized Dirac brackets for the physical variables. Using the correspondence principle in the Dirac's brackets we obtain the same commutators present in the literature and new ones.
Modeling Alfven Waves Generation by a Rotating Magnetic Field Source
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Gumerov, N.; Shao, X.; Sharma, A. S.; Papadopoulos, K.; Gigliotti, A. F.; Gekelman, W. N.
2009-12-01
Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Fields (RMF) source created by a phased orthogonal loop antenna. This paper presents a combination of computational results along with the experiments that emphasize the RMF properties for generation of MHD waves. In order to understand the RMF and magnetized plasma interaction and the resultant radiation patterns in frequency regimes below the ion cyclotron frequency a three-dimensional code was developed. The time-domain code solves the linearized Maxwell equations coupled to the two fluid magnetohydrodynamics description of cold plasma. The antenna excitation is modeled as a set of external currents. A comparison of the simulation results and the experiments shows good agreement between them. The scaling laws of the induced magnetic field as a function of the RMF frequency, the plasma parameters and the spatial decay rate of magnetic field, as well as the use of RMFs as efficient radiation sources of waves in space plasmas are also discussed. This work was sponsored by ONR MURI Grant 5-28828.
NASA Astrophysics Data System (ADS)
Nikitin, A. M.; Pan, Y.; Huang, Y. K.; Naka, T.; de Visser, A.
2016-10-01
We report a high-pressure transport study of the upper-critical field Bc 2(T ) of the topological superconductor Sr0.15Bi2Se3 (Tc=3.0 K). Bc 2(T ) was measured for magnetic fields directed along two orthogonal directions, a and a*, in the trigonal basal plane. While superconductivity is rapidly suppressed at the critical pressure pc˜3.5 GPa, the pronounced two-fold basal-plane anisotropy Bc2 a/Bc2 a*=3.2 at T =0.3 K, recently reported at ambient pressure [Pan et al., Sci. Rep. 6, 28632 (2016), 10.1038/srep28632], is reinforced and attains a value of ˜5 at the highest pressure (2.2 GPa). The data reveal that the unconventional superconducting state with broken rotational symmetry is robust under pressure.
NASA Astrophysics Data System (ADS)
Roman, D. C.
2003-12-01
A complete understanding of the initiation, evolution, and termination of volcanic eruptions requires reliable monitoring techniques to detect changes in the conduit system during periods of activity, as well as corresponding knowledge of conduit structure and of magma physical properties. Case studies of stress field orientation prior to, during, and after magmatic activity can be used to relate changes in stress field orientation to the state of the magmatic conduit system. These relationships may be tested through modeling of induced stresses. Here I present evidence from case studies and modeling that horizontal rotation of the axis of maximum compressive stress at an active volcano indicates pressurization of a magmatic conduit, and that this rotation, when observed, may also be indicative of the physical properties of the ascending magma. Changes in the local stress field orientation during the 1992 eruption sequence at Crater Peak (Mt. Spurr), Alaska were analyzed by calculating and inverting subsets of over 150 fault-plane solutions. Local stress tensors for four time periods, corresponding approximately to changes in activity at the volcano, were calculated based on the misfit of individual fault-plane solutions to a regional stress tensor. Results indicate that for nine months prior to the eruption, local maximum compressive stress was oriented perpendicular to regional maximum compressive stress. A similar horizontal rotation was observed beginning in November of 1992, coincident with an episode of elevated earthquake and tremor activity indicating intrusion of magma into the conduit. During periods of quiescence the local stress field was similar to the regional stress field. Similar horizontal rotations have been observed at Mt. Ruapehu, New Zealand (Miller and Savage 2001, Gerst 2003), Usu Volcano, Japan (Fukuyama et al. 2001), Unzen Volcano, Japan (Umakoshi et al. 2001), and Mt. St. Helens Volcano, USA (Moran 1994) in conjunction with eruptive
Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude
2012-10-01
A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.
NASA Astrophysics Data System (ADS)
Feonychev, A. I.
It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of
Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields
NASA Astrophysics Data System (ADS)
Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.; Velardi, L.; Alifano, P.; Monaco, C.; Talà, A.; Tredici, M.; Rainò, A.
2006-07-01
A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.
NASA Astrophysics Data System (ADS)
Carrey, J.; Hallali, N.
2016-11-01
In the last 10 years, it has been shown in various types of experiments that it is possible to induce biological effects in cells using the torque generated by magnetic nanoparticles submitted to an alternating or a rotating magnetic field. In biological systems, particles are generally found under the form of assemblies because they accumulate at the cell membrane, are internalized inside lysosomes, or are synthesized under the form of beads containing several particles. The torque undergone by assemblies of single-domain magnetic nanoparticles has not been addressed theoretically so far and is the subject of the present article. The results shown in the present article have been obtained using kinetic Monte Carlo simulations, in which thermal activation is taken into account, so the torque undergone by ferromagnetic and superparamagnetic nanoparticles could both be simulated. The first system under study is a single ferromagnetic particle with its easy axis in the plane of the rotating magnetic field. Then, elements adding complexity to the problem are introduced progressively and the properties of the resulting system presented and analyzed: random anisotropy axes, thermal activation, assemblies, and finally magnetic interactions. The most complex studied systems are particularly relevant for applications and are assemblies of interacting superparamagnetic nanoparticles with randomly oriented anisotropy axes. Whenever it is possible, analytical equations describing the torque properties are provided, as well as their domain of validity. Although the properties of an assembly naturally derive from those of single particles, it is shown here that several of them were unexpected and are particularly interesting with regard to the maximization of torque amplitude in biological applications. In particular, it is shown that, in a given range of parameters, the torque of an assembly increases dramatically in the direction perpendicular to the plane of the rotating
Nondiagonal graphene conductivity in the presence of in-plane magnetic fields
NASA Astrophysics Data System (ADS)
Brandão, R. R.; Moriconi, L.
2015-07-01
We study the electron/hole transport in puddle-disordered and rough graphene samples which are subject to in-plane magnetic fields. Previous treatments, mostly devoted to regimes where the electron/hole scattering wavelengths are larger than the surface height correlation length, are based on the use of transport equations with appropriate forms for the collision term. We point out in this work, as a counterpoint, that classical Lorentz force effects, which are expected to hold when the Fermi level is far enough away from the charge neutral point, can be heuristically assessed through disordered Boltzmann equations that contain magnetic-field dependent material derivatives, and keep the zero magnetic-field structure of the collision term. It turns out that the electric conductivity tensor gets a peculiar nondiagonal component, induced by the in-plane magnetic field that crosses the rough topography of the graphene sheet, even if the projected random transverse magnetic field vanishes in the mean. Numerical estimates of the transverse conductivities suggest that they are suitable of observation under conditions which are within the reach of up-to-date experimental methods.
Groundwater treatment in a field pilot methanotrophic rotating biological contactor
Belcher, D.M.; Vira, A.; Dooley, M.A.; Johnson, J.C.
1995-12-31
A pilot-scale rotating biological contactor (RBC) was operated under field conditions for approximately 1 month to remove chlorinated and nonchlorinated organic compounds from groundwater. Methanotrophic conditions were successfully established and maintained in the RBC during the field program. Results of the pilot program indicated that low concentrations of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride could be treated to below the maximum contaminant levels (MCLs) of 70 ad 2 {micro}g/L, respectively. Maximum removal rates for cis-DCE and vinyl chloride measured during the pilot study were 2.14 {micro}g cis-DCE/ft{sup 2} disc media-minute (952 {micro}g cis-DCE/mg volatile solids [VS]-day) and 0.3 {micro}g vinyl chloride/ft{sup 2}-minute (143 {micro}g vinyl chloride/mg VS-day), respectively. Chlorinated ethene removal efficiencies decreased after the first 2 weeks of operation. Low concentrations of toluene, ethylbenzene, and total xylenes (TEX) were effectively removed from groundwater throughout the course of the pilot study. The maximum observed TEX removal rate was 3.0 {micro}g TEX/ft{sup 2}-minute.
The response of prototype plane-parallel ionization chambers in small megavoltage x-ray fields.
McNiven, Andrea L; Mulligan, Matt; Kron, Tomas; Battista, Jerry J
2006-11-01
Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.
Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield
NASA Technical Reports Server (NTRS)
Ebner, C.; Sung, C. C.
1975-01-01
In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.
Broken symmetry states in bilayer graphene in electric and in-plane magnetic fields
NASA Astrophysics Data System (ADS)
Jia, Junji; Pyatkovskiy, P. K.; Gorbar, E. V.; Gusynin, V. P.
2017-01-01
Broken symmetry states in bilayer graphene in perpendicular electric E⊥ and in-plane magnetic B∥ fields are studied in the presence of the dynamically screened long-range Coulomb interaction and the symmetry-breaking contact four-fermion interactions. The integral gap equations are solved numerically, and it is shown that the momentum dependence of gaps is essential: It diminishes by an order of magnitude the gaps compared to the case of momentum-independent approximation, and the obtained gap magnitudes are found to agree well with existing experimental values. We derived a phase diagram of bilayer graphene at the neutrality point in the plane (B∥,E⊥) showing that the (canted) layer antiferromagnetic (LAF) state remains a stable ground state of the system at large B∥. On the other hand, while the LAF phase is realized at small values of E⊥, the quantum valley Hall (QVH) phase is the ground state of the system at values E⊥>Ec r(B∥) , where a critical value Ec r(B∥) increases with in-plane magnetic field B||.
Tools and Setups for Experiments with AC and Rotating Magnetic Fields
ERIC Educational Resources Information Center
Ponikvar, D.
2010-01-01
A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…
Tools and Setups for Experiments with AC and Rotating Magnetic Fields
ERIC Educational Resources Information Center
Ponikvar, D.
2010-01-01
A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…
The acoustic field of a point source in a uniform boundary layer over an impedance plane
NASA Technical Reports Server (NTRS)
Zorumski, W. E.; Willshire, W. L., Jr.
1986-01-01
The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.
Sichuga, D; Bellaiche, L
2014-01-15
Pb(Zr,Ti)O3 ultrathin films under open-circuit electrical boundary conditions and subjected to an electric field rotating in the (1¯10) plane are investigated via the use of an effective Hamiltonian, for different magnitudes of this field. Varying the direction and magnitude of the electric field leads to specific reorganization of dipoles into original configuration states, whose microstructures and macroscopic properties are revealed. In particular, a novel (direction of the electric field-versus-magnitude of the electric field) phase diagram is reported here. The field-induced correlation between the polar distortions and the oxygen octahedral tilting is also discussed.
NASA Astrophysics Data System (ADS)
Baba, Masaaki; Hanazaki, Ichiro; Nagashima, Umpei
1985-05-01
Fluorescence excitation spectra of CH3CHO, CH3CDO, (CH3)2CO, and (CD3)2CO have been observed in an Ar supersonic nozzle beam. Vibrational analyses have been performed for vibronic bands in the region at wavelengths longer than 313 nm. The 0-0 bands of the S1(n, π*) states were located at 29 771, 29 813, 30 435, and 30 431 cm-1, respectively. The spectra could be analyzed taking the C=O out-of-plane wagging and the CH3 internal rotation as active modes. By fitting a double minimum potential function to the observed vibrational levels, it has been shown that these molecules are pyramidally distorted in the S1(n, π*) state with barrier heights to inversion of 541, 578, 468, and 480 cm-1, respectively. Similar analyses using the Mathieu function gave threefold potential functions for the methyl internal rotation with barrier heights to rotation of 691, 645, 740, and 720 cm-1 for CH3CHO, CH3CDO, (CH3)2CO, and (CD3)2CO, respectively. High resolution measurements of rotational envelopes have shown that the out-of-plane polarization dominates in the acetone spectrum. This result, together with a detailed investigation of the vibronic intensity borrowing mechanism, has led us to conclude that the second order interaction dominates in which the methyl torsion and the C=O out-of-plane wagging are active. The origin of the methyl rotational barrier in the S1 state is discussed on the basis of our recent ab initio calculations. The hyperconjugative interaction is suggested to be important in determining the barrier.
Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech
2016-09-05
We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.
Conceptual design of wide-field focal plane with InGaAs image sensors
NASA Astrophysics Data System (ADS)
Komiyama, Y.; Nakaya, H.; Kashikawa, N.; Uchida, T.
2016-08-01
We present a conceptual design to implement wide-field focal plane assembly with InGaAs image sensors which are being tested intensively and reveled to be promising for astronomical use. InGaAs image sensors are sensitive up to 1.7 microns and would open a new window for the wide-field near-infrared (NIR) imaging survey once large format sensors are developed. The sensors are not necessarily cooled down to below 100 K, which is the case for prevailing NIR image sensors such as HgCdTe, enabling us to develop the NIR camera based on the technique developed for the CCD camera in optical wavelength. The major technical challenges to employ InGaAS image sensors for wide-field NIR camera are implementation of focal plane assembly and thermal design. In this article, we discuss these difficulties and show how we can conquer based on our experience to build Hyper Suprime-Cam, which is a wide-field imager with 116 2k4k CCDs attached to Subaru Telescope.
A study of solidification with a rotating magnetic field
NASA Astrophysics Data System (ADS)
Roplekar, Jayant K.
Due to the drive for weight reduction in the automobile industry, near net shape parts produced by semi-solid processing of aluminum alloys are increasingly replacing traditional steel parts. Magnetohydrodynamic direct chill casting (MHD-DC) process, developed in the mid-eighties, is the method of choice to produce rheocast metal alloys for semi-solid applications. In spite of commercial applicability of the MHD-DC process there is no integrated process model available for this process. In the present work we use an experimental setup that combines directional solidification with magnetic stirring to develop a numerical model for the MHD-DC process. We use the finite element method to solve the coupled equations of turbulent fluid flow, species transport and heat transfer with solidification on a fixed grid. Effects of the rotating magnetic field are incorporated through a body-force term which is determined a priori based on a detailed analytical study and experimental data. Due to the nature of temperature-solute coupling and the advection dominated evolution of the liquid fraction, special numerical procedures had to be implemented in the present work. The numerical procedure used in the present work is validated against two validation problems. In the first validation problem, we apply the two-phase methodology to solve the classical problem of diffusion-dominated solidification. The good agreement between the finite element solution and the analytical solution establishes soundness of the two-phase formulation developed in this work. In the second validation problem, a finite element prediction of the flow induced in a cylindrical cavity due to a rotating magnetic field is compared with an independent spectral solution. The close agreement between two radically different solution procedures establishes the accuracy in the formulation and implementation of the both procedures. We then simulate the experiments using the numerical model. The numerical model
Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field
Boychuk, A. N. Zakhlevnykh, A. N.; Makarov, D. V.
2015-09-15
The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.
Observation of Plasma Rotation Driven by Static Nonaxisymmetric Magnetic Fields in a Tokamak
Garofalo, A. M.; Burrell, K. H.; DeBoo, J. C.; DeGrassie, J. S.; Jackson, G. L.; Schaffer, M. J.; Strait, E. J.; Lanctot, M.; Reimerdes, H.; Solomon, W. M.
2008-11-07
We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical 'offset' rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions [A. J. Cole et al., Phys. Rev. Lett. 99, 065001 (2007)].
Hildreth, Owen J; Rykaczewski, Konrad; Fedorov, Andrei G; Wong, Ching P
2013-02-07
Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO(2) substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of providing restorative forces on the order of 0.2-0.3 nN with a calculated 11-18 MPa pressure differential across the catalyst. This work illustrates that out-of-plane rotational structures can be designed with controllable rotation and also suggests a new model for the driving force for catalyst motion based on DLVO theory. This process enables the facile fabrication of vertically aligned thin-film metallic structures and scalloped nanostructures in silicon for applications in 3D micro/nano-electromechanical systems, photonic devices, nanofluidics, etc.
Dynamics of liquid-crystalline magnetic suspensions in a rotating magnetic field.
Boychuk, Alexey N; Makarov, Dmitriy V; Zakhlevnykh, Alexander N
2016-10-01
We theoretically study the dynamics of the orientational structure of a ferronematic liquid crystal with soft planar coupling between the director and the magnetization in a rotating magnetic field. We determine critical parameters characterizing the boundary between synchronous and asynchronous rotation regimes. We show that the magnetic impurity increases the stability threshold of an asynchronous rotation regime. The critical angular velocity, the angles of the director and the magnetization rotation in each regime of orientational structure rotation are found for rigid planar coupling. We obtain that in weak magnetic fields when the main mechanism of the field influence on a ferronematic liquid crystal is associated with the effect on the magnetic particles, the critical angular velocity is linearly dependent on the field strength, while in strong magnetic fields, when the influence of a field is determined by a diamagnetic mechanism, the critical velocity is quadratically dependent on the field strength.
Kiapour, Ata M.; Kiapour, Ali; Goel, Vijay K.; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Contantine K.
2015-01-01
Despite general agreement on the effects of knee valgus and internal tibial rotation on anterior cruciate (ACL) loading, compelling debate persists on the interrelationship between these rotations and how they contribute to the multi-planar ACL injury mechanism. This study investigates coupling between knee valgus and internal tibial rotation and their effects on ACL strain as a quantifiable measure of injury risk. Nineteen instrumented cadaveric legs were imaged and tested under a range of knee valgus and internal tibial torques. Posterior tibial slope and the medial tibial depth, along with changes in tibiofemoral kinematics and ACL strain, were quantified. Valgus torque significantly increased knee valgus rotation and ACL strain (p<0.02), yet generated minimal coupled internal tibial rotation (p=0.537). Applied internal tibial torque significantly increased internal tibial rotation and ACL strain and generated significant coupled knee valgus rotation (p<0.001 for all comparisons). Similar knee valgus rotations (7.3° vs 7.4°) and ACL strain levels (4.4% vs 4.9%) were observed under 50 N-m of valgus and 20 N-m of internal tibial torques, respectively. Coupled knee valgus rotation under 20 N-m of internal tibial torque was significantly correlated with internal tibial rotation, lateral and medial tibial slopes, and medial tibial depth (R2>0.30; p<0.020). These findings demonstrate uni-directional coupling between knee valgus and internal tibial rotation in a cadaveric model. Although both knee valgus and internal tibial torques contribute to increased ACL strain, knee valgus rotation has the ultimate impact on ACL strain regardless of loading mode. PMID:26070647
DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS
NASA Astrophysics Data System (ADS)
Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.
2015-12-01
The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.
3-D explosions: a meditation on rotation (and magnetic fields)
NASA Astrophysics Data System (ADS)
Wheeler, J. C.
This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!
Rotation Periods of Wide Binaries in the Kepler Field
NASA Astrophysics Data System (ADS)
Janes, K. A.
2017-01-01
In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period-color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.
Calculation of the electric field resulting from human body rotation in a magnetic field.
Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard
2012-08-07
A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v × B rather than -(v · ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v · ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.
NASA Astrophysics Data System (ADS)
Azreg-Aïnou, Mustapha
2014-05-01
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field.
On the smoothness of electric fields near plane gratings of cylindrical conductors
Judd, D.L.
1995-02-01
The electric field near an infinite plane grating of equally spaced round rods at the same potential, forming the boundary of a uniform field, is determined analytically to good accuracy by conformal transformations and evaluated numerically. This contribution, which has a frankly pedagogical flavor, to the Klaus Halbach Festschrift is offered to honor his displayed mastery of conformal techniques. Although the numerical work and the form of its presentation are new, the transformation used is not original. However, to locate its antecedents in an archival journal it was necessary to seek out a paper published in 1923 (close to the year of his birth, and of mine), in a place obscure to modern physicists, so the authors efforts cannot be said to replicate recent published work. A new insight is obtained in the form of a simple estimate of departures from field uniformity at all distances from rods of any size.
A discussion of Bl conservation on a two dimensional magnetic field plane in watt balances
NASA Astrophysics Data System (ADS)
Li, Shisong; Zhao, Wei; Huang, Songling
2016-05-01
The watt balance is an experiment being pursued in national metrology institutes for precision determination of the Planck constant h. In watt balances, the 1/r magnetic field, expected to generate a geometrical factor Bl independent to any coil horizontal displacement, can be created by a strict two dimensional, symmetric (horizontal r and vertical z) construction of the magnet system. In this paper, we present an analytical understanding of magnetic field distribution when the r symmetry of the magnet is broken and the establishment of the Bl conservation is shown. By using either Gauss’s law on magnetism with monopoles or conformal transformations, we extend the Bl conservation to arbitrary two dimensional magnetic planes where the vertical magnetic field component equals zero. The generalized Bl conservation allows a relaxed physical alignment criteria for watt balance magnet systems.
Non-minimally coupled scalar field cosmology on the phase plane
Hrycyna, Orest; Szydlowski, Marek E-mail: uoszydlo@cyf-kr.edu.pl
2009-04-15
In this publication we investigate dynamics of a flat FRW cosmological model with a non-minimally coupled scalar field with the coupling term {xi}R{psi}{sup 2} in the scalar field action. The quadratic potential function V({psi}) {proportional_to} {psi}{sup 2} is assumed. All the evolutional paths are visualized and classified in the phase plane, at which the parameter of non-minimal coupling {xi} plays the role of a control parameter. The fragility of global dynamics with respect to changes of the coupling constant is studied in details. We find that the future big rip singularity appearing in the phantom scalar field cosmological models can be avoided due to non-minimal coupling constant effects. We have shown the existence of a finite scale factor singular point (future or past) where the Hubble function as well as its first cosmological time derivative diverge.
Stable oscillation in spin torque oscillator excited by a small in-plane magnetic field
Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Ito, Takahiro; Utsumi, Yasuhiro
2015-08-07
Theoretical conditions to excite self-oscillation in a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are investigated by analytically solving the Landau-Lifshitz-Gilbert equation. The analytical relation between the current and oscillation frequency is derived. It is found that a large amplitude oscillation can be excited by applying a small field pointing to the direction anti-parallel to the magnetization of the pinned layer. The validity of the analytical results is confirmed by comparing with numerical simulation, showing good agreement especially in a low current region.
On the Versality of a Family of Symmetric Vector Fields in the Plane
NASA Astrophysics Data System (ADS)
Zholondek, Khenrik
1984-02-01
The case is considered of a critical fixed point of a diffeomorphism of codimension 2 whose linear part has the eigenvalues \\pm1. According to ideas developed by Takens and Arnol'd, to deformations of such diffeomorphisms there correspond families of vector fields invariant with respect to an involution of the plane, namely, a reflection relative to a line passing through the fixed point. Bifurcations in two-parameter families in general position are described. Rigorous proofs are given.Figures: 2. Bibliography: 11 titles.
New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.
Ioanoviciu, Damaschin
2015-01-01
A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.
NASA Technical Reports Server (NTRS)
Plummer, E. W.; Bell, A. E.
1972-01-01
Total energy distributions of field emitted electrons from the tungsten (110) and (100) planes as a function of coverage by hydrogen and deuterium have been recorded utilizing a spherical deflection energy analyzer. The elastic tunneling resonance spectrum gives a plot of the 'local density of states' in the adsorbate. The inelastic tunneling spectrum reveals those discrete excitation energies available in the adsorbate-substrate complex. These spectroscopic data have been used to infer the chemical nature of the binding states which have been observed in the flash desorption spectrum of hydrogen from tungsten.
Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC
NASA Astrophysics Data System (ADS)
Velas, K. M.; Milroy, R. D.
2012-10-01
A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.
Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.
2010-08-20
Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.
2000-01-01
C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.
Kikuchi, Y.; Finken, K. H.; Jakubowski, M.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Reiser, D.; Wolf, R. C.; Zimmermann, O.; Bock, M. F. M. de; Jaspers, R.; Matsunaga, G.
2006-08-25
The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.
Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.
2005-06-15
Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.
John R. Jones; Wayne D. Shepperd
1985-01-01
The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...
Electromagnetic scattering of a polarized plane wave from an ellipsoidal particle in the near field
NASA Astrophysics Data System (ADS)
Chen, Feinan; Li, Jia
2017-06-01
Within the validity of the first-order Born approximation, we study the near-zone evanescent wave properties for a polarized plane wave scattering upon an ellipsoidal particle. Integral expressions are obtained for the three-dimensional electromagnetic field of the near-zone scattered evanescent wave, and the dependences of the scattered intensity distributions on the degree of polarization of the incident wave and the scattering potential profile of the particle are presented. The scattered intensity from the particle can exhibit a focused pattern concentrated around the central scattering region, but the scattered intensity generated from a circularly polarized wave shows a smooth distribution for different scattering angles. Moreover, the scattered intensity also enhances when either the summation index or the effective radius of the particle increases. Our results can be utilized to generate near-field focused scattered patterns that can be tuned flexibly by controlling the degree of the polarization of the plane wave and the scattering potential parameters of the ellipsoidal particle.
Analysis of near-field Cassegrain reflector - Plane wave versus element-by-element approach
NASA Technical Reports Server (NTRS)
Houshmand, Bijan; Lee, Shung-Wu; Rahmat-Samii, Yahya; Lam, Peter T.
1990-01-01
A near-field Cassegrain reflector (NFCR) is an effective way to magnify a small phased array into a much larger-aperture antenna for limited scan applications. Traditionally the pattern analysis of NFCR is based on a plane wave approach, which simplifies the computation tremendously, but fails to provide design information about the most critical component of the whole antenna system, the feed array. Currently available computers make it possible to calculate the pattern of an NFCR by a more exact element-by-element approach. Each element in the feed array is considered individually, and the diffraction pattern from the subreflector is calculated by the geometrical theory of diffraction (including uniform theories at the shadow boundaries). The field contributions from all elements are superimposed at the curved main reflector surface, and a physical-optics integration is performed to obtain the secondary pattern.
Rahman, Md Mushfiqur; Chowdhury, Mokter Mahmud; Alam, Md Kawsar
2017-03-29
Using molecular dynamics simulations, it is shown that a carbon nanotube (CNT) suspended in water and subjected to a rotating electric field of proper magnitude and angular speed can be rotated with the aid of water dipole orientations. Based on this principle, a rotational nanomotor structure is designed and the system is simulated in water. Use of the fast responsiveness of electric-field-induced CNT orientation in water is employed and its operation at ultrahigh-speed (over 10(11) r.p.m.) is shown. To explain the basic mechanism, the behavior of the rotational actuation, originated from the water dipole orientation, is also analyzed . The proposed nanomotor is capable of rotating an attached load (such as CNT) at a precise angle as well as nanogear-based complex structures. The findings suggest potential way of using the electric-field-induced CNT rotation in a polarizable fluids as a novel tool to operate nanodevices and systems.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-03-01
The alteration of the frequencies of nanostructures via an external field is of great importance in the design of nanomechanical devices whose vibrations should be appropriately controlled. Herein, free in-plane and out-of-plane vibration behaviors of conducting rectangular nanoplates subjected to unidirectional in-plane steady magnetic fields are of concern. To this end, the body forces exerted on the nanoplate based on the hypotheses of Kirchhoff, Mindlin, and higher-order plate theories are obtained. Subsequently, the nonlocal versions of the equations of motion of the conducting nanoplate for the suggested plate models are extracted. The presented formulations show that the small-scale parameter is incorporated into the exerted forces on the nanoplate due to the applied magnetic field. For the proposed models, the frequencies pertinent to the in-plane and out-of-plane vibrations of the nanoplates are evaluated. In the continuing, the roles of the length-to-thickness ratio, length-to-width ratio, small-scale parameter, and magnetic field strength on both in-plane and out-of-plane frequencies are addressed. The capabilities of the proposed models in predicting such frequencies are also explained and discussed.
High-quality InN films on MgO (100) substrates: The key role of 30° in-plane rotation
Compeán García, V. D.; López Luna, E.; Rodríguez, A. G.; Vidal, M. A.; Orozco Hinostroza, I. E.; Escobosa Echavarría, A.
2014-05-12
High crystalline layers of InN were grown on MgO(100) substrates by gas source molecular beam epitaxy. Good quality films were obtained by means of an in-plane rotation process induced by the annealing of an InN buffer layer to minimize the misfit between InN and MgO. In situ reflection high-energy electron diffraction showed linear streaky patterns along the [011{sup ¯}0] azimuth and a superimposed diffraction along the [112{sup ¯}0] azimuth, which correspond to a 30° α-InN film rotation. This rotation reduces the mismatch at the MgO/InN interface from 19.5% to less than 3.5%, increasing the structural quality, which was analyzed by high-resolution X-ray diffraction and Raman spectroscopy. Only the (0002) c plane diffraction of α-InN was observed and was centered at 2θ = 31.4°. Raman spectroscopy showed two modes corresponding to the hexagonal phase: E1(LO) at 591 cm{sup −1} and E2(high) at 488 cm{sup −1}. Hall effect measurements showed a carrier density of 9 × 10{sup 18} cm{sup −3} and an electron Hall mobility of 340 cm{sup 2}/(V s) for a film thickness of 140 nm.
Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.
NASA Astrophysics Data System (ADS)
Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.
2016-04-01
Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset
NASA Astrophysics Data System (ADS)
Hildreth, Owen J.; Rykaczewski, Konrad; Fedorov, Andrei G.; Wong, Ching P.
2013-01-01
Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO2 substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of providing restorative forces on the order of 0.2-0.3 nN with a calculated 11-18 MPa pressure differential across the catalyst. This work illustrates that out-of-plane rotational structures can be designed with controllable rotation and also suggests a new model for the driving force for catalyst motion based on DLVO theory. This process enables the facile fabrication of vertically aligned thin-film metallic structures and scalloped nanostructures in silicon for applications in 3D micro/nano-electromechanical systems, photonic devices, nanofluidics, etc.Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO2 substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of
Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate
NASA Astrophysics Data System (ADS)
Koffi, Moise
The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary
Regulation of PCR efficiency with magnetic nanoparticles in a rotating magnetic field
NASA Astrophysics Data System (ADS)
Higashi, Toshiaki; Nagaoka, Yutaka; Minegishi, Hiroaki; Echigo, Akinobu; Usami, Ron; Maekawa, Toru; Hanajiri, Tatsuro
2011-04-01
The polymerase chain reaction (PCR) method is widely used for the reproduction and amplification of specific DNA segments in vitro, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the regulation of PCR efficiency with superparamagnetic nanoparticles in a rotating magnetic field. The level of efficiency was successfully regulated in a rotating magnetic field by the authors, and decreased with increasing frequency of the field. The results obtained show that simply controlling the structure and dynamics of magnetic nanoparticle clusters in a rotating magnetic field can regulate PCR efficiency.
THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES
Shi, X. J.; Xie, J. L.
2013-08-10
Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.
Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields.
Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor
2015-03-01
Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.
Effect of an electric field on the stability of contaminated film flow down an inclined plane
NASA Astrophysics Data System (ADS)
Blyth, M. G.
The stability of a liquid film flowing down an inclined plane is considered when the film is contaminated by an insoluble surfactant and subjected to a uniform normal electric field. The liquid is treated as a perfect conductor and the air above the film is treated as a perfect dielectric. Previous studies have shown that, when acting in isolation, surfactant has a stabilizing influence on the flow while an electric field has a destabilizing influence. The competition between these two effects is the focus of the present study. The linear stability problem is formulated and solved at arbitrary parameter values. An extended form of Squire's theorem is presented to argue that attention may be confined to two-dimensional disturbances. The stability characteristics for Stokes flow are described exactly; the growth rates of the normal modes at finite Reynolds number are computed numerically. We plot the neutral curves dividing regions of stability and instability, and trace how the topology of the curves changes as the intensity of the electric field varies both for a clean and for a contaminated film. With a sufficiently strong electric field, the neutral curve for a clean film consists of a lower branch trapping an area of stable modes around the origin, and an upper branch above which the flow is stable. With surfactant present, a similar situation obtains, but with an additional island of stable modes disjoint from the upper and lower branches.
NASA Astrophysics Data System (ADS)
Khasanov, R.; Conder, K.; Pomjakushina, E.; Amato, A.; Baines, C.; Bukowski, Z.; Karpinski, J.; Katrych, S.; Klauss, H.-H.; Luetkens, H.; Shengelaya, A.; Zhigadlo, N. D.
2008-12-01
The in-plane magnetic penetration depth λab of the iron selenide superconductor with the nominal composition FeSe0.85 was studied by means of muon-spin rotation. The measurements of λab-2(T) are inconsistent with a simple isotropic s -wave type of the order parameter but are rather in favor of two-gap (s+s) and anisotropic s -wave order parameter symmetries, thus implying that the superconducting energy gap in FeSe0.85 contains no nodes.
Scaling of plane-wave functions in statistically optimized near-field acoustic holography.
Hald, Jørgen
2014-11-01
Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.
Research on single-chip microcomputer controlled rotating magnetic field mineralization model
NASA Astrophysics Data System (ADS)
Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na
2017-08-01
As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.
Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi
2013-05-21
We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.
The origin of rigidly rotating magnetic field patterns on the sun
NASA Technical Reports Server (NTRS)
Sheeley, N. R., Jr.; Nash, A. G.; Wang, Y.-M.
1987-01-01
Using analytical calculations and numerical simulations, it is shown that a meridional component of magnetic-flux transport will offset the shearing effect of differential rotation and give rise to rigidly rotating patterns of large-scale magnetic field. The nonaxisymmetric field attains a striped polarity pattern which rotates rigidly like a barber pole while its individual small-scale flux elements rotate at the differential rate of the latitudes they are crossing. On the sun, the meridional transport is provided by supergranular diffusion possibly assisted by a small poleward flow. New sources of flux retard this process and exclude the rigid rotation from the sunspot belts until well into the declining phase of the sunspot cycle. This mechanism accounts for a number of heretofore unexplained phenomena including the tendency for coronal holes to rotate rigidly during the declining phase of the sunspot cycle.
Entrainment by a rotating magnetic field of a ferrofluid contained in a sphere.
Felderhof, B U
2011-10-01
Entrainment of a ferrofluid contained in a sphere by a rotating uniform magnetic field is studied on the basis of spin-diffusion theory. The equations for flow velocity and spin velocity, coupled to Maxwell's equations of magnetostatics, are solved analytically to second order in the applied magnetic field. A similar derivation holds in electrohydrodynamics for a polar liquid contained in a sphere and subject to a rotating electrical field.
Apparatus and method for generating a magnetic field by rotation of a charge holding object
Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL
2009-10-13
A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.
Lobanov, A Iu; Gilinskaia, N Iu; Chereĭskaia, N K
2005-01-01
Rationale and technique are proposed and clinical trial has been made of efficacy of chronic obstructive pulmonary disease (COPD) treatment with impacts of rotating impulse magnetic field (RIMF) from the device Polyus-VIEM (two fields, induction 48-72 mTe, reversive rotation, 4-6 s reversion duration, 20-30 Hz, 7-10 min exposure of each field, 7-10 procedures). The addition of RIMF in combined treatment of COPD improves treatment and shortens its duration.
NASA Astrophysics Data System (ADS)
Sprague, Michael; Julien, Keith; Knobloch, Edgar; Milliff, Ralph; Werne, Joe
2003-11-01
Using DNS, we investigate the solution to a reduced system of nonlinear PDEs for rapidly rotating convection: non-hydrostatic quasi-geostrophic equations (NHQGE). The NHQGE are derived asymptotically in the limit of rapid rotation from the Navier-Stokes equations under the Boussinesq approximation. Two distinct vertical scales are present: a small-scale occurring as a consequence of rotational alignment and large-scale due to convective forced motions. The resulting equations filter fast inertial waves and relax the need to resolve Ekman boundary layers, and are applicable to deep-ocean turbulent convection, which, under thermal forcing, is characterized by thermal and vortical coherent structures that span the layer depth. Using a Chebyshev-Petrov-Galerkin algorithm, we examine variation of heat transport as a function of scaled Rayleigh number and compare results from a single-mode theory. We also investigate the dynamics of the vortical structures and their effect on lateral mixing.
A study of the round jet/plane wall flow field
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1971-01-01
Impingement angles, between the axisymmetric jet axis and the plane wall, from zero to 15 degrees have been examined for nozzle heights of 0.75, 1.0, 1.5 and 2.0 diameters and for: (1) a fully developed pipe flow, and (2) a relatively uniform exit velocity condition. Velocity measurements have been used to define isotach contours and to determine mass, momentum and energy flux values for the near field (within five diameters) of the jet. Surface pressure measurements have been used to define surface pressure forces and jet centerline trajectories. The geometric and flow conditions examined and the interpretation of the results have been motivated by the externally blown flap STOL aircraft application.
In-plane tunnelling field-effect transistor integrated on Silicon
Fina, Ignasi; Apachitei, Geanina; Preziosi, Daniele; Deniz, Hakan; Kriegner, Dominik; Marti, Xavier; Alexe, Marin
2015-01-01
Silicon has persevered as the primary substrate of microelectronics during last decades. During last years, it has been gradually embracing the integration of ferroelectricity and ferromagnetism. The successful incorporation of these two functionalities to silicon has delivered the desired non-volatility via charge-effects and giant magneto-resistance. On the other hand, there has been a numerous demonstrations of the so-called magnetoelectric effect (coupling between ferroelectric and ferromagnetic order) using nearly-perfect heterostructures. However, the scrutiny of the ingredients that lead to magnetoelectric coupling, namely magnetic moment and a conducting channel, does not necessarily require structural perfection. In this work, we circumvent the stringent requirements for epilayers while preserving the magnetoelectric functionality in a silicon-integrated device. Additionally, we have identified an in-plane tunnelling mechanism which responds to a vertical electric field. This genuine electroresistance effect is distinct from known resistive-switching or tunnel electro resistance. PMID:26403693
Interfaces and wetting transition on the half plane. Exact results from field theory
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Squarcini, Alessio
2013-05-01
We consider the scaling limit of a generic ferromagnetic system with a continuous phase transition, on the half plane with boundary conditions leading to the equilibrium of two different phases below criticality. We use general properties of low-energy two-dimensional field theory to determine exact asymptotics of the magnetization profile perpendicular to the boundary, to show the presence of an interface with endpoints pinned to the boundary, and to determine its passage probability. The midpoint average distance of the interface from the boundary grows as the square root of the distance between the endpoints, unless the reflection amplitude of the bulk excitations on the boundary possesses a stable bound state pole. The contact angle of the phenomenological wetting theory is exactly related to the location of this pole. Results available from the lattice solution of the Ising model are recovered as a particular case.
The study of turbulence in MHD flow generated by rotating and traveling magnetic fields
NASA Astrophysics Data System (ADS)
Kolesnichenko, Ilya; Pavlinov, Alexander; Golbraikh, Ephim; Frick, Peter; Kapusta, Arkadii; Mikhailovich, Boris
2015-05-01
We consider a problem of spectral analysis of signals from electromagnetic sensors operating in a turbulent MHD flow generated by rotating and traveling magnetic fields, which create a strong electromagnetic noise. Using a wavelet-based technique for cross-correlation signal analysis and filtration, we show that at frequencies lower than the frequency of the applied magnetic field, the spectral properties of the velocity field can be clearly seen in spite of the fact that the measured fields are much weaker than the driving rotating (or traveling) magnetic field. On the basis of the proposed method, spectra of turbulent velocity fields, measured in the experiment, were studied.
Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields
S.A. Cohen, A.S. Landsman, and A.H. Glasser
2007-06-25
Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.
NASA Astrophysics Data System (ADS)
Zhao, Qiang
2016-02-01
Motivated by recent experiments carried out by Spielman's group at NIST, we study the vortex formation in a rotating Bose-Einstein condensate in synthetic magnetic field confined in a harmonic potential combined with an optical lattice. We obtain numerical solutions of the two-dimensional Gross-Pitaevskii equation and compare the vortex formation by synthetic magnetic field method with those by rotating frame method. We conclude that a large angular momentum indeed can be created in the presence of the optical lattice. However, it is still more difficult to rotate the condensate by the synthetic magnetic field than by the rotating frame even if the optical lattice is added, and the chemical potential and energy remain almost unchanged by increasing rotational frequency.
The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument
NASA Technical Reports Server (NTRS)
Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.;
2016-01-01
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
The focal plane assembly for the Athena X-ray Integral Field Unit instrument
NASA Astrophysics Data System (ADS)
Jackson, B. D.; van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; Chervenak, J. A.; Dercksen, J.; Gatti, F.; Gottardi, L.; Haas, D.; den Herder, J.-W.; Kilbourne, C. A.; Kiviranta, M.; Lam-Trong, T.; van Leeuwen, B.-J.; Macculi, C.; Piro, L.; Smith, S. J.
2016-07-01
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including straylight from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
Mechanical design of mounts for IGRINS focal plane arrays and field flattening lenses
NASA Astrophysics Data System (ADS)
Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyeong; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Pavel, Michael; Jaffe, Daniel T.
2014-07-01
IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.
Gravitational field of a Schwarzschild black hole and a rotating mass ring
NASA Astrophysics Data System (ADS)
Sano, Yasumichi; Tagoshi, Hideyuki
2014-08-01
The linear perturbation of the Kerr black hole has been discussed by using the Newman-Penrose formalism, and the perturbed Weyl scalars, ψ0 and ψ4 can be obtained from the Teukolsky equation. In order to obtain the other Weyl scalars and the perturbed metric, a formalism was proposed by Chrzanowski and by Cohen and Kegeles to construct these quantities in a radiation gauge via the Hertz potential. As a simple example of the construction of the perturbed gravitational field with this formalism, we consider the gravitational field produced by a rotating circular ring around a Schwarzschild black hole. In the method by Chrzanowski, Cohen, and Kegeles, the metric is constructed in a radiation gauge via the Hertz potential, which is obtained from the solution of the Teukolsky equation. Since the solutions ψ0 and ψ4 of the Teukolsky equations are spin-2 quantities, the Hertz potential is determined up to its monopole and dipole modes. Without these lower modes, the constructed metric and Newman-Penrose Weyl scalars have unphysical jumps on the spherical surface at the radius of the ring. We find that the jumps of the imaginary parts of the Weyl scalars are cancelled when we add the angular momentum perturbation to the Hertz potential. Finally, by adding the mass perturbation and choosing the parameters which are related to the gauge freedom, we obtain the perturbed gravitational field which is smooth except on the equatorial plane outside the ring. We discuss the implication of these results to the problem of the computation of the gravitational self-force to the point particles in a radiation gauge.
NASA Astrophysics Data System (ADS)
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
NASA Astrophysics Data System (ADS)
Das, T.; Figueira de Morisson Faria, C.
2016-08-01
We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S 11 < −10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices. PMID:24711732
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.
NASA Astrophysics Data System (ADS)
Popkov, A. F.; Kulagin, N. E.; Soloviov, S. V.; Sukmanova, K. S.; Gareeva, Z. V.; Zvezdin, A. K.
2015-10-01
The room temperature multiferroic BiFeO3, by far the most studied experimentally, exhibits outstanding ferroelectric properties with a cycloidal magnetic order in the bulk and many unexpected advantages for possible applications in spintronics, sensor techniques, and photovoltaics. To consider ferroelectric and magnetic phase transitions in multiferroic BiFeO3 under electric field, we suggest the Ginsburg-Landau-like approach based on the symmetry and P -ω -L coupling, where the order parameters are: P is the electric polarization, ω is the axial vector of antidistorsion (describing a rotation of the oxygen octahedrons), and L is the antiferromagnetic vector. The theoretical model is consistent with experiment and ab initio calculations data. We give the complete set of numerical coefficients of the model and explore the behavior of P and ω vectors in strong electric field. The proposed approach is particularly promising for the analysis of magnetoelectric phenomena whose length scale is significantly larger than the length of the cell used in ab initio calculations. The considered cycloid problem is the clear example of such a system. Electric field-induced transformations of cycloid are exemplified on an epitaxial BiFeO3 film grown on the (001)-oriented substrate. We show that the jump of vectors P and ω in the field E =6 MV/m is accompanied by a jump of a cycloid spin rotation plane. This effect is of particular interest for spintronics and nanoelectronics.
Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Hall, M.S.; Jackson, T.G.; Knerr, C.
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
Dynamics of resonant magnetic field penetration and plasma rotation
NASA Astrophysics Data System (ADS)
Ivanov, N. V.; Kakurin, A. M.
2017-01-01
Results of calculations and analysis of the penetration of resonant magnetic perturbations (RMP) into tokamak plasma are presented. The TEAR code used for the calculations is based on a two-fluid magnetohydrodynamics approximation that gives coupled diffusion-type equations for the magnetic flux perturbation and for plasma rotation velocities in toroidal and poloidal directions. The radial distribution of the magnetic flux perturbation is calculated taking account of an externally applied RMP and magnetic perturbation generated by an eddy current in the resistive-vacuum vessel. The decoupling of magnetic-island velocity from the velocity of plasma rotation is employed in the calculations according to available experimental evidence and corresponding theoretical understanding. The account of this decoupling, as well as of plasma rotation in the poloidal direction in addition to the toroidal one, reduces the RMP penetration threshold and accelerates the penetration process. The main attention is paid to the dependences of the RMP penetration dynamics on the simulation conditions. The simulation findings are compared with available experimental data. Some predictions of the penetration threshold values for ITER conditions are presented.
Rotation and strain rate of Sulawesi from geometrical velocity field
NASA Astrophysics Data System (ADS)
Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.
2017-07-01
One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.
Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C273
Zavala, Robert T.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park
2005-06-06
Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of {approx}500 rad m{sup -2} mas{sup -1} transverse to the jet axis in the quasar 3C273. The gradient is seen in two epochs spaced roughly six months apart. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.
NASA Astrophysics Data System (ADS)
Olson, Erik R.; Knuteson, Robert O.; Revercomb, Hank E.; Li, Jun; Huang, Hung-Lung A.
2004-10-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES) instruments are geostationary infrared spectrometers. Geostationary orbit provides observations with very good time resolution, but also increases the effect of diffraction. There can be significant differences in emitted radiances due to clouds and changes in surface characteristics. High, thick clouds in particular are much cooler than clear areas. Diffraction causes radiation that originates from cloudy areas outside of the detector field of view to contaminate the clear pixels. GIFTS will also have two detector arrays on different focal planes, which may not be perfectly aligned. This can cause spatial misalignment between the data for the two spectral regions. High spatial resolution numerical models run at the University of Wisconsin - Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) provide data for examining the diffraction and misalignment effects. The model data represents a variable cloud case during the IHOP field experiment at 1.3-km resolution. This paper outlines the production of high spatial resolution simulated data, characterization of the far field diffraction effects on radiances, and analysis of misalignment effects on temperature and moisture profile retrievals.
Study of Kink Modes and Error Fields using Rotation Control with a Biased Probe
NASA Astrophysics Data System (ADS)
Stoafer, Chris C.; Levesque, J. P.; Peng, Q.; Mauel, M. E.; Navratil, G. A.
2015-11-01
A bias probe has been installed in the High Beta Tokamak - Extended Pulse (HBT-EP) for studying MHD mode rotation and stability. When the probe is inserted into the edge of the plasma and a voltage applied, the rotation of long-wavelength kink instabilities is strongly modified. A large poloidal plasma flow results, measured with a bi-directional Mach probe, and changes in plasma flow correlate to changes in edge kink mode rotation. An active controller is used to adjust the probe voltage in real time for controlling both the plasma flow and mode rotation. Bias probe voltages are generated through an active GPU-based digital feedback system. Mode rotation control is desirable and allows for MHD stability studies under conditions of varying mode rotation rates. At large positive biases, the probe current induces a torque that opposes the natural direction of mode rotation. We are able to apply sufficiently large torque to induce a transition to a fast rotation state (both mode and plasma rotation). The bias required to induce the transition is shown to depend on an applied error field, establishing a technique to determine the natural error field on HBT-EP. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Direct numerical simulation of a near-field particle-laden plane turbulent jet.
Fan, Jianren; Luo, Kun; Ha, Man Yeong; Cen, Kefa
2004-08-01
The present study investigates the gas-particle two-phase flow in the turbulent plane jet by solving the two-dimensional and compressible flow fields numerically using direct-numerical-simulation technique. The flow fields are spatially developing, but we focus our study on the evolution of coherent vortex structures and dispersion patterns of particles in the near field at different Stokes numbers. The initial symmetric mode of flow changes its shape to the asymmetric mode after about three convection periods as the flow moves downstream. The concessive paring processes between two and three vortex structures are observed. The predicted mean velocity profiles show self-similar behavior and coincide well with previous experimental data. The profiles of turbulent intensity and Reynolds shear stress also display self-similar characteristics in the further downstream regions. The local-focusing phenomena of particles occur in the quasicoherent dispersion structure of particles. The higher density distribution at the outer boundary of large-scale vortex structure characterizes the dispersion pattern of particles at the Stokes numbers of order of unity. Furthermore, these particles disperse largely along the lateral direction and show the nonuniform distribution of concentration. For the particles at the Stokes number of 0.01, the dispersion along the lateral direction is considerable due to the small aerodynamics response time, but the particles are distributed evenly in the flow field. Particles at the Stokes numbers of 10 and 50 disperse much less along the lateral direction with the even density distribution. These results support the previous conclusions on the dispersion of particles in the free shear flows.
DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY
Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubino-Martin, J. A.
2012-08-20
The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B{sub {phi}} {approx} 2 {mu}G at distances of {approx}2 R{sub 0}(16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.
The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO
NASA Technical Reports Server (NTRS)
Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.
1997-01-01
The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.
The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO
NASA Technical Reports Server (NTRS)
Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.
1997-01-01
The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.
Limits to the Magnetic Field in the Planetary Nebula NGC 246 from Faraday Rotation
NASA Astrophysics Data System (ADS)
Rodríguez, L. F.; Carrasco-González, C.; Cantó, J.; Pasetto, A.; Raga, A. C.; Tafoya, D.
2017-04-01
We present radio continuum observations of the linearly polarized extragalactic source J0047-1150, whose line of sight traverses the galactic planetary nebula NGC 246. We determine the position angle of the electric vector at seven frequencies between 1.3 and 1.8 GHz, finding no evidence of Faraday rotation and setting a 4-σ upper limit to the rotation measure of 9.6 rad m-2, which implies an upper limit to the average line-of-sight component of the magnetic field in NGC 246 of 1.3 μG. However, we show that the rotation measure across a source with a dipolar magnetic field morphology practically cancels out. Therefore, if the magnetic field has this morphology, the local values of the magnetic field in NGC 246 could be much larger and will not be evident in a Faraday rotation experiment.
Stabilization of the Resistive Wall Mode and Error Field Reduction by a Rotating Conducting Wall
NASA Astrophysics Data System (ADS)
Paz-Soldan, Carlos
2011-10-01
The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed differentially-rotating conducting walls is tested in a linear device. This geometry allows the use of cylindrical solid metal walls, whereas a torus would require a flowing liquid metal. Experiments over the past year have for the first time explored RWM stability with a rotating copper wall capable of achieving speeds (rΩw) of up to 280 km/h, equivalent to a magnetic Reynolds number (Rm) of 5. The main results are: 1) Wall rotation increases the stability window of the RWM, allowing ~ 25% more plasma current (Ip) at Rm = 5 while maintaining MHD stability. 2) Error field reduction below a critical value allows the observation of initial mode rotation, followed by braking, wall-locking, and subsequent faster growth. 3) Locking is found to depend on the direction of wall rotation (Ω̂w) with respect to the intrinsic plasma rotation, with locking to both the static wall (vacuum vessel) and rotating wall observed. Additionally, indirect effects on RWM stability are observed via the effect of wall rotation on device error fields. Wall rotation shields locking error fields, which reduces the braking torque and inhibits mode-locking. The linear superposition of error fields from guide field (Bz) solenoid misalignments and current-carrying leads is also shown to break symmetry in Ω̂w , with one direction causing stronger error fields and earlier locking irrespective of plasma flow. Vacuum field measurements further show that rotation decreases the error field penetration time and advects the field to a different orientation, as predicted by theory. Experiments are conducted on the Rotating Wall Machine, a 1.2 m long and 16 cm diameter screw-pinch with Bz ~ 500 G, where hollow-cathode injectors are biased to source up to 7 kA of Ip, exciting current-driven RWMs. MHD activity is measured through 120 edge Br, Bθ, Bz probes as well as internal Bdot, Langmuir and Mach probes. RWM
Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D
2012-01-01
Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.
Rayleigh-Benard Instability in a Vertical Cylinder with a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Walker, J. S.; Volz, M. P.; Mazuruk, K.
2003-01-01
This paper presents a linear stability analysis for the Rayleigh-Benard convection in a finite-length, vertical cylinder with a rotating magnetic field. The vertical wall of the cylinder is adiabatic, and planar top and bottom walls are isothermal with a higher temperature at the bottom. The stabilizing effects of the rotating magnetic field are studied for four values of the Prandtl number. Results for one Prandtl number are compared to previously published experimental results.
Velas, K. M.; Milroy, R. D.
2014-01-15
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.
NASA Astrophysics Data System (ADS)
Velas, K. M.; Milroy, R. D.
2014-01-01
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure Br, Bθ, and Bz at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.
NASA Astrophysics Data System (ADS)
Ou, Xiulong; He, Jun; Xia, Zhenjun; An, Jing; Hao, Jiazheng; He, Shuli; Zhao, Dongliang
2017-08-01
The patterned FeNi nanoparticle films with strip width 60 μm were prepared by electric field-assisted deposition technique. Application of electric field drove the accelerating deposition of the condensed nanoparticles, promoting the formation of the films with high stacking density. Besides the excellent soft magnetic characteristics, the samples showed an obvious enhancement of in-plane uniaxial magnetic anisotropy when they were annealed in vacuum environment at proper temperatures. The increase of in-plane uniaxial magnetic anisotropy, which is due to the release of stress with increasing temperature, is also confirmed by scanning microwave permeability spectra in GHz range. The experimental results imply that optimization of in-plane uniaxial magnetic anisotropy is particularly attractive for the application of electric field deposited soft magnetic nanoparticle films in the high-temperature processing electromagnetic devices.
ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES
Shi, X. J.; Xie, J. L.
2015-04-15
Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.
Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi
2016-07-01
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution
A polarizing situation: Taking an in-plane perspective for next-generation near-field studies
NASA Astrophysics Data System (ADS)
Schuck, P. James; Bao, Wei; Borys, Nicholas J.
2016-04-01
By enabling the probing of light-matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.
De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J
2014-03-25
In our recent work, J. Chem. Phys. 2013, 138, 154712, we demonstrated the feasibility of unidirectional pumping of water, exploiting translational-rotational momentum coupling using nonequilibrium molecular dynamics simulations. Flow can be sustained when the fluid is driven out of equilibrium by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational-rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V Å(-1), the translational-rotational coupling is most effective, yielding fluid velocities of magnitudes of ∼2 ms(-1) with only moderate fluid heating. In this work, we also confine water to a realistic nanochannel made of graphene giving a hydrophobic surface on one side and β-cristobalite giving a hydrophilic surface on the other, reproducing slip-and-stick velocity boundary conditions, respectively. This enables us to demonstrate that in a realistic environment, the coupling can be effectively exploited to achieve noncontact pumping of water at the nanoscale. A quantitative comparison between nonequilibrium molecular dynamics and analytical solutions of the extended Navier-Stokes equations, including an external rotating electric field has been performed
NASA Astrophysics Data System (ADS)
Lavrijsen, R.; Hartmann, D. M. F.; van den Brink, A.; Yin, Y.; Barcones, B.; Duine, R. A.; Verheijen, M. A.; Swagten, H. J. M.; Koopmans, B.
2015-03-01
We analyze the impact of growth conditions on the asymmetric magnetic bubble expansion under an in-plane field in ultrathin Pt/Co/Pt films. Specifically, using sputter deposition, we vary the Ar pressure during the growth of the top Pt layer. This induces a large change in the interfacial structure as evidenced by a factor three change in the effective perpendicular magnetic anisotropy. Strikingly, a discrepancy between the current theory for domain-wall propagation based on a simple domain-wall energy density and our experimental results is found. This calls for further theoretical development of domain-wall creep under in-plane fields and varying structural asymmetry.
NASA Astrophysics Data System (ADS)
Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Cohen, Sam; Ceccherini, Francesco; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl
2016-10-01
The rotating magnetic field-driven field-reversed configuration (FRC), such as Rotamak or PFRC experiment, was recently proposed as a test bench at Tri Alpha Energy to experimentally pioneer the study of microwave electron heating. In order to provide guidelines to the choice of microwave frequency and antenna position, as well as the desired target plasma profile, extensive simulations have been conducted with use of the GENRAY-C ray-tracing code for a wide range of frequencies from smaller than fundamental electron cyclotron resonant (ECR) frequency up to more than 30 harmonics of ECR. Based on the operational parameters of Rotamak plasma, simulations indicate that microwaves at a frequency around 10 GHz can heat electrons inside the separatrix layer. The physics of heating mechanism is similar for both the Rotamak and the C-2U FRC plasma, meaning that the magnitude of magnetic field goes down along the direction of ray propagation, therefore the rays, after the O-X-B mode conversion, encounter a basin of high harmonic EC resonances and mostly damp the power in the vicinity of the upper-hybrid resonance layer Detailed simulation results and plans for a future test bench will be presented.
Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2010-06-15
Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n=0 B{sub t}heta can develop in the open-field line region, producing a back torque opposing the RMF.
NASA Astrophysics Data System (ADS)
Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2010-06-01
Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.
Matt, Sean P.; Pinsonneault, Marc H.; Greene, Thomas P. E-mail: kmac@ucar.edu E-mail: thomas.p.greene@nasa.gov
2012-08-01
We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.
Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil.
Liu, Dongyan; Ishikawa, Hiroki; Nishida, Mizuhiko; Tsuchiya, Kazunari; Takahashi, Tomoki; Kimura, Makoto; Asakawa, Susumu
2015-01-01
Methanogenic archaea are strict anaerobes and demand highly reduced conditions to produce methane in paddy field soil. However, methanogenic archaea survive well under upland and aerated conditions in paddy fields and exhibit stable community. In the present study, methanogenic archaeal community was investigated in fields where paddy rice (Oryza sativa L.) under flooded conditions was rotated with soybean (Glycine max [L.] Merr.) under upland conditions at different rotation histories, by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR methods targeting 16S rRNA and mcrA genes, respectively. Soil samples collected from the fields before flooding or seeding, during crop cultivation and after harvest of crops were analyzed. The abundance of the methanogenic archaeal populations decreased to about one-tenth in the rotational plots than in the consecutive paddy (control) plots. The composition of the methanogenic archaeal community also changed. Most members of the methanogenic archaea consisting of the orders Methanosarcinales, Methanocellales, Methanomicrobiales, and Methanobacteriales existed autochthonously in both the control and rotational plots, while some were strongly affected in the rotational plots, with fatal effect to some members belonging to the Methanosarcinales. This study revealed that the upland conversion for one or longer than 1 year in the rotational system affected the methanogenic archaeal community structure and was fatal to some members of methanogenic archaea in paddy field soil.
Four-hair relations for differentially rotating neutron stars in the weak-field limit
NASA Astrophysics Data System (ADS)
Bretz, Joseph; Yagi, Kent; Yunes, Nicolas
2016-03-01
The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations, the three-hair relations, were found to hold in neutron stars that rotate rigidly, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). The resulting relations include the fourth moment, hence deemed the four-hair relations for differentially rotating neutron stars, and are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5.
Ronning, F; Helm, T; Shirer, K R; Bachmann, M D; Balicas, L; Chan, M K; Ramshaw, B J; McDonald, R D; Balakirev, F F; Jaime, M; Bauer, E D; Moll, P J W
2017-08-17
Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5
NASA Astrophysics Data System (ADS)
Ronning, F.; Helm, T.; Shirer, K. R.; Bachmann, M. D.; Balicas, L.; Chan, M. K.; Ramshaw, B. J.; McDonald, R. D.; Balakirev, F. F.; Jaime, M.; Bauer, E. D.; Moll, P. J. W.
2017-08-01
Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.
Plane-grating flat-field soft x-ray spectrometer
Hague, C.F.; Underwood, J.H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.
2005-02-01
We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of {<=}5 {mu}m is planned at SOLEIL which, according to simulations, should ensure a resolving power {>=}1000 over the whole energy range. A 1024x1024 pixel charge-coupled device (CCD) with a 13 {mu}mx13 {mu}m pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.
Plane-grating flat-field soft x-ray spectrometer
NASA Astrophysics Data System (ADS)
Hague, C. F.; Underwood, J. H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.
2005-02-01
We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of ⩽5μm is planned at SOLEIL which, according to simulations, should ensure a resolving power ⩾1000 over the whole energy range. A 1024×1024 pixel charge-coupled device (CCD) with a 13μm×13μm pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.
Magnetic Fields in Cluster Cores: Faraday Rotation in A400 and A2634
NASA Astrophysics Data System (ADS)
Eilek, Jean A.; Owen, Frazer N.
2002-03-01
We present Faraday rotation data for radio sources in the centers of the Abell clusters A400 and A2634. These clusters contain large (>~100 kpc), tailed radio sources, each attached to the central cD galaxy. These clusters do not have strong cooling cores. Our data extend previous work on rotation measure in cluster centers to larger scales and noncooling clusters. The rotation measure, and thus the magnetic field, is ordered on scales ~10-20 kpc in both clusters. The geometry of the rotation measure appears to be determined by the distribution of the X-ray-emitting gas, rather than by the radio tails themselves. We combine our data with previously published X-ray and radio data in order to analyze the magnetic fields in all 12 clusters whose central radio sources have been imaged in rotation measure. We find that the fields are dynamically significant in most clusters. We argue that the Faraday data measure fields in the intracluster medium, rather than in a skin of the radio source. Finally, we consider the nature and maintenance of the magnetic fields in these clusters and conclude that either the cluster-wide field exists at similar levels or a weaker cluster-wide field is amplified by effects in the core.
Power losses in a suspension of magnetic dipoles under a rotating field.
Raikher, Yu L; Stepanov, V I
2011-02-01
Energy absorption due to viscous friction in a dilute suspension of single-domain ferromagnetic particles subjected to a rotating field is considered. The problem is treated in the framework of kinetic approach. The behavior of specific loss power (SLP) as a function of the field amplitude and frequency is studied. It is shown that for either of these parameters (while the other is kept constant) SLP first grows quadratically and then saturates. The cases of a rotating field and oscillating fields are compared, and the essential differences are revealed. The results obtained enable one to assess the allowable or optimal field parameters for a given magnetic suspension intended for rotational magneto-inductive heating.
Cardinal kinematics: I. Rotation fields of the APOGEE Survey
NASA Astrophysics Data System (ADS)
Kordopatis, Georges; Wyse, Rosemary F. G.; Chiappini, Cristina; Minchev, Ivan; Anders, Friedrich; Santiago, Basilio
2017-01-01
Correlations between stellar chemistry and kinematics have long been used to gain insight into the evolution of the Milky Way Galaxy. Orbital angular momentum is a key physical parameter and it is often estimated from three-dimensional space motions. We here demonstrate the lower uncertainties that can be achieved in the estimation of one component of velocity through selection of stars in key directions and use of line-of-sight velocity alone (i.e. without incorporation of proper motion data). In this first paper we apply our technique to stars observed in the direction of Galactic rotation in the APOGEE survey. We first derive the distribution of azimuthal velocities, vφ, then from these and observed radial coordinates, estimate the stellar guiding centre radii, Rg, within 6.9 ≤ R ≤ 10 kpc with uncertainties smaller than (or of the order of) 1 kpc. We show that there is no simple way to select a clean stellar sample based on low errors on proper motions and distances to obtain high-quality 3D velocities and hence one should pay particular attention when trying to identify kinematically peculiar stars based on velocities derived using the proper motions. Using our vφ estimations, we investigate the joint distribution of elemental abundances and rotational kinematics free from the blurring effects of epicyclic motions, and we derive the partial v_φ / partial [α /Fe] & ∂vφ/∂[Fe/H] trends for the thin and thick discs as a function of radius. Our analysis provides further evidence for radial migration within the thin disc and hints against radial migration playing a significant role in the evolution of the thick disc.
Cardinal kinematics - I. Rotation fields of the APOGEE survey
NASA Astrophysics Data System (ADS)
Kordopatis, Georges; Wyse, Rosemary F. G.; Chiappini, Cristina; Minchev, Ivan; Anders, Friedrich; Santiago, Basilio
2017-05-01
Correlations between stellar chemistry and kinematics have long been used to gain insight into the evolution of the Milky Way Galaxy. Orbital angular momentum is a key physical parameter and it is often estimated from three-dimensional space motions. We here demonstrate the lower uncertainties that can be achieved in the estimation of one component of velocity through selection of stars in key directions and use of line-of-sight velocity alone (i.e. without incorporation of proper motion data). In this first paper, we apply our technique to stars observed in the direction of Galactic rotation in the APOGEE (Apache Point Observatory Galactic Evolution Experiment) survey. We first derive the distribution of azimuthal velocities, vϕ, then from these and observed radial coordinates, estimate the stellar guiding centre radii, Rg, within 6.9 ≤ R ≤ 10 kpc with uncertainties smaller than (or of the order of) 1 kpc. We show that there is no simple way to select a clean stellar sample based on low errors on proper motions and distances to obtain high-quality 3D velocities and hence one should pay particular attention when trying to identify kinematically peculiar stars based on velocities derived using the proper motions. Using our vϕ estimations, we investigate the joint distribution of elemental abundances and rotational kinematics free from the blurring effects of epicyclic motions, and we derive the ∂vϕ/∂[α/Fe] and ∂vϕ/∂[Fe/H] trends for the thin and thick discs as a function of radius. Our analysis provides further evidence for radial migration within the thin disc and hints against radial migration playing a significant role in the evolution of the thick disc.
NASA Astrophysics Data System (ADS)
Cushley, A. C.
2016-12-01
A plane polarized wave that propagates through a plasma, (anti-)parallel to a magnetic field, suffers a gradual rotation of its plane of polarization called Faraday rotation (FR). Likewise, radio beacon signals that traverse the ionospheric plasma encounter a parallel component of Earths geomagnetic field and the anisotropy of the medium. The degree of FR depends on the integrated electron density and the strength of the parallel magnetic field projection to the radio wave propagation direction. The integral is taken along the radio wave propagation direction over the entire path length. Therefore, accurate knowledge or a correct model for both the electron density and the magnetic field as well as the propagation trajectory is required for the interpretation of FR measurements. Many authors use the average value of the parallel magnetic field for estimation of FR from ionospheric total electron content (TEC) measurements. Although it is known that the strength of Earth's geomagnetic field varies slowly at ionospheric altitudes, a reference height characteristic value or characteristic mean value may not always be sufficient. This work considers alternative methods to establish a characteristic value for the average parallel component of the magnetic field, particularly when independent FR and TEC measurements are available.
Modification of electron spin properties in a GaAs epilayer by an in-plane electric field
NASA Astrophysics Data System (ADS)
MacMahon, Michael; Sih, Vanessa
The interaction of electron spins with accelerating electric fields in bulk gallium arsenide results in many effects that are relevant to proposed spin-based devices. For example, in-plane electric fields have been shown to change the g-factor, generate spin polarization, and decrease the spin lifetime. Most such studies have used only very low electric fields, typically less than 100 V/cm. We investigate the dependence of spin lifetime on electric field at high electric fields and separate the contribution due to heating. This work was supported in part by ONR and the Rackham Graduate School.
Wald, L.L.; Adalsteinsson, E.; Zahn, M.
2010-01-01
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle’s time constant, τ. As the magnetic field frequency is increased, the nanoparticle’s magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid’s temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid’s temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations
Cantillon-Murphy, P; Wald, L L; Adalsteinsson, E; Zahn, M
2010-09-01
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B(0). Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B(0). Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B(0) field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations
NASA Astrophysics Data System (ADS)
Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.
2010-09-01
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s -1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( ˜1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the
NASA Technical Reports Server (NTRS)
Ghosh, P.; Abramowicz, M. A.
1991-01-01
The role of the internal gravity modes in mediating the growth of nonaxisymmetric instabilities is investigated by studying the instability of stratified incompressible differentially rotating fluid cylinders to global nonaxisymmetric modes. The results indicate that, in addition to a modified version of the well-known principal branch mediated by surface modes of the system (analogous to f-modes of stars), there exist unstable branches of the dispersion relation mediated by internal gravity modes of the system (similar to the g-modes of stars). These branches arise due to the interaction between the g-modes. It is shown that the maximum growth rate on one of the new branches can sometimes equal or exceed that on the principal branch, thus modifying the principal branch.
NASA Astrophysics Data System (ADS)
Shetty, Rishabh M.; Myers, Jakrey R.; Sreenivasulu, Manoj; Teller, Wacey; Vela, Juan; Houkal, Jeff; Chao, Shih-Hui; Johnson, Roger H.; Kelbauskas, Laimonas; Wang, Hong; Meldrum, Deirdre R.
2017-01-01
This paper presents three different microfabrication technologies for manufacturing out-of-plane, flat-bottomed, undercut trapezoidal structures for generating a fluidic microscale vortex (microvortex). The first method is based on anisotropic silicon etching and a ‘sandwich’ UV polymer casting assembly; the second method uses a backside diffuser photolithography technique; and the third method features a tilted backside photolithography technique. We discuss the advantages, limitations, and utility of each technique. We further demonstrate that the microvortex generated in the resultant undercut trapezoidal structures can be used to rotate biological microparticles, e.g. single, live cells for multiperspective, high resolution 3D imaging using computed tomography, and angularly resolved confocal imaging.
Clemente, R. A.; Gilli, M.; Farengo, R.
2008-10-15
Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.
Self-Consistent Field Model Spectra and Images for the Rapid Rotator α Cephei
NASA Astrophysics Data System (ADS)
Aufdenberg, Jason P.; MacGregor, K.; Sola, M.
2012-05-01
Non-LTE synthetic radiation fields have been coupled to Self-Consistent Field (SCF) rotating star models to predict images, interferometric observables (visibilities and closure phases), spectral energy distributions (SEDs), and high-resolution spectra for comparison with rapid rotater alpha Cephei (Alderamin). SCF models include differential rotation from the interior to the surface and differ from Roche models that assume a point-mass approximation of the gravitational potential and axially symmetric uniform rotation. SCF models are parametrized by a mass, the ratio of the axial rotation rate to the critical rate, and the degree and kind (solar or anti-solar) of differential rotation. Model spectra have been computed using a parallel interpolation algorithm (coded in Fortran90 with openMPI) which maps a radiation field database onto the rotationally distorted model star. The SCF model describes the surface shape and gravitational field from the pole to the equator. The luminosity and the von Zeipel exponent specify the variation in effective temperature with stellar latitude. The radiation field is interpolated at each point on the star for each wavelength, emergent angle, local effective, and local surface gravity. Model images are compared to the reconstructed images of Alderamin (Zhao et al. 2009) from the Michigan InfraRed Combiner (MIRC) at the CHARA Array. Model SEDs are compared to ultraviolet, visual and near-IR spectrophotometry. High-resolution model spectra are compared Alderamin's Mg II 4481 A line from the ELODIE spectral archive. We have found models near 2.2 solar masses with anti-solar differential rotation which match simultaneously the absolute magnitude, B-V color index, and projected axial ratio measured for Alderamin. The model images differ from the observations in brightness-temperature distribution over the projected stellar surface, the strength of the Mg II line profile, and the strength of the ultraviolet continuum. This work is
The effect of rotating magnetic field on the microstructure of in situ TiB2/Cu composites
NASA Astrophysics Data System (ADS)
Zou, C.; Kang, H.; Li, R.; Li, M.; Wang, W.; Chen, Z.; Wang, T.
2016-03-01
Nano ceramic particulate reinforced metal matrix composites are confronted with the problem of particle aggregation emerging in the process of solidification. It sharply deteriorates the mechanical properties of the composites. In order to improve the microstructure and particle distribution, in situ TiB2/Cu composites were prepared using Ti and Cu-B master alloys in a vacuum medium frequency induction furnace equipped with a rotating magnetic field (RMF). The effect of RMF magnetic field intensity employed on the microstructure and particles distribution of the TiB2/Cu composites were investigated. The results show that with the applied RMF, TiB2 particles are homogeneously distributed in the copper matrix, which significantly improves the mechanical properties of TiB2/Cu composites. The mechanism of RMF may be ascribed to the following two aspects. On the one hand, the electromagnetic body force generated by appropriate RMF drives forced convection in the equatorial plane of composite melt during solidification. On the other hand, a secondary flow in the meridional plane is engendered by a radial pressure gradient, thus making a strong agitation in the melt. These two effects result in a homogenous dispersion of TiB2 particles in the copper matrix, and hence excellent properties of TiB2/Cu composites were obtained.
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
MRI Magnetic Field Stimulates Rotational Sensors of the Brain
Roberts, Dale C.; Marcelli, Vincenzo; Gillen, Joseph S.; Carey, John P.; Santina, Charles C. Della; Zee, David S.
2012-01-01
SUMMARY Vertigo in and around MRI machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all healthy human subjects lying in the static magnetic field of an MRI machine develop a robust nystagmus. Patients lacking labyrinthine function do not. Here we use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation derives from a Lorentz force due to interaction between the magnetic field and naturally-occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula’s function as a pressure sensor, makes magnetic field induced nystagmus and vertigo possible. Such effects could confound fMRI studies of brain behavior, including resting-state brain activity. PMID:21945276
MRI magnetic field stimulates rotational sensors of the brain.
Roberts, Dale C; Marcelli, Vincenzo; Gillen, Joseph S; Carey, John P; Della Santina, Charles C; Zee, David S
2011-10-11
Vertigo in and around magnetic resonance imaging (MRI) machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all of our healthy human subjects developed a robust nystagmus while simply lying in the static magnetic field of an MRI machine. Patients lacking labyrinthine function did not. We use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation (MVS) derives from a Lorentz force resulting from interaction between the magnetic field and naturally occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula's function as a pressure sensor, makes magnetic-field-induced nystagmus and vertigo possible. Such effects could confound functional MRI studies of brain behavior, including resting-state brain activity.
English, Niall J; Kusalik, Peter G; Woods, Sarah A
2012-03-07
Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å(-1) (rms)). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å(-1) (rms), with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å(-1) (rms) above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å(-1) (rms) intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory
Dayton, Paul; Feilmeier, Mindi; Kauwe, Merrell; Holmes, Colby; McArdle, Austin; Coleman, Nathan
2014-01-01
It is well known that the pathologic positions of the hallux and the first metatarsal in a bunion deformity are multiplanar. It is not universally understood whether the pathologic changes in the hallux or first metatarsal drive the deformity. We have observed that frontal plane rotation of the hallux can result in concurrent positional changes proximally in the first metatarsal in hallux abducto valgus. In the present study, we observed the changes in common radiographic measurements used to evaluate a bunion deformity in 5 fresh frozen cadaveric limbs. We measured the tibial sesamoid position, 1-2 intermetatarsal angle, and first metatarsal cuneiform angle on anteroposterior radiographs after frontal and transverse plane manipulation of the hallux. When the hallux was moved into an abducted and valgus position, a statistically significant increase was found in the tibial sesamoid position (p = .016). However, we did not observe a significant increase in the intermetatarsal angle (p = .070) or medial cuneiform angle (p = .309). When the hallux was manipulated into an adducted and varus position, a statistically significant decrease in the intermetatarsal angle (p = .02) and a decrease in the tibial sesamoid position (p = .016) was seen, with no significant change in the medial cuneiform angle (p = .360). We also observed a consistent rounding of the lateral aspect of the first metatarsal head and an increase in the concavity of the lateral metatarsal shaft, with valgus rotation of the hallux. From these observations, it is possible that the hallux could drive the proximal changes in the first ray that lead to metatarsus primus adducto valgus deformity.
Roberts, W Eugene; Viecilli, Rodrigo F; Chang, Chris; Katona, Thomas R; Paydar, Nasser H
2015-12-01
In the absence of adequate animal or in-vitro models, the biomechanics of human malocclusion must be studied indirectly. Finite element analysis (FEA) is emerging as a clinical technology to assist in diagnosis, treatment planning, and retrospective analysis. The hypothesis tested is that instantaneous FEA can retrospectively simulate long-term mandibular arch retraction and occlusal plane rotation for the correction of a skeletal Class III malocclusion. Seventeen published case reports were selected of patients treated with statically determinate mechanics using posterior mandible or infrazygomatic crest bone screw anchorage to retract the mandibular arch. Two-dimensional measurements were made for incisor and molar movements, mandibular arch rotation, and retraction relative to the maxillary arch. A patient with cone-beam computed tomography imaging was selected for a retrospective FEA. The mean age for the sample was 23.3 ± 3.3 years; there were 7 men and 10 women. Mean incisor movements were 3.35 ± 1.55 mm of retraction and 2.18 ± 2.51 mm of extrusion. Corresponding molar movements were retractions of 4.85 ± 1.78 mm and intrusions of 0.85 ± 2.22 mm. Retraction of the mandibular arch relative to the maxillary arch was 4.88 ± 1.41 mm. Mean posterior rotation of the mandibular arch was -5.76° ± 4.77° (counterclockwise). The mean treatment time (n = 16) was 36.2 ± 15.3 months. Bone screws in the posterior mandibular region were more efficient for intruding molars and decreasing the vertical dimension of the occlusion to close an open bite. The full-cusp, skeletal Class III patient selected for FEA was treated to an American Board of Orthodontics Cast-Radiograph Evaluation score of 24 points in about 36 months by en-masse retraction and posterior rotation of the mandibular arch: the bilateral load on the mandibular segment was about 200 cN. The mandibular arch was retracted by about 5 mm, posterior rotation was about 16.5°, and molar intrusion was about 3
Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Wang, Dian; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2017-03-15
We propose and theoretically demonstrate a method to generate attosecond XUV pulses with tunable ellipticity from aligned molecules irradiated by a bichromatic counterrotating circularly polarized (BCCP) driving laser field. By rotating the BCCP field, the attoseond XUV pulse varies from being left elliptically polarized to right elliptically polarized. The rotation of the BCCP field can be easily achieved by adjusting the relative phases between the two circularly polarized components. This scheme will benefit a broad range of applications, including the exploration of chiral-sensitive properties of the light-matter interaction and time-resolved imaging of magnetic structures.
Tools and setups for experiments with AC and rotating magnetic fields
NASA Astrophysics Data System (ADS)
Ponikvar, D.
2010-09-01
A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several experiments and describes setups and tools which are easy to obtain and work with. Free software is offered to generate the required signals by a personal computer. The experiments can be implemented in introductory physics courses on electromagnetism for undergraduates or specialized courses at high schools.
Flow in isothermal layers of ferrofluid by action of uniform rotating magnetic field
Kashevskii, B.E.
1986-01-01
The author attempts to determine how intense the flow of a ferrofluid in a rotating magnetic field can become owing to the temperature dependence of the properties when a nonuniform temperature field has been produced within the volume of such a fluid. It was found that in a channel with a strong temperature dependence of viscosity, a uniform rotating magnetic field is capable of effectively influencing the flow of a ferrofluid within nonisothermal layers, which may be of interest in solving problems of heat transfer.
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Rotational energy of the hydrogen molecular ion in a magnetic field
Maluendes, S.A.; Fernandez, F.M.; Castro, E.A.
1983-10-01
A general method which combines hypervirial relations with the Hellmann-Feynman theorem and perturbation theory is applied in order to calculate the rotational eigenvalues of the hydrogen molecular ion in a magnetic field. Analytical expressions as well as numerical results are presented for both low and high field strengths.
Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field
NASA Astrophysics Data System (ADS)
Choe, Gwangson; Lee, Junggi
2016-04-01
Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. It is found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.
Influence of electric field on rotating spiral waves in the Belousov-Zhabotinsky reaction
Agladze, K.I.; De Kepper, P. |
1992-06-25
In this paper, the anisotropy of wave propogation in the Belousov-Zhabotinsky reaction leads to a drift of spiral waves depending on the intensity of electric field. The vector parallel to the field points to the positive electrode and the perpendicular vector has a sign dependent on the spiral wave rotation direction. 13 refs., 6 figs.
New Methodology For Use in Rotating Field Nuclear MagneticResonance
Jachmann, Rebecca C.
2007-01-01
High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.
New Methodology For Use in Rotating Field Nuclear MagneticResonance
Jachmann, Rebecca C.
2007-05-18
High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.
Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating magnetic fields
NASA Astrophysics Data System (ADS)
Usadel, Klaus D.
2017-03-01
The rotational dynamics of magnetic nanoparticles in rotating magnetic fields in the presence of thermal noise is studied both theoretically and by performing numerical calculations. Equations for the dynamics of particles with uniaxial magnetic anisotropy are studied and the phase lag between the rotating magnetic moment and the driving field is obtained. It is shown that for large enough anisotropy energy the magnetic moment is locked to the anisotropy axis so that the particle behaves like a rotating magnetic dipole. The corresponding rigid dipole model is analyzed both numerically by solving the appropriate Fokker-Planck equation and analytically by applying an effective field method. In the special case of a rotating magnetic field applied analytic results are obtained in perfect agreement with numerical results based on the Fokker-Planck equation. The analytic formulas derived are not restricted to small magnetic fields or low frequencies and are therefore important for applications. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.
Bending and growth of entrained air filament under converging and asymmetric rotational fields
NASA Astrophysics Data System (ADS)
Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.
2017-02-01
Here we have proposed the increase of the entrainment rate by extruding an air filament under the action of convergent but asymmetric rotational field. By varying the source speed and the diameter of rotational fields, we showed the bending of an air filament towards the higher strength direction of the asymmetric inertia. Interfacial profiles like bubble ejection from the air filament and non-collapsible entrainment with air accumulation in a stagnant zone are obtained in finite volume based numerical simulations, on gradual increase of average rotational fields. Physical understanding of bent interface profile reveals the presence of multiple stages in filament growth depending upon the inertia of surrounding medium. Accumulation of air in the stagnant zone is found to be more prominent in case of rotational speed based asymmetry in contrast to its counterpart having diametric asymmetry of imposing sources. Relative comparison between these two methods of producing asymmetric field showed faster growth of filament upon varying the source diameter, while keeping the speed same. In case of extreme retardation and enhancement of rotational asymmetry, film pinch off and formation of bubble train have been reported. The shape of ejected bubbles is governed by the inertia of the surrounding medium, and bubbles have taken elliptical shapes with their major axis aligned parallel to the adjacent velocity field.
Chiral pumping effect induced by rotating electric fields
NASA Astrophysics Data System (ADS)
Ebihara, Shu; Fukushima, Kenji; Oka, Takashi
2016-04-01
We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field. We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e., the chiral pumping effect, is a phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.
NASA Astrophysics Data System (ADS)
Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2016-10-01
We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.
Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells
NASA Astrophysics Data System (ADS)
Ivanov, Ruslan; Marcinkevičius, Saulius; Uždavinys, Tomas K.; Kuritzky, Leah Y.; Nakamura, Shuji; Speck, James S.
2017-01-01
Time-resolved scanning near-field photoluminescence (PL) spectroscopy was applied to map carrier lifetimes in wide m-plane InGaN/GaN quantum wells grown on on-axis and miscut substrates. Both radiative and nonradiative lifetimes were found to be spatially nonuniform. Lifetime variations were smaller for quantum wells grown on miscut, as compared to on-axis substrates. Correlation with surface topography showed that largest deviations of recombination times occur at +c planes of pyramidal hillocks of the on-axis sample. Observed correlation between radiative lifetimes and PL peak wavelength was assigned to a partial electron localization.
Robust full-field measurement considering rotation using digital image correlation
NASA Astrophysics Data System (ADS)
Wu, Rong; Qian, Hao; Zhang, Dongsheng
2016-10-01
Digital image correlation (DIC) has been widely accepted as a method for displacement and strain measurement and is applied in a variety of engineering fields. Most DIC algorithms encounter errors in measuring the deformation in conditions that involve rotation since they are designed without considering rotation of the deformed object. In this paper, a robust and automated DIC method capable of determining full-field displacement and strain components with random rotations has been presented. The algorithm starts with the determination of the initial position of the seed point in the integer-pixel domain. An approximate rotational angle between the reference and the deformed subset is estimated using an automated feature matching technology. A two-step Newton-Raphson algorithm has been developed for optimizing a suite of variables including displacement, strain and the rotational angle to achieve subpixel accuracy. A reliable propagation scheme, which enables rapid determination of the initial guess for full-field analysis is also proposed. Results from numerical simulations are used to validate the feasibility of the proposed DIC method. An application to 3-point bending with large deflection shows that the algorithm can be employed to measure displacement or strain parameters of the deformed object with arbitrary angles of rotation.
Breen, Alexander; Breen, Alan
2016-07-01
Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Unconventional superconductors under a rotating magnetic field. II. Thermal transport
NASA Astrophysics Data System (ADS)
Vorontsov, A. B.; Vekhter, I.
2007-06-01
We present a microscopic approach to the calculations of thermal conductivity in unconventional superconductors for a wide range of temperatures and magnetic fields. Our work employs the nonequilibrium Keldysh formulation of the quasiclassical theory. We solve the transport equations using a variation of the Brandt-Pesch-Tewordt method that accounts for the quasiparticle scattering on vortices. We focus on the dependence of the thermal conductivity on the direction of the field with the respect to the nodes of the order parameter, and discuss it in the context of experiments aiming to determine the shape of the gap from such anisotropy measurements. We consider quasi-two-dimensional Fermi surfaces with vertical line nodes and use our analysis to establish the location of gap nodes in heavy-fermion CeCoIn5 and the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 .
Structure of field rotating disturbances in warm plasma
NASA Technical Reports Server (NTRS)
Wolfson, R.
1982-01-01
A model in which thermal effects are simulated through use of a multibeam plasma distribution function is developed and investigated to see if solutions which take an initially uniform magnetized plasma to a new uniform state with different field orientation are possible. The momentum conservation integrals are found to admit two classes of such solutions, but only one class exhibits appropriate asymptotic behavior. Extensive numerical integrations have failed to demonstrate the existence of the desired solutions.
Electric field control of spin rotation in bilayer graphene.
Michetti, Paolo; Recher, Patrik; Iannaccone, Giuseppe
2010-11-10
The manipulation of the electron spin degree of freedom is at the core of the spintronics paradigm, which offers the perspective of reduced power consumption, enabled by the decoupling of information processing from net charge transfer. Spintronics also offers the possibility of devising hybrid devices able to perform logic, communication, and storage operations. Graphene, with its potentially long spin-coherence length, is a promising material for spin-encoded information transport. However, the small spin-orbit interaction is also a limitation for the design of conventional devices based on the canonical Datta-Das spin field-effect transistors. An alternative solution can be found in magnetic doping of graphene or, as discussed in the present work, in exploiting the proximity effect between graphene and ferromagnetic oxides (FOs). Graphene in proximity to FO experiences an exchange proximity interaction, that acts as an effective Zeeman field for electrons in graphene, inducing a spin precession around the magnetization axis of the FO. Here we show that in an appropriately designed double-gate field-effect transistor, with a bilayer graphene channel and FO used as a gate dielectric, spin-precession of carriers can be turned ON and OFF with the application of a differential voltage to the gates. This feature is directly probed in the spin-resolved conductance of the bilayer.
Four-hair relations for differentially rotating neutron stars in the weak-field limit
NASA Astrophysics Data System (ADS)
Bretz, Joseph; Yagi, Kent; Yunes, Nicolás
2015-10-01
The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). These approximations allow us to analytically derive approximately universal relations that allow us to determine all of the multipole moments of a (perturbative) differentially rotating star in terms of only the first four moments. These new four-hair relations for differentially rotating neutron stars are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.
Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.
2011-01-05
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
NASA Astrophysics Data System (ADS)
Lee, Y. C.; Chao, C. T.; Li, L. C.; Suen, Y. W.; Horng, Lance; Wu, Te-Ho; Chang, C. R.; Wu, J. C.
2015-05-01
A magnetic tunnel junction (MTJ) with orthogonal magnetic anisotropy and consisting of Ta X/Co40Fe40B20 1.2 (reference)/MgO 2.0/Co20Fe60B20 2.3 (sensing)/Ta 5/Ru 5 (thickness in nanometers), where X ranges from 15 to 30, is proposed and investigated in response to the demand for out-of-plane field sensors. The reference layer with perpendicular magnetic anisotropy (PMA) demonstrates tuneable coercivity ranging from 72 Oe to 175 Oe. The sensing layer exhibits in-plane anisotropy with the avoidance of exchange coupling from the PMA reference layer because of a thick MgO barrier layer. The magnetization reversal behavior of micron scale devices not only corresponds well to the sheet film, but is also independent in terms of shape and size. The magnetoresistance curve exhibits a ratio of ˜27% in the presence of a perpendicular field and is insensitive to the in-plane field. For perpendicular field sensing, the dynamic range with a sensitivity of ˜0.3%/Oe can achieve ±25 Oe with a coercive field of less than 3 Oe. Additionally, even when bias is applied up to 9.1 mV, magnetic fluctuation still stays below 0.15 mOe.
Magnetic-field-induced rotation of light with orbital angular momentum
Shi, Shuai; Ding, Dong-Sheng Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen
2015-06-29
Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantage in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.
Magnetic-field-induced rotation of light with orbital angular momentum
NASA Astrophysics Data System (ADS)
Shi, Shuai; Ding, Dong-Sheng; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen
2015-06-01
Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm 87Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantage in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.
NASA Astrophysics Data System (ADS)
Hernandez-Minguez, Alberto; Macia, Ferran; Hernandez, Joan Manel; Carbonell, Carla; Amigó, Roger; Tejada, Javier
2008-03-01
We report here a new experimental technique to monitor spin population dynamics in molecular magnets. This deals with a huge rotating magnetic field initially applied along the easy magnetization direction, z--axis, that rotates with components parallel and perpendicular to the z axis. This technique allows us to probe spin relaxation on reasonably fast time scales detecting the inversion of the whole spin states. The population of spin levels depends on the frequency of the rotating magnetic field. This very new technique could help to carry out new experiments in a number of different fields, broadening substantially the scope of their use until now. A Hern'andez-M'inguez et al., Appl. Phys. Lett. 91, 202502 (2007)
Rigid-body rotation of an electron cloud in divergent magnetic fields
NASA Astrophysics Data System (ADS)
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-01
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.
Rigid-body rotation of an electron cloud in divergent magnetic fields
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-10
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less
Rigid-body rotation of an electron cloud in divergent magnetic fields
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-10
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.
Rigid-body rotation of an electron cloud in divergent magnetic fields
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-15
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.
Absorption of massless scalar field by rotating black holes
NASA Astrophysics Data System (ADS)
Leite, Luiz C. S.; Crispino, Luís C. B.; de Oliveira, Ednilton S.; Macedo, Caio F. B.; Dolan, Sam R.
2016-07-01
We compute the absorption cross-section of the Kerr black holes (BH) for the massless scalar field, and present a selection of numerical results, to complement the results of Ref.[C. F. B. Macedo, L. C. S. Leite, E. S. Oliveria, S. R. Dolan and L. C. B. Crispino, Phys. Rev. D 88 (2013) 064033.] We show that, in the high-frequency regime, the cross-section approaches the geodesic capture cross-section. We split the absorption cross-section into corotating and counterrotating contributions, and we show that the counterrotating contribution exceeds the corotating one.
Dynamics of arbitrary shaped propellers driven by a rotating magnetic field
NASA Astrophysics Data System (ADS)
Morozov, Konstantin I.; Mirzae, Yoni; Kenneth, Oded; Leshansky, Alexander M.
2017-04-01
Motion in fluids at the micro(nano)metric scale is dominated by viscosity. One efficient propulsion method relies on a weak uniform rotating magnetic field that drives a chiral object. From bacterial flagella to artificial magnetic micro- or nanohelices, rotation of a corkscrew is considered as a universally efficient propulsion gait in viscous environments. However, recent experimental studies have demonstrated that geometrically achiral microscale objects or random-shaped magnetic aggregates can propel similarly to helical micromotors. Although approximate theories concerning dynamics of helical magnetic propellers are available, propulsion of achiral particles or objects with complex shapes is not understood. Here we present a general theory of rotation and propulsion of magnetized object of arbitrary shape driven by a rotating magnetic field. Intrinsic symmetries of the viscous mobility tensors yield compact classification of stable rotational states depending on the orientation of the magnetic moment with respect to principal rotation axes of the object. Propulsion velocity can be written in terms of geometry-dependent chirality matrix Ch , where both the diagonal elements (owing to orientation-dependent handedness) and off-diagonal entries (that do not necessitate handedness) contribute in a similar way. In general, the theory anticipates multiplicity of stable rotational states corresponding to two (complimentary to π ) angles the magnetization forms with the field rotation axis. Thus, two identical magnetic objects may propel with different speeds or even in opposite directions. However, for a class of simple achiral objects, there is a particular magnetization whereas the pair of symmetric rotational states gives rise to a unique chiral-like propulsion gait, closely resembling that of an ideal helical propeller. In other words, a geometrically achiral object can acquire apparent chirality due to its interaction with the external magnetic field. The
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2006-01-01
Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2006-01-01
Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Soderlund, K. M.
2016-12-01
Magnetic fields are pervasive across the solar system. Despite this commonality, each planet has unique characteristics. Among the dipole-dominated gas giant planets, Jupiter has the strongest planetary magnetic field in the solar system, while Saturn's magnetic field has the smallest measured dipole tilt. In contrast, the poorly constrained magnetic fields of Uranus and Neptune have surface amplitudes comparable to the Earth's although their morphologies are multipolar with large dipole tilts away from the rotation axis. Planetary magnetic fields are driven by dynamo action, the conversion of kinetic energy into magnetic energy. Convection in the electrically conducting regions of planetary interiors is powered by thermo-compositional buoyancy and modulated by rotation and magnetic fields. The Coriolis force tends to organize the flow into axial columns, while the Lorentz force tends to inhibit the relative movement of the magnetic field and the fluid. Similarly, strong buoyancy and inertia associated with vigorous convection can destroy the columnar alignment of flows imposed by rotation. The relative importance of these competing effects are paramount for the planform of core convection and magnetic field characteristics: dynamos with dominant Coriolis forces are expected to be driven by fundamentally different fluid motions than those with co-dominant Lorentz forces and/or strong buoyancy effects. In this study, we use a suite of numerical simulations in combination with rotating convection and dynamo theory to predict the influence of rotation, magnetic fields, and buoyancy on the interior dynamics of giant planets. Our results suggest that Jupiter is strongly constrained by rotation, although the Lorentz force may be significant, i.e. within an order of magnitude of the Coriolis force. Magnetic fields become increasingly sub-dominant for the other planets, where the Coriolis force is predicted to exceed the Lorentz force by at least two orders of magnitude
NASA Astrophysics Data System (ADS)
Peng, J.; Zhao, P. W.
2015-04-01
The self-consistent tilted axis cranking relativistic mean-field (TAC-RMF) theory based on a point-coupling interaction is applied to investigate the observed magnetic and antimagnetic rotations in the nucleus 110Cd . The energy spectra, the relation between the spin and the rotational frequency, the deformation parameters, and the reduced M 1 and E 2 transition probabilities are studied with the various configurations. It is found that the configuration has to be changed to reproduce the energy spectra and the relations between the spin and the rotational frequency for both the magnetic and antimagnetic rotational bands. The shears mechanism for the magnetic rotation and the two-shears-like mechanism for the antimagnetic rotation are examined by investigating the orientation of the neutron and proton angular momenta. The calculated electromagnetic transitions B (M 1 ) and B (E 2 ) are in reasonable agreement with the data, and their tendencies are coincident with the typical characteristics of the magnetic and antimagnetic rotations.
Measuring the rotation period distribution of field M dwarfs with Kepler
NASA Astrophysics Data System (ADS)
McQuillan, A.; Aigrain, S.; Mazeh, T.
2013-06-01
We have analysed 10 months of public data from the Kepler space mission to measure rotation periods of main-sequence stars with masses between 0.3 and 0.55 M⊙. To derive the rotational period, we introduce the autocorrelation function and show that it is robust against phase and amplitude modulation and residual instrumental systematics. Of the 2483 stars examined, we detected rotation periods in 1570 (63.2 per cent), representing an increase of a factor of ˜30 in the number of rotation period determination for field M dwarfs. The periods range from 0.37 to 69.7 d, with amplitudes ranging from 1.0 to 140.8 mmag. The rotation period distribution is clearly bimodal, with peaks at ˜19 and ˜33 d, hinting at two distinct waves of star formation, a hypothesis that is supported by the fact that slower rotators tend to have larger proper motions. The two peaks of the rotation period distribution form two distinct sequences in period-temperature space, with the period decreasing with increasing temperature, reminiscent of the Vaughan-Preston gap. The period-mass distribution of our sample shows no evidence of a transition at the fully convective boundary. On the other hand, the slope of the upper envelope of the period-mass relation changes sign around 0.55 M⊙, below which period rises with decreasing mass.
Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1
NASA Technical Reports Server (NTRS)
Rigby, David L.
2000-01-01
Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number
NASA Astrophysics Data System (ADS)
Lee, H. H.; Seol, J.; Ko, W. H.; Terzolo, L.; Aydemir, A. Y.; In, Y.; Ghim, Y.-c.; Lee, S. G.
2016-08-01
Effects of neoclassical toroidal viscosity (NTV) induced by intrinsic error fields and toroidal field ripple on cocurrent toroidal rotation in H-mode tokamak plasmas are investigated. It is expected that large NTV torque can be localized at the edge region through the 1/ν-regime in the vicinity of E r ˜ 0 in the cocurrent rotating H-mode plasma. Numerical simulation on toroidal rotation demonstrates that the edge localized NTV torque determined by the intrinsic error fields and toroidal field ripples in the level of most tokamaks can damp the toroidal rotation velocity over the whole region while reducing the toroidal rotation pedestal which is clearly observed in Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It is found that the NTV torque changes the toroidal rotation gradient in the pedestal region dramatically, but the toroidal rotation profile in the core region responds rigidly without a change in the gradient. On the other hand, it shows that the NTV torque induced by the intrinsic error fields and toroidal field ripple in the level of the KSTAR tokamak, which are expected to be smaller than most tokamaks by at least one order of magnitude, is negligible in determining the toroidal rotation velocity profile. Experimental observation on the toroidal rotation change by the externally applied nonaxisymmetric magnetic fields on KSTAR also suggests that NTV torque arising from nonaxisymmetric magnetic fields can damp the toroidal rotation over the whole region while diminishing the toroidal rotation pedestal.
Pogorelov, Nikolai V.; Borovikov, Sergey N.; Zank, Gary P.; Ogino, Tatsuki E-mail: snb0003@uah.edu E-mail: ogino@stelab.nagoya-u.ac.jp
2009-05-10
We investigate the effects of the 11 year solar cycle and 25 day rotation period of the Sun on the interaction of the solar wind (SW) with the local interstellar medium (LISM). Our models take into account the partially ionized character of the LISM and include momentum and energy transfer between the ionized and neutral components. We assume that the interstellar magnetic field vector belongs to the hydrogen deflection plane as discovered in the SOHO SWAN experiment. This plane is inclined at an angle of about 60 deg. toward the ecliptic plane of the Sun, as suggested in recent publications relating the local interstellar cloud properties to the radio emission observed by Voyager 1. It is assumed that the latitudinal extent of the boundary between the slow and fast SW regions, as well as the angle between the Sun's rotation and magnetic-dipole axes, are periodic functions of time, while the polarity of the interstellar magnetic field changes sign every 11 years at the solar maximum. The global variation of the SW-LISM interaction pattern, the excursions of the termination shock and the heliopause, and parameter distributions in certain directions are investigated. The analysis of the behavior of the wavy heliospheric current sheet in the supersonic SW region shows the importance of neutral atoms on its dynamics.
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
Gorshunov, N. M. Potanin, E. P.
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.
Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field
Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka; Fukushima, Tadamasa; Morimoto, Hisao; Usami, Ron; Maekawa, Toru
2010-03-19
We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).
Fast phase manipulation of the single nuclear spin in solids by rotating fields
NASA Astrophysics Data System (ADS)
Shimo-Oka, T.; Tokura, Y.; Suzuki, Y.; Mizuochi, N.
2017-03-01
We propose fast phase gates of single nuclear spins interacting with single electron spins. The gate operation utilizes geometric phase shifts of the electron spin induced by fast and slow rotating fields; the path difference depending on nuclear-spin states enables nuclear phase shifts. The gate time is inversely proportional to the frequency of the slow rotating field. As an example, we use nitrogen-vacancy centers in diamond, and show, in principle, the phase-gate time orders of magnitude to be shorter than previously reported. We also confirmed the robustness of the gate against decoherence and systematic errors.
Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas
NASA Astrophysics Data System (ADS)
Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team
2015-11-01
The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.
Graf von der Pahlen, J.; Tsiklauri, D.
2014-06-15
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.
Rotating boson stars in five dimensions
Hartmann, Betti; Kleihaus, Burkhard; Kunz, Jutta; List, Meike
2010-10-15
We study rotating boson stars in five spacetime dimensions. The boson fields consist of a complex doublet scalar field. Considering boson stars rotating in two orthogonal planes with both angular momenta of equal magnitude, a special ansatz for the boson field and the metric allows for solutions with nontrivial dependence on the radial coordinate only. The charge of the scalar field equals the sum of the angular momenta. The rotating boson stars are globally regular and asymptotically flat. For our choice of a sextic potential, the rotating boson star solutions possess a flat spacetime limit. We study the solutions in flat and curved spacetime.
NASA Astrophysics Data System (ADS)
Zarina, Livija; Zarina, Liga
2017-04-01
The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.
Magnetic optical activity in intense laser fields. I - Self-rotation and Verdet constant
NASA Technical Reports Server (NTRS)
Giraud-Cotton, S.; Kaftandjian, V. P.; Klein, L.
1985-01-01
The paper is concerned with the Faraday rotation and circular dichroism of dilute gases in longitudinal magnetic fields subject to strong radiation fields. In particular, magnetic fields are considered which produce Zeeman shifts much smaller than inverse collision times but which may be greater or smaller then the multipole relaxation times. Doppler broadening is considered, and explicit expressions are given for dipole transitions in a two-level system with arbitrary angular momentum for strong and weak magnetic fields. The same system is then studied as a function of the external magnetic-field strength with a fixed laser frequency. It is shown that this experimental arrangement, referred to as forward scattering, has certain advantages that are not present in the more usual magnetic rotation spectroscopy.
Entrainment by a rotating magnetic field of a ferrofluid contained in a cylinder.
Felderhof, B U
2011-08-01
Entrainment by a rotating magnetic field of a ferrofluid contained in a cylinder is studied on the basis of spin-diffusion theory. The equations for flow velocity and spin velocity, coupled to Maxwell's equations of magnetostatics, are solved in first-harmonic approximation under the assumption that the magnetic field is small compared to the saturation magnetization. The solution leads to a coupled set of nonlinear integral equations, which can be solved numerically by iteration in a recursive scheme by use of the analytic lowest order perturbation theory solution as the initial state. At a critical applied field, the recursive scheme shows bifurcation. At sufficiently high field, the solution with the lower rate of dissipation shows flow in the direction opposite to the rotating applied field.
Wick rotation for quantum field theories on degenerate Moyal space(-time)
Grosse, Harald; Lechner, Gandalf; Ludwig, Thomas; Verch, Rainer
2013-02-15
In this paper the connection between quantum field theories on flat noncommutative space(-times) in Euclidean and Lorentzian signature is studied for the case that time is still commutative. By making use of the algebraic framework of quantum field theory and an analytic continuation of the symmetry groups which are compatible with the structure of Moyal space, a general correspondence between field theories on Euclidean space satisfying a time zero condition and quantum field theories on Moyal Minkowski space is presented ('Wick rotation'). It is then shown that field theories transferred to Moyal space(-time) by Rieffel deformation and warped convolution fit into this framework, and that the processes of Wick rotation and deformation commute.
Rotating plasma structures in the cross-field discharge of Hall thrusters
NASA Astrophysics Data System (ADS)
Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin
2016-09-01
Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.
Rotation and Magnetic Fields in Supernovae and Gamma-ray Bursts
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2005-10-01
Spectropolarimetry of core collapse supernovae has shown that they are asymmetric and often, but not universally, bi-polar; in some the dominant axes associated with hydrogen, oxygen, and calcium are oriented substantially differently. Jet-induced supernova models give a typical jet/torus structure that is reminiscent of some objects like the Crab nebula, SN 1987A and perhaps Cas A. Jets, in turn, may arise from the intrinsic rotation and magnetic fields that are expected to accompany core collapse. We summarize the potential importance of the magneto-rotational instability for the core collapse problem, stress the non- monotonic response of the final rotation and magnetic field to the initial iron core rotation, and the potential role of non-axisymmetric instabilities in the new-born neutron star. We sketch some of the effects that large magnetic fields, ˜10^15 - 10^17 G, may have on the physics at core bounce and in the subsequent cooling, de-leptonization phase. Production and dissipation of MHD waves in this strongly differentially rotating environment may affect the success of the supernova explosion, the nature of the compact remnant -- neutron star or black hole, pulsar or magnetar -- and whether the outcome is a normal supernova or a gamma-ray burst. In collaboration with Shizuka Akiyama, University of Texas at Austin.
Modeling Alfven and Whistler Waves Generation by Rotating Magnetic Field Source
NASA Astrophysics Data System (ADS)
Shao, X.; Karavavev, A.; Sharma, A. S.; Papadopoulos, K.; Gumerov, N.; Joyce, G.; Gigliotti, A.; Gekelman, W.
2008-11-01
Recent experiments by Gigliotti et al. 2008 and Karavaev et al. 2008 demonstrated excitation of Alfven and whistler waves, respectively, by Rotating Magnetic Fields (RMF) created by a phased orthogonal loop antenna. This paper presents a combination of computations along with experiments that emphasize the RMF properties for generating MHD and whistler waves. For RMF rotating frequencies in the whistler wave frequency range, the electrons quickly come to a co-rotation with the RMF, generating a differential azimuthal current. For rotating frequencies below the ion cyclotron frequency wave, the electron and ion motion decouple within the ion skin-depth near the antenna and co-rotates with the RMF outside the ion skin depth. In order to understand the RMF and plasma interaction and the resultant radiation in different frequency regimes, we developed a 3D code to simulate experimental configurations. The simulation help us understand the general characteristics of impedance matching, energy coupling and far field radiation pattern from an RMF antenna in plasmas. The dependence of the induced magnetic field on RMF frequency, and plasma parameters, as well as space applications of RMF antennas are discussed. This work was sponsored by ONR MURI Grant 5-28828.
The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation.
Gaensler, B M; Haverkorn, M; Staveley-Smith, L; Dickey, J M; McClure-Griffiths, N M; Dickel, J R; Wolleben, M
2005-03-11
We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC) to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength approximately 1 microgauss. Strong fluctuations in the magnetic field are also seen on small (<0.5 parsec) and large (approximately 100 parsecs) scales. The large bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies.
NASA Astrophysics Data System (ADS)
Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.
2017-03-01
We investigate above-threshold ionization (ATI) of homonuclear diatomic molecules by the so-called bicircular field using the improved molecular strong-field approximation. Bicircular field is a two-color laser field having coplanar circularly polarized counter-rotating components of frequencies r ω and s ω , with r and s integers. Our analysis includes the high-energy part of the corresponding spectra, i.e., high-order ATI (HATI). The obtained molecular (H)ATI spectra are more complicated than the corresponding atomic spectra. We have identified four symmetries which are satisfied in (H)ATI of homonuclear diatomic molecules. Two of these symmetries are general rotational symmetries valid both for direct and rescattered HATI electrons. The remaining two symmetries are reflection symmetries valid only for the direct ATI electrons. Analytical proof of these symmetries is also given. These symmetries are illustrated using numerical examples of HATI spectra of the N2 molecule for various molecular orientations.
Calorimetric method of ac loss measurement in a rotating magnetic field.
Ghoshal, P K; Coombs, T A; Campbell, A M
2010-07-01
A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Calorimetric method of ac loss measurement in a rotating magnetic field
Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.
2010-07-15
A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Calorimetric method of ac loss measurement in a rotating magnetic field
NASA Astrophysics Data System (ADS)
Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.
2010-07-01
A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Pulsed electromagnetic fields after rotator cuff repair: a randomized, controlled study.
Osti, Leonardo; Buono, Angelo Del; Maffulli, Nicola
2015-03-01
The current study tested the hypothesis that the use of pulsed electromagnetic fields after rotator cuff repair is effective in the short term as an adjuvant treatment to reduce local inflammation, postoperative joint swelling, and recovery time, as well as to induce pain relief. Sixty-six patients who underwent shoulder arthroscopy for repair of small to medium rotator cuff tears were randomly divided into 2 groups with a block randomization procedure. Thirty-two patients underwent arthroscopic rotator cuff repair and application of pulsed electromagnetic fields postoperatively; 34 patients underwent rotator cuff repair and placebo treatment (placebo group). All patients had the same postoperative rehabilitation protocol. At 3 months from the index procedure, visual analog scale, range of motion, and University of California at Los Angeles and Constant scores were significantly better in the pulsed electromagnetic fields group than in the placebo group (P<.05). Three patients in the pulsed electromagnetic fields group and 7 patients in the placebo group had mild to moderate capsulitis (P=.2). Severe capsulitis occurred in 1 patient in the pulsed electromagnetic fields group and 2 patients in the placebo group (P=.6). At the last follow-up (minimum, 2 years), clinical and functional outcomes were further improved in both groups, with no significant intergroup differences. Application of pulsed electromagnetic fields after rotator cuff repair is safe and reduces postoperative pain, analgesic use, and stiffness in the short term. At 2 years, no difference was seen in outcomes in patients who did or did not undergo treatment with pulsed electromagnetic fields. Copyright 2015, SLACK Incorporated.
Reimerdes, H.; Sabbagh, S.A.; Bialek, J.M.; Garofalo, A.M.; Navratil, G.A.; Sontag, A.C.; Zhu, W.; Hender, T.C.; Gryaznevich, M.P.; Howell, D F.; Bigi, M.; Vries, P. de; Liu, Y. Q.
2006-05-15
Dedicated experiments in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion, 42, 614 (2002)], the Joint European Torus (JET) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)], and the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)] reveal the commonalities of resistive wall mode (RWM) stabilization by sufficiently fast toroidal plasma rotation in devices of different size and aspect ratio. In each device the weakly damped n=1 RWM manifests itself by resonant field amplification (RFA) of externally applied n=1 magnetic fields, which increases with the plasma pressure. Probing DIII-D and JET plasmas with similar ideal magnetohydrodynamic (MHD) stability properties with externally applied magnetic n=1 fields, shows that the resulting RFA is independent of the machine size. In each device the drag resulting from RFA slows the toroidal plasma rotation and can lead to the onset of an unstable RWM. The critical plasma rotation required for stable operation in the plasma center decreases with increasing q{sub 95}, which is explained by the inward shift of q surfaces where the critical rotation remains constant. The quantitative agreement of the critical rotation normalized to the inverse Alfven time at the q=2 surface in similar DIII-D and JET plasmas supports the independence of the RWM stabilization mechanism of machine size and indicates the importance of the q=2 surface. At low aspect ratio the required fraction of the Alfven velocity increases significantly. The ratio of the critical rotation in similar NSTX and DIII-D plasmas can be explained by trapped particles not contributing to the RWM stabilization, which is consistent with stabilization mechanisms that are based on ion Landau damping. Alternatively, the ratio of the required rotation to the sound wave velocity remains independent of aspect ratio.
NASA Technical Reports Server (NTRS)
Give'on, Amir; Kern, Brian D.; Shaklan, Stuart
2011-01-01
In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.
NASA Technical Reports Server (NTRS)
Give'on, Amir; Kern, Brian D.; Shaklan, Stuart
2011-01-01
In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.
Oscillating Electric Field Measures the Rotation Rate in a Native Rotary Enzyme
Ferencz, Csilla-Maria; Petrovszki, Pál; Dér, András; Sebők-Nagy, Krisztina; Kóta, Zoltán; Páli, Tibor
2017-01-01
Rotary enzymes are complex, highly challenging biomolecular machines whose biochemical working mechanism involves intersubunit rotation. The true intrinsic rate of rotation of any rotary enzyme is not known in a native, unmodified state. Here we use the effect of an oscillating electric (AC) field on the biochemical activity of a rotary enzyme, the vacuolar proton-ATPase (V-ATPase), to directly measure its mean rate of rotation in its native membrane environment, without any genetic, chemical or mechanical modification of the enzyme, for the first time. The results suggest that a transmembrane AC field is able to synchronise the steps of ion-pumping in individual enzymes via a hold-and-release mechanism, which opens up the possibility of biotechnological exploitation. Our approach is likely to work for other transmembrane ion-transporting assemblies, not only rotary enzymes, to determine intrinsic in situ rates of ion pumping. PMID:28345665
Convection Induced by High Frequency Rotating Magnetic Field in Ionic Aqueous Solutions
NASA Technical Reports Server (NTRS)
Volz, Martin P.; Mazuruk, Konstantin
2000-01-01
Rotating magnetic fields (RMF) have found applications in modern metallurgy. Examples are casting and semiconductor crystal growth technology. Rotating convective flows can also be induced in ionic fluids. Due to optical transparency, these fluids offer a great opportunity to visualize convection. In this work, we investigate the dynamics of convection induced by a high frequency (100 kHz range) RMF. A dye injected into a cylindrical column of salty water serves as an indicator of the flow. The developed technique has been used to study mixing phenomena induced by a RMF both when the direc'tion of the field rotation is constant and when it is alternated. Optical recording has been used to analyze this process. A numerical model describing RMF mixing in the laminar regime will also be presented.
Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons
NASA Astrophysics Data System (ADS)
Wang, J.; Chan, K. S.
2010-10-01
We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.
Lehmann rotation of the cholesteric helix in droplets oriented by an electric field
NASA Astrophysics Data System (ADS)
Oswald, Patrick; Pirkl, Slavomir
2014-02-01
We study the Lehmann rotation of the cholesteric helix in droplets of the liquid crystal N-(p-methoxybenzilidene)-p-butylaniline doped with a small amount of the chiral molecule R811 when they are subjected to a temperature gradient. We show that the helix rotates much faster when it is parallel to the temperature gradient than when it is perpendicular to it. The first configuration is obtained by submitting the droplets to an ac electric field parallel to the temperature gradient, whereas the second one is observed at zero field. We show that the rotation velocity of the helix strongly depends on the droplet radius, even when the helix is parallel to the temperature gradient. This observation supports the idea that the Leslie thermomechanical coupling cannot explain alone the Lehmann effect.
Misakian, M
2000-01-01
Beginning with expressions for the vector potential, the equations for calculating the magnetic flux density from up to three rectangular loops of wire in the same plane are derived. The geometry considered is the same as that found in some walk-through metal detectors and electronic article surveillance systems. Equations for more or fewer loops can be determined by inspection. A computer program for performing the magnetic field calculation is provided in an appendix.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
In-Plane Magnetic Field Effect on the Transport Properties in a Quasi-3D Quantum Well Structure
Brooks, J.; Clark, R.; Lumpkin, N.; O'Brien, J.; Reno, J.; Simmons, J.; Wang, Z.; Zhang, B.
1999-05-25
The transport properties of a quasi-three-dimensional, 200 layer quantum well structure are investigated at integer filling in the quantum Hall state. We find that the transverse magnetoresistance R_{xx}, the Hall resistance R_{xy}, and the vertical resistance R_{zz} all follow a similar behavior with both temperature and in-plane magnetic field. A general feature of the influence of increasing in-plane field B_{in} is that the Hall conductance quantization first improves, but above a characteristic value B^{C}_{in}, the quantization is systematically removed. We consider the interplay of the chid edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band structure energies. A comparison of the resuIts with existing theories of the chiral edge state transport with in-plane field is also discussed.
Fischer, Andreas; Kupsch, Christian; Gürtler, Johannes; Czarske, Jürgen
2015-09-21
Non-intrusive fast 3d measurements of volumetric velocity fields are necessary for understanding complex flows. Using high-speed cameras and spectroscopic measurement principles, where the Doppler frequency of scattered light is evaluated within the illuminated plane, each pixel allows one measurement and, thus, planar measurements with high data rates are possible. While scanning is one standard technique to add the third dimension, the volumetric data is not acquired simultaneously. In order to overcome this drawback, a high-speed light field camera is proposed for obtaining volumetric data with each single frame. The high-speed light field camera approach is applied to a Doppler global velocimeter with sinusoidal laser frequency modulation. As a result, a frequency multiplexing technique is required in addition to the plenoptic refocusing for eliminating the crosstalk between the measurement planes. However, the plenoptic refocusing is still necessary in order to achieve a large refocusing range for a high numerical aperture that minimizes the measurement uncertainty. Finally, two spatially separated measurement planes with 25×25 pixels each are simultaneously acquired with a measurement rate of 0.5 kHz with a single high-speed camera.
Computational estimation of magnetically induced electric fields in a rotating head
NASA Astrophysics Data System (ADS)
Ilvonen, Sami; Laakso, Ilkka
2009-01-01
Change in a magnetic field, or similarly, movement in a strong static magnetic field induces electric fields in human tissues, which could potentially cause harmful effects. In this paper, the fields induced by different rotational movements of a head in a strong homogeneous magnetic field are computed numerically. Average field magnitudes near the retinas and inner ears are studied in order to gain insight into the causes of phosphenes and vertigo-like effects, which are associated with extremely low-frequency (ELF) magnetic fields. The induced electric fields are calculated in four different anatomically realistic head models using an efficient finite-element method (FEM) solver. The results are compared with basic restriction limits by IEEE and ICNIRP. Under rotational movement of the head, with a magnetic flux rate of change of 1 T s-1, the maximum IEEE-averaged electric field and maximum ICNIRP-averaged current density were 337 mV m-1 and 8.84 mA m-2, respectively. The limits by IEEE seem significantly stricter than those by ICNIRP. The results show that a magnetic flux rate of change of 1 T s-1 may induce electric field in the range of 50 mV m-1 near retinas, and possibly even larger values near the inner ears. These results provide information for approximating the threshold electric field values of phosphenes and vertigo-like effects.
Computational estimation of magnetically induced electric fields in a rotating head.
Ilvonen, Sami; Laakso, Ilkka
2009-01-21
Change in a magnetic field, or similarly, movement in a strong static magnetic field induces electric fields in human tissues, which could potentially cause harmful effects. In this paper, the fields induced by different rotational movements of a head in a strong homogeneous magnetic field are computed numerically. Average field magnitudes near the retinas and inner ears are studied in order to gain insight into the causes of phosphenes and vertigo-like effects, which are associated with extremely low-frequency (ELF) magnetic fields. The induced electric fields are calculated in four different anatomically realistic head models using an efficient finite-element method (FEM) solver. The results are compared with basic restriction limits by IEEE and ICNIRP. Under rotational movement of the head, with a magnetic flux rate of change of 1 T s(-1), the maximum IEEE-averaged electric field and maximum ICNIRP-averaged current density were 337 mV m(-1) and 8.84 mA m(-2), respectively. The limits by IEEE seem significantly stricter than those by ICNIRP. The results show that a magnetic flux rate of change of 1 T s(-1) may induce electric field in the range of 50 mV m(-1) near retinas, and possibly even larger values near the inner ears. These results provide information for approximating the threshold electric field values of phosphenes and vertigo-like effects.
All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation
Sun, L.; Jiang, S.; Marciante, J.R.
2010-06-18
An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).
Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth
ERIC Educational Resources Information Center
Veto, B.
2011-01-01
The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…
Magnetic field rotation at the dayside magnetopause: AMPTE/IRM observations
NASA Astrophysics Data System (ADS)
De Keyser, J.; Roth, M.
1998-04-01
Given the large-scale magnetosheath flow pattern around the magnetosphere, the tangential discontinuity magnetopause model of De Keyser and Roth predicts, for a prescribed magnetic field rotation angle and rotation sense, where equilibrium is possible on the dayside magnetopause surface and where it is not. In this paper we verify these predictions using 5 s time resolution magnetic field and plasma observations of the low-latitude dayside magnetospheric boundary acquired by the Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite. The model is confirmed by (1) the dominant presence of large positive magnetic field rotations among the dawnside crossings north of the equator, (2) the observation of positive and negative rotations near the stagnation point and at the duskside, and (3) the rare occurrence and questionable tangential discontinuity nature of low magnetic shear dawnside crossings. The absence of tangential discontinuity equilibrium in dawnside low shear crossings is consistent with the observation of increased dawnside low-latitude boundary layer thickness for northward magnetosheath field reported in the literature.
Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.
1993-01-01
We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.
Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth
ERIC Educational Resources Information Center
Veto, B.
2011-01-01
The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…
Using rotation measure to search for magnetic fields around galaxies at z ~ 0.5
NASA Astrophysics Data System (ADS)
Williams, Anna; Lundgren, Britt; Mao, Sui Ann; Wilcots, Eric; Zweibel, Ellen
2017-03-01
Magnetic fields are an important component in galaxies, and yet, we still do not know how these magnetic fields were originally seeded within galaxies, nor how they have grown to the strengths we observe today. One way we can unravel this complex problem is by measuring the growth of magnetic fields over cosmic time. We present the initial results of a rotation measure study to search for the presence of coherent magnetic fields around young disk-like galaxies at z ~ 0.5. The S-band receiver at the VLA allows us to simultaneously observe Stokes I, Q, U, and V from 2-4 GHz. With these broadband polarization observations we apply multiple methods for determining the rotation measure of each source, improving the fidelity of our results. Beyond magnetogenesis, the results of this study also have implications for the life-cycle of baryons within galaxies and the composition of galactic haloes.
Interaction of plasma rotation and resonant magnetic perturbation fields in tokamaks
NASA Astrophysics Data System (ADS)
Nicolai, A.; Daybelge, U.; Lehnen, M.; Tokar, M. Z.; Unterberg, B.; Yarim, C.; contributors, JET
2008-02-01
The interaction between plasma rotation and perturbation fields is described by the ambipolarity constraint and the parallel momentum balance, both emanating from the revisited neoclassical theory, and the electrodynamical screening of the resonant perturbation field at the singular surfaces. This screening depends mainly on the slip between the rotating plasma and the resonant field. The neoclassical theory, valid in the collision dominated regime and accounting for gyro-viscosity, includes arbitrary plasma cross-sections, anomalous viscosity, ponderomotive forces, neutral beam injection (NBI), pressure anisotropization and a momentum source due to ergodicity which has a considerable impact on the plasma rotation as demonstrated in TEXTOR. To estimate the influence of the perturbation coils on the plasma rotation, the radial magnetic field (proportional to the helical flux function) is Fourier analysed (using 'intrinsic' coordinates) and the total field is used for field line tracing thus obtaining the ponderomotive momentum input and the extension Δe of the ergodic layer at the edge. Both procedures account for the full plasma geometry. Δe is assumed to be independent of the rotational state because of the boundary condition Vt = 0. In a second step the obtained velocity profiles are used to compute the screening at the singular layers and thus the reduction of the island width due to plasma rotation. The main results can be summarized as follows. Using in the case of TEXTOR shot #94092 the diffusion coefficient DM = 2 × 10-6 m (typical for the 12/4 configuration) the observed increase in vt by Δvt ≈ 5 km s-1 can be reproduced. Inside the plasma the slip prevents any influence of the ponderomotive forces, thus yielding a constant increase in the vt(r)-profile by Δvt. Assuming in the case of the error field correction coils (n = 1) of JET the current Ihel = 30 kA and using for the plasma background the data of shot #67951 in the static case, an ergodized
Chen, P.; Tsay, T.T.
2006-01-01
Changes in population levels of Meloidogyne hapla, M. incognita, Pratylenchus coffeae, and P. penetrans were studied in 12 strawberry fields in the Dahu region of Taiwan. Ten potential rotation crops and two cultural practices were evaluated for their effect on nematode populations and influence on strawberry yield. Rotation with rice or taro and the cultural practice of flooding and bare fallowing for four months were found to reduce nematode soil populations to two or fewer nematodes per 100 ml soil. Average strawberry yields increased between 2.4% to 6.3% following taro compared to the bare fallow treatment. Corn suppressed M. incognita and M. hapla populations and resulted in an increased in strawberry yield compared to bare fallow. Other phytopathogens also present in these fields limited taro as the rotation choice for nematode management. Results of this research and economic analysis of the input requirements for various rotation crops, corn and bare fallow were recommended as the most appropriate rotation strategies for nematode management in strawberry in this region. PMID:19259538
Lee, Jun-Tae; Abid, Aamir; Cheung, Ka Ho; Sudheendra, L; Kennedy, Ian M
2012-09-01
The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was confined in a capillary tube; competing viscous drag and magnetic forces were established by rotating the tube. A critical Mason number was determined for conditions under which the rotation of the capillary prevents the formation of chains from individual particles. The statistics of chain length were investigated by image analysis while varying parameters such as the rotation speed and the viscosity of the liquid. The measurements showed that the rate of particle chain formation was decreased with increased viscosity and rotation speed ; the particle dynamics could be quantified by the same dimensionless Mason number that has been demonstrated for rotating magnetic fields. The potential for enhancement of mixing in a bioassay was assessed using a fast chemical reaction that was diffusion-limited. Reducing the Mason below the critical value, so that chains were formed in the fluid, gave rise to a modest improvement in the time to completion of the reaction.
Electric Power Generation from Earth's Rotation through its Own Magnetic Field
NASA Astrophysics Data System (ADS)
Chyba, Christopher F.; Hand, Kevin P.
2016-07-01
We examine electric power generation from Earth's rotation through its own nonrotating magnetic field (that component of the field symmetric about Earth's rotation axis). There is a simple general proof that this is impossible. However, we identify a loophole in that proof and show that voltage can be continuously generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically permeable material is used to ensure curl(v ×B0)≠0 within the conductor, where B0 derives from the axially symmetric component of Earth's magnetic flux density, and v is Earth's rotation velocity at the conductor's location. We solve the relevant equations for one laboratory realization, and from this solution, we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to Earth's rotation. The effect, which would be available nearly globally with no intermittency, requires testing and further examination to see if it can be scaled to practical emission-free power generation.
Chen, P; Tsay, T T
2006-09-01
Changes in population levels of Meloidogyne hapla, M. incognita, Pratylenchus coffeae, and P. penetrans were studied in 12 strawberry fields in the Dahu region of Taiwan. Ten potential rotation crops and two cultural practices were evaluated for their effect on nematode populations and influence on strawberry yield. Rotation with rice or taro and the cultural practice of flooding and bare fallowing for four months were found to reduce nematode soil populations to two or fewer nematodes per 100 ml soil. Average strawberry yields increased between 2.4% to 6.3% following taro compared to the bare fallow treatment. Corn suppressed M. incognita and M. hapla populations and resulted in an increased in strawberry yield compared to bare fallow. Other phytopathogens also present in these fields limited taro as the rotation choice for nematode management. Results of this research and economic analysis of the input requirements for various rotation crops, corn and bare fallow were recommended as the most appropriate rotation strategies for nematode management in strawberry in this region.
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
Cheung, Yeuk-Kwan E.; Xu Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
NASA Technical Reports Server (NTRS)
Ramachandran Narayanan; Mazuruk, Konstantin
1998-01-01
The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.
NASA Astrophysics Data System (ADS)
Zeng, S.; Wang, X.-X.
1999-02-01
The identification of unbalance is the crux of field balancing of dual rotors system with slightly different rotating speeds. On the basis of correlation theory, this paper explains a method called “Single Point Discrete Fourier Transformation (DFT)” to identify the unbalance. By theoretical analysis, the correlation integral time and its maximum possible error are determined. The field balancing experiment on WLZY-350 horizontal spiral centrifuge verifies its precision, reliability and applicability in practice.
Theoretical and Observational Consequences of Rotation and Magnetic Fields in Stellar Winds
NASA Astrophysics Data System (ADS)
Ignace, Richard
1996-05-01
My dissertation concerns the study of stellar winds from theoretical modeling of the wind structure and the development of observational diagnostics. First, I have investigated the effects of stellar rotation for the wind structure of stars across the H-R Diagram. The effect of rotation is to increase the wind density at the equator while decreasing the density near the poles. The model, known as the Wind-Compressed Zone (WCZ) model, predicts that equatorial wind compressions are most likely to occur for stars with rapid rotation, low terminal speeds, and/or radial velocity distributions that increase gradually from the base of the wind. It is found that in favorable cases, stellar rotation can play a significant role in shaping the winds of Wolf Rayet stars, B supergiants, Asymptotic Giant Branch stars, and even some novae. The second major part of my thesis relates to the fact that the WCZ model will predict the magnetic field structure in the wind, if the field strength is relatively weak. However, there are generally no good diagnostics of stellar magnetic fields in the weak field limit, where Zeeman splitting is smaller than Doppler broadening. Thus, I have explored applications of the Hanle effect for probing magnetic fields in stellar winds. This effect (which has been used in studies of the solar atmosphere) deals with the modification of resonance line scattering polarization by a magnetic field. Solutions for the Hanle effect in optically thin axisymmetric extended stellar envelopes have been derived. Relative to the zero field case, the Hanle effect can result in significant changes of the line polarization, in some cases causing a position angle flip of 90(deg) . With multiline observations the Hanle effect is a viable diagnostic of stellar magnetic fields in the range 1-1000 Gauss. This thesis work was completed under the supervision of Joseph Cassinelli and in collaboration with Kenneth Nordsieck and Jon Bjorkman.
Thermodynamics of charged rotating solutions in Brans-Dicke gravity with Born-Infeld field
NASA Astrophysics Data System (ADS)
Pakravan, J.; Takook, M. V.
2017-09-01
We derive new exact charged rotating solutions of (n+1)-dimensional Brans-Dicke theory in the presence of Born-Infeld field and investigated their properties. Because of the coupling between scalar field and curvature, the field equations cannot to be solved directly. Using a new conformal transformation, which transforms the Einstein-dilaton-Born-Infeld gravity Lagrangian to the Brans-Dicke-Born-Infeld gravity one, the field equations are solved. We also compute temperature, charge, mass, electric potential, and entropy; entropy, however, does not obey the area law. These quantities are invariant under conformal transformation and satisfy the first law of thermodynamics.
Consequences of rotating off-centred dipolar electromagnetic field in vacuum around Pulsars
NASA Astrophysics Data System (ADS)
Kundu, A.; Pétri, J.
2016-12-01
Studying the electromagnetic field of pulsars is one of the key themes in neutron star physics. While most of the works assume a standard central dipolar electromagnetic field model, recently some efforts had been made in explaining how inclusion of higher field components produces drastic consequences in our understanding of these objects. We put forward the effects of a unique recently presented approach in which the magnetic axis is shifted off from the centre. It is found that the rotating off-centred dipolar electromagnetic field itself reveals the presence of the higher components within. The consequences of this approach on the shape of the polar caps and the emission diagrams are discussed.
Thermodynamics of charged rotating solutions in Brans-Dicke gravity with Born-Infeld field
NASA Astrophysics Data System (ADS)
Pakravan, J.; Takook, M. V.
2017-07-01
We derive new exact charged rotating solutions of (n+1) -dimensional Brans-Dicke theory in the presence of Born-Infeld field and investigated their properties. Because of the coupling between scalar field and curvature, the field equations cannot to be solved directly. Using a new conformal transformation, which transforms the Einstein-dilaton-Born-Infeld gravity Lagrangian to the Brans-Dicke-Born-Infeld gravity one, the field equations are solved. We also compute temperature, charge, mass, electric potential, and entropy; entropy, however, does not obey the area law. These quantities are invariant under conformal transformation and satisfy the first law of thermodynamics.
Plane Stress Crack-Line Fields for Crack Growth in an Elastic Perfectly-Plastic Material.
1983-09-01
system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the cleavage...plane of the crack), to obtain ordinary differential equations with respect to x for the co- efficients in the expansions. Functions of time that...yields a system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the
Iñarrea, J.
2013-12-04
We report on theoretical studies of a recently discovered strong radiation-induced magnetoresistance spike obtained in ultraclean two-dimensional electron systems at low temperatures. The most striking feature of this spike is that it shows up on the second harmonic of the cyclotron resonance. We apply the radiation-driven electron orbits model in the ultraclean scenario to offer a theoretical approach of this striking effect. We explain the effect of an in-plane magnetic field on the spike which consists in a vanishing effect when this field increases.
Out-of-Plane Computed-Tomography-Guided Biopsy Using a Magnetic-Field-Based Navigation System
Wallace, Michael J. Gupta, Sanjay; Hicks, Marshall E.
2006-02-15
The purpose of this article is to report our clinical experience with out-of-plane computed-tomography (CT)-guided biopsies using a magnetic-field-based navigation system. Between February 2002 and March 2003, 20 patients underwent CT-guided biopsy in which an adjunct magnetic-field-based navigation system was used to aid an out-of-plane biopsy approach. Eighteen patients had an underlying primary malignancy. All biopsies involved the use of a coaxial needle system in which an outer 18G guide needle was inserted to the lesion using the navigation system and an inner 22G needle was then used to obtain fine-needle aspirates. Complications and technical success were recorded. Target lesions were located in the adrenal gland (n = 7), liver (n = 6), pancreas (n = 3), lung (n = 2), retroperitoneal lymph node (n = 1), and pelvis (n = 1). The mean lesion size (maximum transverse diameter) was 26.5 mm (range: 8-70 mm) and the mean and median cranial-caudal distance, between the transaxial planes of the final needle tip location and the needle insertion site, was 40 mm (range: 18-90 mm). Needle tip positioning was successfully placed within the lesion in all 20 biopsies. A diagnosis of malignancy was obtained in 14 biopsies. Benign diagnoses were encountered in the remaining six biopsies and included a benign adrenal gland (n = 2), fibroelastic tissue (n = 1), hepocytes with steatosis (n = 2) and reactive hepatocytes (n = 1). No complications were encountered. A magnetic-field-based navigation system is an effective adjunct tool for accurate and safe biopsy of lesions that require an out-of-plane CT approach.
Enhancement of rotatable anisotropy in ferrite doped FeNi thin film with oblique sputtering
NASA Astrophysics Data System (ADS)
Zhou, Cai; Jiang, Changjun; Zhao, Zhong
2015-07-01
Rotatable anisotropy of stripe domain (SD) was investigated in a ferrite doped FeNi thin film with different oblique angles. Rotation of SD under an in-plane magnetic field was observed by magnetic force microscopy, suggesting the existence of rotatable anisotropy. A rotatable anisotropy field Hrot was derived from the fitting curves of the in-plane resonance field versus the angle between the orientation of easy axis and applied field. As the oblique angle increases, an increase of Hrot from 305 Oe to 468 Oe was observed and the perpendicular anisotropy increased as well, indicating a correlation between rotatable anisotropy and perpendicular anisotropy.
Decoupling of superconducting planes of La1.905Ba0.095CuO4 in a transverse magnetic field
NASA Astrophysics Data System (ADS)
Tranquada, John; Stegen, Z.; Boebinger, G. S.; Han, Su Jung; Wu, Jie; Xu, Zhijun; Gu, Genda; Li, Qiang
2012-02-01
We have measured the resistivity parallel and perpendicular to the CuO2 planes in single crystals of La1.905Ba0.095CuO4 for magnetic fields up to 35 T applied along the c-axis. Below the zero-field superconducting transition temperature of 32 K, we observe that, above a threshold field, the c-axis resistivity grows with field, eventually reaching a maximum and then decreasing. At the resistivity maximum, interlayer pair tunneling becomes insignificant. Under the same field and temperature conditions, the in-plane resistivity remains quite low, reflecting robust superconductivity. We identify a regime in which the superconducting planes are effectively decoupled. At 20 K, a field much greater than 35 T would be required to destroy the in-plane pairing, despite the fact that the field also induces both charge and spin stripe order (J.S. Wen et al., arXiv:1009.0031).
Dayton, Paul; Feilmeier, Mindi; Kauwe, Merrell; Hirschi, Jordan
2013-01-01
Rotation of the first metatarsal, as a component of hallux abducto valgus, is rarely discussed and is not addressed as a component of most hallux valgus corrective procedures. We believe frontal plane rotation of the first metatarsal to be an integral component of hallux abducto valgus deformity (the "third plane of deformity") and believe de-rotation is necessary for complete deformity correction. We observed the change in angular measurements commonly used in the evaluation of hallux valgus deformity in patients who underwent a modified lapidus procedure. We measured the intermetatarsal angle, hallux abductus angle, proximal articular set angle, and tibial sesamoid position on weightbearing radiographs of 25 feet in 24 patients who had undergone tarsal metatarsal corrective arthrodesis and lateral capsular release. Specific attention was given to reduction of the frontal plane rotation of the first metatarsal during correction. Our results showed a change in the angular measurements observed by 4 investigators as follows. The mean change in the intermetatarsal angle was 10.1° (p < .0001). The mean change in the hallux abductus angle was 17.8° (p < .0001). The mean change in the proximal articular set angle was 18.7° (p < .0001). The mean change in the tibial sesamoid position was 3.8 (p < .0001). Also, a consistent valgus, or everted position of the first metatarsal, was noted as a component of the hallux abducto valgus deformity in our patient population and was corrected by varus rotation or inversion of the metatarsal. We also reviewed the current literature related to anatomic changes in the first ray in the patient with hallux valgus deformity and reviewed our hypothesis regarding the reduction in the proximal articular set angle, which we believe to be related to frontal plane rotation of the first metatarsal, resulting in a radiographic artifact. Copyright © 2013. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio
2015-06-01
The two-dimensional charge transport with parallel (in plane) magnetic field is considered from the physical and mathematical point of view. To this end, we start with the magnetic field parallel to the plane of charge transport, in sharp contrast to the configuration described by the theorems of Aharonov and Casher where the magnetic field is perpendicular. We explicitly show that the specific form of the arising equation enforces the respective field solution to fulfill the Majorana condition. Consequently, as soon any physical system is represented by this equation, the rise of fields with Majorana type behavior is immediately explained and predicted. In addition, there exists a quantized particular phase that removes the action of the vector potential producing interesting effects. Such new effects are able to explain due to the geometrical framework introduced, several phenomenological results recently obtained in the area of spintronics and quantum electronic devices. The quantum ring as spin filter is worked out in this framework and also the case of the quantum Hall effect.
Artificial Faraday rotation using a ring metamaterial structure without static magnetic field
NASA Astrophysics Data System (ADS)
Kodera, Toshiro; Sounas, Dimitrios L.; Caloz, Christophe
2011-07-01
A metamaterial structure composed of a periodic array of conductive rings including each a semiconductor-based isolator is experimentally shown to produce Faraday rotation. Due to the presence of the isolators, a unidirectional traveling-wave regime is established along the rings, generating rotating magnetic moments and hence emulating the phenomenon of electron spin precession. The metamaterial exhibits the same response as a magnetically biased ferrite or plasma, but without the need of any static magnetic field bias, and therefore, it is easily integrated in printed circuit technology.
Lyutyy, T V; Denisov, S I; Reva, V V; Bystrik, Yu S
2015-10-01
We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.
A generalization of Cesàro's relation for plane finite deformations
NASA Astrophysics Data System (ADS)
Chiskis, Alexander
1995-09-01
Using a new representation for the gradient of the rotation angle, the construction of a displacement field via the stretch tensor is reduced to quadrature for plane finite deformations. The compatibility equation is written in a very brief new form.
Li Zhiyun; Krasnopolsky, Ruben; Shang, Hsien
2013-09-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Owen, James E.
2016-05-01
Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien
2013-09-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 102 AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the "magnetic braking catastrophe." A possible resolution to this problem, proposed by Hennebelle & Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio >~ 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90°. If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio ~2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)
2006-01-01
An electro-active transducer includes a ferroelectric material sandwiched by first and second electrode patterns. When the device is used as an actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sensor. the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns. and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the ferroelectric material s plane.
NASA Astrophysics Data System (ADS)
Aubanel, E. E.; Zuo, T.; Bandrauk, A. D.
1994-05-01
We present results of a complete treatment of electronic, vibrational, and rotational motion in numerical calculation of harmonic generation (HG) of 1064-nm laser radiation by the H+2 molecular ion for intensities 1013<=I<=1014 W/cm2. We show that efficient HG can be enhanced by suppression of photodissociation, a phenomenon which results from vibrational trapping in laser-field-induced potential wells. The HG spectra exhibit peaks clustered around even and odd harmonic orders. All peaks can be assigned to Raman-like transitions between dressed eigenstates of the field-molecule system. Rotational excitation is shown to compete with HG. Thus harmonic generation and photon scattering in molecules holds the promise of a potential diagnostic for molecular stabilization by intense laser fields.
Zhang, Site; Asoubar, Daniel; Hellmann, Christian; Wyrowski, Frank
2016-01-20
The propagation of electromagnetic fields between non-parallel planes based on a spectrum-of-plane-wave analysis is discussed and formulations for an efficient numerical implementation are presented in detail. It is shown that with the help of interpolation techniques, the numerical implementation can be done with the standard uniform fast Fourier transform (FFT) of easy access. Different interpolation techniques are numerically examined, and it turns out that the use of cubic interpolation, together with the uniform FFT, brings both significantly increased computational efficiency and high simulation accuracy. Apart from the aspect of computational efficiency, all formulations in this work are generalized in a fully vectorial manner in comparison to previous works.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recen