Quasi-microscope concept for planetary missions.
Huck, F O; Arvidson, R E; Burcher, E E; Giat, O; Wall, S D
1977-09-01
Viking lander cameras have returned stereo and multispectral views of the Martian surface with a resolution that approaches 2 mm/lp in the near field. A two-orders-of-magnitude increase in resolution could be obtained for collected surface samples by augmenting these cameras with auxiliary optics that would neither impose special camera design requirements nor limit the cameras field of view of the terrain. Quasi-microscope images would provide valuable data on the physical and chemical characteristics of planetary regoliths.
Hubble Space Telescope: Wide field and planetary camera instrument handbook. Version 2.1
NASA Technical Reports Server (NTRS)
Griffiths, Richard (Editor)
1990-01-01
An overview is presented of the development and construction of the Wide Field and Planetary Camera (WF/PC). The WF/PC is a duel two dimensional spectrophotometer with rudimentary polarimetric and transmission grating capabilities. The instrument operates from 1150 to 11000 A with a resolution of 0.1 arcsec per pixel or 0.043 arcsec per pixel. Data products and standard calibration methods are briefly summarized.
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.;
2014-01-01
The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.
Wide Field and Planetary Camera for Space Telescope
NASA Technical Reports Server (NTRS)
Lockhart, R. F.
1982-01-01
The Space Telescope's Wide Field and Planetary Camera instrument, presently under construction, will be used to map the observable universe and to study the outer planets. It will be able to see 1000 times farther than any previously employed instrument. The Wide Field system will be located in a radial bay, receiving its signals via a pick-off mirror centered on the optical axis of the telescope assembly. The external thermal radiator employed by the instrument for cooling will be part of the exterior surface of the Space Telescope. In addition to having a larger (1200-12,000 A) wavelength range than any of the other Space Telescope instruments, its data rate, at 1 Mb/sec, exceeds that of the other instruments. Attention is given to the operating modes and projected performance levels of the Wide Field Camera and Planetary Camera.
NASA Technical Reports Server (NTRS)
Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.;
2014-01-01
Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.
Schematic diagram of light path in Wide Field Planetary Camera 2
1993-03-15
S93-33258 (15 Mar 1993) --- An optical schematic diagram of one of the four channels of the Wide Field\\Planetary Camera-2 (WF\\PC-2) shows the path taken by beams from the Hubble Space Telescope (HST) before an image is formed at the camera's charge-coupled devices. A team of NASA astronauts will pay a visit to the HST later this year, carrying with them the new WF/PC-2 to replace the one currently on the HST. The Jet Propulsion Laboratory in Pasadena, California has been working on the replacement system for several months. See NASA photo S93-33257 for a close-up view of tiny articulating mirrors designed to realign incoming light in order to make certain the beams fall precisely in the middle of the secondary mirrors.
Electronic Still Camera view of Aft end of Wide Field/Planetary Camera in HST
1993-12-06
S61-E-015 (6 Dec 1993) --- A close-up view of the aft part of the new Wide Field/Planetary Camera (WFPC-II) installed on the Hubble Space Telescope (HST). WFPC-II was photographed with the Electronic Still Camera (ESC) from inside Endeavour's cabin as astronauts F. Story Musgrave and Jeffrey A. Hoffman moved it from its stowage position onto the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.
The advantages of using a Lucky Imaging camera for observations of microlensing events
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus
2016-05-01
In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.
NASA Technical Reports Server (NTRS)
Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.;
2014-01-01
The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.
Wide field/planetary camera optics study. [for the large space telescope
NASA Technical Reports Server (NTRS)
1979-01-01
Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.
NASA Technical Reports Server (NTRS)
Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.;
2014-01-01
Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.
A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2003-01-01
The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the performance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques.
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.;
2014-01-01
Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.
2003-05-21
This image of a dying star, protoplanetary nebula IRAS22036+5306, containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. Taken by NASA Wide Field and Planetary Camera 2.
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
WFPC2 Filters after 16 Years on Orbit
NASA Astrophysics Data System (ADS)
Lian Lim, Pey; Quijada, M.; Baggett, S.; Biretta, J.; MacKenty, J.; Boucarut, R.; Rice, S.; del Hoyo, J.
2011-01-01
Wide Field Planetary Camera 2 (WFPC2) was installed on Hubble Space Telescope (HST) in December 1993 during Servicing Mission 1 by the crew of Shuttle Mission STS-61. WFPC2 replaced Wide Field Planetary Camera 1 (WFPC1), providing improved UV performance, more advanced detectors, better contamination control, and its own corrective optics. After 16 years of exceptional service, WFPC2 was retired in May 2009 during Servicing Mission 4, when it was removed from HST in order to allow for the installation of Wide Field Camera 3 (WFC3). WFPC2 was carried back to Earth in the shuttle bay by the crew of Shuttle Mission STS-125. In a joint investigation by Goddard Space Flight Center (GSFC) and Space Telescope Science Institute (STScI), the Selectable Optical Filter Assembly (SOFA) of WFPC2 was extracted and the filter wheels removed and examined for any on-orbit changes. The filters were inspected, photographed and scanned with a spectrophotometer at GSFC. The data have been analyzed at STScI with a view towards understanding how prolonged exposure to the HST space environment affected the filters and what the resultant impacts are to WFPC2 calibrations. We will summarize our results from these post-SM4 laboratory studies, including a comparison of pre- to post-mission filter throughput measurements, evaluations of the UV filter red leaks, and assessment of the condition of the filter coatings.
The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber
NASA Technical Reports Server (NTRS)
Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald
1995-01-01
A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.
Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator
NASA Astrophysics Data System (ADS)
Anz-Meador, P. D.; Liou, J.-C.; Ross, D.; Robinson, G. A.; Opiela, J. N.; Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Gerlach, L.
2013-08-01
After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 μ m and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).
Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.;
2013-01-01
After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).
Signal-to-noise ratio for the wide field-planetary camera of the Space Telescope
NASA Technical Reports Server (NTRS)
Zissa, D. E.
1984-01-01
Signal-to-noise ratios for the Wide Field Camera and Planetary Camera of the Space Telescope were calculated as a function of integration time. Models of the optical systems and CCD detector arrays were used with a 27th visual magnitude point source and a 25th visual magnitude per arc-sq. second extended source. A 23rd visual magnitude per arc-sq. second background was assumed. The models predicted signal-to-noise ratios of 10 within 4 hours for the point source centered on a signal pixel. Signal-to-noise ratios approaching 10 are estimated for approximately 0.25 x 0.25 arc-second areas within the extended source after 10 hours integration.
UKIRT's Wide Field Camera and the Detection of 10 MJupiter Objects
NASA Astrophysics Data System (ADS)
WFCAM Team; UKIDSS Team
2004-06-01
In mid-2004 a near-infrared wide field camera will be commissioned on UKIRT. About 40% of all UKIRT time will go into sky surveys and one of these, the Large Area Survey using YJHK filters, will extend the field brown dwarf population to temperatures and masses significantly lower than those of the T dwarf population discovered by the Sloan and 2MASS surveys. The LAS should find objects as cool as 450 K and as low mass as 10 MJupiter at 10 pc. These planetary-mass objects will possibly require a new spectral type designation.
Space telescope phase B definition study. Volume 2A: Science instruments, f48/96 planetary camera
NASA Technical Reports Server (NTRS)
Grosso, R. P.; Mccarthy, D. J.
1976-01-01
The analysis and preliminary design of the f48/96 planetary camera for the space telescope are discussed. The camera design is for application to the axial module position of the optical telescope assembly.
WFPC2 Filters after 16 Years on Orbit
NASA Astrophysics Data System (ADS)
Lim, P. L.; Quijada, M.; Baggett, S. M.; Biretta, J.; MacKenty, J.; Boucarut, R.; Rice, S.; Del Hoyo, J.
2010-07-01
Wide Field Planetary Camera 2 (WFPC2) was installed on Hubble Space Telescope (HST) in December 1993 during Servicing Mission 1 by the crew of Shuttle Mission STS-61. WFPC2 replaced Wide Field Planetary Camera 1 (WFPC1), providing improved UV performance, more advanced detectors, better contamination control, and its own corrective optics. After 16 years of exceptional service, WFPC2 was retired in May 2009 during Servicing Mission 4 (SM4), when it was removed from HST in order to allow for the installation of Wide Field Camera 3 (WFC3). WFPC2 was carried back to Earth in the shuttle bay by the crew of Shuttle Mission STS-125. In a joint investigation by Goddard Space Flight Center (GSFC) and Space Telescope Science Institute (STScI), the Selectable Optical Filter Assembly (SOFA) of WFPC2 was extracted and the filter wheels removed and examined for any on-orbit changes. The filters were inspected, photographed and scanned with a spectrophotometer at GSFC. The data have been analyzed at STScI with a view towards understanding how prolonged exposure to the HST space environment affected the filters and what the resultant impacts are to WFPC2 calibrations. In this paper, we present our early results from these post-SM4 laboratory studies, including comparisons of pre- to post-mission filter transmission measurements for F343N, F160AW, F160BW, F450W, and F170W.
Wide Field Camera 3 Accommodations for HST Robotics Servicing Mission
NASA Technical Reports Server (NTRS)
Ginyard, Amani
2005-01-01
This slide presentation discusses the objectives of the Hubble Space Telescope (HST) Robotics Servicing and Deorbit Mission (HRSDM), reviews the Wide Field Camera 3 (WFC3), and also reviews the contamination accomodations for the WFC3. The objectives of the HRSDM are (1) to provide a disposal capability at the end of HST's useful life, (2) to upgrade the hardware by installing two new scientific instruments: replace the Corrective Optics Space Telescope Axial Replacement (COSTAR) with the Cosmic Origins Spectrograph (COS), and to replace the Wide Field/Planetary Camera-2 (WFPC2) with Wide Field Camera-3, and (3) Extend the Scientific life of HST for a minimum of 5 years after servicing. Included are slides showing the Hubble Robotic Vehicle (HRV) and slides describing what the HRV contains. There are also slides describing the WFC3. One of the mechanisms of the WFC3 is to serve partially as replacement gyroscopes for HST. There are also slides that discuss the contamination requirements for the Rate Sensor Units (RSUs), that are part of the Rate Gyroscope Assembly on the WFC3.
Report Of The HST Strategy Panel: A Strategy For Recovery
1991-01-01
orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected
Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis
Shaukat, Affan; Blacker, Peter C.; Spiteri, Conrad; Gao, Yang
2016-01-01
In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation. PMID:27879625
Performance evaluation of a quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Burcher, E. E.; Huck, F. O.; Wall, S. D.; Woehrle, S. B.
1977-01-01
Spatial resolutions achieved with cameras on lunar and planetary landers have been limited to about 1 mm, whereas microscopes of the type proposed for such landers could have obtained resolutions of about 1 um but were never accepted because of their complexity and weight. The quasi-microscope evaluated in this paper could provide intermediate resolutions of about 10 um with relatively simple optics that would augment a camera, such as the Viking lander camera, without imposing special design requirements on the camera of limiting its field of view of the terrain. Images of natural particulate samples taken in black and white and in color show that grain size, shape, and texture are made visible for unconsolidated materials in a 50- to 500-um size range. Such information may provide broad outlines of planetary surface mineralogy and allow inferences to be made of grain origin and evolution. The mineralogical descriptions of single grains would be aided by the reflectance spectra that could, for example, be estimated from the six-channel multispectral data of the Viking lander camera.
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Madore, B.; Sakai, S.
1999-01-01
We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.
ERIC Educational Resources Information Center
Reynolds, Ronald F.
1984-01-01
Describes the basic components of a space telescope that will be launched during a 1986 space shuttle mission. These components include a wide field/planetary camera, faint object spectroscope, high-resolution spectrograph, high-speed photometer, faint object camera, and fine guidance sensors. Data to be collected from these instruments are…
Hubble illuminates the universe
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1992-01-01
Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.
NASA Technical Reports Server (NTRS)
1999-01-01
Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.
The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. 'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2. The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2. The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures. A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory. This new Hubble image used filters that only let through light from ionized hydrogen and nitrogen atoms. Astronomers were able to distinguish the warmest parts of the gas heated by the violent shocks and found that they form a complex double-bubble shape. The bright yellow-orange colors in the picture show how dense, high-speed gas is flowing from the star, like supersonic speeding bullets ripping through a medium in opposite directions. The central star itself is hidden in the dusty band at the center. Much of the gas flow observed today seems to stem from a sudden acceleration that took place only about 800 years ago. The astronomers believe that 1,000 years from now, the Calabash Nebula will become a fully developed planetary nebula, like a butterfly emerging from its cocoon. The Calabash Nebula is 1.4 light years (more than 8 trillion miles) long and located some 5,000 light years (2,900 trillion miles) from Earth in the constellation Puppis. The image was taken in December 2000 by the Wide Field and Planetary Camera 2. The image was originally released by the Hubble European Space Agency Information Centre, with a website at http://sci.esa.int/hubble. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . Other scientists on the team include Valentin Bujarrabal and Javier Alcolea of Observatorio Astronomico Nacional, Spain, and Carmen Sanchez Contreras of JPL. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.History of Hubble Space Telescope (HST)
1994-01-01
A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.
STS-61 air-bearing floor training in bldg 9N with Astronaut Jeff Hoffman
1993-06-07
Making use of the air-bearing floor in JSC's Shuttle mockup and integration laboratory, Astronaut Jeffrey A. Hoffman practices working with the Hubble Space Telescope's Wide Field/Planetary Camera (WF/PC). Changing out the large camera is one of several jobs to be performed by STS-61.
VizieR Online Data Catalog: >20yrs of HST obs. of Cepheids in SNIa host gal. (Hoffmann+, 2016)
NASA Astrophysics Data System (ADS)
Hoffmann, S. L.; Macri, L. M.; Riess, A. G.; Yuan, W.; Casertano, S.; Foley, R. J.; Filippenko, A. V.; Tucker, B. E.; Chornock, R.; Silverman, J. M.; Welch, D. L.; Goobar, A.; Amanullah, R.
2017-01-01
HST observations of Cepheid variables (both archival or newly obtained) span more than two decades (1994-2016; see table 1). The earliest Cepheid observations we analyzed were obtained with the Wide Field and Planetary Camera 2 (WFPC2) as part of the initial efforts to measure H0 with HST (Freedman+ 2001ApJ...553...47F; Sandage+ 2006ApJ...653..843S) and were later used by Freedman+ (2012ApJ...758...24F) to reach beyond the LMC for the Carnegie Hubble Project. We also re-analyzed observations obtained in previous phases of our project (Riess+ 2009, J/ApJS/183/109; 2011, J/ApJ/730/119) with the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) and/or the Wide Field Camera 3 (WFC3) Ultraviolet and Visible Channel (UVIS). Finally, we obtained new observations of nine SN Ia hosts using WFC3. We obtained the majority of our optical images with these modern cameras, 113 and 132 unique epochs with ACS and WFC3, respectively, while WFPC2 contributes a smaller fraction with 67 epochs. (6 data files).
NASA Technical Reports Server (NTRS)
Jones, J. A.
1983-01-01
In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.
NASA Astrophysics Data System (ADS)
Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David
2010-05-01
The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource impacts of these enhancements. References: 1. Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B., Pullan, D., Ruffer, P., Sims, M.R., Pillinger, C.T., The Beagle 2 stereo camera system, Planet. Space Sci. 53, 1466-1488, 2005. 2. Paar, G., Oberst, J., Barnes, D.P., Griffiths, A.D., Jaumann, R., Coates, A.J., Muller, J.P., Gao, Y., Li, R., 2007, Requirements and Solutions for ExoMars Rover Panoramic Camera 3d Vision Processing, abstract submitted to EGU meeting, Vienna, 2007. 3. Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H. 2001. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Ins., 72 (12), 4452-4459. 4. Nealson, K.H., Tsapin, A., and Storrie-Lombardi, M. 2002. Searching for life in the universe: unconventional methods for an unconventional problem. International Microbiology, 5, 223-230. 5. Mormile, M.R. and Storrie-Lombardi, M.C. 2005. The use of ultraviolet excitation of native fluorescence for identifying biomarkers in halite crystals. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 246-253. 6. Storrie-Lombardi, M.C. 2005. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 288-301.
The LST scientific instruments
NASA Technical Reports Server (NTRS)
Levin, G. M.
1975-01-01
Seven scientific instruments are presently being studied for use with the Large Space Telescope (LST). These instruments are the F/24 Field Camera, the F/48-F/96 Planetary Camera, the High Resolution Spectrograph, the Faint Object Spectrograph, the Infrared Photometer, and the Astrometer. These instruments are being designed as facility instruments to be replaceable during the life of the Observatory.
Dynamical Modeling of NGC 6397: Simulated HST Imaging
NASA Astrophysics Data System (ADS)
Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Slavin, S. D.; Murphy, B. W.
1994-12-01
The proximity of NGC 6397 (2.2 kpc) provides an ideal opportunity to test current dynamical models for globular clusters with the HST Wide-Field/Planetary Camera (WFPC2)\\@. We have used a Monte Carlo algorithm to generate ensembles of simulated Planetary Camera (PC) U-band images of NGC 6397 from evolving, multi-mass Fokker-Planck models. These images, which are based on the post-repair HST-PC point-spread function, are used to develop and test analysis methods for recovering structural information from actual HST imaging. We have considered a range of exposure times up to 2.4times 10(4) s, based on our proposed HST Cycle 5 observations. Our Fokker-Planck models include energy input from dynamically-formed binaries. We have adopted a 20-group mass spectrum extending from 0.16 to 1.4 M_sun. We use theoretical luminosity functions for red giants and main sequence stars. Horizontal branch stars, blue stragglers, white dwarfs, and cataclysmic variables are also included. Simulated images are generated for cluster models at both maximal core collapse and at a post-collapse bounce. We are carrying out stellar photometry on these images using ``DAOPHOT-assisted aperture photometry'' software that we have developed. We are testing several techniques for analyzing the resulting star counts, to determine the underlying cluster structure, including parametric model fits and the nonparametric density estimation methods. Our simulated images also allow us to investigate the accuracy and completeness of methods for carrying out stellar photometry in HST Planetary Camera images of dense cluster cores.
Near-UV Sources in the Hubble Ultra Deep Field: The Catalog
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.
2009-01-01
The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.
Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
2000-01-01
This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.
History of Hubble Space Telescope (HST)
2000-07-01
This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.
History of Hubble Space Telescope (HST)
1997-01-02
What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).
Exploring the Universe with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
1990-01-01
A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.
Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Holtzman, Jon A.
1990-07-01
Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.
Hubble Finds New Dark Spot on Neptune
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet.
The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared.Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere.Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere.The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/A Three-Line Stereo Camera Concept for Planetary Exploration
NASA Technical Reports Server (NTRS)
Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon
1997-01-01
This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.
Acoustic environments for JPL shuttle payloads based on early flight data
NASA Technical Reports Server (NTRS)
Oconnell, M. R.; Kern, D. L.
1983-01-01
Shuttle payload acoustic environmental predictions for the Jet Propulsion Laboratory's Galileo and Wide Field/Planetary Camera projects have been developed from STS-2 and STS-3 flight data. This evaluation of actual STS flight data resulted in reduced predicted environments for the JPL shuttle payloads. Shuttle payload mean acoustic levels were enveloped. Uncertainty factors were added to the mean envelope to provide confidence in the predicted environment.
STS-61 art concept of astronauts during HST servicing
1993-11-12
S93-48826 (November 1993) --- This artist's rendition of the 1993 Hubble Space Telescope (HST) servicing mission shows astronauts installing the new Wide Field/Planetary Camera (WF/PC 2). The instruments to replace the original camera and contains corrective optics that compensate for the telescope's flawed primary mirror. During the 11-plus day mission, astronauts are also scheduled to install the Corrective Optics Space Telescope Axial Replacement (COSTAR) -- an optics package that focuses and routes light to the other three instruments aboard the observatory -- a new set of solar array panels, and other hardware and components. The artwork was done for JPL by Paul Hudson.
2015-08-03
This colourful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the Sun enter retirement, they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionised oxygen and hydrogen (opo9811h). This image, while from the same camera, uses different filters to reveal a different view of the nebula. A version of the image was submitted to the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.
The postcollapse core of M15 imaged with the HST planetary camera
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Holtzman, Jon A.; Faber, S. M.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.
1991-01-01
It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well.
NASA Astrophysics Data System (ADS)
Liou, J.-C.; Anz-Meador, P.; Opiela, J.; Christiansen, E.; Cowardin, H.; Davidson, W.; Ed-Wards, D.; Hedman, T.; Herrin, J.; Hyde, J.; Juarez, Q.; Lear, D.; McNamara, K.; Moser, D.; Ross, D.; Stansbery, E.
The STS-125 Atlantis astronauts retrieved the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) during a very successful servicing mission to the HST in May 2009. The radiator attached to WFPC2 has dimensions of 2.2 m by 0.8 m. Its outermost layer is a 4-mm thick aluminum plate covered with a white thermal control coating. This radiator had been exposed to space since the deployment of WFPC2 in 1993. Due to its large surface area and long exposure time, the radiator serves as a unique witness plate for the micrometeoroid and orbital debris (MMOD) environment between 560 and 620 km altitude. The NASA Orbital Debris Program Office is leading an effort, with full support from the HST Program at GSFC, NASA Curation Office at JSC, NASA Hypervelocity Impact Technology Facility at JSC, and NASA Meteoroid Environment Office at MSFC, to inspect the exposed radiator surface. The objective is to measure and analyze the MMOD impact damage on the radiator, and then apply the data to validate or improve the near-Earth MMOD environment definition. The initial inspection was completed in September 2009. A total of 685 MMOD impact features (larger than about 0.3 mm) were identified and documented. This paper will provide an overview of the inspection, the analysis of the data, and the initial effort to use the data to model the MMOD environment.
Observing Comet Halley with Space Telescope
NASA Technical Reports Server (NTRS)
Caldwell, J.
1983-01-01
The NASA Space Telescope (ST) to be launched into LEO by STS in late 1985 is characterized, and its potential use for observations of Comet Halley shortly after the perihelion passage in February, 1986, is discussed. The ST comprises a 2.4-m MgF2-coated primary reflector (with maximum field of view 2.7 x 2.7 arcmin, wavelength coverage 120-1100 nm, and maximum tracking rate 0.21 arcsec/sec) and five first-generation scientific instruments (wide-field planetary camera, faint-object camera, high-resolution and faint-object spectrographs, and high-speed photometer). Planned ST observations of Halley include periods of continuous observation much longer than can be obtained from the ground, provision of supplementary data and navigation information to Giotto and other deep-space missions, emission spectroscopy, UV polarimetry, and possible detection of 124-nm H2O absorption. Before March 11, 1986, earth occultation or similar procedures will be required to observe Halley because it will be within the ST 50-deg solar-elongation-distance limit.
The HST Key Project on the Extragalactic Distance Scale VI. The Cepheids in NGC925
NASA Technical Reports Server (NTRS)
Silbermann, N. A.; Harding, Paul; Madore, Barry F.; Kennicutt, Robert C., Jr.; Saha, Abhijit; Stetson, Peter; Freedman, Wendy L.; Mould, Jeremy R.; Graham, John A.; Hill, Robert J.;
1996-01-01
We report the detection of Cepheid Variable stars in the barred spiral galaxy NGC925, using the Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2). Twelve V (F555W), four I (F814W) and three B (F439W) epochs of cosmic ray split observations were obtained. Eighty Cepheids were discovered, with periods from 6 to +-80 days. Light curves of the Cepheids are presented, and their corresponding period-luminosity diagrams are discussed.
History of Hubble Space Telescope (HST)
1969-01-01
This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.
NASA Technical Reports Server (NTRS)
1983-01-01
Voyager, Infrared Astronomical Satellite, Galileo, Viking, Solar Mesosphere Explorer, Wide-field/Planetary Camera, Venus Mapper, International Solar Polar Mission - Solar Interplanetary Satellite, Extreme Ultraviolet Explores, Starprobe, International Halley Watch, Marine Mark II, Samex, Shuttle Imaging Radar-A, Deep Space Network, Biomedical Technology, Ocean Studies and Robotics are summarized.
The space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1980-01-01
The paper describes the space telescope with a 2.4 m aperture to be launched at 500 km altitude in late 1983. Four axial-bay and one radial-bay scientific instrument, a wide-field and planetary camera, a faint-object camera, a faint-object spectrograph, and a high-speed photometer are to be installed to conduct the initial observations. The axial instruments are constrained to envelopes with dimensions 0.9 x 0.9 x 2.2 m and their masses cannot exceed 317 kg. The observatory will also be equipped with fine-guidance sensors and a microprocessor. The design concepts of the instruments are outlined and some of the astronomical capabilities including studies of distant and local galaxies, physical properties of quasars, interrelations between quasars and active galactic nuclei are mentioned.
NASA Astrophysics Data System (ADS)
Nunez, Jorge; Llacer, Jorge
1993-10-01
This paper describes a general Bayesian iterative algorithm with entropy prior for image reconstruction. It solves the cases of both pure Poisson data and Poisson data with Gaussian readout noise. The algorithm maintains positivity of the solution; it includes case-specific prior information (default map) and flatfield corrections; it removes background and can be accelerated to be faster than the Richardson-Lucy algorithm. In order to determine the hyperparameter that balances the entropy and liklihood terms in the Bayesian approach, we have used a liklihood cross-validation technique. Cross-validation is more robust than other methods because it is less demanding in terms of the knowledge of exact data characteristics and of the point-spread function. We have used the algorithm to reconstruct successfully images obtained in different space-and ground-based imaging situations. It has been possible to recover most of the original intended capabilities of the Hubble Space Telescope (HST) wide field and planetary camera (WFPC) and faint object camera (FOC) from images obtained in their present state. Semireal simulations for the future wide field planetary camera 2 show that even after the repair of the spherical abberration problem, image reconstruction can play a key role in improving the resolution of the cameras, well beyond the design of the Hubble instruments. We also show that ground-based images can be reconstructed successfully with the algorithm. A technique which consists of dividing the CCD observations into two frames, with one-half the exposure time each, emerges as a recommended procedure for the utilization of the described algorithms. We have compared our technique with two commonly used reconstruction algorithms: the Richardson-Lucy and the Cambridge maximum entropy algorithms.
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians monitor the movement of the Wide Field Camera 3, or WFC3, as it is lowered onto a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians monitor the movement of the Wide Field Camera 3, or WFC3, as the overhead crane transfers it to a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the cover of the Wide Field Camera 3, or WFC3, shipping container is lifted away from the mobile base. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians move the base of the shipping container holding the Wide Field Camera 3, or WFC3, into the high bay. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians move the base of the shipping container holding the Wide Field Camera 3, or WFC3. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians monitor the placement of the Wide Field Camera 3, or WFC3, on a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-16
CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicing Facility remove the protective cover from the Wide Field Camera 3, or WFC3. The WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians attach an overhead crane to the cover of the Wide Field Camera 3, or WFC3, shipping container. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-16
CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicing Facility begin removing the protective cover from the Wide Field Camera 3, or WFC3. The WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – The shipping container with the Wide Field Camera 3, or WFC3, inside is removed from the truck outside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians begin lifting the cover of the Wide Field Camera 3, or WFC3, shipping container. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians unlatch the cover of the Wide Field Camera 3, or WFC3,shipping container before removing it. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
Hubble Images of Comet Hale-Bopp
NASA Technical Reports Server (NTRS)
1998-01-01
This is a series of Hubble Space Telescope observations of the region around the nucleus of Hale-Bopp, taken on eight different dates since September 1995. They chronicle changes in the evolution of the nucleus as it moves ever closer to, and is warmed by, the sun.
The first picture in the sequence, seen at upper left shows a strong dust outburst on the comet that occurred when it was beyond the orbit of Jupiter. Images in the Fall of 1996 show multiple jets that are presumably connected to the activation of multiple vents on the surface of the nucleus.In these false color images, taken with the Wide Field and Planetary Camera 2, the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red. All images are processed at the same spatial scale of 280 miles per pixel (470 kilometers), so the solid nucleus, no larger than 25 miles across, is far below Hubble's resolution.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/STS-61 air-bearing floor training in bldg 9N with Astronaut Jeff Hoffman
1993-06-07
S93-35696 (7 June 1993) --- Making use of the air-bearing floor in Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, astronaut Jeffrey A. Hoffman practices working with the Hubble Space Telescope's (HST) Wide Field/Planetary Camera (WF/PC). Hoffman is one of four mission specialists who will participate in HST servicing on the scheduled December mission. Changing out the large camera is one of several chores to be performed by the four. Photo credit: NASA
Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.
2018-04-01
RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
1999-01-01
A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.
The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars. The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc . The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy. With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.Occultation and Triangulation Camera (OcTriCam) Cubesat
NASA Astrophysics Data System (ADS)
Batchelor, D. A.
2018-02-01
A camera at Earth-Moon L2 would provide a 240,000 km triangulation baseline to augment near-Earth object observations with Earth-based telescopes such as Pan-STARRS, and planetary occultation research to refine ephemerides and probe ring systems.
2008-08-16
CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicing Facility complete removal of the protective cover from the Wide Field Camera 3, or WFC3. The WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane is moved above the Wide Field Camera 3, or WFC3, for attachment. The WFC3 will be lifted and transferred to a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the Wide Field Camera 3, or WFC3, after removal of its protective cover. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the Wide Field Camera 3, or WFC3, after removal of its protective cover. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, is lowered onto the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, is moved toward the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, is lowered toward the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Wide Field Camera 3, or WFC3, above the stand holding the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, is ready to be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-16
CAPE CANAVERAL, Fla. – The Wide Field Camera 3, or WFC3, rests on a work stand in the Payload Hazardous Servicing Facility since its arrival Aug. 12. WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane begins to lift the Wide Field Camera 3, or WFC3, from the base of the shipping container. The WFC3 will be transferred to a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Wide Field Camera 3, or WFC3, from the base of the shipping container. The WFC3 will be transferred to a work stand. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. WFC3 is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-08-16
CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicing Facility complete removal of the protective cover from the Wide Field Camera 3, or WFC3. The WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller
Study of a quasi-microscope design for planetary landers
NASA Technical Reports Server (NTRS)
Giat, O.; Brown, E. B.
1973-01-01
The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.
Nonmetallic materials contamination studies. [space telescope
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Beverlin, G.
1980-01-01
In order to impose adequate contamination control requirements in the selection of Wide Field Planetary Camera (WFPC) materials and to develop a data base of potential optical degradation of the WFPC charge-couple device window, the outgassing properties of WFPC materials and the collected volatile condensed material (CVCM) effects on MgF2 transmittance were measured. Changes in the transmittance were monitored in the wavelength region from 115 nm to 300 nm for selected CVCM thicknesses up to 150 nm. The outgassing properties of reemitted CVCM were also studied.
VizieR Online Data Catalog: HST photometry of stars in HD 97950 (Pang+, 2016)
NASA Astrophysics Data System (ADS)
Pang, X.; Pasquali, A.; Grebel, E. K.
2016-07-01
The HD97950 cluster and its immediate surroundings in the giant HII region NGC3603 were observed with the Hubble Space Telescope (HST). The ultraviolet (UV) data were taken with the High Resolution Channel (HRC) of the Advanced Camera for Surveys (ACS) in 2005 (GO 10602, PI: Jesus Maiz Apellaniz) through the F220W, F250W, F330W, and F435W filters. The HRC is characterized by a spatial resolution of 0.03"/pixel and a field of view of 29''*25''. The optical observations were carried out with the Wide Field and Planetary Camera 2 (WFPC2) in two epochs: 1997 (GO 6763, PI: Laurent Drissen) and 2007 (GO 11193, PI: Wolfgang Brandner) through the F555W, F675W, and F814W filters. The Planetary Camera (PC) chip was centered on the cluster (0.045"/pixel, 40''*40'') for both programs. Pang et al. 2013 (cat. J/ApJ/764/73) reduced the two-epoch WFPC2 data and identified more than 400 member stars on the PC chip via relative proper motions. Of these member stars, 142 are in common between the HRC and PC images and thus have UV and optical photometry available (see Table1). Among the HD97950 cluster member stars determined from relative proper motions (Pang et al. 2013, cat. J/ApJ/764/73, Table2), there are five main-sequence (MS) stars located in the cluster with projected distances of r<0.7pc from the center, for which there are also spectral types available from Table3 of Melena et al. (2008AJ....135..878M). The photometry of these five MS stars is presented in Table2. The individual color excesses and extinctions of the member main sequence stars are listed in Table3. (3 data files).
On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras
NASA Astrophysics Data System (ADS)
Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.
2017-11-01
PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.
HUBBLE'S PLANETARY NEBULA GALLERY
NASA Technical Reports Server (NTRS)
2002-01-01
[Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes each of the lobes to expand, much like a pair of balloons with internal heaters. This observation was taken Sept. 9, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. Hubble 5 is 2,200 light-years away in the constellation Sagittarius. Credits: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA [Bottom center ] - Like NGC 6826, NGC 7009 has a bright central star at the center of a dark cavity bounded by a football-shaped rim of dense, blue and red gas. The cavity and its rim are trapped inside smoothly-distributed greenish material in the shape of a barrel and comprised of the star's former outer layers. At larger distances, and lying along the long axis of the nebula, a pair of red 'ansae', or 'handles' appears. Each ansa is joined to the tips of the cavity by a long greenish jet of material. The handles are clouds of low-density gas. NGC 7009 is 1,400 light-years away in the constellation Aquarius. The Hubble telescope observation was taken April 28, 1996 by the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy), NASA [Bottom right ] - NGC 5307 also lies in Centaurus but is about 10,000 light-years away and has a diameter of approximately 0.6 light-year. It is an example of a planetary nebula with a pinwheel or spiral structure; each blob of gas ejected from the central star has a counterpart on the opposite side of the star. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA
BLUE STRAGGLERS IN GLOBULAR CLUSTER 47 TUCANAE
NASA Technical Reports Server (NTRS)
2002-01-01
The core of globular cluster 47 Tucanae is home to many blue stragglers, rejuvenated stars that glow with the blue light of young stars. A ground-based telescope image (on the left) shows the entire crowded core of 47 Tucanae, located 15,000 light-years away in the constellation Tucana. Peering into the heart of the globular cluster's bright core, the Hubble Space Telescope's Wide Field and Planetary Camera 2 separated the dense clump of stars into many individual stars (image on right). Some of these stars shine with the light of old stars; others with the blue light of blue stragglers. The yellow circles in the Hubble telescope image highlight several of the cluster's blue stragglers. Analysis for this observation centered on one massive blue straggler. Astronomers theorize that blue stragglers are formed either by the slow merger of stars in a double-star system or by the collision of two unrelated stars. For the blue straggler in 47 Tucanae, astronomers favor the slow merger scenario. This image is a 3-color composite of archival Hubble Wide Field and Planetary Camera 2 images in the ultraviolet (blue), blue (green), and violet (red) filters. Color tables were assigned and scaled so that the red giant stars appear orange, main-sequence stars are white/green, and blue stragglers are appropriately blue. The ultraviolet images were taken on Oct. 25, 1995, and the blue and violet images were taken on Sept. 1, 1995. Credit: Rex Saffer (Villanova University) and Dave Zurek (STScI), and NASA
Report of the facility definition team spacelab UV-Optical Telescope Facility
NASA Technical Reports Server (NTRS)
1975-01-01
Scientific requirements for the Spacelab Ultraviolet-Optical Telescope (SUOT) facility are presented. Specific programs involving high angular resolution imagery over wide fields, far ultraviolet spectroscopy, precisely calibrated spectrophotometry and spectropolarimetry over a wide wavelength range, and planetary studies, including high resolution synoptic imagery, are recommended. Specifications for the mounting configuration, instruments for the mounting configuration, instrument mounting system, optical parameters, and the pointing and stabilization system are presented. Concepts for the focal plane instruments are defined. The functional requirements of the direct imaging camera, far ultraviolet spectrograph, and the precisely calibrated spectrophotometer are detailed, and the planetary camera concept is outlined. Operational concepts described in detail are: the makeup and functions of shuttle payload crew, extravehicular activity requirements, telescope control and data management, payload operations control room, orbital constraints, and orbital interfaces (stabilization, maneuvering requirements and attitude control, contamination, utilities, and payload weight considerations).
NASA Astrophysics Data System (ADS)
Laubier, D.; Bodin, P.; Pasquier, H.; Fredon, S.; Levacher, P.; Vola, P.; Buey, T.; Bernardi, P.
2017-11-01
PLATO (PLAnetary Transits and Oscillation of stars) is a candidate for the M3 Medium-size mission of the ESA Cosmic Vision programme (2015-2025 period). It is aimed at Earth-size and Earth-mass planet detection in the habitable zone of bright stars and their characterisation using the transit method and the asterosismology of their host star. That means observing more than 100 000 stars brighter than magnitude 11, and more than 1 000 000 brighter than magnitude 13, with a long continuous observing time for 20 % of them (2 to 3 years). This yields a need for an unusually long term signal stability. For the brighter stars, the noise requirement is less than 34 ppm.hr-1/2, from a frequency of 40 mHz down to 20 μHz, including all sources of noise like for instance the motion of the star images on the detectors and frequency beatings. Those extremely tight requirements result in a payload consisting of 32 synchronised, high aperture, wide field of view cameras thermally regulated down to -80°C, whose data are combined to increase the signal to noise performances. They are split into 4 different subsets pointing at 4 directions to widen the total field of view; stars in the centre of that field of view are observed by all 32 cameras. 2 extra cameras are used with color filters and provide pointing measurement to the spacecraft Attitude and Orbit Control System (AOCS) loop. The satellite is orbiting the Sun at the L2 Lagrange point. This paper presents the optical, electronic and electrical, thermal and mechanical designs devised to achieve those requirements, and the results from breadboards developed for the optics, the focal plane, the power supply and video electronics.
NASA Technical Reports Server (NTRS)
Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.
2010-01-01
An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.
HUBBLE'S IMPROVED OPTICS REVEAL INCREDIBLE DETAIL IN GIANT CLOUD OF GAS AND DUS
NASA Technical Reports Server (NTRS)
2002-01-01
An image of a star-forming region in the 30 Doradus nebula, surrounding the dense star cluster R136. The image was obtained using the second generation Wide Field and Planetary Camera (WFPC-2), installed in the Hubble Space Telescope during the STS-61 Servicing Mission. The WFPC-2 contains modified optics to correct for the aberration of the Hubble's primary mirror. The new optics will allow the telescope to tackle many of the most important scientific programs for which the K was built, but had to be temporarily shelved with the discovery of the spherical aberration in 1990. The large picture shows a mosaic of the images taken with WFPC-2s four separate cameras. Three of the cameras, called the Wide Field Cameras, give HST Hs 'panoramic' view of astronomical objects. A fourth camera, called the Planetary Camera, has a smaller field of view but provides better spatial resolution. The image shows the fields of view of the four cameras combined into a 'chevron' shape, the hallmark of WFPC-2 data. The image shows a portion of a giant cloud of gas and dust in 30 Doradus, which is located in a small neighboring galaxy called the Large Magellanic Cloud about 160,000 light years away from us. The cloud is called an H II region because it is made up primarily of ionized hydrogen excited by ultraviolet light from hot stars. This is an especially interesting H II region because unlike nearby objects which are lit up by only a few stars, such as the Orion Nebula, 30 Doradus is the result of the combined efforts of hundreds of the brightest and most massive stars known. The inset shows a blowup of the star cluster, called R136. Even at the distance to 30 Doradus, WFPC-2's resolution allows objects as small as 25 light days across to be distinguished from their surroundings, revealing the effect of the hot stars on the surrounding gas in unprecedented detail. (For comparison, our solar system is about half a light day across, while the distance to the nearest star beyond the Sun is 4.3 light years.) Once thought to consist of a fairly small number of supermassive stars, R136 was resolved from the ground using 'speckle' techniques into a handful of central objects. Prior to the servicing mission, HST resolved R136 into several hundred stars. Now, preliminary analysis of the images obtained with the WFPC-2 shows that R136 consists of more than 3000 stars with brightness and colors that can be accurately measured. It is these measurements that will provide astronomers with new insights into how clouds of gas suddenly turn into large aggregations of stars. These insights will help astronomers understand how stars in our own Galaxy formed, as well as providing clues about how to interpret observations of distant galaxies which are still in the process of forming. For example, the new data show that at least in the case of R136, stars with masses less than that of our Sun were able to form as rapidly as very massive stars, qualifying this as a true starburst. PHOTO RELEASE NO.: STScI-PR94-04
NASA Technical Reports Server (NTRS)
1999-01-01
A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .
The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera. The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma. The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed. Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way out into space. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena. Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov.2015-08-07
This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Wide Field Camera 3, or WFC3, high above the floor for transfer to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician checks the pick-off mirror on the Wide Field Camera 3, or WFC3, that will be installed on NASA's Hubble Space Telescope. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to Hubble. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the placement of an overhead crane to the Wide Field Camera 3, or WFC3, that will transfer the WFC3 to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane moves the Wide Field Camera 3, or WFC3, from its stand. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Apai, Dániel; Schneider, Glenn H.; Marley, Mark S.; Showman, Adam P.
2016-02-01
Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of {10.7}-0.6+1.2 hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion.
Astrometry of the omega Centauri Hubble Space Telescope Calibration Field
NASA Technical Reports Server (NTRS)
Mighell, Kenneth J.
2000-01-01
Astrometry, on the International Celestial Reference Frame (epoch J2000.0), is presented for the Walker (1994, PASP, 106, 828) stars in the omega Centauri (=NGC 5139=C 1323-1472) Hubble Space Telescope Wide Field/Planetary Camera (WF/PC) calibration field of Harris et al. (1993, AJ, 105, 1196). Harris et al. stars were first identified on a WFPC2 observation of the omega Cen HST calibration field. Relative astrometry of the Walker stars in this field was then obtained using Walker's CCD positions and astrometry derived using the STSDAS METRIC task on the positions of the Harris et al. stars on the WFPC2 observation. Finally, the relative astrometry, which was based on the HST Guide Star Catalog, is placed on the International Celestial Reference Frame with astrometry from the USNO-A2.0 catalog. An ASCII text version of the astrometric data of the Walker stars in the omega Cen HST calibration field is available electronically in the online version of the article.
Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.
2018-04-01
It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.
NASA Technical Reports Server (NTRS)
2002-01-01
[TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects, astronomers hope to learn crucial details about the evolutionary history of planetary nebulae. The Hubble telescope observation was taken March 10, 1997. This picture is a composite of images taken with three filters that are representative of the true colors of the object. Two of these are, respectively, in the light of a red and a blue spectral line of hydrogen - the major constituent of the nebula. The third image is in the light of a luminous green line due to doubly ionized oxygen. NGC 6818 is about 6,000 light-years away in the constellation Sagittarius. The nebula has a diameter of about 0.5 light-years. Credits: Robert Rubin (NASA Ames Research Center), Reginald Dufour and Matt Browning (Rice University), Patrick Harrington (University of Maryland), and NASA
NASA Astrophysics Data System (ADS)
Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.
2013-10-01
The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.
HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar
NASA Technical Reports Server (NTRS)
Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.
1995-01-01
Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-01-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
Hubble Captures Detailed Image of Uranus' Atmosphere
NASA Technical Reports Server (NTRS)
1996-01-01
Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.
Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Astronaut Jeffrey Hoffman on RMS during third of five HST EVAs
1993-12-07
STS061-105-026 (7 Dec. 1993) --- Astronaut Jeffrey A. Hoffman signals directions to European Space Agency (ESA) astronaut Claude Nicollier, as the latter controls the Remote Manipulator System (RMS) arm during the third of five Extravehicular Activities (EVA) on the Hubble Space Telescope (HST) servicing mission. Astronauts Hoffman and F. Story Musgrave earlier changed out the Wide Field\\Planetary Camera (WF\\PC).
A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope
NASA Technical Reports Server (NTRS)
Davis, Jessica
2012-01-01
A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.
VizieR Online Data Catalog: HST and Magellan observations of Haumea system (Hastings+, 2016)
NASA Astrophysics Data System (ADS)
Hastings, D. M.; Ragozzine, D.; Fabrycky, D. C.; Burkhart, L. D.; Fuentes, C.; Margot, J.-L.; Brown, M. E.; Holman, M.
2017-01-01
The Hubble Space Telescope (HST) observations of the Haumea system comprised five HST orbits' worth of 100s exposures of the Wide Field Planetary Camera 2 from 2009 February 4 (Program 11971) and 10 HST orbits' worth of 44s exposures of the Wide Field Camera 3 from 2010 June 28 (Program 12243). This system was also observed on the night of UT 2009 June 2 with the Magellan Baade telescope at Las Campanas Observatory in Chile. We used the Raymond and Beverly Sackler Magellan Instant Camera (MagIC). Observations were taken from the beginning of the night until it was unobservable, for a total of ~5hr. We centered the system on one of the four quadrants defined by the instrument's four amplifiers. The seeing was constant during the observations and consistently close to 0.5'', smaller than Hi'iaka's separation of 1.4''. The SITe CCD detector has a pixel scale of 0.069''/pixel. We set the exposure times at 120s to avoid saturation and optimize readout time. The filter selected was Johnson-Cousins R. Standard calibrations were taken at the beginning and end of the night. The telescope guiding system ensured that the pointing was constant to within an FWHM over the course of the observations. Table1 presents the relative normalized photometry inferred from our observations. (1 data file).
HUBBLE'S NEW IMPROVED OPTICS PROBE THE CORE OF A DISTANT GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This comparison image of the core of the galaxy M100 shows the dramatic improvement in Hubble Space Telescope's view of the universe. The new image was taken with the second generation Wide Field and Planetary Camera (WFPC-2) which was installed during the STS-61 Hubble Servicing Mission. The picture beautifully demonstrates that the corrective optics incorporated within the WFPC-2 compensate fully for optical aberration in Hubble's primary mirror. The new camera will allow Hubble to probe the universe with unprecedented clarity and sensitivity, and to fulfill many of the most important scientific objectives for which the telescope was originally built. [ Right ] The core of the grand design spiral galaxy M100, as imaged by Hubble Space Telescope's Wide Field Planetary Camera 2 in its high resolution channel. The WFPC-2 contains modified optics that correct for Hubble's previously blurry vision, allowing the telescope for the first time to cleanly resolve faint structure as small as 30 light-years across in a galaxy which is tens of millions of light years away. The image was taken on December 31, 1993. [Left ] For comparison, a picture taken with the WFPC-1 camera in wide field mode, on November 27, 1993, just a few days prior to the STS-61 servicing mission. The effects of optical aberration in HST's 2.4-meter primary mirror blur starlight, smear out fine detail, and limit the telescope's ability to see faint structure. Both Hubble images are 'raw;' they have not been subject to computer image reconstruction techniques commonly used in aberrated images made before the servicing mission. TARGET INFORMATION: M100 The galaxy M100 (100th object in the Messier Catalog of non-stellar objects) is one of the brightest members of the Virgo Cluster of galaxies. The galaxy is in the spring constellation Coma Berenices and can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The galaxy has two prominent arms of bright stars and several fainter arms. Though the galaxy is estimated to be tens of millions of light-years away, Hubble reveals the sort of detail only seen previously (with ground based telescopes) in neighboring galaxies that are ten times closer. Before HST, astronomers could only see such a level of detail in roughly a dozen galaxies in our Local Group. Now, with Hubble's improved vision, the portion of the universe which can be studied with such clarity has grown a thousand fold. Only the future will tell what revelations await as Hubble's spectacular vision is applied to a host of fascinating and important questions about the universe and our place in it. PHOTO RELEASE NO.: STScI-PR94-01
NASA Astrophysics Data System (ADS)
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H. N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Le Gall, Alice; Michaels, Timothy I.; Neakrase, Lynn D. V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-03-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12-15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
The 2008 Passage of Jupiter's Great Red Spot and Oval BA as Observed from Hubble/WFPC2
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Chanover, N. J.; Orton, G. S.; Tsavaris, I.
2008-01-01
Hubble Space Telescope data of the passage of Jupiter's Great Red Spot (GRS) and Oval BA were acquired on May 15, June 28 (near closest approach), and July 8. Wind fields were measured from Wide Field Planetary Camera 2 (WFPC2) data with 10-hour separations before and after closest approach, and within the GRS with 40-minute separations on all three dates. Color information was also derived using 8 narrowband WFPC2 filters from 343 to 673-nm on all three dates. We will present the results of principal components and wind analyses and discuss unique features seen in this data set. In addition, we will highlight any changes observed in the GRS, Oval BA and their surroundings as a result of the passage, including the movement of a smaller red anticyclone from west of the GRS, around its southern periphery, and to the east of the GRS.
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technicians clean the radiator on the Wide Field Camera 3, or WFC3,that will be installed on NASA's Hubble Space Telescope. The radiator is the "outside" of WFC3 that will be exposed to space. It will expel heat out of Hubble and into space through black body radiation. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, waits to be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The part shown here is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA
LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)
NASA Technical Reports Server (NTRS)
1999-01-01
A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.
The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars. The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago. The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust. This mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and September 2000 by the Wide Field and Planetary Camera 2. Several color filters enhance important details in the stars and the nebula. Blue corresponds to the hot stars. The greenish color denotes hot gas energized by the central cluster of stars. Pink depicts the glowing edges of the gas and dust clouds facing the cluster, which are being bombarded by winds and radiation. Reddish-brown represents the cooler surfaces of the clouds, which are not receiving direct radiation from the central cluster. Additional information about the Hubble Space Telescope is at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror
NASA Technical Reports Server (NTRS)
McNamara, Karen M.; Hughes, D. W.; Lauer, H. V.; Burkett, P. J.; Reed, B. B.
2011-01-01
Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer.
NASA Technical Reports Server (NTRS)
Opiela, J. N.; Liou, J.-C.; Anz-Meador, P. D.
2010-01-01
Over a period of five weeks during the summer of 2009, personnel from the NASA's Orbital Debris Program Office and Meteoroid Environment Office performed a post-flight examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator. The objective was to record details about all micrometeoroid and orbital debris (MMOD) impact features with diameters of 300 micron and larger. The WFPC-2 was located in a clean room at NASA's Goddard Space Flight Center. Using a digital microscope, the team examined and recorded position, diameter, and depth information for each of 685 craters. Taking advantage of the digital microscope's data storage and analysis features, the actual measurements were extracted later from the recorded images, in an office environment at the Johnson Space Center. Measurements of the crater include depth and diameter. The depth was measured from the undisturbed paint surface to the deepest point within the crater. Where features penetrate into the metal, both the depth in metal and the paint thickness were measured. In anticipation of hypervelocity tests and simulations, several diameter measurements were taken: the spall area, the area of any bare metal, the area of any discolored ("burned") metal, and the lips of the central crater. In the largest craters, the diameter of the crater at the surface of the metal was also measured. The location of each crater was recorded at the time of inspection. This paper presents the methods and results of the crater measurement effort, including the size and spatial distributions of the impact features. This effort will be followed by taking the same measurements from hypervelocity impact targets simulating the WFPC-2 radiator. Both data sets, combined with hydrocode simulation, will help validate or improve the MMOD environment in low Earth orbit.
HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO
NASA Technical Reports Server (NTRS)
2002-01-01
This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science. Credit: John Spencer, Lowell Observatory; NASA
Perkinelmer Lamda 950 Measurements in Support of Nasa's Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Miller, Kevin H.; Quijada, Manuel A.
2014-01-01
We present visible spectroscopy measurements using the PerkinElmer Lambda 950 grating monochromator in support of two projects at NASA Goddard Space Flight Center. The first and primary project to be discussed is the Wide Field Planetary Camera 2 as an upgrade to the Hubble Space Telescope. Numerous optical filters were measured in the visible and near-infrared regions to experimentally vet the theoretical prediction upon which the filters were engineered. The second topic of our presentation will cover the measurement of SNAP prototype filters from three venders (ASAHI, BARR and JDSU) with applications towards NASAs the Joint Dark Energy Mission (JDEM).
Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO
NASA Astrophysics Data System (ADS)
Maund, J. R.; Fraser, M.; Smartt, S. J.; Botticella, M. T.; Barbarino, C.; Childress, M.; Gal-Yam, A.; Inserra, C.; Pignata, G.; Reichart, D.; Schmidt, B.; Sollerman, J.; Taddia, F.; Tomasella, L.; Valenti, S.; Yaron, O.
2013-04-01
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (<6 d). We derive a luminosity for the progenitor, in comparison with MARCS model spectral energy distributions, of log {L/L}_{⊙} = 5.15± 0.19, from which we infer an initial mass range of 14-22 M⊙. This is the first SN with an identified progenitor to be followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).
NASA Technical Reports Server (NTRS)
Woronow, A. (Editor)
1982-01-01
Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.
Experimental Verification of Bayesian Planet Detection Algorithms with a Shaped Pupil Coronagraph
NASA Astrophysics Data System (ADS)
Savransky, D.; Groff, T. D.; Kasdin, N. J.
2010-10-01
We evaluate the feasibility of applying Bayesian detection techniques to discovering exoplanets using high contrast laboratory data with simulated planetary signals. Background images are generated at the Princeton High Contrast Imaging Lab (HCIL), with a coronagraphic system utilizing a shaped pupil and two deformable mirrors (DMs) in series. Estimates of the electric field at the science camera are used to correct for quasi-static speckle and produce symmetric high contrast dark regions in the image plane. Planetary signals are added in software, or via a physical star-planet simulator which adds a second off-axis point source before the coronagraph with a beam recombiner, calibrated to a fixed contrast level relative to the source. We produce a variety of images, with varying integration times and simulated planetary brightness. We then apply automated detection algorithms such as matched filtering to attempt to extract the planetary signals. This allows us to evaluate the efficiency of these techniques in detecting planets in a high noise regime and eliminating false positives, as well as to test existing algorithms for calculating the required integration times for these techniques to be applicable.
The DECam Minute Cadence Survey
NASA Astrophysics Data System (ADS)
Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.
2017-03-01
We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.
Space Telescope maintenance and refurbishment
NASA Technical Reports Server (NTRS)
Trucks, H. F.
1983-01-01
The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.
Restoration of HST images with missing data
NASA Technical Reports Server (NTRS)
Adorf, Hans-Martin
1992-01-01
Missing data are a fairly common problem when restoring Hubble Space Telescope observations of extended sources. On Wide Field and Planetary Camera images cosmic ray hits and CCD hot spots are the prevalent causes of data losses, whereas on Faint Object Camera images data are lossed due to reseaux marks, blemishes, areas of saturation and the omnipresent frame edges. This contribution discusses a technique for 'filling in' missing data by statistical inference using information from the surrounding pixels. The major gain consists in minimizing adverse spill-over effects to the restoration in areas neighboring those where data are missing. When the mask delineating the support of 'missing data' is made dynamic, cosmic ray hits, etc. can be detected on the fly during restoration.
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians observe as the Wide Field Camera 3, or WFC3, is rotated. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at the back is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians observe as the Wide Field Camera 3, or WFC3, is rotated to vertical. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at top is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – After rotation of the Wide Field Camera 3 (background left), or WFC3, in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the data. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at top is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Wide Field Camera 3, or WFC3, has been rotated. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at top is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians wait for the rotation of the Wide Field Camera 3, or WFC3, in order to attach a crane. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The part shown here is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians wait for the rotation of the Wide Field Camera 3, or WFC3, in order to attach a crane. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at left is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians stand by as the Wide Field Camera 3, or WFC3, is rotated. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at left is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician cleans the edge of the radiator on the Wide Field Camera 3, or WFC3,that will be installed on NASA's Hubble Space Telescope. The radiator is the "outside" of WFC3 that will be exposed to space. It will expel heat out of Hubble and into space through black body radiation. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
2008-08-18
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician guides a crane for attachment to the radiator on the Wide Field Camera 3, or WFC3. The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier. WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The radiator is the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
2002-01-01
Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.
The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993. The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy. The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed. The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. Hubble is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
1999-01-01
A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.
The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars. Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars. Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away. The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov. The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.
2016-12-01
University International Formation Mission (UNIFORM) in Japan started in 2011 is an ambitious project that specialized to surveillance of small wildfire to contribute to provide fire information for initial suppression. Final aim of the mission is to construct a constellation with several 50 kg class satellites for frequent and exclusive observation. The uncooled micro-bolometer camera with 640 x 480 pixels based on commercial products has been newly developed for the first satellite. It has been successfully launched on 24 May 2014 and injected to the Sun-Synchronous orbit at local time of 12:00 with altitude of 628 km. The camera has been detected considerable hotspots not only wildfire but also volcanoes. Brightness temperature observed on orbit has been verified and scale of observed wildfire has been roughly presumed; the smallest wildfire ever detected has flame zone less than 2 x 103 m2. It is one tenth of initial requirement estimated in design process; our camera has enough ability to discover small wildfire and to provide beneficial information for fire control with low cost and quick fabrication; it would contribute to practical utility especially in developing nations. A next camera is available for new wildfire mission with satellite constellation; it has already developed for flight. Pixel arrays increasing to 1024 x 768, spatial resolution becomes fine to detect smaller wildfire whereas the swath of image is kept. This camera would be applied to the future planetary mission for Mars and Asteroid explore, too. When it observes planetary surface, thermal inertia can be estimated from continuous observation. When it observes atmosphere, cloud-top altitude can be estimated from horizontal temperature distribution.
Horizon Based Orientation Estimation for Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.
2016-01-01
Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.
NASA Technical Reports Server (NTRS)
Almeida, Eduardo DeBrito
2012-01-01
This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.
Algorithm for astronomical, point source, signal to noise ratio calculations
NASA Technical Reports Server (NTRS)
Jayroe, R. R.; Schroeder, D. J.
1984-01-01
An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.
Electrostatic camera system functional design study
NASA Technical Reports Server (NTRS)
Botticelli, R. A.; Cook, F. J.; Moore, R. F.
1972-01-01
A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.
Edge-on View of Saturn's Rings
NASA Technical Reports Server (NTRS)
1996-01-01
TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.
In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Hubble Space Telescope Resolves Volcanoes on Io
NASA Technical Reports Server (NTRS)
1994-01-01
This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.
Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/NASA Technical Reports Server (NTRS)
1999-01-01
A famous group of five compact galaxies featured in the holiday film classic 'It's a Wonderful Life' appears in a new image from NASA's Hubble Space Telescope.
In the movie, angelic figures take on the form of the galactic group called Stephan's Quintet. But the new pictures show the group has actually been doing some devilish things. At least two of its galaxies have been involved in high-speed, hit-and-run accidents, ripping stars and gas from neighboring galaxies and tossing them into space. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/22 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The close-up view of Stephan's Quintet reveals a string of bright star clusters sparkling like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers. The photo showcases three regions of star birth: the long, sweeping tail and spiral arms of the galaxy NGC 7319 (near center); the gaseous debris of two galaxies, NGC 7318B and NGC 7318A (top right); and the area north of those galaxies, dubbed the northern starburst region (top left). The clusters' bluish color indicates that they're relatively young -- between about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right. Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its neighbor. The partial galaxy on the far right is NGC 7320, a foreground galaxy not physically bound to the other galaxies in the picture. About 20 to 50 of the clusters in the northern starburst region reside far from the coziness of galaxies. The clusters were born about 150,000 light-years from the nearest galaxy. Another galaxy, NGC 7320C, which is no longer part of the group and is not seen in the photo, plowed through the quintet several hundred million years ago. It pulled out the long tail of gaseous debris from NGC 7319. The clusters in NGC 7319's streaming tail are 10 million to 500 million years old and may have formed at the time of the violent collision. The faint bluish object at the tip of the tail is a young dwarf galaxy, which formed in the gaseous debris. Stephan's Quintet is in the constellation Pegasus, 270 million light-years from Earth. The pictures in this mosaic were taken by the Wide Field Planetary Camera 2 on Dec. 30, 1998 and June 17, 1999. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.Overview of LBTI: A Multipurpose Facility for High Spatial Resolution Observations
NASA Technical Reports Server (NTRS)
Hinz, P. M.; Defrere, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.;
2016-01-01
The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2x8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 micrometer camera (called LMIRCam), and an 8-13 micrometer camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.
The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2
NASA Astrophysics Data System (ADS)
Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.
2017-07-01
The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations and those made by the in-situ measurements. The MasCam is mounted inside the lander slightly tilted, such that the center of its 54.8° square field-of-view is directed towards the surface at an angle of 22° with respect to the surface plane. This is to ensure that both the surface close to the lander and the horizon are observable. The camera optics is designed according to the Scheimpflug principle, thus that the entire scene along the camera's depth of field (150 mm to infinity) is in focus. The camera utilizes a 1024×1024 pixel CMOS sensor sensitive in the 400-1000 nm wavelength range, peaking at 600-700 nm. Together with the f-16 optics, this yields a nominal ground resolution of 150 micron/px at 150 mm distance (diffraction limited). The camera flight model has undergone standard radiometric and geometric calibration both at the component and system (lander) level. MasCam relies on the use of wavelet compression to maximize data return within stringent mission downlink limits. All calibration and flight data products will be generated and archived in the Planetary Data System in PDS image format.
Space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1979-01-01
The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.
NASA Astrophysics Data System (ADS)
Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.
2017-07-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.
HUBBLE FINDS NEW DARK SPOT ON NEPTUNE
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA
Sampling and Analysis of Impact Crater Residues found on the Wide Field Planetary Camera-2 Radiator
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.;
2013-01-01
After nearly 16 years on orbit, the Wide Field Planetary Camera-2 (WFPC-2) was recovered from the Hubble Space Telescope in May 2009 during the 12 day shuttle mission designated STS-125. During that exposure to the low Earth orbit environment, the WFPC-2 radiator was struck by approximately 700 impactors producing crater features 300 micrometers and larger in size. Following an optical inspection of these features in 2009, an agreement was reached for the joint NASA-ESA examination and characterization of crater residues, the remnants of the projectile, in 2011. Active examination began in 2012, with 486 of the impact features being cored at NASA Johnson Space Center fs (JSC) Space Exposed Hardware cleanroom and curation facility. The core samples were subsequently divided between NASA and ESA. NASA's analysis was conducted at JSC fs Astromaterials Research and Exploration Science (ARES) Division, using scanning electron microscopy (SEM)/ energy dispersive X-ray spectrometry (EDS) methods, and ESA's analysis was conducted at the Natural History Museum (NHM) again using SEM/EDS, and at the University of Surrey Ion Beam Centre (IBC) using ion beam analysis (IBA) with a scanned proton microbeam. As detailed discussion of the joint findings remains premature at this point, this paper reports on the coring technique developed; the practical taxonomy developed to classify residues as belonging either to anthropogenic "orbital debris" or micrometeoroids; and the protocols for examination of crater residues. Challenges addressed in coring were the relative thickness of the surface to be cut, protection of the impact feature from contamination while coring, and the need to preserve the cleanroom environment so as to preclude or minimize cross-contamination. Classification criteria are summarized, including the assessment of surface contamination and surface cleaning. Finally, we discuss the analytical techniques used to examine the crater residues. We employed EDS from either electron excitation (SEM-EDS) and, in a minority of cases for cores assessed as "difficult" targets, proton excitation (IBA). All samples were documented by electron imagery: backscattered electron imagery in the SEM, and where appropriate, secondary electron imagery during IBA.
NASA Astrophysics Data System (ADS)
Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.
2018-04-01
Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.
Automatic quality assessment of planetary images
NASA Astrophysics Data System (ADS)
Sidiropoulos, P.; Muller, J.-P.
2015-10-01
A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.
History of Hubble Space Telescope (HST)
1995-12-01
This deepest-ever view of the universe unveils myriad galaxies back to the begirning of time. Several hundred, never-before-seen, galaxies are visible in this view of the universe, called Hubble Deep Field (HDF). Besides the classical spiral and elliptical shaped galaxies, there is a bewildering variety of other galaxy shapes and colors that are important clues to understanding the evolution of the universe. Some of the galaxies may have formed less than one-billion years after the Big Bang. The image was assembled from many separate exposures with the Wide Field/Planetary Camera 2 (WF/PC2), for ten consecutive days between December 18, 1995 and December 28, 1995. This true-color view was assembled from separate images taken with blue, red, and infrared light. By combining these separate images into a single color picture, astronomers will be able to infer, at least statistically, the distance, age, and composition of galaxies in the field. Blue objects contain young stars and/or are relatively close, while redder objects contain older stellar populations and/or are farther away.
NASA Technical Reports Server (NTRS)
Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.
1992-01-01
Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.
Structural Safety of a Hubble Space Telescope Science Instrument
NASA Technical Reports Server (NTRS)
Lou, M. C.; Brent, D. N.
1993-01-01
This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.
New aspects relating to the behaviour of composites and adhesives in space
NASA Technical Reports Server (NTRS)
Carpenter, A.
1991-01-01
Some of the specialized testing procedures performed at the JPL Molecular Contamination Investigation Facility for the WideField Planetary Camera II (WFPC II) program for the screening of polymeric materials for outgassing properties are described. For WFPC II, a science performance goal of 1-percent photometric accuracy at 1470 A over an extended time (at least 30 days) has been established. Utilization of the newest technology using CCD detectors poses even more stringent requirements. Test results are presented, and data reduction and modeling techniques are discussed.
NASA Astrophysics Data System (ADS)
Perez-Hoyos, Santiago; Sanchez-Lavega, A.; Hueso, R.; Rojas, J. F.
2010-10-01
The Aula Espazio Gela is a facility at the School of Technical Engineering of the Universidad del Pais Vasco (Bilbao, Spain) dedicated to the education of undergarduated and gratuated students in the research and technology of space science activities. It also promotes the collaboration between the University and industrial spatial sector. One of the main elements of this facility is an astronomical observatory that is oriented to the activities of the students of the Master in Space Science and Technology. The main instrument is a 50 cm aperture Dall-Kirham telescope with equatorial mount completely robotized that includes different CCD cameras. Here we present some of the projects developed by graduate and under-graduate students in the field of the solar system. Explicitly we present some studies dedicated to the studies of planetary atmospheres and to acquire skills on the software management of planetary images. Aknowledgements: This project is supported by the Dpto. Innovación y Promoción Económica de la Diputación Foral de Bizkaia (Basque Country).
A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE
NASA Technical Reports Server (NTRS)
2002-01-01
This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)
The Stratospheric Observatory for Infrared Astronomy - A New Tool for Planetary Science
NASA Astrophysics Data System (ADS)
Ruzek, M. J.; Becklin, E.; Burgdorf, M. J.; Reach, W.
2010-12-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German effort to fly a 2.5 meter telescope on a modified Boeing 747SP aircraft at stratospheric altitudes where the atmosphere is largely transparent at infrared wavelengths. Key goals of the observatory include understanding the formation of stars and planets; the origin and evolution of the interstellar medium; the star formation history of galaxies; and planetary science. SOFIA offers the convenient accessibility of a ground-based observatory coupled with performance advantages of a space-based telescope. SOFIA’s scientific instruments can be exchanged regularly for repairs, to accommodate changing scientific requirements, and to incorporate new technologies. SOFIA’s portability will enable specialized observations of transient and location-specific events such as stellar occultations of Trans-Neptunian Objects. Unlike many spaceborne observatories, SOFIA can observe bright planets and moons directly, and can observe objects closer to the sun than Earth, e.g. comets in their most active phase, and the planet Venus. SOFIA’s first generation instruments cover the spectral range of .3 to 240 microns and have been designed with planetary science in mind. The High-speed Imaging Photometer for Occultations (HIPO) is designed to measure occultations of stars by Kuiper Belt Objects, with SOFIA flying into the predicted shadows and timing the occultation ingress and egress to determine the size of the occulting body. HIPO will also enable transit observations of extrasolar planets. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) and the High-resolution Airborne Wideband Camera (HAWC) will enable mid-infrared and far-infrared (respectively) imaging with a wide range of filters for comets and giant planets, and colorimetric observations of small, unresolved bodies to measure the spectral energy distribution of their thermal emission. The German Receiver for Astronomy at Terahertz Frequencies (GREAT) will measure far-infrared and microwave spectral lines at km/s resolution to search for molecular species and achieve a significant improvement over current knowledge of abundance and distribution of water in planetary bodies. The Echelon Cross Echelle Spectrograph (EXES) and the Field Imaging Far Infrared Line Spectrometer (FIFI LS) will provide high-resolution spectral data between 5 and 210 microns to support mineralogical analysis of solar system and extrasolar debris disk dust and observe spectral features in planetary atmospheres. The First Light Infrared Test Experiment Camera (FLITECAM) will offer imaging and moderate resolution spectroscopy at wavelengths between 1 and 5 microns for observations of comets and asteroids, and can be used simultaneously with HIPO to characterize the atmosphere of transiting exoplanets. SOFIA’s first light flight occurred in May, 2010 and the first short science observing program is scheduled to begin in November, 2010. The Program will issue a call for new instrumentation proposals in the summer of 2011, as well as regular calls for observing proposals beginning in late summer 2011. SOFIA is expected to make ~120 science mission flights each year when fully operational in 2014.
NASA Astrophysics Data System (ADS)
Traxler, Christoph; Ortner, Thomas; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard
2017-04-01
High resolution Digital Terrain Models (DTM) and Digital Outcrop Models (DOM) are highly useful for geological analysis and mission planning in planetary rover missions. PRo3D, developed as part of the EU-FP7 PRoViDE project, is a 3D viewer in which orbital DTMs and DOMs derived from rover stereo imagery can be rendered in a virtual environment for exploration and analysis. It allows fluent navigation over planetary surface models and provides a variety of measurement and annotation tools to complete an extensive geological interpretation. A key aspect of the image collection during planetary rover missions is determining the optimal viewing positions of rover instruments from different positions ('wide baseline stereo'). For the collection of high quality panoramas and stereo imagery the visibility of regions of interest from those positions, and the amount of common features shared by each stereo-pair, or image bundle is crucial. The creation of a highly accurate and reliable 3D surface, in the form of an Ordered Point Cloud (OPC), of the planetary surface, with a low rate of error and a minimum of artefacts, is greatly enhanced by using images that share a high amount of features and a sufficient overlap for wide baseline stereo or target selection. To support users in the selection of adequate viewpoints an interactive View Planner was integrated into PRo3D. The users choose from a set of different rovers and their respective instruments. PRo3D supports for instance the PanCam instrument of ESA's ExoMars 2020 rover mission or the Mastcam-Z camera of NASA's Mars2020 mission. The View Planner uses a DTM obtained from orbiter imagery, which can also be complemented with rover-derived DOMs as the mission progresses. The selected rover is placed onto a position on the terrain - interactively or using the current rover pose as known from the mission. The rover's base polygon and its local coordinate axes, and the chosen instrument's up- and forward vectors are visualised. The parameters of the instrument's pan and tilt unit (PTU) can be altered via the user interface, or alternatively calculated by selecting a target point on the visualised DTM. In the 3D view, the visible region of the planetary surface, resulting from these settings and the camera field-of-view is visualised by a highlighted region with a red border, representing the instruments footprint. The camera view is simulated and rendered in a separate window and PTU parameters can be interactively adjusted, allowing viewpoints, directions, and the expected image to be visualised in real-time in order to allow users the fine-tuning of these settings. In this way, ideal viewpoints and PTU settings for various rover models and instruments can efficiently be defined, resulting in an optimum imagery of the regions of interest.
Planetary Surface Instruments Workshop
NASA Technical Reports Server (NTRS)
Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)
1996-01-01
This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.
The Very Low Mass Component of the Gliese 105 System
NASA Astrophysics Data System (ADS)
Golimowski, David A.; Henry, Todd J.; Krist, John E.; Schroeder, Daniel J.; Marcy, Geoffrey W.; Fischer, Debra A.; Butler, R. Paul
2000-10-01
Multiple-epoch, multicolor images of the astrometric binary Gliese 105A and its very low mass companion Gliese 105C have been obtained using the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2) and near-infrared camera and multiobject spectrometer (NICMOS). The optical and near-infrared colors of Gl 105C strongly suggest a spectral type of M7 V for that star. Relative astrometric measurements spanning 3 yr reveal the first evidence of Gl 105C's orbital motion. Previous long-term astrometric studies at Sproul and McCormick Observatories have shown that the period of Gl 105A's perturbation is ~60 yr. To satisfy both the observed orbital motion and Gl 105A's astrometric period, Gl 105C's orbit must have an eccentricity of ~0.75 and a semimajor axis of ~15 AU. Measurements of Gl 105A's radial velocity over 12 yr show a linear trend with a slope of 11.3 m s-1 yr-1, which is consistent with these orbital constraints and a nearly face-on orbit. As no other faint companions to Gl 105A have been detected, we conclude that Gl 105C is probably the source of the 60 yr astrometric perturbation.
NASA Astrophysics Data System (ADS)
McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.
2010-01-01
In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.
Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer
NASA Technical Reports Server (NTRS)
Wattson, R. B.; Rappaport, S.
1977-01-01
An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.
2002-04-01
This picture of the galaxy UGC 10214 was was taken by the Advanced Camera for Surveys (ACS), which was installed aboard the Hubble Space Telescope (HST) in March 2002 during HST Servicing Mission 3B (STS-109 mission). Dubbed the "Tadpole," this spiral galaxy is unlike the textbook images of stately galaxies. Its distorted shape was caused by a small interloper, a very blue, compact galaxy visible in the upper left corner of the more massive Tadpole. The Tadpole resides about 420 million light-years away in the constellation Draco. Seen shining through the Tadpole's disk, the tiny intruder is likely a hit-and-run galaxy that is now leaving the scene of the accident. Strong gravitational forces from the interaction created the long tail of debris, consisting of stars and gas that stretch our more than 280,000 light-years. The galactic carnage and torrent of star birth are playing out against a spectacular backdrop: a "wallpaper pattern" of 6,000 galaxies. These galaxies represent twice the number of those discovered in the legendary Hubble Deep Field, the orbiting observatory's "deepest" view of the heavens, taken in 1995 by the Wide Field and planetary camera 2. The ACS picture, however, was taken in one-twelfth of the time it took to observe the original HST Deep Field. In blue light, ACS sees even fainter objects than were seen in the "deep field." The galaxies in the ACS picture, like those in the deep field, stretch back to nearly the begirning of time. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.
The Mass Function of Young Star Clusters in the "Antennae" Galaxies.
Zhang; Fall
1999-12-20
We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.
Planetary camera observations of the double nucleus of M31
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Faber, S. M.; Groth, Edward J.; Shaya, Edward J.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Baum, William A.; Ewald, S. P.; Hester, J. J.
1993-01-01
HST Planetary Camera images obtained in the V and I band for M31 show its inner nucleus to consist of two components that are separated by 0.49 arcsec. The nuclear component with lower surface brightness closely coincides with the bulge photocenter and is argued to be at the kinematic center of the galaxy. It is surmised that, if dust absorption generates the asymmetric nuclear morphology observed, the dust grain size must either be exceptionally large, or the dust optical depth must be extremely high; the higher surface-brightness and off-center nuclear component may alternatively be a separate stellar system.
Extended Structures of Planetary Nebulae Detected in H2 Emission
NASA Astrophysics Data System (ADS)
Fang, Xuan; Zhang, Yong; Kwok, Sun; Hsia, Chih-Hao; Chau, Wayne; Ramos-Larios, Gerardo; Guerrero, Martín A.
2018-06-01
We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
M Dwarfs from Hubble Space Telescope Star Counts. IV.
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir
2001-07-01
We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
1999-12-01
A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://hubblesite.org/newscenter/archive/releases/2001/21/image/a/. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars. The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago. The stars in R136 produce intense "stellar winds," streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust. This mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and September 2000 by the Wide Field and Planetary Camera 2. Several color filters enhance important details in the stars and the nebula. Blue corresponds to the hot stars. The greenish color denotes hot gas energized by the central cluster of stars. Pink depicts the glowing edges of the gas and dust clouds facing the cluster, which are being bombarded by winds and radiation. Reddish-brown represents the cooler surfaces of the clouds, which are not receiving direct radiation from the central cluster. http://photojournal.jpl.nasa.gov/catalog/PIA04200
Robot Manipulator Technologies for Planetary Exploration
NASA Technical Reports Server (NTRS)
Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.
1999-01-01
NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.
NASA Technical Reports Server (NTRS)
Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel
1990-01-01
Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.
The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions
NASA Astrophysics Data System (ADS)
Mirabito, M. M.
The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic, ground-based antennas on the earth (the Deep Space Network) to receive signals from spacecraft travelling farther than 16,000 km into space. The image processing and enhancement techniques used to convert spacecraft data transmissions into black and white and color photographs are described, together with the technological requirements that drove the development of the various systems. Terrestrial applications of the planetary imaging systems are explored, including medical and educational uses. Finally, the implementation and functional characteristics of CCDs are detailed, noting their installation on the Space Telescope.
A Wide-Angle Camera for the Mobile Asteroid Surface Scout (MASCOT) on Hayabusa-2
NASA Astrophysics Data System (ADS)
Schmitz, N.; Koncz, A.; Jaumann, R.; Hoffmann, H.; Jobs, D.; Kachlicki, J.; Michaelis, H.; Mottola, S.; Pforte, B.; Schroeder, S.; Terzer, R.; Trauthan, F.; Tschentscher, M.; Weisse, S.; Ho, T.-M.; Biele, J.; Ulamec, S.; Broll, B.; Kruselburger, A.; Perez-Prieto, L.
2014-04-01
JAXA's Hayabusa-2 mission, an asteroid sample return mission, is scheduled for launch in December 2014, for a rendezvous with the C-type asteroid 1999 JU3 in 2018. MASCOT, the Mobile Asteroid Surface Scout [1], is a small lander, designed to deliver ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context for the returned samples.MASCOT's main objective is to investigate the landing site's geomorphology, the internal structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface. MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyper-spectral microscope. The camera (MASCOT CAM) was designed and built by DLR's Institute of Planetary Research, together with Airbus DS Germany.
NASA Technical Reports Server (NTRS)
1994-01-01
This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.
HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE
NASA Technical Reports Server (NTRS)
2002-01-01
Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA
The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.
1991-01-01
A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.
VizieR Online Data Catalog: Astrometric monitoring of ultracool dwarf binaries (Dupuy+, 2017)
NASA Astrophysics Data System (ADS)
Dupuy, T. J.; Liu, M. C.
2017-09-01
In Table 1 we list all 33 binaries in our Keck+CFHT astrometric monitoring sample, along with three other binaries that have published orbit and parallax measurements. We began obtaining resolved Keck AO astrometry in 2007-2008, and we combined our new astrometry with available data in the literature or public archives (e.g., HST and Gemini) to refine our orbital period estimates and thereby our prioritization for Keck observations. We present here new Keck/NIRC2 AO imaging and non-redundant aperture-masking observations, in addition to a re-analysis of our own previously published data and publicly available archival data for our sample binaries. Table 2 gives our measured astrometry and flux ratios for all Keck AO data used in our orbital analysis spanning 2003 Apr 15 to 2016 May 13. In total there are 339 distinct measurements (unique bandpass and epoch for a given target), where 302 of these are direct imaging and 37 are non-redundant aperture masking. Eight of the imaging measurements are from six unpublished archival data sets. See section 3.1.1 for further details. In addition to our Keck AO monitoring, we also obtained data for three T dwarf binaries over a three-year HST program using the Advanced Camera for Surveys (ACS) Wide Field Camera (WFC) in the F814W bandpass. See section 3.1.2 for further details. Many of our sample binaries have HST imaging data in the public archive. We have re-analyzed the available archival data coming from the WFPC2 Planetary Camera (WFPC2-PC1), ACS High Resolution Channel (ACS-HRC), and NICMOS Camera 1 (NICMOS-NIC1). See section 3.1.3 for further details. We present here an updated analysis of our data from the Hawaii Infrared Parallax Program that uses the CFHT facility infrared camera WIRCam. Our observing strategy and custom astrometry pipeline are described in detail in Dupuy & Liu (2012, J/ApJS/201/19). See section 3.2 for further explanations. (10 data files).
History of Hubble Space Telescope (HST)
1996-01-16
Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of "etchings" in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.
Orbital Debris Quarterly News, Volume 13, No. 3
NASA Technical Reports Server (NTRS)
Liou, J.-C. (Editor); Shoots, Debi (Editor)
2009-01-01
This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.
UVMAS: Venus ultraviolet-visual mapping spectrometer
NASA Astrophysics Data System (ADS)
Bellucci, G.; Zasova, L.; Altieri, F.; Nuccilli, F.; Ignatiev, N.; Moroz, V.; Khatuntsev, I.; Korablev, O.; Rodin, A.
This paper summarizes the capabilities and technical solutions of an Ultraviolet Visual Mapping Spectrometer designed for remote sensing of Venus from a planetary orbiter. The UVMAS consists of a multichannel camera with a spectral range 0.19 << 0.49 μm which acquires data in several spectral channels (up to 400) with a spectral resolution of 0.58 nm. The instantaneous field of view of the instrument is 0.244 × 0.244 mrad. These characteristics allow: a) to study the upper clouds dynamics and chemistry; b) giving constraints on the unknown absorber; c) observation of the night side airglow.
Planetary Science with Balloon-Borne Telescopes
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot
2015-01-01
The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.
WFPC2 Science Capability Report
NASA Astrophysics Data System (ADS)
Brown, David I.
2001-01-01
In the following pages, a brief outline of the salient science features of Wide Field/Planetary Camera 2 (WFPC2) that impact the proposal writing process and conceptual planning of observations is presented. At the time of writing, WFPC2, while having been better defined than in the past, is far from being at the stage where science and engineering details are well enough known that concrete observational/operational sequences can be plannned with assurance. Conceptual issues are another matter. The thrust of the Science Capability Report at this time is to outline the known performance parameters and capabilities of WFPC2, filling in with specifications when necessary to hold a place for these items as they become known. Also, primary scientific and operational differences between WFPC 1 and 2 are discussed section-by-section, along with issues that remain to be determined and idiosyncrasies when known. Clearly the determination of the latter awaits some form of testing, most likely thermal/vacuum testing. All data in this report should be viewed with a jaundiced eye at this time.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
The Colorful Demise of a Sun-like Star
NASA Technical Reports Server (NTRS)
2007-01-01
This image, taken by NASA's Hubble Space Telescope, shows the colorful 'last hurrah' of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our Sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers named them planetary nebulae because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of nearly 400,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bow tie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The image was taken Feb. 6, 2007 with Hubble's Wide Field Planetary Camera 2. The colors correspond to material expelled by the star. Blue corresponds to helium; blue-green to oxygen; and red to nitrogen and hydrogen.Panchromatic Hubble Andromeda Treasury. IX. A photometric survey of planetary nebulae in M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veyette, Mark J.; Williams, Benjamin F.; Dalcanton, Julianne J.
We search the Hubble Space Telescope (HST) Advanced Camera for Surveys and Wide Field Camera 3 broadband imaging data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey to identify detections of cataloged planetary nebulae (PNs). Of the 711 PNs currently in the literature within the PHAT footprint, we find 467 detected in the broadband. For these 467, we are able to refine their astrometric accuracy from ∼0.''3 to 0.''05. Using the resolution of the HST, we are able to show that 152 objects currently in the catalogs are definitively not PNs, and we show that 32 objects thought to bemore » extended in ground-based images are actually point-like and therefore good PN candidates. We also find one PN candidate that is marginally resolved. If this is a PN, it is up to 0.7 pc in diameter. With our new photometric data, we develop a method of measuring the level of excitation in individual PNs by comparing broadband and narrowband imaging and describe the effects of excitation on a PN's photometric signature. Using the photometric properties of the known PNs in the PHAT catalogs, we search for more PNs, but do not find any new candidates, suggesting that ground-based emission-line surveys are complete in the PHAT footprint to F475W ≅ 24.« less
HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA
NASA Technical Reports Server (NTRS)
2002-01-01
This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA
Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.
2017-01-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration
STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027
NASA Technical Reports Server (NTRS)
2002-01-01
The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an elongated region of gas and dust cast off by the star. This gas (appearing as white) has a temperature of several tens of thousands of degrees Fahrenheit. The object has two 'cones' of cool molecular hydrogen gas (the red material) glowing in the infrared. The gas has been energized by ultraviolet light from the star - a process known as fluorescence. Most of the material shed by the star remains outside of the bright regions. It is invisible in this image because the layers of material in and near the bright regions are still shielding it from the central star's intense radiation. NGC 7027 is one of the smallest objects of its kind to be imaged by the Hubble telescope. However, the region seen here is approximately 14,000 times the average distance between Earth and the sun. THE INFRARED AND VISIBLE LIGHT VIEW -- This visible and infrared light picture of NGC 7027 (on the right) provides a more complete view of how this planetary nebula is being shaped, revealing steps in its evolution. This image is composed of three exposures, one from the Wide Field and Planetary Camera 2 (WFPC2) and two from NICMOS. The blue represents the WFPC2 image; the green and red, NICMOS exposures. The white is emission from the hot gas surrounding the central star; the red and pink represent emission from cool molecular hydrogen gas. In effect, the colors represent the three layers in the material ejected by the dying star. Each layer depicts a change in temperature, beginning with a hot, bright central region, continuing with a thin boundary zone where molecular hydrogen gas is glowing and being destroyed, and ending with a cool, blue outer region of molecular gas and dust. NICMOS has allowed astronomers to clearly see the transition layer from hot, glowing atomic gas to cold molecular gas. The origin of the newly seen filamentary structures is not yet understood. The transition region is clearly seen as the pink- and red-colored cool molecular hydrogen gas. An understanding of the atomic and chemical processes taking place in this transition region are of importance to other areas of astronomy as well, including star formation regions. WFPC2 is best used to study the hot, glowing gas, which is the bright, oval-shaped region surrounding the central star. With WFPC2 we also see material beyond this core with light from the central star that is reflecting off dust in the cold gas surrounding the nebula. Combining exposures from the two cameras allows astronomers to clearly see the way the nebula is being shaped by winds and radiation. This information will help astronomers understand the complexities of stellar evolution. NGC 7027 is located about 3,000 light-years from the sun in the direction of the constellation Cygnus the Swan. Credits: William B. Latter (SIRTF Science Center/Caltech) and NASA Other team investigators are: J. L. Hora (Smithsonian Astrophysical Observatory), J. H. Bieging (Steward Observatory), D. M. Kelly (University of Wyoming), A. Dayal (JPL/Caltech), A.G.G.M. Tielens (University of Groningen), and S. Trammell (University of North Carolina at Charlotte).
Hubble Sees Material Ejected From Comet Hale-Bopp
NASA Technical Reports Server (NTRS)
1995-01-01
These NASA Hubble Space Telescope pictures of comet Hale-Bopp show a remarkable 'pinwheel' pattern and a blob of free-flying debris near the nucleus. The bright clump of light along the spiral (above the nucleus, which is near the center of the frame) may be a piece of the comet's icy crust that was ejected into space by a combination of ice evaporation and the comet's rotation, and which then disintegrated into a bright cloud of particles.
Although the 'blob' is about 3.5 times fainter than the brightest portion at the nucleus, the lump appears brighter because it covers a larger area. The debris follows a spiral pattern outward because the solid nucleus is rotating like a lawn sprinkler, completing a single rotation about once per week.Ground-based observations conducted over the past two months have documented at least two separate episodes of jet and pinwheel formation and fading. By coincidence, the first Hubble images of Hale-Bopp, taken on September 26, 1995, immediately followed one of these outbursts and allow researchers to examine it at unprecedented detail. For the first time they see a clear separation between the nucleus and some of the debris being shed. By putting together information from the Hubble images and those taken during the recent outburst using the 82 cm telescope of the Teide Observatory (Tenerife, Canary Islands, Spain), astronomers find that the debris is moving away from the nucleus at a speed (projected on the sky) of about 68 miles per hour (109 kilometers per hour).The Hubble observations will be used to determine if Hale-Bopp is really a giant comet or rather a more moderate-sized object whose current activity is driven by outgassing from a very volatile ice which will 'burn out' over the next year. Comet Hale-Bopp was discovered on July 23, 1995 by amateur astronomers Alan Hale and Thomas Bopp. Though this comet is still well outside the orbit of Jupiter (almost 600 million miles, or one billion kilometers from Earth) it looks surprisingly bright, fueling predictions that it could become the brightest comet of the century in early 1997.The full-field picture on the left, taken with the Wide Field Planetary Camera 2 (in WF mode), shows the comet against a stellar backdrop in the constellation Sagittarius. The stars are streaked due to a combination of Hubble's orbital motion and its tracking of the nucleus, which is now falling toward the Sun at 33,800 miles per hour (54,000 km/hr). In the close-up picture on the right, the stars have been subtracted through image processing. Each picture element is nearly 300 miles (480 km) across at the comet's distance. In this false color scale the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red.Even more detailed Hubble images will be taken with the Planetary Camera in late October to follow the further evolution of the spiral, look for more outbursts, place limits on the size of the nucleus, and use spectroscopy to study the enigmatic comet's chemical composition.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Planetary Surface Instruments Workshop
NASA Astrophysics Data System (ADS)
Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,
1996-01-01
This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)
HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED
NASA Technical Reports Server (NTRS)
2002-01-01
BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of Astronomy, Cambridge, UK) Credits for ground-based picture: N.A. Sharp (Association of Universities for Research in Astronomy, National Optical Astronomy Observatories, National Science Foundation)
2017-12-08
This shot from the NASA/ESA Hubble Space Telescope shows a maelstrom of glowing gas and dark dust within one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC). This stormy scene shows a stellar nursery known as N159, an HII region over 150 light-years across. N159 contains many hot young stars. These stars are emitting intense ultraviolet light, which causes nearby hydrogen gas to glow, and torrential stellar winds, which are carving out ridges, arcs, and filaments from the surrounding material. At the heart of this cosmic cloud lies the Papillon Nebula, a butterfly-shaped region of nebulosity. This small, dense object is classified as a High-Excitation Blob, and is thought to be tightly linked to the early stages of massive star formation. N159 is located over 160,000 light-years away. It resides just south of the Tarantula Nebula (heic1402), another massive star-forming complex within the LMC. This image comes from Hubble’s Advanced Camera for Surveys. The region was previously imaged by Hubble’s Wide Field Planetary Camera 2, which also resolved the Papillon Nebula for the first time. Credit: ESA/Hubble & NASA
Field Test of the ExoMars Panoramic Camera in the High Arctic - First Results and Lessons Learned
NASA Astrophysics Data System (ADS)
Schmitz, N.; Barnes, D.; Coates, A.; Griffiths, A.; Hauber, E.; Jaumann, R.; Michaelis, H.; Mosebach, H.; Paar, G.; Reissaus, P.; Trauthan, F.
2009-04-01
The ExoMars mission as the first element of the ESA Aurora program is scheduled to be launched to Mars in 2016. Part of the Pasteur Exobiology Payload onboard the ExoMars rover is a Panoramic Camera System (‘PanCam') being designed to obtain high-resolution color and wide-angle multi-spectral stereoscopic panoramic images from the mast of the ExoMars rover. The PanCam instrument consists of two wide-angle cameras (WACs), which will provide multispectral stereo images with 34° field-of-view (FOV) and a High-Resolution RGB Channel (HRC) to provide close-up images with 5° field-of-view. For field testing of the PanCam breadboard in a representative environment the ExoMars PanCam team joined the 6th Arctic Mars Analogue Svalbard Expedition (AMASE) 2008. The expedition took place from 4-17 August 2008 in the Svalbard archipelago, Norway, which is considered to be an excellent site, analogue to ancient Mars. 31 scientists and engineers involved in Mars Exploration (among them the ExoMars WISDOM, MIMA and Raman-LIBS team as well as several NASA MSL teams) combined their knowledge, instruments and techniques to study the geology, geophysics, biosignatures, and life forms that can be found in volcanic complexes, warm springs, subsurface ice, and sedimentary deposits. This work has been carried out by using instruments, a rover (NASA's CliffBot), and techniques that will/may be used in future planetary missions, thereby providing the capability to simulate a full mission environment in a Mars analogue terrain. Besides demonstrating PanCam's general functionality in a field environment, test and verification of the interpretability of PanCam data for in-situ geological context determination and scientific target selection was a main objective. To process the collected data, a first version of the preliminary PanCam 3D reconstruction processing & visualization chain was used. Other objectives included to test and refine the operational scenario (based on ExoMars Rover Reference Surface Mission), to investigate data commonalities and data fusion potential w.r.t. other instruments, and to collect representative image data to evaluate various influences, such as viewing distance, surface structure, and availability of structures at "infinity" (e.g. resolution, focus quality and associated accuracy of the 3D reconstruction). Airborne images with the HRSC-AX camera (airborne camera with heritage from the Mars Express High Resolution Stereo Camera HRSC), collected during a flight campaign over Svalbard in June 2008, provided large-scale geological context information for all field sites.
KINEMATICS OF THE ORION TRAPEZIUM BASED ON DIFFRACTO-ASTROMETRY AND HISTORICAL DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivares, J.; Sánchez, L. J.; Ruelas-Mayorga, A.
2013-11-01
Using the novel Diffracto-Astrometry technique, we analyze 44 Hubble Space Telescope Wide Field Planetary Camera 2 images of the Orion Trapezium (OT) taken over a span of 12 yr (1995-2007). We measure the relative positions of the six brighter OT components (A-F) and supplement these results with measurements of the relative separations and position angles taken from the literature, thus extending our analysis time base to ∼200 yr. For every pair of components we find the relative rate of separation as well as the temporal rate of change of their position angles, which enable us to determine the relative kinematicsmore » of the system. Component E shows a velocity larger than the OT's escape velocity, thus confirming that it is escaping from the gravitational pull of this system.« less
NASA Hubble Sees Sparring Antennae Galaxies
2013-11-15
The NASA/ESA Hubble Space Telescope has snapped the best ever image of the Antennae Galaxies. Hubble has released images of these stunning galaxies twice before, once using observations from its Wide Field and Planetary Camera 2 (WFPC2) in 1997, and again in 2006 from the Advanced Camera for Surveys (ACS). Each of Hubble’s images of the Antennae Galaxies has been better than the last, due to upgrades made during the famous servicing missions, the last of which took place in 2009. The galaxies — also known as NGC 4038 and NGC 4039 — are locked in a deadly embrace. Once normal, sedate spiral galaxies like the Milky Way, the pair have spent the past few hundred million years sparring with one another. This clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. In wide-field images of the pair the reason for their name becomes clear — far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae. This new image of the Antennae Galaxies shows obvious signs of chaos. Clouds of gas are seen in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. The rate of star formation is so high that the Antennae Galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever and neither can the separate galaxies; eventually the nuclei will coalesce, and the galaxies will begin their retirement together as one large elliptical galaxy. This image uses visible and near-infrared observations from Hubble’s Wide Field Camera 3 (WFC3), along with some of the previously-released observations from Hubble’s Advanced Camera for Surveys (ACS). Credit: NASA/European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The KELT-North Transit Survey's First Planetary Detections
NASA Astrophysics Data System (ADS)
Beatty, Thomas G.; Bieryla, A.; Cohen, D.; Collins, K.; Eastman, J.; Fulton, B. J.; Gary, B.; Gaudi, B. S.; Hebb, L.; Jensen, E. L. N.; Latham, D. W.; Manner, M.; Pepper, J.; Siverd, R.; Stassun, K.; Street, R. A.
2012-05-01
I will present the first planetary detections from the KELT-North transit survey. KELT-North is a 42mm robotic camera system at Winer Observatory in Arizona, and survey operations are based out of the Ohio State and Vanderbilt Universities. The KELT-North survey fields are 26 by 26 degrees, and are arranged in a contiguous strip around the sky centered at a declination of +30 degrees. The small aperture and wide field of view of the telescope enables KELT-North to effectively survey some of the brightest stars in the Northern sky for transiting planets. Our focus is on planet candidates around stars between 8 < V < 10. These bright systems are of prime scientific interest, since they provide the best follow-up opportunities from the ground and space. We have been collecting science data since 2006, and actively vetting planet candidates since the spring of 2011. Over the past winter we recorded our first detections of sub-stellar companions. I will briefly discuss KELT-North survey operations before describing the results from our observations of these intriguing systems. We are grateful to the observers and the support staff at the FLWO 60- and 48-inch telescopes. This work was supported by NSF CAREER grant AST-1056524.
NASA Astrophysics Data System (ADS)
Karachevtseva, I. P.; Kozlova, N. A.; Kokhanov, A. A.; Zubarev, A. E.; Nadezhdina, I. E.; Patratiy, V. D.; Konopikhin, A. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Oberst, J.; Haase, I.; Jolliff, B. L.; Plescia, J. B.; Robinson, M. S.
2017-02-01
The Lunar Reconnaissance Orbiter Camera (LROC) system consists of a Wide Angle Camera (WAC) and Narrow Angle Camera (NAC). NAC images (∼0.5 to 1.7 m/pixel) reveal details of the Luna-21 landing site and Lunokhod-2 traverse area. We derived a Digital Elevation Model (DEM) and an orthomosaic for the study region using photogrammetric stereo processing techniques with NAC images. The DEM and mosaic allowed us to analyze the topography and morphology of the landing site area and to map the Lunokhod-2 rover route. The total range of topographic elevation along the traverse was found to be less than 144 m; and the rover encountered slopes of up to 20°. With the orthomosaic tied to the lunar reference frame, we derived coordinates of the Lunokhod-2 landing module and overnight stop points. We identified the exact rover route by following its tracks and determined its total length as 39.16 km, more than was estimated during the mission (37 km), which until recently was a distance record for planetary robotic rovers held for more than 40 years.
LBT observations of the HR8799 planetary system
NASA Astrophysics Data System (ADS)
Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.
2013-09-01
We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.
NASA Technical Reports Server (NTRS)
Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Casertano, S.; Im, M.; Wyckoff, E. W.; Ellis, R. S.; Gilmore, G. F.; Elson, R. A. W.; Glazebrook, K.
1994-01-01
We present results from the Medium Deep Survey (MDS), a Key Project using the Hubble Space Telescope (HST). Wide Field Camera (WFC) images of random fields have been taken in 'parallel mode' with an effective resolution of 0.2 sec full width at half maximum (FWHM) in the V(F555W) and I(F785LP) filters. The exposures presented here were targeted on a field away from 3C 273, and resulted in approximately 5 hr integration time in each filter. Detailed morphological structure is seen in galaxy images with total integrated magnitudes down to V approximately = 22.5 and I approximately = 21.5. Parameters are estimated that best fit the observed galaxy images, and 143 objects are identified (including 23 stars) in the field to a fainter limiting magnitude of I approximately = 23.5. We outline the extragalactic goals of the HST Medium Deep Survey, summarize our basic data reduction procedures, and present number (magnitude) counts, a color-magnitude diagram for the field, surface brightness profiles for the brighter galaxies, and best-fit half-light radii for the fainter galaxies as a function of apparent magnitude. A median galaxy half-light radius of 0.4 sec is measured, and the distribution of galaxy sizes versus magnitude is presented. We observe an apparent deficit of galaxies with half-light radii between approximately 0.6 sec and 1.5 sec, with respect to standard no-evolution or mild evolution cosmological models. An apparent excess of compact objects (half-light radii approximately 0.1 sec) is also observed with respect to those models. Finally, we find a small excess in the number of faint galaxy pairs and groups with respect to a random low-redshift field sample.
The Canadian space agency planetary analogue materials suite
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher
2015-12-01
The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.; Boslough, Mark B.; Ginn, Warren G.; Vassiliou, Mario S.; Lange, Manfred A.; Watt, J. Peter; Kondo, Ken-Ichi; Svendsen, Robert F.; Rigden, Sally M.; Stolper, Edward M.
1982-04-01
Shock wave and experimental impact phenomena research on geological and planetary materials is being carried out using two propellant (18 and 40 mm) guns (up to 2.5 km/sec) and a two-stage light gas gun (up to 7 km/sec). Equation of state measurements on samples initially at room temperture and at low and high temperatures are being conducted using the 40 mm propellant apparatus in conjunction with Helmholtz coils, and radiative detectors and, in the case of the light gas gun, with streak cameras. The 18 mm propellant gun is used for recovery experiments on minerals, impact on cryogenic targets, and radiative post-shock temperature measurements.
High-resolution optical imaging of the core of the globular cluster M15 with FastCam
NASA Astrophysics Data System (ADS)
Díaz-Sánchez, Anastasio; Pérez-Garrido, Antonio; Villó, Isidro; Rebolo, Rafael; Pérez-Prieto, Jorge A.; Oscoz, Alejandro; Hildebrandt, Sergi R.; López, Roberto; Rodríguez, Luis F.
2012-07-01
We present high-resolution I -band imaging of the core of the globular cluster M15 obtained at the 2.5-m Nordic Optical Telescope with FastCam, a low readout noise L3CCD-based instrument. Short exposure times (30 ms) were used to record 200 000 images (512 × 512 pixels each) over a period of 2 h and 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with full width at half-maximum ˜0.1 arcsec and 13 × 13 arcsec 2 field of view. We obtained a catalogue of objects in this region with a limiting magnitude of I = 19.5. I -band photometry and astrometry are reported for 1181 stars. This is the deepest I -band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects have been reported using Hubble Space Telescope (HST )/Wide Field Planetary Camera observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new blue straggler star candidates and previously known stars of this class.
Hubble's Best Image of Alpha Centauri A and B
2017-12-08
The closest star system to the Earth is the famous Alpha Centauri group. Located in the constellation of Centaurus (The Centaur), at a distance of 4.3 light-years, this system is made up of the binary formed by the stars Alpha Centauri A and Alpha Centauri B, plus the faint red dwarf Alpha Centauri C, also known as Proxima Centauri. This NASA/ESA Hubble Space Telescope has given us this stunning view of the bright Alpha Centauri A (on the left) and Alpha Centauri B (on the right), shining like huge cosmic headlamps in the dark. The image was captured by the Wide-Field and Planetary Camera 2 (WFPC2). WFPC2 was Hubble’s most used instrument for the first 13 years of the space telescope’s life, being replaced in 2009 by Wide-Field Camera 3 (WFC3) during Servicing Mission 4. This portrait of Alpha Centauri was produced by observations carried out at optical and near-infrared wavelengths. Compared to the sun, Alpha Centauri A is of the same stellar type, G2, and slightly bigger, while Alpha Centauri B, a K1-type star, is slightly smaller. They orbit a common center of gravity once every 80 years, with a minimum distance of about 11 times the distance between Earth and the sun. Because these two stars are, together with their sibling Proxima Centauri, the closest to Earth, they are among the best studied by astronomers. And they are also among the prime targets in the hunt for habitable exoplanets. Using the European Space Organization's HARPS instrument, astronomers already discovered a planet orbiting Alpha Centauri B. Then on Aug. 24, 2016, astronomers announced the intriguing discovery of a nearly Earth-sized planet in the habitable zone orbiting the star Proxima Centauri Image credit: ESA/NASA
Photogrammetric application of viking orbital photography
Wu, S.S.C.; Elassal, A.A.; Jordan, R.; Schafer, F.J.
1982-01-01
Special techniques are described for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras precludes compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experiment Data Record (SEDR-the record of spacecraft orientation when photographs were taken) and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new methods using a wide variety of Viking Orbiter photographs, to provide the planetary research community with topographic information. ?? 1982.
Hubble Sees Pinwheel of Star Birth
2017-12-08
NASA image release October 19, 2010 Though the universe is chock full of spiral-shaped galaxies, no two look exactly the same. This face-on spiral galaxy, called NGC 3982, is striking for its rich tapestry of star birth, along with its winding arms. The arms are lined with pink star-forming regions of glowing hydrogen, newborn blue star clusters, and obscuring dust lanes that provide the raw material for future generations of stars. The bright nucleus is home to an older population of stars, which grow ever more densely packed toward the center. NGC 3982 is located about 68 million light-years away in the constellation Ursa Major. The galaxy spans about 30,000 light-years, one-third of the size of our Milky Way galaxy. This color image is composed of exposures taken by the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), the Advanced Camera for Surveys (ACS), and the Wide Field Camera 3 (WFC3). The observations were taken between March 2000 and August 2009. The rich color range comes from the fact that the galaxy was photographed invisible and near-infrared light. Also used was a filter that isolates hydrogen emission that emanates from bright star-forming regions dotting the spiral arms. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: A. Riess (STScI) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
Observation of Planetary Motion Using a Digital Camera
ERIC Educational Resources Information Center
Meyn, Jan-Peter
2008-01-01
A digital SLR camera with a standard lens (50 mm focal length, f/1.4) on a fixed tripod is used to obtain photographs of the sky which contain stars up to 8[superscript m] apparent magnitude. The angle of view is large enough to ensure visual identification of the photograph with a large sky region in a stellar map. The resolution is sufficient to…
Hubble Provides Clear Images of Saturn's Aurora
NASA Technical Reports Server (NTRS)
1998-01-01
This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope in October 1997, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than ten times the sensitivity of previous Hubble instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles and rise more than a thousand miles above the cloud tops.
Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earths aurora that is occasionally seen in the nighttime sky and similar to the phenomenon that causes fluorescent lamps to glow. But unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earths surface, hence the aurora can only be observed from space. New Hubble images reveal ripples and overall patterns that evolve slowly, appearing generally fixed in our view and independent of planet rotation. At the same time, the curtains show local brightening that often follow the rotation of the planet and exhibit rapid variations on time scales of minutes. These variations and regularities indicate that the aurora is primarily shaped and powered by a continual tug-of-war between Saturn's magnetic field and the flow of charged particles from the Sun.Study of the aurora on Saturn had its beginnings just seventeen years ago. The Pioneer 11 spacecraft observed a far-ultraviolet brightening on Saturn's poles in 1979. The Saturn flybys of the Voyager 1 and 2 spacecraft in the early 1980s provided a basic description of the aurora and mapped for the first time planets enormous magnetic field that guides energetic electrons into the atmosphere near the north and south poles.The first images of Saturn's aurora were provided in 1994-5 by the Hubble Space Telescopes Wide Field and Planetary Camera (WFPC2). Much greater ultraviolet sensitivity of the new STIS instrument allows the workings of Saturn's magnetosphere and upper atmosphere to be studied in much greater detail. These Hubble aurora investigations provide a framework that will ultimately complement the in situ measurements of Saturn's magnetic field and charged particles by NASA/ ESA's Cassini spacecraft, now en route to its rendezvous with Saturn early in the next decade.Two STIS imaging modes have been used to discriminate between ultraviolet emissions predominantly from hydrogen atoms (shown in red) and emissions due to molecular hydrogen (shown in blue). Hence the bright red aurora features are dominated by atomic hydrogen, while the white traces within them map the more tightly confined regions of molecular hydrogen emissions. The southern aurora is seen at lower right, the northern at upper left.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/2015-02-10
In the center of this image, taken with the NASA/ESA Hubble Space Telescope, is the galaxy cluster SDSS J1038+4849 — and it seems to be smiling. You can make out its two orange eyes and white button nose. In the case of this “happy face”, the two eyes are very bright galaxies and the misleading smile lines are actually arcs caused by an effect known as strong gravitational lensing. Galaxy clusters are the most massive structures in the Universe and exert such a powerful gravitational pull that they warp the spacetime around them and act as cosmic lenses which can magnify, distort and bend the light behind them. This phenomenon, crucial to many of Hubble’s discoveries, can be explained by Einstein’s theory of general relativity. In this special case of gravitational lensing, a ring — known as an Einstein Ring — is produced from this bending of light, a consequence of the exact and symmetrical alignment of the source, lens and observer and resulting in the ring-like structure we see here. Hubble has provided astronomers with the tools to probe these massive galaxies and model their lensing effects, allowing us to peer further into the early Universe than ever before. This object was studied by Hubble’s Wide Field and Planetary Camera 2 (WFPC2) and Wide Field Camera 3 (WFC3) as part of a survey of strong lenses. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt. Image Credit: NASA/ESA
NASA Astrophysics Data System (ADS)
Bechis, K.; Pitruzzello, A.
2014-09-01
This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera operation is that the target must be within the near-field (Fraunhofer distance) of the collecting optics. For example, in visible light the near-field of a 1-m telescope extends out to about 3,500 km, while the near-field of the AEOS telescope extends out over 46,000 km. For our initial proof of concept, we have integrated our light field camera with a 14-inch Meade LX600 advanced coma-free telescope, to image various surrogate ground targets at up to tens of kilometers range. Our experiments with the 14-inch telescope have assessed factors and requirements that are traceable and scalable to a larger-aperture system that would have the near-field distance needed to obtain 3D images of LEO objects. The next step would be to integrate a light field camera with a 1-m or larger telescope and evaluate its 3D imaging capability against LEO objects. 3D imaging of LEO space objects with light field camera technology can potentially provide a valuable new tool for space situational awareness, especially for those situations where laser or radar illumination of the target objects is not feasible.
Edgett, Kenneth S.; Caplinger, Michael A.; Maki, Justin N.; Ravine, Michael A.; Ghaemi, F. Tony; McNair, Sean; Herkenhoff, Kenneth E.; Duston, Brian M.; Wilson, Reg G.; Yingst, R. Aileen; Kennedy, Megan R.; Minitti, Michelle E.; Sengstacken, Aaron J.; Supulver, Kimberley D.; Lipkaman, Leslie J.; Krezoski, Gillian M.; McBride, Marie J.; Jones, Tessa L.; Nixon, Brian E.; Van Beek, Jason K.; Krysak, Daniel J.; Kirk, Randolph L.
2015-01-01
MAHLI (Mars Hand Lens Imager) is a 2-megapixel, Bayer pattern color CCD camera with a macro lens mounted on a rotatable turret at the end of the 2-meters-long robotic arm aboard the Mars Science Laboratory rover, Curiosity. The camera includes white and longwave ultraviolet LEDs to illuminate targets at night. Onboard data processing services include focus stack merging and data compression. Here we report on the results and status of MAHLI characterization and calibration, covering the pre-launch period from August 2008 through the early months of the extended surface mission through February 2015. Since landing in Gale crater in August 2012, MAHLI has been used for a wide range of science and engineering applications, including distinction among a variety of mafic, siliciclastic sedimentary rocks; investigation of grain-scale rock, regolith, and eolian sediment textures and structures; imaging of the landscape; inspection and monitoring of rover and science instrument hardware concerns; and supporting geologic sample selection, extraction, analysis, delivery, and documentation. The camera has a dust cover and focus mechanism actuated by a single stepper motor. The transparent cover was coated with a thin film of dust during landing, thus MAHLI is usually operated with the cover open. The camera focuses over a range from a working distance of 2.04 cm to infinity; the highest resolution images are at 13.9 µm per pixel; images acquired from 6.9 cm show features at the same scale as the Mars Exploration Rover Microscopic Imagers at 31 µm/pixel; and 100 µm/pixel is achieved at a working distance of ~26.5 cm. The very highest resolution images returned from Mars permit distinction of high contrast silt grains in the 30–40 µm size range. MAHLI has performed well; the images need no calibration in order to achieve most of the investigation’s science and engineering goals. The positioning and repeatability of robotic arm placement of the MAHLI camera head have been excellent on Mars, often with the hardware arriving within millimeters of expectation. Stability while imaging is usually such that the images are sharply focused; some exceptions—thought to result from motion induced by wind—have occurred during longer exposure LED-illuminated night imaging. Image calibration includes relative radiometric correction by removal of dark current and application of a flat field. Dark current is negligible to minor for typical daytime exposure durations and temperatures at the Gale field site. A pre-launch flat field product is usually applied to the data but new products created from images acquired by MAHLI of the Martian sky are superior and can provide a relative radiometric accuracy of ~6%. The camera lens imparts negligible distortion to its images; camera models derived from pre-launch data, with CAHV and CAHVOR parameters captured in their archived labels, can be applied to the images for analysis. MAHLI data and derived products, including pre-launch images, are archived with the NASA Planetary Data System (PDS). This report includes supplementary calibration and characterization data that are not available in the PDS archive (see supplement file MAHLITechRept0001_Supplement.zip).
A Substantial Plume of Escaping Planetary Ions in the MSE Northern Hemisphere Observed by MAVEN
NASA Astrophysics Data System (ADS)
Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Curry, S.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.
2015-12-01
The Mars-solar wind interaction accelerates and transports planetary ions away from Mars through a number of processes, including pick-up by the electromagnetic fields. The Mars Atmospheric and Volatile EvolutioN (MAVEN) spacecraft has frequently detected strong escaping planetary ion fluxes in both tailward and upstream solar wind motional electric field directions since the beginning of its science phase in November 2014. Our statistical study using three-month MAVEN data from November 2014 through February 2015 illustrates a substantial plume-like escaping planetary ion population organized by the upstream electric field with strong fluxes widely distributed in the northern hemisphere of the Mars-Sun-Electric-field (MSE) coordinate system, which is generally consistent with model predictions. The plume constitutes an important planetary ion escape channel from the Martian atmosphere in addition to the tailward escape. The >25eV O+ escape rate through the plume is estimated to be ~35% of the tailward escape and ~25% of the total escape. We will compare the dynamics of the plume and tailward escaping ions based on their velocity-space distributions with respect to the electromagnetic fields. We will also discuss the variations of the plume characteristics between different ion species (O+, O2+, and CO2+) and from the effect of different solar wind and interplanetary magnetic field (IMF) conditions.
Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera
NASA Technical Reports Server (NTRS)
Grosso, R. P.; Mccarthy, D. J.
1976-01-01
The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes.
2017-12-08
Image released 11 Aug 2011. The "Necklace Nebula" is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red). The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles wide, dotted with dense, bright knots of gas that resemble diamonds in a necklace. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku; Morse, Jon A.
2014-04-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Technical Reports Server (NTRS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku
2012-01-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5- meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micrometer photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPOFLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
Hubble Space Telescope Image: Planetary Nebula IC 4406
NASA Technical Reports Server (NTRS)
2001-01-01
This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
HST image restoration: A comparison of pre- and post-servicing mission results
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; Mo, J.
1992-01-01
A variety of image restoration techniques (e.g., Wiener filter, Lucy-Richardson, MEM) have been applied quite successfully to the aberrated HST images. The HST servicing mission (scheduled for late 1993 or early 1994) will install a corrective optics system (COSTAR) for the Faint Object Camera and spectrographs and replace the Wide Field/Planetary Camera with a second generation instrument (WF/PC-II) having its own corrective elements. The image quality is expected to be improved substantially with these new instruments. What then is the role of image restoration for the HST in the long term? Through a series of numerical experiments using model point-spread functions for both aberrated and unaberrated optics, we find that substantial improvements in image resolution can be obtained for post-servicing mission data using the same or similar algorithms as being employed now to correct aberrated images. Included in our investigations are studies of the photometric integrity of the restoration algorithms and explicit models for HST pointing errors (spacecraft jitter).
Statis omnidirectional stereoscopic display system
NASA Astrophysics Data System (ADS)
Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.
1999-11-01
A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.
HUBBLE VIEWS THE GALILEO PROBE ENTRY SITE ON JUPITER
NASA Technical Reports Server (NTRS)
2002-01-01
[left] - This Hubble Space Telescope image of Jupiter was taken on Oct. 5, 1995, when the giant planet was at a distance of 534 million miles (854 million kilometers) from Earth. The arrow points to the predicted site at which the Galileo Probe will enter Jupiter's atmosphere on December 7, 1995. At this latitude, the eastward winds have speeds of about 250 miles per hour (110 meters per second). The white oval to the north of the probe site drifts westward at 13 miles per hour (6 meters per second), rolling in the winds which increase sharply toward the equator. The Jupiter image was obtained with the high resolution mode of Hubble's Wide Field Planetary Camera 2 (WFPC2). Because the disk of the planet is larger than the field of view of the camera, image processing was used to combine overlapping images from three consecutive orbits to produce this full disk view of the planet. [right] - These four enlarged Hubble images of Jupiter's equatorial region show clouds sweeping across the predicted Galileo probe entry site, which is at the exact center of each frame (a small white dot has been inserted at the centered at the predicted entry site). The first image (upper left quadrant) was obtained with the WFPC2 on Oct. 4, 1995 at (18 hours UT). The second, third and fourth images (from upper right to lower right) were obtained 10, 20 and 60 hours later, respectively. The maps extend +/- 15 degrees in latitude and longitude. The distance across one of the images is about three Earth diameters (37,433 kilometers). During the intervening time between the first and fourth maps, the winds have swept the clouds 15,000 miles (24,000 kilometers) eastward. Credit: Reta Beebe (New Mexico State University), and NASA
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; de Bilbao, L.; Murga, G.; Ariño, J.; Mendikoa, I.
2012-10-01
PlanetCam is a two-channel fast-acquisition and low-noise camera designed for a multispectral study of the atmospheres of the planets (Venus, Mars, Jupiter, Saturn, Uranus and Neptune) and the satellite Titan at high temporal and spatial resolutions simultaneously invisible (0.4-1 μm) and NIR (1-2.5 μm) channels. This is accomplished by means of a dichroic beam splitter that separates both beams directing them into two different detectors. Each detector has filter wheels corresponding to the characteristic absorption bands of each planetary atmosphere. Images are acquired and processed using the “lucky imaging” technique in which several thousand images of the same object are obtained in a short time interval, coregistered and ordered in terms of image quality to reconstruct a high-resolution ideally diffraction limited image of the object. Those images will be also calibrated in terms of intensity and absolute reflectivity. The camera will be tested at the 50.2 cm telescope of the Aula EspaZio Gela (Bilbao) and then commissioned at the 1.05 m at Pic-duMidi Observatory (Franca) and at the 1.23 m telescope at Calar Alto Observatory in Spain. Among the initially planned research targets are: (1) The vertical structure of the clouds and hazes in the planets and their scales of variability; (2) The meteorology, dynamics and global winds and their scales of variability in the planets. PlanetCam is also expected to perform studies of other Solar System and astrophysical objects. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.
The HRSC on Mars Express: Mert Davies' Involvement in a Novel Planetary Cartography Experiment
NASA Astrophysics Data System (ADS)
Oberst, J.; Waehlisch, M.; Giese, B.; Scholten, F.; Hoffmann, H.; Jaumann, R.; Neukum, G.
2002-12-01
Mert Davies was a team member of the HRSC (High Resolution Stereo Camera) imaging experiment (PI: Gerhard Neukum) on ESA's Mars Express mission. This pushbroom camera is equipped with 9 forward- and backward-looking CCD lines, 5184 samples each, mounted in parallel, perpendicular to the spacecraft velocity vector. Flight image data with resolutions of up to 10m/pix (from an altitude of 250 km) will be acquired line by line as the spacecraft moves. This acquisition strategy will result in 9 separate almost completely overlapping image strips, each of them having more than 27,000 image lines, typically. [HRSC is also equipped with a superresolution channel for imaging of selected targets at up to 2.3 m/pixel]. The combined operation of the nadir and off-nadir CCD lines (+18.9°, 0°, -18.9°) gives HRSC a triple-stereo capability for precision mapping of surface topography and for modelling of spacecraft orbit- and camera pointing errors. The goals of the camera are to obtain accurate control point networks, Digital Elevation Models (DEMs) in Mars-fixed coordinates, and color orthoimages at global (100% of the surface will be covered with resolutions better than 30m/pixel) and local scales. With his long experience in all aspects of planetary geodesy and cartography, Mert Davies was involved in the preparations of this novel Mars imaging experiment which included: (a) development of a ground data system for the analysis of triple-stereo images, (b) camera testing during airborne imaging campaigns, (c) re-analysis of the Mars control point network, and generation of global topographic orthoimage maps on the basis of MOC images and MOLA data, (d) definition of the quadrangle scheme for a new topographic image map series 1:200K, (e) simulation of synthetic HRSC imaging sequences and their photogrammetric analysis. Mars Express is scheduled for launch in May of 2003. We miss Mert very much!
NICMOS PEERS INTO HEART OF DYING STAR
NASA Technical Reports Server (NTRS)
2002-01-01
The Egg Nebula, also known as CRL 2688, is shown on the left as it appears in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) and on the right as it appears in infrared light with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Since infrared light is invisible to humans, the NICMOS image has been assigned colors to distinguish different wavelengths: blue corresponds to starlight reflected by dust particles, and red corresponds to heat radiation emitted by hot molecular hydrogen. Objects like the Egg Nebula are helping astronomers understand how stars like our Sun expel carbon and nitrogen -- elements crucial for life -- into space. Studies on the Egg Nebula show that these dying stars eject matter at high speeds along a preferred axis and may even have multiple jet-like outflows. The signature of the collision between this fast-moving material and the slower outflowing shells is the glow of hydrogen molecules captured in the NICMOS image. The distance between the tip of each jet is approximately 200 times the diameter of our solar system (out to Pluto's orbit). Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider, Dean Hines (University of Arizona); Raghvendra Sahai (Jet Propulsion Laboratory); NICMOS Instrument Definition Team; and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.
Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A
NASA Technical Reports Server (NTRS)
Litvak, M. M.
1991-01-01
Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.
Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Greenberg, Adam H.
2017-10-01
In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.
We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenchedmore » by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).« less
Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.
NASA Technical Reports Server (NTRS)
1996-01-01
This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.
The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Hubble Space Telescope observations of Europa in and out of eclipse
Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.
2010-01-01
Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.
A Mars Rover Mission Simulation on Kilauea Volcano
NASA Technical Reports Server (NTRS)
Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.
NASA Astrophysics Data System (ADS)
Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert
2013-05-01
Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).
NASA Technical Reports Server (NTRS)
Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert
2013-01-01
Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).
Resolution of massive compact clusters in the 30 Doradus periphery with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Mackenty, John W.; Saha, Abhijit; White, Richard L.; Parker, Joel WM.
1995-01-01
Hubble Space Telescope Wide Field/Planetary Camera UBV images of three massive, compact multiple systems with the SNR 30 Dor B/NGC 2060 and 30 Dor C/NGC 2044 are discussed and illustrated. In two cases, WN+OB objects have been resolved into additional components to those previously known from ground-based observations, substantially reducing the luminosities of the WN stars and rendering them currently unidentified; in the third case, the components of a B+K composite-spectrum object have been clearly identified. The results are of significance for evolutionary interpretations of these massive stars and for determinations of the upper IMF in extragalactic systems.
Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration
NASA Astrophysics Data System (ADS)
Barnes, D. P.
2007-08-01
Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study network, and constitute the science targets for our autonomous sample acquisition work. Our PAT Lab. terrain has been designed to support our new rover chassis which is based upon the ExoMars rover Concept-E mechanics which were investigated during the ESA ExoMars Phase A study. The rover has 6 wheel drives, 6 wheels steering, and a 6 wheel walking capability. Mounted on the rover chassis is the UWA robotic arm and mast. We have designed and built a PanCam system complete with a computer controlled pan and tilt mechanism. The UWA PanCam is based upon the ExoMars PanCam (Phase A study) and hence supports two Wide Angle Cameras (WAC - 64 degree FOV), and a High Resolution Camera (HRC - 5 degree FOV). WAC separation is 500 mm. Software has been developed to capture images which form the data input into our on-board autonomous surface sample acquisition algorithms.
Abstracts for the Planetary Geology Field Conference on Aeolian Processes
NASA Technical Reports Server (NTRS)
Greeley, R. (Editor); Black, D. (Editor)
1978-01-01
The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.
NASA Technical Reports Server (NTRS)
2002-01-01
THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl.nasa.gov or Dr. Arsen R. Hajian, United States Naval Observatory, 3450 Massachusetts Ave, NW, Washington, DC 20392-5420, (phone) 202-762-1087, (fax) 202-762-1514, (e-mail) hajian.arsen@usno.navy.mil or Dr. Keith Noll, Space Telescope Science Institute, Baltimore, MD 21218, (phone) 410-338-1828, (fax) 410-338-4579, (e-mail) noll@stsci.edu. Electronic image files are available on the Internet at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2000/28 and via links in http://oposite.stsci.edu/pubinfo/latest.html http://oposite.stsci.edu/pubinfo/pictures.html and http://hubble.stsci.edu/go/news To receive STScI press releases electronically, send an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank. In the body of the message (not the subject line) type the word 'subscribe' (don't use quotes). The system will respond with a confirmation of the subscription, and you will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to public-request@stsci.edu. Leave the subject line blank. Type 'unsubscribe' (don't use quotes) in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.
Two-Camera Acquisition and Tracking of a Flying Target
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Assad, Christopher; Kovalik, Joseph M.; Pain, Bedabrata; Wrigley, Chris J.; Twiss, Peter
2008-01-01
A method and apparatus have been developed to solve the problem of automated acquisition and tracking, from a location on the ground, of a luminous moving target in the sky. The method involves the use of two electronic cameras: (1) a stationary camera having a wide field of view, positioned and oriented to image the entire sky; and (2) a camera that has a much narrower field of view (a few degrees wide) and is mounted on a two-axis gimbal. The wide-field-of-view stationary camera is used to initially identify the target against the background sky. So that the approximate position of the target can be determined, pixel locations on the image-detector plane in the stationary camera are calibrated with respect to azimuth and elevation. The approximate target position is used to initially aim the gimballed narrow-field-of-view camera in the approximate direction of the target. Next, the narrow-field-of view camera locks onto the target image, and thereafter the gimbals are actuated as needed to maintain lock and thereby track the target with precision greater than that attainable by use of the stationary camera.
Relating transverse ray error and light fields in plenoptic camera images
NASA Astrophysics Data System (ADS)
Schwiegerling, Jim; Tyo, J. Scott
2013-09-01
Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. The camera image is focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The resultant image is an array of circular exit pupil images, each corresponding to the overlying lenslet. The position of the lenslet encodes the spatial information of the scene, whereas as the sensor pixels encode the angular information for light incident on the lenslet. The 4D light field is therefore described by the 2D spatial information and 2D angular information captured by the plenoptic camera. In aberration theory, the transverse ray error relates the pupil coordinates of a given ray to its deviation from the ideal image point in the image plane and is consequently a 4D function as well. We demonstrate a technique for modifying the traditional transverse ray error equations to recover the 4D light field of a general scene. In the case of a well corrected optical system, this light field is easily related to the depth of various objects in the scene. Finally, the effects of sampling with both the lenslet array and the camera sensor on the 4D light field data are analyzed to illustrate the limitations of such systems.
NASA Astrophysics Data System (ADS)
Jing, Z.; Chantel, J.; Yu, T.; Sakamaki, T.; Wang, Y.
2015-12-01
Liquid iron is likely the dominant constituent in the cores of terrestrial planets and icy satellites such as Earth, Mars, Mercury, the Moon, Ganymede, and Io. Suggested by geophysical and geochemical observations, light elements such as S, C, Si, etc., are likely present in planetary cores. These light elements can significantly reduce the density and melting temperature of the Fe cores, and hence their abundances are crucial to our understanding of the structure and thermal history of planetary cores, as well as the generation of intrinsic magnetic fields. Knowledge on the density of Fe-light element alloying liquids at high pressures is critical to place constraints on the composition of planetary cores. However, density data on liquid Fe-light element alloys at core pressures are very limited in pressure and composition and are sometimes controversial. In this study, we extend the density dataset for Fe-rich liquids by measuring the density of Fe, Fe-10wt%S, Fe-20wt%S, Fe-27wt%S, and FeS liquids using the X-ray absorption technique in a DIA-type multianvil apparatus up to 7 GPa and 2173 K. An ion chamber (1D-detector) and a CCD camera (2D-detector) were used to measure intensities of transmitted monochromatic X-rays through molten samples, with the photon energy optimized at 40 keV. The densities were then determined from the Beer-Lambert law using the mass absorption coefficients, calibrated by solid standards using X-ray diffraction. At each pressure, density measurements were conducted at a range of temperatures above the liquidus of the samples, enabling the determination of thermal expansion. Combined with our previous results on the sound velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), these data provide tight constraints on the equation of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-S liquids. We will discuss these results with implications to planetary cores.
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Feibelman, Walter A.
1993-01-01
UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.
NASA Astrophysics Data System (ADS)
Suri, Veenu; Meyer, Michael; Greenbaum, Alexandra Z.; Bell, Cameron; Beichman, Charles; Gordon, Karl D.; Greene, Thomas P.; Hodapp, K.; Horner, Scott; Johnstone, Doug; Leisenring, Jarron; Manara, Carlos; Mann, Rita; Misselt, K.; Raileanu, Roberta; Rieke, Marcia; Roellig, Thomas
2018-01-01
We describe observations of the embedded young cluster associated with the HII region NGC 2024 planned as part of the guaranteed time observing program for the James Webb Space Telescope with the NIRCam (Near Infrared Camera) instrument. Our goal is to obtain a census of the cluster down to 2 Jupiter masses, viewed through 10-20 magnitudes of extinction, using multi-band filter photometry, both broadband filters and intermediate band filters that are expected to be sensitive to temperature and surface gravity. The cluster contains several bright point sources as well as extended emission due to reflected light, thermal emission from warm dust, as well as nebular line emission. We first developed techniques to better understand which point sources would saturate in our target fields when viewed through several JWST NIRCam filters. Using images of the field with the WISE satellite in filters W1 and W2, as well as 2MASS (J and H) bands, we devised an algorithm that takes the K-band magnitudes of point sources in the field, and the known saturation limits of several NIRCam filters to estimate the impact of the extended emission on survey sensitivity. We provide an overview of our anticipated results, detecting the low mass end of the IMF as well as planetary mass objects likely liberated through dynamical interactions.
Hubble Observes the Planet Uranus
NASA Technical Reports Server (NTRS)
1994-01-01
This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.
Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given the planet's large tilt.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/A population study of hot Jupiter atmospheres
NASA Astrophysics Data System (ADS)
Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yrchenko, S. N.
2017-09-01
In the past two decades, we have learnt that every star hosts more than one planet. While the hunt for new exoplanets is on-going, the current sample of more than 3500 confirmed planets reveals a wide spectrum of planetary characteristics. While small planets appear to be the most common, the big and gaseous planets play a key role in the process of planetary formation. We present here the analysis of 30 gaseous extra-solar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 Jupiter radii. These planets were spectroscopically observed with the Wide Field Camera 3 on-board the Hubble Space Telescope, which is currently one of the most successful instruments for observing exoplanetary atmospheres. The quality of the HST/WFC3 spatially-scanned data combined with our specialised analysis tools, allows us to create the largest and most self-consistent sample of exoplanetary transmission spectra to date and study the collective behaviour of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets. For most of the Jupiters in our sample we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity is a secondary factor in the evolution of planetary atmospheres. We detect the presence of water vapour in all the statistically detectable atmospheres and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present on WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.
2015-11-01
The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.
NASA Astrophysics Data System (ADS)
Louie, Dana; Deming, Drake; Albert, Loic; Bouma, Luke; Bean, Jacob; Lopez-Morales, Mercedes
2018-01-01
The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission of most of the celestial sky, discovering over a thousand super-Earth and sub-Neptune-sized exoplanets potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). Bouma et al. (2017) and Sullivan et al. (2015) used Monte Carlo simulations to predict the properties of the planetary systems that TESS is likely to detect, basing their simulations upon Kepler-derived planet occurrence rates and photometric performance models for the TESS cameras. We employed a JWST Near InfraRed Imager and Slitless Spectrograph (NIRISS) simulation tool to estimate the signal-to-noise (S/N) that JWST/NIRISS will attain in transmission spectroscopy of these anticipated TESS discoveries, and we then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that only a few anticipated TESS discoveries in the terrestrial planet regime will result in better JWST/NIRISS S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, or LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact systems (e.g. TRAPPIST-1) were not included in predicting the anticipated TESS planet yield. Furthermore, our results show that several hundred anticipated TESS discoveries in the super-Earth and sub-Neptune regime will produce S/N higher than currently known exoplanets such as K2-3b or K2-3c. We apply our results to estimate the scope of a JWST follow-up observation program devoted to mapping the transition region between high molecular weight and primordial planetary atmospheres.
Onboard data processing and compression for a four-sensor suite: the SERENA experiment.
NASA Astrophysics Data System (ADS)
Mura, A.; Orsini, S.; Di Lellis, A.; Lazzarotto, F.; Barabash, S.; Livi, S.; Torkar, K.; Milillo, A.; De Angelis, E.
2013-09-01
SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). SERENA instrument includes four units: ELENA (Emitted Low Energy Neutral Atoms), a neutral particle analyzer/imager to detect ion sputtering and backscattering from Mercury's surface; STROFIO (Start from a Rotating FIeld mass spectrometer), a mass spectrometer to identify atomic masses released from the surface; MIPA (Miniature Ion Precipitation Analyzer) and PICAM (Planetary Ion Camera), two ion spectrometers to monitor the precipitating solar wind and measure the plasma environment around Mercury. The System Control Unit architecture is such that all four sensors are connected to a high resolution FPGA, which dialogs with a dedicated high-performance data processing unit. The unpredictability of the data rate, due to the peculiarities of these investigations, leads to several possible scenarios for the data compression and handling. In this study we first discuss about the predicted data volume that comes from the optimized operation strategy, and then we report on the instrument data processing and compression.
NASA Astrophysics Data System (ADS)
Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.; The Serena Team
2010-01-01
'Search for Exospheric Refilling and Emitted Natural Abundances' (SERENA) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). It will investigate Mercury's complex particle environment that is composed of thermal and directional neutral atoms (exosphere) caused by surface release and charge-exchange processes, and of ionized particles caused by photo-ionization of neutrals as well by charge exchange and surface release processes. In order to investigate the structure and dynamics of the environment, an in-situ analysis of the key neutral and charged components is necessary, and for this purpose the SERENA instrument shall include four units: two neutral particle analyzers (Emitted Low Energy Neutral Atoms (ELENA) sensor and Start from a Rotating FIeld mass spectrometer (STROFIO)) and two ion spectrometers (Miniature Ion Precipitation Analyzer (MIPA) and Planetary Ion Camera (PICAM)). The scientific merits of SERENA are presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.
History of Hubble Space Telescope (HST)
1985-01-01
In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.
Planetary nebulae: 20 years of Hubble inquiry
NASA Astrophysics Data System (ADS)
Balick, Bruce
2012-08-01
The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.
Investigation of small solar system objects with the space telescope
NASA Technical Reports Server (NTRS)
Morrison, D.
1979-01-01
The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.
An Automatic Portable Telecine Camera.
1978-08-01
five television frames to achieve synchronous operation, that is about 0.2 second. 6.3 Video recorder noise imnunity The synchronisation pulse separator...display is filmed by a modified 16 am cine camera driven by a control unit in which the camera supply voltage is derived from the field synchronisation ...pulses of the video signal. Automatic synchronisation of the camera mechanism is achieved over a wide range of television field frequencies and the
NASA Technical Reports Server (NTRS)
Katzberg, S. J.; Kelly, W. L., IV; Rowland, C. W.; Burcher, E. E.
1973-01-01
The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system.
Observations of the Perseids 2013 using SPOSH cameras
NASA Astrophysics Data System (ADS)
Margonis, A.; Elgner, S.; Christou, A.; Oberst, J.; Flohrer, J.
2013-09-01
Earth is constantly bombard by debris, most of which disintegrates in the upper atmosphere. The collision of a dust particle, having a mass of approximately 1g or larger, with the Earth's atmosphere results into a visible streak of light in the night sky, called meteor. Comets produce new meteoroids each time they come close to the Sun due to sublimation processes. These fresh particles are moving around the Sun in orbits similar to their parent comet forming meteoroid streams. For this reason, the intersection of Earth's orbital path with different comets, gives rise to anumber of meteor showers throughout the year. The Perseids are one of the most prominent annual meteor showers occurring every summer, having its origin in Halley-type comet 109P/Swift-Tuttle. The dense core of this stream passes Earth's orbit on the 12th of August when more than 100 meteors per hour can been seen by a single observer under ideal conditions. The Technical University of Berlin (TUB) and the German Aerospace Center (DLR) together with the Armagh observatory organize meteor campaigns every summer observing the activity of the Perseids meteor shower. The observations are carried out using the Smart Panoramic Optical Sensor Head (SPOSH) camera system [2] which has been developed by DLR and Jena-Optronik GmbH under an ESA/ESTEC contract. The camera was designed to image faint, short-lived phenomena on dark planetary hemispheres. The camera is equipped with a highly sensitive back-illuminated CCD chip having a pixel resolution of 1024x1024. The custom-made fish-eye lens offers a 120°x120° field-of-view (168° over the diagonal) making the monitoring of nearly the whole night sky possible (Fig. 1). This year the observations will take place between 3rd and 10th of August to cover the meteor activity of the Perseids just before their maximum. The SPOSH cameras will be deployed at two remote sites located in high altitudes in the Greek Peloponnese peninsula. The baseline of ∼50km between the two observing stations ensures a large overlapping area of the cameras' field of views allowing the triangulation of approximately every meteor captured by the two observing systems. The acquired data will be reduced using dedicated software developed at TUB and DLR. Assuming a successful campaign, statistics, trajectories and photometric properties of the processed double-station meteors will be presented at the conference. Furthermore, a first order statistical analysis of the meteors processed during the 2012 and the new 2013 campaigns will be presented [1].
Pullan, Derek; Westall, Frances; Hofmann, Beda A; Parnell, John; Cockell, Charles S; Edwards, Howell G M; Villar, Susana E Jorge; Schröder, Christian; Cressey, Gordon; Marinangeli, Lucia; Richter, Lutz; Klingelhöfer, Göstar
2008-02-01
We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, Mössbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement. Our results demonstrate the importance of an integrated approach for this type of work. Each technique made a proportionate contribution to the overall effectiveness of our "pseudopayload" for biogenic assessment of samples yet highlighted a number of limitations of current space instrument technology for in situ astrobiology.
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter; Tao, Yu; Sidiropoulos, Panagiotis; Gwinner, Klaus; Willner, Konrad; Fanara, Lida; Waehlisch, Marita; van Gasselt, Stephan; Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Ivanov, Anton; Cantini, Federico; Wardlaw, Jessica; Morley, Jeremy; Sprinks, James; Giordano, Michele; Marsh, Stuart; Kim, Jungrack; Houghton, Robert; Bamford, Steven
2016-06-01
Understanding planetary atmosphere-surface exchange and extra-terrestrial-surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to overlay image data and derived information from different epochs, back in time to the mid 1970s, to examine changes through time, such as the recent discovery of mass movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Within the EU FP-7 iMars project, we have developed a fully automated multi-resolution DTM processing chain, called the Coregistration ASP-Gotcha Optimised (CASP-GO), based on the open source NASA Ames Stereo Pipeline (ASP) [Tao et al., this conference], which is being applied to the production of planetwide DTMs and ORIs (OrthoRectified Images) from CTX and HiRISE. Alongside the production of individual strip CTX & HiRISE DTMs & ORIs, DLR [Gwinner et al., 2015] have processed HRSC mosaics of ORIs and DTMs for complete areas in a consistent manner using photogrammetric bundle block adjustment techniques. A novel automated co-registration and orthorectification chain has been developed by [Sidiropoulos & Muller, this conference]. Using the HRSC map products (both mosaics and orbital strips) as a map-base it is being applied to many of the 400,000 level-1 EDR images taken by the 4 NASA orbital cameras. In particular, the NASA Viking Orbiter camera (VO), Mars Orbiter Camera (MOC), Context Camera (CTX) as well as the High Resolution Imaging Science Experiment (HiRISE) back to 1976. A webGIS has been developed [van Gasselt et al., this conference] for displaying this time sequence of imagery and will be demonstrated showing an example from one of the HRSC quadrangle map-sheets. Automated quality control [Sidiropoulos & Muller, 2015] techniques are applied to screen for suitable images and these are extended to detect temporal changes in features on the surface such as mass movements, streaks, spiders, impact craters, CO2 geysers and Swiss Cheese terrain. For result verification these data mining techniques are then being employed within a citizen science project within the Zooniverse family. Examples of data mining and its verification will be presented.
Amateur and Professional Astronomers Team Up to Create a Cosmological Masterpiece
2017-12-08
To view a video of this story go to: www.flickr.com/photos/gsfc/8448332724 Working with astronomical image processors at the Space Telescope Science Institute in Baltimore, Md., renowned astro-photographer Robert Gendler has taken science data from the Hubble Space Telescope (HST) archive and combined it with his own ground-based observations to assemble a photo illustration of the magnificent spiral galaxy M106. Gendler retrieved archival Hubble images of M106 to assemble a mosaic of the center of the galaxy. He then used his own and fellow astro-photographer Jay GaBany's observations of M106 to combine with the Hubble data in areas where there was less coverage, and finally, to fill in the holes and gaps where no Hubble data existed. The center of the galaxy is composed almost entirely of HST data taken by the Advanced Camera for Surveys, Wide Field Camera 3, and Wide Field Planetary Camera 2 detectors. The outer spiral arms are predominantly HST data colorized with ground-based data taken by Gendler's and GaBany's 12.5-inch and 20-inch telescopes, located at very dark remote sites in New Mexico. The image also reveals the optical component of the "anomalous arms" of M106, seen here as red, glowing hydrogen emission. To read more go to: www.nasa.gov/mission_pages/hubble/science/m106.html Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), R. Gendler (for the Hubble Heritage Team), and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
2007-01-01
The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.
Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, P. R.; Crouzet, N.; Deming, D.
2014-08-10
We report near-infrared spectroscopy of the gas giant planet HD 189733b in transit. We used the Hubble Space Telescope Wide Field Camera 3 (HST WFC3) with its G141 grism covering 1.1 μm to 1.7 μm and spatially scanned the image across the detector at 2'' s{sup –1}. When smoothed to 75 nm bins, the local maxima of the transit depths in the 1.15 μm and 1.4 μm water vapor features are, respectively, 83 ± 53 ppm and 200 ± 47 ppm greater than the local minimum at 1.3 μm. We compare the WFC3 spectrum with the composite transit spectrum ofmore » HD 189733b assembled by Pont et al., extending from 0.3 μm to 24 μm. Although the water vapor features in the WFC3 spectrum are compatible with the model of non-absorbing, Rayleigh-scattering dust in the planetary atmosphere, we also re-interpret the available data with a clear planetary atmosphere. In the latter interpretation, the slope of increasing transit depth with shorter wavelengths from the near infrared, through the visible, and into the ultraviolet is caused by unocculted star spots, with a smaller contribution of Rayleigh scattering by molecular hydrogen in the planet's atmosphere. At relevant pressures along the terminator, our model planetary atmosphere's temperature is ∼700 K, which is below the condensation temperatures of sodium- and potassium-bearing molecules, causing the broad wings of the spectral lines of Na I and K I at 0.589 μm and 0.769 μm to be weak.« less
Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.
Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H
2015-02-01
Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.
NASA Astrophysics Data System (ADS)
Scowen, Paul A.; SDT, HORUS
2013-01-01
The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR observatory designs in NASA’s portfolio.
First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321
NASA Technical Reports Server (NTRS)
Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.
1994-01-01
As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.
NASA Technical Reports Server (NTRS)
1999-01-01
Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.
The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms. The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas. This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of Caltech. Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.govNASA Technical Reports Server (NTRS)
1999-01-01
A colorful image showing violent star formation triggered when two galaxies bumped into each other has been captured by NASA's Hubble Space Telescope.
In the image, the starburst galaxy M82 has a disturbed appearance caused by violent activity after an ancient encounter with its large galactic neighbor, M81. The image, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is online at http://www.jpl.nasa.gov/pictures/wfpc . The huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- appear as white dots sprinkled throughout the galaxy's central area. The dark area just above center is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the interaction between M82 and M81 to about 600 million years ago, when a region called M82 B (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have found that this ancient starburst was triggered by the encounter with M81. The results are published in the February 2001 issue of the Astronomical Journal. This discovery provides evidence linking the birth of super star clusters to violent interaction between galaxies. These clusters also provide insight into the rough-and-tumble universe of long ago, when galaxies bumped into each other more frequently. M82 is located 12 million light-years from Earth in the constellation Ursa Major. The picture was taken Sept. 15, 1997. The natural-color composite was constructed from three exposures taken with blue, green and red filters. The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena. Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov.Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
The Virgo Cluster of Galaxies in the Making
NASA Astrophysics Data System (ADS)
2004-10-01
VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the Virgo cluster in his famous catalogue of nebulae. An image of the core of the cluster obtained with the Wide Field Imager camera at the ESO La Silla Observatory was published last year as PR Photo 04a/03. Clusters of galaxies are believed to have formed over a long period of time by the assembly of smaller entities, through the strong gravitational pull from dark and luminous matter. The Virgo cluster is considered to be a relatively young cluster because previous studies have revealed small "sub-clusters of galaxies" around the major galaxies Messier 87, Messier 86 and Messier 49. These sub-clusters have yet to merge to form a denser and smoother galaxy cluster. Recent observations have shown that the so-called "intracluster" space, the region between galaxies in a cluster, is permeated by a sparse "intracluster population of stars", which can be used to study in detail the structure of the cluster. Cosmic wanderers The first discoveries of intracluster stars in the Virgo cluster were made serendipitously by Italian astronomer, Magda Arnaboldi (Torino Observatory, Italy) and her colleagues, in 1996. In order to study the extended halos of galaxies in the Virgo cluster, with the ESO New Technology Telescope at La Silla, they searched for objects known as "planetary nebulae" [3]. Planetary nebulae (PNe) can be detected out to large distances from their strong emission lines. These narrow emission lines also allow for a precise measure of their radial velocities. Planetary Nebulae can thus serve to investigate the motions of stars in the halo regions of distant galaxies. In their study, the astronomers found several planetary nebulae apparently not related to any galaxies but moving in the gravity field of the whole cluster. These "wanderers" belonged to a newly discovered intracluster population of stars. Since these first observations, several hundreds of these wanderers have been discovered. They must represent the tip of the iceberg of a huge population of stars swarming among the galaxies in these enormous clusters. Indeed, as planetary nebulae are the final stage of common low mass stars - like our Sun - they are representative of the stellar population in general. And as planetary nebulae are rather short-lived (a few tens of thousand years - a blitz on astronomical timescales), astronomers can estimate that one star in about 8,000 million of solar-type stars is visible as a planetary nebula at any given moment. There must thus be a comparable number of stars in between galaxies as in the galaxies themselves. But because they are diluted in such a huge volume, they are barely detectable. Because these stars are predominantly old, the most likely explanation for their presence in the intracluster space is that they formed within individual galaxies, which were subsequently stripped of many of their stars during close encounters with other galaxies during the initial stages of cluster formation. These "lost" stars were then dispersed into intracluster space where we now find them. Thus planetary nebulae can provide a unique handle on the number, type of stars and motions in regions that may harbour a substantial amount of mass. Their motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. Measuring the speed of dying stars ESO PR Photo 29a/04 ESO PR Photo 29a/04 Velocity Measurements of Forty Intracluster Planetary Nebulae [Preview - JPEG: 400 x 502 pix - 50k] [Normal - JPEG: 800 x 1004 pix - 330k] [Full Res - JPEG: 2321 x 2912 pix - 1.2M] Caption: ESO PR Photo 29a/04 shows the intracluster planetary nebulae radial velocity distributions in three different regions of the sky (identified with the following labels: FCJ, CORE and SUC) in the Virgo cluster core region. The central panel shows the image of the VIRGO cluster core obtained from the Digital Sky Survey. The four brighter galaxies in the field are on the left Messier 87 near the FCJ field, and Messier 86, Messier 84 and NGC 4388 in the SUC field. In the FCJ panel, the blue dashed line shows a Gaussian curve with a mean velocity, vrad= 1276 km/s, and a dispersion, σrad= 247 km/s. In CORE, the green dashed line shows a Gaussian curve with vrad= 1436 km/s and σrad= 538 km/s for Virgo Cluster dwarf ellipticals and lenticular galaxies within 2 degrees of Messier 87. In the SUC panel, the dashed red line shows a Gaussian curve with vrad= 1079 km/s and σrad= 286 km/s, associated to the Messier 84 (M84) peak. The overplotted dash-dotted lines show the SUC-FLAMES spectra of intracluster HII regions, which have radial velocities in the M84 and NGC 4388 velocity ranges. The international team of astronomers [2] went on further to make a detailed study of the motions of the planetary nebulae in the Virgo cluster in order to determine its dynamical structure and compare it with numerical simulations. To this aim, they carried out a challenging research programme, aimed at confirming intracluster planetary nebula candidates they found earlier and measuring their radial velocities in three different regions ("survey fields") in the Virgo cluster core. This is far from an easy task. The emission in the main Oxygen emission line from a planetary nebula in Virgo is comparable to that of a 60-Watt light bulb at a distance of about 6.6 million kilometres, about 17 times the average distance to the Moon. Furthermore intracluster planetary nebula samples are sparse, with only a few tens of planetary nebulae in a quarter of a degree square sky field - about the size of the Moon. Spectroscopic observations thus require 8 metre class telescopes and spectrographs with a large field of view. The astronomers had therefore to rely on the FLAMES-GIRAFFE spectrograph on the VLT [4], with its relatively high spectral resolution, its field of view of 25 arcmin and the possibility to take up to 130 spectra at a time. The astronomers studied a total of 107 stars, among which 71 were believed to be genuine intracluster planetary candidates. They observed between 21 and 49 objects simultaneously for about 2 hours per field. The three parts of the Virgo core surveyed contain several bright galaxies (Messier 84, 86, 87, and NGC 4388) and a large number of smaller galaxies. They were chosen to represent different entities of the cluster. The spectroscopic measurements could confirm the intracluster nature of 40 of the planetary nebulae studied. They also provided a wealth of knowledge on the structure of this part of the Virgo cluster. In The Making ESO PR Photo 29b/04 ESO PR Photo 29b/04 Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster. (Digital Sky Survey) [Preview - JPEG: 400 x 471 pix - 55k] [Normal - JPEG: 800 x 942 pix - 512k] [Full Res - JPEG: 2189 x 2580 pix - 2.3M] Caption: ESO PR Photo 29b/04: Zoomed in view of the pointing relative to the SUC field. The image shows a 30 x 30 arcminute field centred on the Messier 86/ Messier 84 region of the Virgo cluster. The brighter galaxies in the field are (clockwise from the left) M86, M84 and NGC 4388. Their systemic velocities are -244, 1060 and 2524 km/s, respectively. Here the envelopes of bright galaxies are subtracted as much as possible for the detection of planetary nebulae embedded there. The larges circle indicates the FLAMES field-of-view. Intracluster planetary nebula candidates are marked by circles and show a highly non-uniform distribution in this field. The numbers near each circle indicate the measured line-of-sight velocity for that intracluster planetary nebula. The colour code used is blue for velocities smaller than the M84 systemic velocity (1060 km/s), red for larger velocities. In the first field near Messier 87 (M87), the astronomers measured a mean velocity close to 1250 km/s and a rather small dispersion around this value. Most stars in this field are thus physically bound to the bright galaxy M87, in the same way as the Earth is bound to the Sun. Magda Arnaboldi explains: "This study has led to the remarkable discovery that Messier 87 has a stellar halo in approximate dynamical equilibrium out to at least 65 kpc, or more than 200,000 light-years. This is more than twice the size of our own galaxy, the Milky Way, and was not known before." The velocity dispersion observed in the second field, which is far away from bright galaxies, is larger than in the first one by a factor four. This very large dispersion, indicating stars moving in very disparate directions at different speeds, also tells us that this field most probably contains many intracluster stars whose motions are barely influenced by large galaxies. The new data suggest as a tantalizing possibility that this intracluster population of stars could be the leftover from the disruption of small galaxies as they orbit M87. The velocity distribution in the third field, as deduced from FLAMES spectra, is again different. The velocities show substructures related to the large galaxies Messier 86, Messier 84 and NGC 4388. Most likely, the large majority of all these planetary nebulae belong to a very extended halo around Messier 84. Ortwin Gerhard (University of Basel, Switzerland), member of the team, is thrilled: "Taken together these velocity measurements confirm the view that the Virgo Cluster is a highly non-uniform and unrelaxed galaxy cluster, consisting of several subunits. With the FLAMES spectrograph, we have thus been able to watch the motions in the Virgo Cluster, at a moment when its subunits are still coming together. And it is certainly a view worth seeing!" More information The results presented in this ESO Press Release are based on a research paper ("The Line-of-Sight Velocity Distributions of Intracluster Planetary Nebulae in the Virgo Cluster Core" by M. Arnaboldi et al.) that has just appeared in the research journal Astrophysical Journal Letters Vol. 614, p. 33. Notes [1]: The University of Basel Press Release on this topic is available at http://www.zuv.unibas.ch/uni_media/2004/20041022virgo.html. [2]: The members of the team are Magda Arnaboldi (INAF, Osservatorio di Pino Torinese, Italy), Ortwin Gerhard (Astronomisches Institut, Universität Basel, Switzerland), Alfonso Aguerri (Instituto de Astrofisica de Canarias, Spain), Kenneth C. Freeman (Mount Stromlo Observatory, ACT, Australia), Nicola Napolitano (Kapteyn Astronomical Institute, The Netherlands), Sadanori Okamura (Dept. of Astronomy, University of Tokyo, Japan), and Naoki Yasuda (Institute for Cosmic Ray Research, University of Tokyo, Japan). [3]: Planetary nebulae are Sun-like stars in their final dying phase during which they eject their outer layers into surrounding space. At the same time, they unveil their small and hot stellar core which appears as a "white dwarf star". The ejected envelope is illuminated and heated by the stellar core and emits strongly in characteristic emission lines of several elements, notably oxygen (at wavelengths 495.9 and 500.7 nm). Their name stems from the fact that some of these nearby objects, such as the "Dumbbell Nebula" (see ESO PR Photo 38a/98) resemble the discs of the giant planets in the solar system when viewed with small telescopes. [4]: FLAMES, the Fibre Large Array Multi-Element Spectrograph, is installed at the 8.2-m VLT KUEYEN Unit Telescope. It is able to observe the spectra of a large number of individual, faint objects (or small sky areas) simultaneously and covers a sky field of no less than 25 arcmin in diameter, i.e., almost as large as the full Moon. It is the result of a collaboration between ESO, the Observatoire de Paris-Meudon, the Observatoire de Genève-Lausanne, and the Anglo Australian Observatory (AAO).
German activities in optical space instrumentation
NASA Astrophysics Data System (ADS)
Hartmann, G.
2018-04-01
In the years of space exploration since the mid-sixties, a wide experience in optical space instrumentation has developed in Germany. This experience ranges from large telescopes in the 1 m and larger category with the accompanying focal plane detectors and spectrometers for all regimes of the electromagnetic spectrum (infrared, visible, ultraviolet, x-rays), to miniature cameras for cometary and planetary explorations. The technologies originally developed for space science. are now also utilized in the fields of earth observation and even optical telecommunication. The presentation will cover all these areas, with examples for specific technological or scientific highlights. Special emphasis will be given to the current state-of-the-art instrumentation technologies in scientific institutions and industry, and to the future perspective in approved and planned projects.
Development of a data reduction expert assistant
NASA Technical Reports Server (NTRS)
Miller, Glenn E.
1994-01-01
This report documents the development and deployment of the Data Reduction Expert Assistant (DRACO). The system was successfully applied to two astronomical research projects. The first was the removal of cosmic ray artifacts from Hubble Space Telescope (HST) Wide Field Planetary Camera data. The second was the reduction and calibration of low-dispersion CCD spectra taken from a ground-based telescope. This has validated our basic approach and demonstrated the applicability of this technology. This work has been made available to the scientific community in two ways. First, we have published the work in the scientific literature and presented papers at relevant conferences. Secondly, we have made the entire system (including documentation and source code) available to the community via the World Wide Web.
Improving accuracy of Plenoptic PIV using two light field cameras
NASA Astrophysics Data System (ADS)
Thurow, Brian; Fahringer, Timothy
2017-11-01
Plenoptic particle image velocimetry (PIV) has recently emerged as a viable technique for acquiring three-dimensional, three-component velocity field data using a single plenoptic, or light field, camera. The simplified experimental arrangement is advantageous in situations where optical access is limited and/or it is not possible to set-up the four or more cameras typically required in a tomographic PIV experiment. A significant disadvantage of a single camera plenoptic PIV experiment, however, is that the accuracy of the velocity measurement along the optical axis of the camera is significantly worse than in the two lateral directions. In this work, we explore the accuracy of plenoptic PIV when two plenoptic cameras are arranged in a stereo imaging configuration. It is found that the addition of a 2nd camera improves the accuracy in all three directions and nearly eliminates any differences between them. This improvement is illustrated using both synthetic and real experiments conducted on a vortex ring using both one and two plenoptic cameras.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam M.; Karadas, Mürsel; Huck, Alexander; Osterkamp, Christian; Jankuhn, Steffen; Meijer, Jan; Jelezko, Fedor; Andersen, Ulrik L.
2018-03-01
Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small (≪10-2), fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic field sensitivity resulting from the limited number of photoelectrons that a camera can record in a given time. Several types of camera sensors are analyzed, and the smallest measurable magnetic field change is estimated for each type. We show that most common sensors are of a limited use in such applications, while certain highly specific cameras allow achieving nanotesla-level sensitivity in 1 s of a combined exposure. Finally, we demonstrate the results obtained with a lock-in camera that paves the way for real-time, wide-field magnetometry at the nanotesla level and with a micrometer resolution.
On HMI's Mod-L Sequence: Test and Evaluation
NASA Astrophysics Data System (ADS)
Liu, Yang; Baldner, Charles; Bogart, R. S.; Bush, R.; Couvidat, S.; Duvall, Thomas L.; Hoeksema, Jon Todd; Norton, Aimee Ann; Scherrer, Philip H.; Schou, Jesper
2016-05-01
HMI Mod-L sequence can produce full Stokes parameters at a cadence of 90 seconds by combining filtergrams from both cameras, the front camera and the side camera. Within the 90-second, the front camera takes two sets of Left and Right Circular Polarizations (LCP and RCP) at 6 wavelengths; the side camera takes one set of Linear Polarizations (I+/-Q and I+/-U) at 6 wavelengths. By combining two cameras, one can obtain full Stokes parameters of [I,Q,U,V] at 6 wavelengths in 90 seconds. In norminal Mod-C sequence that HMI currently uses, the front camera takes LCP and RCP at a cadence of 45 seconds, while the side camera takes observation of the full Stokes at a cadence of 135 seconds. Mod-L should be better than Mod-C for providing vector magnetic field data because (1) Mod-L increases cadence of full Stokes observation, which leads to higher temporal resolution of vector magnetic field measurement; (2) decreases noise in vector magnetic field data because it uses more filtergrams to produce [I,Q,U,V]. There are two potential issues in Mod-L that need to be addressed: (1) scaling intensity of the two cameras’ filtergrams; and (2) if current polarization calibration model, which is built for each camera separately, works for the combined data from both cameras. This presentation will address these questions, and further place a discussion here.
2015-08-10
Bursts of pink and red, dark lanes of mottled cosmic dust, and a bright scattering of stars — this NASA/ESA Hubble Space Telescope image shows part of a messy barred spiral galaxy known as NGC 428. It lies approximately 48 million light-years away from Earth in the constellation of Cetus (The Sea Monster). Although a spiral shape is still just about visible in this close-up shot, overall NGC 428’s spiral structure appears to be quite distorted and warped, thought to be a result of a collision between two galaxies. There also appears to be a substantial amount of star formation occurring within NGC 428 — another telltale sign of a merger. When galaxies collide their clouds of gas can merge, creating intense shocks and hot pockets of gas and often triggering new waves of star formation. NGC 428 was discovered by William Herschel in December 1786. More recently a type Ia supernova designated SN2013ct was discovered within the galaxy by Stuart Parker of the BOSS (Backyard Observatory Supernova Search) project in Australia and New Zealand, although it is unfortunately not visible in this image. This image was captured by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field and Planetary Camera 2 (WFPC2). A version of this image was entered into the Hubble’s Hidden Treasures Image Processing competition by contestants Nick Rose and the Flickr user penninecloud. Links: Nick Rose’s image on Flickr Penninecloud’s image on Flickr
Volumetric particle image velocimetry with a single plenoptic camera
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.
2015-11-01
A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera plenoptic PIV is shown to be a viable 3D/3C velocimetry technique.
Decision-Theoretic Control of Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)
2003-01-01
Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.
AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data
NASA Astrophysics Data System (ADS)
Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin
2018-01-01
In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.
Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview
NASA Astrophysics Data System (ADS)
Cabrol, N. A.; Thomas, G.; Witzke, B.
2001-04-01
Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.
1991-01-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.
THE MOTION OF RX J185635-3754 -- THE NEAREST NEUTRON STAR TO EARTH
NASA Technical Reports Server (NTRS)
2002-01-01
This photograph is the sum of three Hubble Space Telescope images. North is down, east is to the right. The image, taken by the Wide Field and Planetary Camera 2, is 8.8 seconds of arc across (west to east), and 6.6 seconds of arc top-to-bottom (south to north). An arc second is a unit of angular measure. There are 3,600 arc seconds in 1 degree and 360 degrees in a full circle. All stars line up in this composite picture, except the neutron star, which moves across the image in a direction 10 degrees south of east. The three images of the neutron star are labeled by date. The proper motion is 1/3 of a second of arc per year. The small wobble caused by parallax (not visible in the image) has a size of 0.016 seconds of arc, giving a distance of 200 light-years. Credit: NASA and F.M. Walter (State University of New York at Stony Brook)
Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula
2017-12-08
Release Date: May 3, 2004 A Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula (NGC 6302) The Bug Nebula, NGC 6302, is one of the brightest and most extreme planetary nebulae known. The fiery, dying star at its center is shrouded by a blanket of icy hailstones. This NASA Hubble Wide Field Plantery Camera 2 image shows impressive walls of compressed gas, laced with trailing strands and bubbling outflows. Object Names: NGC 6302, Bug Nebula Image Type: Astronomical Credit: NASA, ESA and A.Zijlstra (UMIST, Manchester, UK) To learn more about this image go to: hubblesite.org/gallery/album/nebula/pr2004046a/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
History of Hubble Space Telescope (HST)
1995-01-01
These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.
DOES THE OOSTERHOFF DICHOTOMY EXIST IN THE ANDROMEDA GALAXY? I. THE CASE OF G11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras Ramos, Rodrigo; Clementini, Gisella; Federici, Luciana, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: gisella.clementini@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it
We present the first evidence that Oosterhoff type II globular clusters exist in the Andromeda galaxy (M31). On the basis of time-series photometry of the moderately metal-poor ([Fe/H] {approx}-1.6 dex) M31 globular cluster G11, obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we detected and derived periods for 14 RR Lyrae stars, of which five are found to lie inside the cluster tidal radius. They include three fundamental-mode (RRab) and two first-overtone (RRc) pulsators, with average periods (P{sub ab} ) = 0.70 days, and (P{sub c} ) = 0.40 days, respectively. These mean periodsmore » and the position of the cluster variable stars in the period-amplitude and period-metallicity diagrams all suggest that G11 is likely to be an Oosterhoff type II globular cluster. This appears to be in agreement with the general behavior of Milky Way globular clusters with similar metallicity and horizontal branch morphology.« less
NASA Technical Reports Server (NTRS)
Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara
1994-01-01
In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.
Hubble Views Two Galaxies Merging
2017-12-08
This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules. It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure. As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.
1993-01-01
This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).
Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph
2018-06-01
Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Zodiacal Exoplanets in Time: Searching for Young Stars in K2
NASA Astrophysics Data System (ADS)
Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron
2018-01-01
Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.
NASA Astrophysics Data System (ADS)
Zambon, F.; De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammanito, E.; Friggeri, A.
2011-10-01
During the first two MESSENGER flybys (14th January 2008 and 6th October 2008) the Mercury Dual Imaging System (MDIS) has extended the coverage of the Mercury surface, obtained by Mariner 10 and now we have images of about 90% of the Mercury surface [1]. MDIS is equipped with a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). The NAC uses an off-axis reflective design with a 1.5° field of view (FOV) centered at 747 nm. The WAC has a re- fractive design with a 10.5° FOV and 12-position filters that cover a 395-1040 nm spectral range [2]. The color images can be used to infer information on the surface composition and classification meth- ods are an interesting technique for multispectral image analysis which can be applied to the study of the planetary surfaces. Classification methods are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback, and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class [3]. Here we will describe the classification in different compositional units of the region near the Rudaki Crater on Mercury.
NASA Technical Reports Server (NTRS)
1999-01-01
Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.
Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old. The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at http://oposite.stsci.edu/pubinfo/pr/2002/10/ or http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to create the above images. Spectral data were also taken. M4 is 7,000 light-years away in the constellation Scorpius. The full press release on the latest findings is online at http://oposite.stsci.edu/pubinfo/pr/2002/10/pr.html . The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between the European Space Agency and NASA. The California Institute of Technology in Pasadena manages JPL for NASA.Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard
2011-01-01
Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.
NASA Astrophysics Data System (ADS)
Pfyffer, G.; van Hoolst, T.; Dehant, V. M.
2010-12-01
Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the use of an accurate model of the rotation of Mercury, which takes into account longitudinal librations additional to the main 88 day libration due to planetary perturbations on Mercury's orbit. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will only be sufficient to constrain the size and physical state of the core of Mercury if certain conditions are satisfied. If the orbiter follows the ESA baseline mission scenario, and at least 25 landmarks are imaged at least twice over the mission duration (360 days), the annual libration amplitude and obliquity can be determined with sufficient accuracy. Also the Jupiter induced libration amplitude can pose an additional constraint on the interior of the planet. We will discuss the relative contributions of the different methods will enable us to determine the optimum combinations of the observations with consequences for the mission planning and the instrument performances.
A new approach for performing contamination control bakeouts in JPL thermal vacuum test chambers
NASA Technical Reports Server (NTRS)
Johnson, Kenneth R.; Taylor, Daniel M.; Lane, Robert W.; Cortez, Maximo G.; Anderson, Mark R.
1992-01-01
Contamination control requirements for the Wide Field/Planetary Camera II (WF/PC II) are necessarily stringent to protect against post-launch contamination of the sensitive optical surfaces, particularly the cold charge coupled device (CCD) imaging surfaces. Typically, thermal vacuum test chambers have employed a liquid nitrogen (LN2) cold trap to collect outgassed contaminants. This approach has the disadvantage of risking recontamination of the test article from shroud offgassing during post-test warmup of the chamber or from any shroud warming of even a few degrees during the bakeout process. By using an enclave, essentially a chamber within a chamber, configured concentrically and internally within an LN2 shroud, a method was developed, based on a design concept by Taylor, for preventing recontamination of test articles during bakeouts and subsequent post-test warmup of the vacuum chamber. Enclaves for testing WF/PC II components were designed and fabricated, then installed in three of JPL's Environmental Test Lab chambers. The design concepts, operating procedures, and test results of this development are discussed.
HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA
NASA Technical Reports Server (NTRS)
1990-01-01
Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
Orbital Observatory for Planetary Science on Low Cost Autonomous Platform
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Bisikalo, Dmitry; Vedenkin, Nikolay; Korablev, Oleg; Markov, Alexander; Kiselev, Alexander; Kokorich, Mikhail
The Space Research Institute of Russian Academy of Science (IKI RAS) and Dauria Aerospace are currently developing the middle class space telescope project aiming to observe Solar system planets by a long term spectroscopy and polarimetry monitoring, as well aiming to extra solar planets (exoplanets) engineering and scientific goals. The spacecraft is scheduled to be launched in 2017. It is planned first to be delivered on board of the ISS by the Progress spacecraft, then it will be released to the desired orbit approx. 550 km by the Progress in the way to its final destination. The “Planetary monitoring” telescope has a 0.6 meter primary mirror diameter Telescope currently includes 5 science instruments: NIR: 1000..4000 nm high-resolution spectrometer with the spectral resolution of R>10000; Visible Field camera with filters wheel; UV-VIS field resolved Fourier spectrometer; UV-VIS spectropolarimeter; Stellar coronagraph linked with a low-resolution spectrometer. The scientific goals of the “Planetary monitoring” telescope are devoted to explore not yet well studied questions on Mars (methane, ozone, dust and clouds, isotope ratio of HDO/H2O), on Venus (UV absorber, night glow, atmosphere dynamics), icy and gaseous Solar system planets, Jovian moons, Lunar exosphere, comets, meteorites. This telescope aims also for engineering development of exoplanet study by stellar coronagraphy linked with a low-resolution spectrometry. This Orbital Observatory mission uses the first low cost small satellite platform developed by the Dauria Aerospace® - Russian private company and reuses the Progress to elevate the observatory orbit. The Progress launches four times per year to provide supplies and scientific instruments to the ISS. The Progress is capable of raising the height of the orbit for the piggyback scientific missions; therefore, the implementation of the Orbital Observatory mission is considered not just as a development of a successful science mission so it is most importantly developing an affordable and frequent flight opportunities for space sciences research in Russia and worldwide. The paper describes the scientific objectives and corresponding instruments, and introduces the low cost satellite platform and launch opportunities.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
Hubble Observes a New Saturn Storm
NASA Technical Reports Server (NTRS)
1994-01-01
This NASA Hubble Space Telescope image of the ringed planet Saturn shows a rare storm that appears as a white arrowhead-shaped feature near the planet's equator. The storm is generated by an upwelling of warmer air, similar to a terrestrial thunderhead. The east-west extent of this storm is equal to the diameter of the Earth (about 7,900 miles). Hubble provides new details about the effects of Saturn's prevailing winds on the storm. The new image shows that the storm's motion and size have changed little since its discovery in September, 1994.
The storm was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2) in the wide field mode on December 1, 1994, when Saturn was 904 million miles from the Earth. The picture is a composite of images taken through different color filters within a 6 minute interval to create a 'true-color' rendition of the planet. The blue fringe on the right limb of the planet is an artifact of image processing used to compensate for the rotation of the planet between exposures.The Hubble images are sharp enough to reveal that Saturn's prevailing winds shape a dark 'wedge' that eats into the western (left) side of the bright central cloud. The planet's strongest eastward winds (clocked at 1,000 miles per hour from analysis of Voyager spacecraft images taken in 1980-81) are at the latitude of the wedge.To the north of this arrowhead-shaped feature, the winds decrease so that the storm center is moving eastward relative to the local flow. The clouds expanding north of the storm are swept westward by the winds at higher latitudes. The strong winds near the latitude of the dark wedge blow over the northern part of the storm, creating a secondary disturbance that generates the faint white clouds to the east (right) of the storm center.The storm's white clouds are ammonia ice crystals that form when an upward flow of warmer gases shoves its way through Saturn's frigid cloud tops. This current storm is larger than the white clouds associated with minor storms that have been reported more frequently as bright cloud features.Hubble observed a similar, though larger, storm in September 1990, which was one of three major Saturn storms seen over the past two centuries. Although these events were separated by about 57 years (approximately 2 Saturnian years) there is yet no explanation why they apparently follow a cycle -- occurring when it is summer in Saturn's northern hemisphere.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/2012-03-08
to-Use 3-D Camera For Measurements in Turbulent Flow Fields B Thurow, Auburn Near Mid Far Conventional imaging Plenoptic imaging Conventional 2...depth-of-field and blur Reduced aperture (restricted angular information) leads to low signal levels Lightfield Imaging Plenoptic camera records
Human-Automation Collaboration: Support for Lunar and Planetary Exploration
2007-02-01
example, providing thermal regulation, but they limit mobility and senses, e.g., sound, vision, smell and touch. In addition, there is a limited supply...planning capabilities for the MER. Scientists and engineers have access to imagery that includes panoramas , camera views, and hyperspectral
NASA Technical Reports Server (NTRS)
Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.
1993-01-01
We present images of NGC 595 and NGC 604, the most massive giant H II regions in M33, obtained with the Planetary Camera aboard the HST in order to study their WR population. Fourteen WR and/or Of candidates are detected in NGC 604, and eleven in NGC 595. All previously claimed 'superluminous' WR stars are found to be tight (diameter less than 3 pc) stellar aggregates containing one (or sometimes more) normal WR star. As suspected from ground-based data, the WR/O number ratio is significantly higher in NGC 595 (about 0.3) than in NGC 604 (about 0.1). The WR stars may be major contributors to the output of mechanical power and energy into the interstellar medium in both clusters. Over the observable initial mass range, the initial mass functions (IMFs) have similar slopes. These IMFs are somewhat flatter than those generally derived for massive stars in the Galaxy or the Magellanic Clouds.
Inflight Radiometric Calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC)
NASA Technical Reports Server (NTRS)
Howett, C. J. A.; Parker, A. H.; Olkin, C. B.; Reuter, D. C.; Ennico, K.; Grundy, W. M.; Graps, A. L.; Harrison, K. P.; Throop, H. B.; Buie, M. W.;
2016-01-01
We discuss two semi-independent calibration techniques used to determine the inflight radiometric calibration for the New Horizons Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the measured number of counts (DN) observed from a number of well calibrated stars to those predicted using the component-level calibration. The ratio of these values provides a multiplicative factor that allows a conversation between the preflight calibration to the more accurate inflight one, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVIC's blue, near-infrared and methane color channels using Hubble and New Horizons observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration described here can be performed without a color target in the field of view and covers all of MVIC's detectors, this calibration was used to provide the radiometric keyword values delivered by the New Horizons project to the Planetary Data System (PDS). These keyword values allow each observation to be converted from counts to physical units; a description of how these keyword values were generated is included. Finally, mitigation techniques adopted for the gain drift observed in the near-infrared detector and one of the panchromatic framing cameras are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazin, Richard A., E-mail: rfrazin@umich.edu
2013-04-10
Heretofore, the literature on exoplanet detection with coronagraphic telescope systems has paid little attention to the information content of short exposures and methods of utilizing the measurements of adaptive optics wavefront sensors. This paper provides a framework for the incorporation of the wavefront sensor measurements in the context of observing modes in which the science camera takes millisecond exposures. In this formulation, the wavefront sensor measurements provide a means to jointly estimate the static speckle and the planetary signal. The ability to estimate planetary intensities in as little as a few seconds has the potential to greatly improve the efficiencymore » of exoplanet search surveys. For simplicity, the mathematical development assumes a simple optical system with an idealized Lyot coronagraph. Unlike currently used methods, in which increasing the observation time beyond a certain threshold is useless, this method produces estimates whose error covariances decrease more quickly than inversely proportional to the observation time. This is due to the fact that the estimates of the quasi-static aberrations are informed by a new random (but approximately known) wavefront every millisecond. The method can be extended to include angular (due to diurnal field rotation) and spectral diversity. Numerical experiments are performed with wavefront data from the AEOS Adaptive Optics System sensing at 850 nm. These experiments assume a science camera wavelength {lambda} of 1.1 {mu}, that the measured wavefronts are exact, and a Gaussian approximation of shot-noise. The effects of detector read-out noise and other issues are left to future investigations. A number of static aberrations are introduced, including one with a spatial frequency exactly corresponding the planet location, which was at a distance of Almost-Equal-To 3{lambda}/D from the star. Using only 4 s of simulated observation time, a planetary intensity, of Almost-Equal-To 1 photon ms{sup -1}, and a stellar intensity of Almost-Equal-To 10{sup 5} photons ms{sup -1} (contrast ratio 10{sup 5}), the short-exposure estimation method recovers the amplitudes' static aberrations with 1% accuracy, and the planet brightness with 20% accuracy.« less
The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera
NASA Technical Reports Server (NTRS)
Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.
1994-01-01
We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.
NASA Technical Reports Server (NTRS)
Young, David T.
1991-01-01
This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.
Planetary nebulae search in the outskirts of M33: looking for the farthest candidates
NASA Astrophysics Data System (ADS)
Galera Rosillo, Rebeca; Corradi, Romano L. M.; Mampaso Recio, Antonio
2015-08-01
The nearby disc galaxy M33 is one of the best laboratories for testing chemical evolution models in galaxies and for understanding disc formation mechanisms. In this galaxy, planetary nebulae (PNe) were previously extensively studied only within a galactocentric radius of 8 kpc.In the framework of a broad study of the population of PNe in Local Group disc galaxies, we present the results of a deep narrow-band imaging of the outer regions of M33, performed using the Wide Field Camera at the 2.5 m Isaac Newton Telescope (INT).The INT images were obtained in the narrow-band filters selecting the [OIII] 5007 Å and Hα 6563 Å lines, plus broad-band filters SDSS g and i. A photometric catalog of around 150000 sources covering a total area of 5 square degrees, and extending out to 2 deg (30 kpc at the adopted distance of 840 kpc) from the centre of the galaxy is presented.PNe candidates are selected in the [OIII]-g vs Hα-r colour-colour diagram as bright emitters in the narrowband filters. A number of candidates with similar colours to those of known PNe, and with an apparent [OIII] magnitude > 21 have been selected for future follow-up. Three of these have been already spectroscopically confirmed at the William Herschel Telescope (WHT).Our survey will improve the knowledge of the PNe population in the outskirts of M33, constraining the properties of its metal-poor halo and of the extended disc substructures that have been proposed to be related to a relatively recent interaction with M31.
GIS Methodology for Planning Planetary-Rover Operations
NASA Technical Reports Server (NTRS)
Powell, Mark; Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang
2007-01-01
A document describes a methodology for utilizing image data downlinked from cameras aboard a robotic ground vehicle (rover) on a remote planet for analyzing and planning operations of the vehicle and of any associated spacecraft. Traditionally, the cataloging and presentation of large numbers of downlinked planetary-exploration images have been done by use of two organizational methods: temporal organization and correlation between activity plans and images. In contrast, the present methodology involves spatial indexing of image data by use of the computational discipline of geographic information systems (GIS), which has been maturing in terrestrial applications for decades, but, until now, has not been widely used in support of exploration of remote planets. The use of GIS to catalog data products for analysis is intended to increase efficiency and effectiveness in planning rover operations, just as GIS has proven to be a source of powerful computational tools in such terrestrial endeavors as law enforcement, military strategic planning, surveying, political science, and epidemiology. The use of GIS also satisfies the need for a map-based user interface that is intuitive to rover-activity planners, many of whom are deeply familiar with maps and know how to use them effectively in field geology.
Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science
NASA Technical Reports Server (NTRS)
Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.
2004-01-01
Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.
NASA Technical Reports Server (NTRS)
Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.
1998-01-01
We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.
Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+
Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.
2015-01-01
Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851
Spice Tools Supporting Planetary Remote Sensing
NASA Astrophysics Data System (ADS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2016-06-01
NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events
Self-Directed Cooperative Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Morris, Robert (Technical Monitor)
2003-01-01
The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.
Induction heating of planetary interiors
NASA Astrophysics Data System (ADS)
Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.
2017-09-01
We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Dorman, C.; Seth, A.; Dalcanton, J.; Gilbert, K.; Howley, K.; Johnson, L. C.; Kalirai, J.; Krause, T.; Lang, D.; Williams, B.; PHAT Team; SPLASH Collaboration
2012-01-01
We present a comparative study of the kinematics of different types of stars in the Andromeda galaxy (M31). Our fields of study span a range of projected radii from 2 to 15 kpc in the NE and SE quadrants of M31's disk and spheroid. The kinematical part of this study is based on radial velocity measurements of a few thousand stars obtained using the Keck II telescope and DEIMOS spectrograph as part of the SPLASH survey. The DEIMOS spectra have a spectral resolution of about 1.5 Angstrom (FWHM) and cover the wavelength range 6500-9000 Angstrom. The stellar populations part of this study - specifically, the division of stars into sub-populations - is based on high spatial resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3) images and photometry in six filters: two ultraviolet bands (F275W and F336W), two optical bands (F475W and F814W), and two near-infrared bands (F110W and F160W). The stellar sub-populations we study include metal-rich, metal-intermediate, and metal-poor red giants, asymptotic giant branch stars, He-burning blue loop stars, massive main sequence stars, planetary nebulae, and X-ray binaries. Kinematical information allows us to measure the fraction of each sub-population that is associated with M31's disk versus its spheroid. The excellent synergy between HST and Keck provides insight into the relationship between the dynamical, star formation, and chemical enrichment histories of the structural sub-components of M31 and, by association, other large spiral galaxies. This research was supported by the National Science Foundation, NASA, and the Science Internship Program (SIP) at UCSC.
Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC
NASA Technical Reports Server (NTRS)
Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.
2010-01-01
We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric
VizieR Online Data Catalog: Differential photometry of the F-subgiant HAT-P-67 (Zhou+, 2017)
NASA Astrophysics Data System (ADS)
Zhou, G.; Bakos, G. A.; Hartman, J. D.; Latham, D. W.; Torres, G.; Bhatti, W.; Penev, K.; Buchhave, L.; Kovacs, G.; Bieryla, A.; Quinn, S.; Isaacson, H.; Fulton, B. J.; Falco, E.; Csubry, Z.; Everett, M.; Szklenar, T.; Esquerdo, G.; Berlind, P.; Calkins, M. L.; Beky, B.; Knox, R. P.; Hinz, P.; Horch, E. P.; Hirsch, L.; Howell, S. B.; Noyes, R. W.; Marcy, G.; de Val-Borro, M.; Lazar, J.; Papp, I.; Sari, P.
2018-04-01
The transits of HAT-P-67b were first detected with the HATNet survey (Bakos et al. 2004PASP..116..266B). HATNet employs a network of small, wide field telescopes, located at the Fred Lawrence Whipple Observatory (FLWO) in Arizona and at the Mauna Kea Observatory (MKO) in Hawaii, to photometrically monitor selected 8x8° fields of the sky. A total of 4050 I band observations were taken by HAT-5 and HAT-8 from 2005 January to July, and an additional 4518 observations were obtained in the Cousins R band using HAT-5, HAT-7, and HAT-8 telescopes between 2008 February and August. To better characterize the planetary properties, follow-up photometry of the transits were obtained using the KeplerCam on the FWLO 1.2 m telescope. KeplerCam is a 4Kx4K CCD camera with a pixel scale of 0.672"/pixel at 2x2 pixel binning. The photometry was reduced as per Bakos et al. (2010, J/ApJ/710/1724). A full transit was observed in the Sloan-i band on 2012 May 28, and five partial transits were observed on 2011 April 15, May 19, June 07, and 2013 April 25 in the Sloan-i band, and 2013 May 24 in the Sloan-z band. (1 data file).
Constrained optimization for position calibration of an NMR field camera.
Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke
2018-07-01
Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki
2016-04-15
Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission ofmore » PNe. In this paper, details of the observations and characteristics of the catalog are described.« less
NASA Technical Reports Server (NTRS)
Koehler, U.; Neukum, G.; Gasselt, S. v.; Jaumann, R.; Roatsch, Th.; Hoffmann, H.; Zender, J.; Acton, C.; Drigani, F.
2005-01-01
During the first year of operation, corresponding to the calendar year 2004, the HRSC imaging experiment onboard ESA's Mars Express mission recorded 23 Gigabyte of 8-bit compressed raw data. After processing, the amount of data increased to more than 344 Gigabyte of decompressed and radiometrically calibrated scientifically useable image products. Every six months these HRSC Level 2 data are fed into ESA's Planetary Science Archive (PSA) that sends all data also to the Planetary Data System (PDS) to ensure easy availability to the interested user. On their respective web portals, the European Space Agency published in cooperation with the Principal Investigator-Group at Freie Universitat Berlin and the German Space Agency (DLR) almost 40 sets of high-level image scenes and movies for PR needs that have been electronically visited many hundred thousand times.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.
1991-08-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg
2017-05-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Final Optical Design of PANIC, a Wide-Field Infrared Camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Gómez, J. Rodríguez; Lenzen, R.; Sánchez-Blanco, E.
We present the Final Optical Design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Ritchey-Chrtien focus of the Calar Alto 2.2 m telescope. This will be the first instrument built under the German-Spanish consortium that manages the Calar Alto observatory. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. The optical design produces a well defined internal pupil available to reducing the thermal background by a cryogenic pupil stop. A mosaic of four detectors Hawaii 2RG of 2 k ×2 k, made by Teledyne, will give a field of view of 31.9 arcmin ×31.9 arcmin.
NASA Technical Reports Server (NTRS)
1978-01-01
Abstracts of 63 papers accepted for publication are presented. Topics cover geomagnetism in the context of planetary magnetism, lunar magnetism, the dynamo theory and nondynamo processes, comparative planetary magnetism (terrestrial and outer planets), meteoritic magnetism, and the early solar magnetic field. Author and subject indexes are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au
We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sersic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes M{sub V} {approx}< -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from ''dry'' merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios.more » The central stellar mass deficits M{sub def} are roughly 0.5-2 M{sub BH} (BH mass), rather than {approx}10-20 M{sub BH} as claimed from some past studies, which is in accord with core-Sersic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sersic indices n {approx}3, half-light radii R{sub e} < 2 kpc and masses >10{sup 11} M{sub Sun }, and therefore appear to be descendants of the compact galaxies reported at z {approx} 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z {approx} 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges-which must be present in z {approx} 1.5 images-residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z {approx} 1.5 galaxies that are known to possess infant disks.« less
NASA Astrophysics Data System (ADS)
Dullo, Bililign T.; Graham, Alister W.
2013-05-01
We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.
NASA Astrophysics Data System (ADS)
Hegzi, S.; Bérczi, Sz.; Hudoba, Gy.; Magyar, I.; Lang, A.; Istenes, Z.; Weidinger, T.; Tepliczky, I.; Varga, T.; Hargitai, H.
2008-09-01
Introduction Hunveyor and Husar space probe models are the main school robotics program in Hungary in the last decade initiated by our Cosmic Materials Space research Group (CMSRG). As a new form of planetary science education in Hungary students build their lander and rover robots and test them on test tables, carry out simulations, and go with their instruments to field works of planetary geology analog sites. Recently 10 groups work in this program and here is a status report about the new results. Planetary robot construction and simulations steps We summarized in 10 steps the main "constructional and industrial research and technology" description of planetary material studying and collecting by space probes (landers, rovers). We focused on the activity we began and teach to carry out at those steps. (Main planets considered were the Moon and Mars): 1. Reconnaissance and survey of the surface of a planet by orbital space probes (i.e. Lunar Orbiter, MGS, MRO etc.) Our studies: photogeology, geomorphology, preparations to cartography. 2. Mapping of the surface of the selected planet with geographical and stratigraphical methods. We (CMSRG) prepared thematic maps on Moon, Mercury, Mars, Venus [1] and Atlas (3) in the series [2,3]. 3. Identification of various surface materials by albedo, spectroscopic [4], thermal IR, identification and selection of the target sites. (in terrestrial analog sites during field works) 4. Planning the space probe system lander and rover working together (MPF-Sojourner type assembly). Planning of the Hunveyor and Husar models. 5. Construction and manufacturing lander and rover units. All Hunveyor groups built their models [5]. 6. Launching and traveling the space probes to the planetary surface. (No rocket building, we simulate [6] some events during the voyage only). 7. Measuring the planetary surface environment on the surface of target planet [7]. (CMSRG) groups carry out test-table measurements [8] and simulations, and later they go to geological type planetary analog field works in terrestrial conditions [9]. 8. Transmitting data. At CMSRG groups at field observations to the "terrestrial control" receives data. 9. Studies on planetary material samples. We can study real NASA Lunar Sample, real Hungarian and NIPR meteorite samples. 10. Comparative planetology. CMSRG's outreach studies are summarized in the Concise atlas series notebooks. Husar-2 rover developments The Husar-2 developments of the Pécs University were focused on a rover type to use it in the MDRS program. After systematic developments of Husars from LEGO Husar till the Husar-2a, -2b, -2c variants the final version Husar-2d visited the MDRS crew 71. in Utah, USA in 2008. Two years ago H. Hargitai used Husar-2b in Utah, in the works of the MRDS crew 42. where dry badlands surface forms are excellent analogs to Martian landscape. Hunveyor-4 ice surface visitor The new developments in Hunveyor-4 focused on the winter Balaton surface measurements. The triangular arrangement for the measuring arrangement of the three sound frequency range sensors with a hanged on hydrophone was planned [7]. Husar-5 developments The Husar-5 developments focused on LEGO modelling, and one measurement is for soil vibrations, the other is for the conductivity of the soil. It is in construction at Széchenyi István High School, Sopron. Husar-6 developments The Husar-6 is another LEGO based modelling, built at Zsigmondy Vilmos High School, Dorog. Hunveyor-9 and Husar-9 It is one of the newest construction at the Eötvös József High School in Tata. The Hunveyor-9 have been built with camera and a telescopic arm instrumentation, and a magnetic carpet experiment. Magnetic carpet is a sensor of the magnetic components of a planetary dust mixture transported by the wind. The mixing ratio of the magnetic and nonmagnetic components were measured with various slope angles of the carpet unrolled from Hunveyor-9. Hunveyor-10 The Neumann János Computer Science Society developed the last Hunveyor system. It was a meteorological station with 14 measurements. It represents a halfway Hunveyor, because of the building together of the instruments can be studied in this system. It was transported by the Crew 71 to the MDRS and two weeks of measurements were carried out in Utah, during 2008 April (with Husar-2d field work, too). Summary Several new developments of the Hunveyor-Husar university robot system were shown to mark the intensity of interest of students to the preparations to the field work research in planetary geology by building robotics and use them in field works. References: [1] Hargitai, H. (2004): 35th LPSC, #1078. LPI, Houston; [2] Bérczi, Sz.; Fabriczy, A.; Hargitai, H.; Hegyi, S.; Illés, E.; Kabai, S.; Kovács, Zs.; Kereszturi, A.; Opitz, A.; Sik, A.; 34th LPSC, #1305. LPI, Houston; [3] Bérczi Sz. Hargitai H., Kereszturi Á., Sik A. (2001, 2005): [4] Roskó, F.; Diósy, T.; Bérczi, Sz.; Fabriczy, A.; Cech, V.; Hegyi, S. (2000): 31st LPSC, #1572. LPI, Houston; [5] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köllõ Z., Roskó F., Balogh Zs., Koris A., Imrek Gy. (2001, 2002): [6] Bérczi, Sz.; Diósy, T.; Tóth, Sz.; Hegyi, S.; Imrek, Gy.; Kovács, Zs.; Cech, V.; Müller-Bodó, E.; Roskó, F.; Szentpétery, L.; Hudoba, Gy. (2002): 33rd LPSC, #1496. LPI, Houston; [7] Hudoba, Gy.; Kovács, Zs. I.; Pintér, A.; Földi, T.; Hegyi, S.; Tóth, Sz.; Roskó, F.; Bérczi, Sz. (2004): 35th LPSC, #1572. LPI, Houston; [8] Gimesi, L.; Béres, Cs. Z.; Bérczi, Sz.; Hegyi, S.; Cech, V. (2004): 35th LPSC, #1140; [9] Hegyi, S.; Drommer, B.; Hegyi, A.; Biró, T.; Kókány, A.; Hudoba, Gy.; Bérczi, Sz. (2006): 37th LPSC, #1136. LPI, Houston; [10] Bérczi, Sz.; Gál-Sólymos, K.; Gucsik, A.; Hargitai, H.; Józsa, S.; Szakmány, Gy.; Kubovics, I.; Puskás, Z. (2006): 37th LPSC, #1298. LPI, Houston;
Restoring the spatial resolution of refocus images on 4D light field
NASA Astrophysics Data System (ADS)
Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok
2010-01-01
This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaugher, B.; Diehl, H. T.; Alvarez, O.
2015-11-15
The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
Flaugher, B.
2015-04-11
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2012-03-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2011-12-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
The Mars Plant Growth Experiment and Implications for Planetary Protection
NASA Astrophysics Data System (ADS)
Smith, Heather
Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds from the same seed lot as used in the flight unit and lack of viable microbes in the interior of the MPX will be confirmed by the assay methods outlined in NASA HDBK 6022. In this method surfaces are swabbed and the cells collected on the swabs are extracted and then cultured following a standard protocol. All operations involving the manipulation of sterile items and sample processing shall be performed in laminar flow environments meeting Class 100 air cleanliness requirements of Federal Standard 209B. The entire MPX will be assembled in a sterile environment within a month of launch if possible, but could withstand an earlier assembly if required.
NASA Technical Reports Server (NTRS)
Feist, B.; Bleacher, J. E.; Petro, N. E.; Niles, P. B.
2018-01-01
During the Apollo exploration of the lunar surface, thousands of still images, 16 mm videos, TV footage, samples, and surface experiments were captured and collected. In addition, observations and descriptions of what was observed was radioed to Mission Control as part of standard communications and subsequently transcribed. The archive of this material represents perhaps the best recorded set of geologic field campaigns and will serve as the example of how to conduct field work on other planetary bodies for decades to come. However, that archive of material exists in disparate locations and formats with varying levels of completeness, making it not easily cross-referenceable. While video and audio exist for the missions, it is not time synchronized, and images taken during the missions are not time or location tagged. Sample data, while robust, is not easily available in a context of where the samples were collected, their descriptions by the astronauts are not connected to them, or the video footage of their collection (if available). A more than five year undertaking to reconstruct and reconcile the Apollo 17 mission archive, from launch through splashdown, has generated an integrated record of the entire mission, resulting in searchable, synchronized image, voice, and video data, with geologic context provided at the time each sample was collected. Through www.apollo17.org the documentation of the field investigation conducted by the Apollo 17 crew is presented in chronologic sequence, with additional context provided by high-resolution Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images and a corresponding digital terrain model (DTM) of the Taurus-Littrow Valley.
Optimising Camera Traps for Monitoring Small Mammals
Glen, Alistair S.; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce
2013-01-01
Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera’s field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera’s field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats ( Mustela erminea ), feral cats (Felis catus) and hedgehogs ( Erinaceus europaeus ). Trigger speeds of 0.2–2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera’s field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps. PMID:23840790
Figure Caption for pair of images of 'Comet Nucleus Q
NASA Technical Reports Server (NTRS)
2002-01-01
Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith
2012-06-12
CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to camera, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis
Observations of the Perseids 2012 using SPOSH cameras
NASA Astrophysics Data System (ADS)
Margonis, A.; Flohrer, J.; Christou, A.; Elgner, S.; Oberst, J.
2012-09-01
The Perseids are one of the most prominent annual meteor showers occurring every summer when the stream of dust particles, originating from Halley-type comet 109P/Swift-Tuttle, intersects the orbital path of the Earth. The dense core of this stream passes Earth's orbit on the 12th of August producing the maximum number of meteors. The Technical University of Berlin (TUB) and the German Aerospace Center (DLR) organize observing campaigns every summer monitoring the Perseids activity. The observations are carried out using the Smart Panoramic Optical Sensor Head (SPOSH) camera system [0]. The SPOSH camera has been developed by DLR and Jena-Optronik GmbH under an ESA/ESTEC contract and it is designed to image faint, short-lived phenomena on dark planetary hemispheres. The camera features a highly sensitive backilluminated 1024x1024 CCD chip and a high dynamic range of 14 bits. The custom-made fish-eye lens offers a 120°x120° field-of-view (168° over the diagonal). Figure 1: A meteor captured by the SPOSH cameras simultaneously during the last 2011 observing campaign in Greece. The horizon including surrounding mountains can be seen in the image corners as a result of the large FOV of the camera. The observations will be made on the Greek Peloponnese peninsula monitoring the post-peak activity of the Perseids during a one-week period around the August New Moon (14th to 21st). Two SPOSH cameras will be deployed in two remote sites in high altitudes for the triangulation of meteor trajectories captured at both stations simultaneously. The observations during this time interval will give us the possibility to study the poorly-observed postmaximum branch of the Perseid stream and compare the results with datasets from previous campaigns which covered different periods of this long-lived meteor shower. The acquired data will be processed using dedicated software for meteor data reduction developed at TUB and DLR. Assuming a successful campaign, statistics, trajectories and photometric properties of the processed double-station meteors will be presented at the conference. Furthermore, a first order statistical analysis of the meteors processed during the 2011 and the new 2012 campaigns will be presented [0].
Recurring Lineae on Slopes at Hale Crater, Mars
2015-09-28
Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field. The imaging and topographical information in this processed, false-color view come from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dark features on the slopes are called "recurring slope lineae" or RSL. Planetary scientists using observations with the Compact Reconnaissance Imaging Spectrometer on the same orbiter detected hydrated salts on these slopes at Hale Crater, corroborating the hypothesis that the streaks are formed by briny liquid water. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping a false-color image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The camera records brightness in three wavelength bands: infrared, red and blue-green. The draped image is one product from HiRISE observation ESP_03070_1440. http://photojournal.jpl.nasa.gov/catalog/PIA19916
NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Shaya, Edward J.; Holtzman, Jon A.; Light, Robert M.; O'Neil, Earl J., Jr.; Lynds, Roger
1995-07-01
We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01 pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M555,0 of 0.9 or a mass of 2.8 Msun. Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8 Msun, and stars with M555,0 ≥ 0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3-4 Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8-15 Msun in three annuli from 0.5-4.7 pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5 pc. Furthermore, the combined IMF slope, -122±006 is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: ≤ 2.8 Msun beyond 0.5 pc and ≤ 7 Msun within 0.1 pc. This is contrary to some predictions that the lower mass limit could be as high as 10 Msun in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136. From the surface brightness profile, an upper limit for the core radius of 0.02 pc is set. Within a radius of 0.4 pc we estimate that there have been roughly 20 crossing times and relaxation should be well along. Within 0.5 pc crowding prevents us from detecting the intermediate mass population, but there is a hint of an excess of stars brighter than M555,0 = -5 and of a deficit in the highest mass stars between 0.6 pc and 1.2 pc. This would be consistent with dynamical segregation.
Crew Field Notes: A New Tool for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott
2011-01-01
The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission operations: how can one analyze, comprehend and synthesize -in real time- the enormous data volume coming to the ground? Real time understanding of all data is needed for constructive interaction with the surface crews, and it becomes critical for the strategic forward planning process.
A detailed comparison of single-camera light-field PIV and tomographic PIV
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.
2018-03-01
This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen
2013-04-01
The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as: spectrometer, odometer, solar radiation sensor, temperature sensor, wind sensor, magnetometer and radiation detector. The first version of the MExRover is operational and now is in testing process. We are open to proposals of mutual exploitation of MExRover platform for science, education and outreach purposes. 3. Specification Dimensions W×L×H 600×1000×400/1700 mm Maximum weight 60 kg Payload weight 20 kg Cruising range 3 km Mean velocity 1 km/h Acknowledgements This work is supported by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract # 11.G34.31.0021 dd. 30.11.2010).
NASA Technical Reports Server (NTRS)
1999-01-01
This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.
Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.Speckle imaging for planetary research
NASA Technical Reports Server (NTRS)
Nisenson, P.; Goody, R.; Apt, J.; Papaliolios, C.
1983-01-01
The present study of speckle imaging technique effectiveness encompasses image reconstruction by means of a division algorithm for Fourier amplitudes, and the Knox-Thompson (1974) algorithm for Fourier phases. Results which have been obtained for Io, Titan, Pallas, Jupiter and Uranus indicate that spatial resolutions lower than the seeing limit by a factor of four are obtainable for objects brighter than Uranus. The resolutions obtained are well above the diffraction limit, due to inadequacies of the video camera employed. A photon-counting camera has been developed to overcome these difficulties, making possible the diffraction-limited resolution of objects as faint as Charon.
Combined approach to the Hubble Space Telescope wave-front distortion analysis
NASA Astrophysics Data System (ADS)
Roddier, Claude; Roddier, Francois
1993-06-01
Stellar images taken by the HST at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-micron rms with a maximum deviation of 0.005 micron. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.
NASA Astrophysics Data System (ADS)
Gonzaga, S.; et al.
2011-03-01
ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.
Enceladus Environmental Explorer (EVE): A Mission Concept
NASA Astrophysics Data System (ADS)
Lawson, M. J.; Amador, E. S.; Carrier, B. L.; Albuja, A.; Bapst, J.; Cahill, K. R. S.; Ebersohn, F.; Gainey, S.; Gartrelle, G.; Greenberger, R. N.; Hale, J. M.; Johnston, S.; Olivares, J.; Parcheta, C. E.; Sheehan, J. P.; Thorpe, A. K.; Zareh, S. K.
2014-12-01
Enceladus is an intriguing planetary body, which possibly has the ingredients needed for life. Further, it has numerous (over 100) continuously erupting geysers that eject material into the atmosphere which provide a unique opportunity to sample the body's internal chemistry from orbit. At JPL's Planetary Science Summer School, Team X and a group of students developed a mission concept to directly sample Enceladus' plumes. The mission, named Enceladus Environmental Explorer (EVE), follows NASA's Planetary Science Decadal survey and would assess the potential habitability of Saturn's icy satellite through analysis of the chemistry of the subsurface ocean and the nature of the organic chemistry in the plume. EVE would look at geological and geophysical surface processes of Enceladus by investigating the heat output of Enceladus, plumes' mechanics, the extent of the liquid subsurface reservoir(s), and gravitational variation. The EVE mission concept aimed for a January 2023 launch on an Atlas 551 class launch vehicle and would arrive at Saturn July 2031. A two-year-long Saturn moon tour would allow sufficient deceleration to permit a polar orbital insertion around Enceladus in March 2035, remaining stable for 54 weeks of observation. The proposed instrument payload includes: 1) SUb MilliMeter Enceladus Radiometer (SUMMER; equivalent to Rosetta MIRO), 2) Enceladus Dust and Gas Experiment (EDGE; an enhanced version of Rosetta COSIMA), 3) MAGnetometer for Ionic Concentration (MAGIC; equivalent to MMS/ InSIGHT magnetometer), 4) Visual Imaging Camera with Topographic Observational Resolution (VICTOR) and 5) Enceladus Radio Gravity Science (ERGS). Our suggested orbital timeline would allow the most comprehensive dataset yet collected of a moon in the outer solar system, mapping the entire surface twice with SUMMER and VICTOR, while sampling the plume directly 232 times with EDGE. MAGIC would also provide over a year of sampling of the magnetic field variations from orbit. Enceladus Environmental Explorer (EVE) offers a unique opportunity to determine the potential for life on Enceladus.
The morphology of faint galaxies in Medium Deep Survey images using WFPC2
NASA Technical Reports Server (NTRS)
Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.
1994-01-01
First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Schultz, G.; Yan, D.; Guevara, S.; Randol, S.
2010-08-01
Magnetic fields and charged particles are difficult for school children, the general public, and scientists alike to visualize. But studies of planetary magnetospheres and ionospheres have broad implications for planetary evolution, from the deep interior to the ancient climate, that are important to communicate to each of these audiences. This presentation will highlight the visualization materials that we are developing to educate audiences on the magnetic fields of planets and how they affect the atmosphere. The visualization materials that we are developing consist of simplified data sets that can be displayed on spherical projection systems and portable 3-D rigid models of planetary magnetic fields.
The Detectability of Radio Auroral Emission from Proxima b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According tomore » recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.« less
Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae
NASA Astrophysics Data System (ADS)
McGuire, Ryan
2009-01-01
Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae R.B. McGuire, C.M. Steele, B.J. Hrivnak, W. Lu, D. Bohlender, C.D. Scarfe We present new contemporaneous light and velocity observations of seven proto-planetary nebulae obtained over the past two years. Proto-planetary nebulae are objects evolving between the AGB and planetary nebula phases. In these seven objects, the central star is bright (V= 7-10), surrounded by a faint nebula. We knew from past monitoring that the light from each of these varied by a few tenths of a magnitude over intervals of 30-150 days and that the velocity varied by 10 km/s. These appear to be due to pulsation. With these new contemporaneous observations, we are able to measure the correlation between the brightness, color, and velocity, which will constrain the pulsation models. This is an ongoing project with the light monitoring being carried out with the Valparaiso University 0.4 m telescope and CCD camera and the radial velocity observations being carried out with the Dominion Astrophysical Observatory 1.8 m telescope and spectrograph. This research is partially supported by NSF grant 0407087 and the Indiana Space Grant Consortium.
VizieR Online Data Catalog: BzJK observations around radio galaxies (Galametz+, 2009)
NASA Astrophysics Data System (ADS)
Galametz, A.; De Breuck, C.; Vernet, J.; Stern, D.; Rettura, A.; Marmo, C.; Omont, A.; Allen, M.; Seymour, N.
2010-02-01
We imaged the two targets using the Bessel B-band filter of the Large Format Camera (LFC) on the Palomar 5m Hale Telescope. We imaged the radio galaxy fields using the z-band filter of Palomar/LFC. In February 2005, we observed 7C 1751+6809 for 60-min under photometric conditions. In August 2005, we observed 7C 1756+6520 for 135-min but in non-photometric conditions. The tables provide the B, z, J and Ks magnitudes and coordinates of the pBzK* galaxies (red passively evolving candidates selected by BzK=(z-K)-(B-z)<-0.2 and (z-K)>2.2) for both fields. The B and z bands were obtained using the Large Format Camera (LFC) on the Palomar 5m Hale Telescope, and the J and Ks bands using Wide-field Infrared Camera (WIRCAM) of the Canada-France-Hawaii Telescope (CFHT). (2 data files).
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2010-11-01
Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
Heliophysics 3 Volume Paperback Set
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2013-03-01
Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliunas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliunas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
The signatures of the parental cluster on field planetary systems
NASA Astrophysics Data System (ADS)
Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen
2018-03-01
Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.
Magnetised winds and their influence in the escaping upper atmosphere of HD 209458b
NASA Astrophysics Data System (ADS)
D'Angelo, Carolina Villarreal; Esquivel, Alejandro; Schneiter, Matías; Sgró, Mario Agustín
2018-06-01
Lyman α observations during an exoplanet transit have proved to be very useful to study the interaction between the stellar wind and the planetary atmosphere. They have been extensively used to constrain planetary system parameters that are not directly observed, such as the planetary mass loss rate. In this way, Ly α observations can be a powerful tool to infer the existence of a planetary magnetic field, since it is expected that the latter will affect the escaping planetary material. To explore the effect that magnetic fields have on the Ly α absorption of HD 209458b, we run a set of 3D MHD simulations including dipolar magnetic fields for the planet and the star. We assume values for the surface magnetic field at the poles of the planet in the range of [0-5] G, and from 1 to 5 G at the poles of the star. Our models also include collisional and photo-ionisation, radiative recombination, and an approximation for the radiation pressure. Our results show that the magnetic field of the planet and the star change the shape of the Ly α absorption profile, since it controls the extent of the planetary magnetosphere and the amount of neutral material inside it. The model that best reproduces the absorption observed in HD 209458b (with canonical values for the stellar wind parameters) corresponds to a dipole planetary field of ≲ 1 gauss at the poles.
CLOSE-UP LOOK AT A JET NEAR A BLACK HOLE
NASA Technical Reports Server (NTRS)
2002-01-01
[top left] - This radio image of the galaxy M87, taken with the Very Large Array (VLA) radio telescope in February 1989, shows giant bubble-like structures where radio emission is thought to be powered by the jets of subatomic particles coming from the the galaxy's central black hole. The false color corresponds to the intensity of the radio energy being emitted by the jet. M87 is located 50 million light-years away in the constellation Virgo. Credit: National Radio Astronomy Observatory/National Science Foundation [top right] - A visible light image of the giant elliptical galaxy M87, taken with NASA Hubble Space Telescope's Wide Field Planetary Camera 2 in February 1998, reveals a brilliant jet of high-speed electrons emitted from the nucleus (diagonal line across image). The jet is produced by a 3-billion-solar-mass black hole. Credit: NASA and John Biretta (STScI/JHU) [bottom] - A Very Long Baseline Array (VLBA) radio image of the region close to the black hole, where an extragalactic jet is formed into a narrow beam by magnetic fields. The false color corresponds to the intensity of the radio energy being emitted by the jet. The red region is about 1/10 light-year across. The image was taken in March 1999. Credit: National Radio Astronomy Observatory/Associated Universities, Inc.
SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397
NASA Technical Reports Server (NTRS)
2002-01-01
Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA
Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2007-01-01
The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.
Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.;
2006-01-01
The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.
Two serendipitous low-mass LMC clusters discovered with HST1
NASA Astrophysics Data System (ADS)
Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.
1998-04-01
We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.
Detection of the Magnetospheric Emissions from Extrasolar Planets
NASA Astrophysics Data System (ADS)
Lazio, J.
2014-12-01
Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
MGM - MS Reilly holds a container used in the MGM experiment
1998-03-04
S89-E-5328 (27 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, holding the Mechanics of Granular Materials (MGM) experiment. The MGM experiment is aimed at understanding the behavior of granular materials, such as sand or salt, under very low confining pressure. This pressure is the force that keeps a granular material ?sticking together?. The experiment has applications in a wide range of fields, including earthquake engineering; coastal and off-shore engineering; mining; transportation of granular materials; soil erosion; the handling of granular materials such as grains and powders; off-road vehicles; geology of the Earth; and planetary geology and exploration. Findings from the experiment may lead to improved selection and preparation of building sites, better management of undeveloped land, and improved handling of materials in chemical, agricultural and other industries.
WF/PC internal molecular contamination during system thermal-vacuum test
NASA Technical Reports Server (NTRS)
Taylor, Daniel M.; Barengoltz, J.; Jenkins, T.; Leschly, K.; Triolo, J.
1988-01-01
During the recent system thermal vacuum test of the Wide-Field/Planetary Camera (WF/PC), instrumentation was added to the WF/PC to characterize the internal molecular contamination and verify the instrument throughput down to 1470 angstroms. Analysis of data elements revealed two contaminants affecting the far-ultraviolet (FUV) performance of the WF/PC. The one contaminant (heavy volatile) is correlated with the electronic and housing temperature, and the contamination is significantly reduced when the electronics are operated below plus 8 degrees to plus 10 degrees C. The other contaminant (light volatile) is controlled by the heat pipe temperature, and the contamination is significantly reduced when the Thermal Electric Cooler (TEC) hot-junction temperature is below minus 40 degrees to minus 50 degrees C. The utility of contamination sensors located behind instruments during system tests was demonstrated.
HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.
Hubble Observes the Moons and Rings of Uranus
NASA Technical Reports Server (NTRS)
1994-01-01
This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago.
Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes.Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise).Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin.One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84- year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/NASA Astrophysics Data System (ADS)
Ivanov, A. B.; Rossi, A.
2009-04-01
Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation. We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid. MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13]. References. [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. Journal of Geophysical Research-Planets, 113, JUN 19 2008. [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. Nature, 436(7047):44-48, JUL 7 2005. [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. Science, 317(5845):1711-1715, SEP 21 2007. [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of Lunar and Planetary Inst. Technical Report, pages 2084-+, Mar. 2003. [5] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In Lunar and Planetary Institute Conference Abstracts, volume 33 of Lunar and Planetary Inst. Technical Report, pages 1845-+, Mar. 2002. [6] R. Jaumann, et al. The high-resolution stereo camera (HRSC) experiment on mars express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7-8):928-952, MAY 2007. [7] R. L. Kirk, et al. Ultrahigh resolution topographic mapping of mars with MRO HIRISE stereo images: Meter-scale slopes of candidate phoenix landing sites. Journal of Geophysical Research-Planets, 113, NOV 15 2008. [8] S. Lavoie, et al. Processing and analysis of mars pathfinder science data at the jet propulsion laboratory's science data processing systems section. Journal of Geophysical Research-Planets, 104(E4):8831-8852, APR 25 1999. [9] J. J. Lorre, et al. Recent developments at JPL in the application of image processing to astronomy. In D. L. Crawford, editor, Instrumentation in Astronomy III, volume 172 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 394-402, 1979. [10] M. Malin, et al. Early views of the martian surface from the mars orbiter camera of mars global surveyor. Science, 279(5357):1681-1685, MAR 13 1998. [11] M. C. Malin,et al. Context camera investigation on board the mars reconnaissance orbiter. Journal of Geophysical Research-Planets, 112(E5), MAY 18 2007. [12] A. S. McEwen, et al.. Mars reconnaissance orbiter's high resolution imaging science experiment (HIRISE). Journal of Geophysical Research-Planets, 112(E5), MAY 17 2007. [13] A. Rossi, et al. Multi-spacecraft synergy with MEX HRSC and MRO SHARAD: Light-Toned Deposits in crater bulges. AGU Fall Meeting Abstracts, pages B1371+, Dec. 2008. [14] A. P. Rossi, et al. Stratigraphic architecture and structural control on sediment emplacement in Becquerel crater (Mars). volume 40. Lunar and Planetary Science Institute, 2009. [15] K. L. Tanaka,et al. North polar region of mars: Advances in stratigraphy, structure, and erosional modification, AUG 2008. Icarus. [16] USGS. Planetary image processing software: ISIS3. http://isis.astrogeology.usgs.gov/
NASA Astrophysics Data System (ADS)
Kowollik, S.; Gaehrken, B.; Fiedler, M.; Gerstheimer, R.; Sohl, F.; Koschny, D.
2008-09-01
During the last couple of years, engaged amateur astronomers have benefited by the rapid development in the field of commercial CCD cameras, video techniques, and the availability of mirror telescopes with high quality. Until recently, such technical equipment and the related handling experience had been reserved to research institutes. This contribution presents the potential capabilities of amateur astronomers and describes the approach to the production of data. The quality of the used telescopes is described with respect to aperture and resolving power; as well as the quantum efficiency of the used sensitive b/w CCD cameras with respect to the detectable wavelength. Beyond these facts the necessary exposure times for CCD images using special filters are discussed. Today's amateur astronomers are able to image the bodies of the solar system in the wavelength range between 340 and 1050 nm [1], [2], [3], [4]. This covers a wide range of the spectrum which is investigated with cameras on board of space telescopes or planetary probes. While space probes usually obtain high-resolution images of individual Surface or atmospheric features of the planets, the images of amateur astronomers show the entire surface of the observed planet. Both datasets together permit a more comprehensive analysis of the data aquired in each case. The "Venus Amateur Observing Project" of the European Space Agency [5] is a first step into a successful co-operation between amateur astronomers and planetary scientists. Individual CCD images captured through the turbulent atmosphere of the Earth usually show characteristic distortions of the arriving wave fronts. If one captures hundreds or thousands of images on a video stream in very short time, there will be always also undistorted images within the data. Computer programmes are available to identify and retrieve these undistorted images and store them for further processing [7]. This method is called "Lucky Imaging" and it allows to achieve nearly the theoretical limit of telescopic resolution. By stacking the undistorted images, the signal-to-noise ratio of the data can be increased significantly. "Lucky Imaging" has become a standard in the amateur community since several years. Contrary to space based observations the data rate is not limited by the capacity of any radio transmission, but only limited by the scanning rate and capacity of a modern computer hard disk. An individual video with the uncompreesed raw data can be as large as 4 to 5 GB. EPSC Abstracts, Vol. 3, EPSC2008-A-00191, 2008 European Planetary Science Congress, Author(s) 2008 In addition to the video data, so-called meta data such as the observing location, the recording time, the used filter, environmental conditions (air temperature, wind velocity, air humidity and Seeing) are also documented. From these meta data, the central meridian (CM) of the observed planet during the time of image acqusition can be determined. After data reduction the resulting images can be used to produce map projections or position measurements of albedo structures on the planetary surface or of details within atmospheric features. Amateur astronomers can observe objects in the solar system for large continuous time periods due to the large number of the existing observers e. g. the members of the Association of Lunar & Planetary Observers [6] and their telescopes. They can and react very fast to special events, since they do not have to submit requests for telescope time to a national or international organization. References: [1] Venusimages in uv-light: B. Gährken: http://www.astrode.de/venus07.htm R. Gerstheimer: http://www.astromanie.de/astromania/galerie/venus/venus.html S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik/venus M. Weigand: http://www.skytrip.de/venus2007.htm [2] Images of planets in visible light: M. Fiedler: http://bilder.astroclub-radebeul.de/kategorien.php?action=showukats&kat=0 R. Gerstheimer: http://www.astromanie.de/ S. Kowollik: http://www.sternwarte-zollern-alb.de/mitarbeiterseiten/kowollik [3] Images of planets in methane band light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/methanband/index-gb.htm [4] Images of planets in ir-light: S. Kowollik: http://www.sternwarte-zollern-alb.de/beobachtungen/ir/index-gb.htm [5] ESA amateur astronomer observing campaign: http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=38833 http://www.rssd.esa.int/index.php?project=VENUS [6] Association of Lunar & Planetary Observation (ALPO): http://alpo-astronomy.org/ [7] Software: Cor Berrevoets (Registax): http://www.astronomie.be/registax/ Christian Buil (IRIS): http://www.astrosurf.com/buil/us/iris/iris.htm Georg Dittié (Giotto): http://www.videoastronomy.org/giotto.htm Grischa Hahn (WinJupos): http://www.grischa-hahn.homepage.t-online.de/astro/winjupos/index.htm
Magnetic fields in central stars of planetary nebulae?
NASA Astrophysics Data System (ADS)
Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.
2012-06-01
Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).
Planetary geology and terrestrial analogs in Asia
NASA Astrophysics Data System (ADS)
Komatsu, Goro; Namiki, Noriyuki
2012-04-01
2011 PERC Planetary Geology Field Symposium;Kitakyushu City, Japan, 5-6 November 2011 In spite of the extremely diverse geological settings that exist in Asia, relatively little attention has previously been paid to this region in terms of terrestrial analog studies for planetary application. Asia is emerging as a major center of studies in planetary geology, but no attempt had been made in the past to organize a broadly based meeting that would allow planetary geologists in Asia to meet with ones from more advanced centers, such as the United States and Europe, and that would include the participation of many geologists working primarily on terrestrial research. The Planetary Exploration Research Center (PERC) of the Chiba Institute of Technology hosted the first planetary geology field symposium in Asia to present results from recent planetary geology studies and to exchange ideas regarding terrestrial analogs (http://www.perc.it-chiba.ac.jp/meetings/pgfs2011/index.html).
Teaching, Learning, and Planetary Exploration
NASA Technical Reports Server (NTRS)
Brown, Robert A.
2002-01-01
This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.
NASA Technical Reports Server (NTRS)
Cohen, Ross D.; Beaver, E. A.; Diplas, Athanassios; Junkkarinen, Vesa T.; Barlow, Thomas A.; Lyons, Ronald W.
1996-01-01
We present imaging and spectroscopy of the quasar 3CR 196 (z(sub e) = 0.871), which has 21 cm and optical absorption at z(sub a) = 0.437. We observed the region of Ly alpha absorption in 3CR 196 at z(sub a) = 0.437 with the Faint Object Spectrograph on the Hubble Space Telescope. This region of the spectrum is complicated because of the presence of a Lyman limit and strong lines from a z(sub a) approx. z(sub e) system. We conclude that there is Ly alpha absorption with an H I column density greater than 2.7 x 10(exp 19) cm(exp -2) and most probably 1.5 x 10(exp 20) cm(exp -2). Based on the existence of the high H I column density along both the optical and radio lines of sight, separated by more than 15 kpc, we conclude that the Ly alpha absorption must arise in a system comparable in size to the gaseous disks of spiral galaxies. A barred spiral galaxy, previously reported as a diffuse object in the recent work of Boisse and Boulade, can be seen near the quasar in an image taken at 0.1 resolution with the Wide Field Planetary Camera 2 on the HST. If this galaxy is at the absorption redshift, the luminosity is approximately L(sub *) and any H I disk should extend in front of the optical quasar and radio lobes of 3CR 196, giving rise to both the Ly alpha and 21 cm absorption. In the z(sub a) approx. z(sub e) system we detect Lyman lines and the Lyman limit, as well as high ion absorption lines of C III, N V, S VI, and O VI. This absorption probably only partially covers the emission-line region. The ionization parameter is approximately 0.1. Conditions in this region may be similar to those in broad absorption line QSOs.
Motion capture for human motion measuring by using single camera with triangle markers
NASA Astrophysics Data System (ADS)
Takahashi, Hidenori; Tanaka, Takayuki; Kaneko, Shun'ichi
2005-12-01
This study aims to realize a motion capture for measuring 3D human motions by using single camera. Although motion capture by using multiple cameras is widely used in sports field, medical field, engineering field and so on, optical motion capture method with one camera is not established. In this paper, the authors achieved a 3D motion capture by using one camera, named as Mono-MoCap (MMC), on the basis of two calibration methods and triangle markers which each length of side is given. The camera calibration methods made 3D coordinates transformation parameter and a lens distortion parameter with Modified DLT method. The triangle markers enabled to calculate a coordinate value of a depth direction on a camera coordinate. Experiments of 3D position measurement by using the MMC on a measurement space of cubic 2 m on each side show an average error of measurement of a center of gravity of a triangle marker was less than 2 mm. As compared with conventional motion capture method by using multiple cameras, the MMC has enough accuracy for 3D measurement. Also, by putting a triangle marker on each human joint, the MMC was able to capture a walking motion, a standing-up motion and a bending and stretching motion. In addition, a method using a triangle marker together with conventional spherical markers was proposed. Finally, a method to estimate a position of a marker by measuring the velocity of the marker was proposed in order to improve the accuracy of MMC.
In-flight Video Captured by External Tank Camera System
NASA Technical Reports Server (NTRS)
2005-01-01
In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.
a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.
2017-08-01
Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.
NASA Technical Reports Server (NTRS)
Young, K. E.; Hodges, K. V.; Evans, C. A.
2012-01-01
While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.
Synchronous in-field application of life-detection techniques in planetary analog missions
NASA Astrophysics Data System (ADS)
Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf
2015-02-01
Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Schultz, G.; Yan, D.; Guevara, S.; Randol, S.
2009-12-01
Magnetic fields and charged particles are difficult for school children, the general public, and scientists alike to visualize. But studies of planetary magnetospheres and ionospheres have broad implications for planetary evolution, from the deep interior to the ancient climate, that are important to communicate to each of these audiences. This presentation will highlight the visualization materials that we are developing to educate audiences on the magnetic fields of planets and how they affect atmospheres. The visualization materials that we are developing consist of simplified data sets that can be displayed on spherical projection systems and portable 3-D rigid models of planetary magnetic fields.We are developing presentations for science museums and classrooms that relate fundamental information about the Martian magnetic field, how it differs from Earth’s, and why the differences are significant.
Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces
NASA Astrophysics Data System (ADS)
Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S. Meyer, P. Wurz, N. Thomas, V. Grimaudo, P. Moreno-García, P. Broekmann, A. Neubeck and M. Ivarsson, "CAMAM: A miniature laser ablation ionisation mass spectrometer and microscope-camera system for in situ investigation of the composition and morphology of extraterrestrial materials", Geostand. Geoanal. Res., 2014, 38, 441. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. [5] A. Riedo, S. Meyer, B. Heredia, M. Neuland, A. Bieler, M. Tulej, I. Leya, M. Iakovleva, K. Mezger and P. Wurz, "Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces", Planet. Space Sci., 2013, 87, 1.
Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Karovska, Margarita; Maksym, W. Peter; Montez, Rodolfo, Jr.
2018-01-01
The planetary nebula (PN) NGC 5189 around a Wolf–Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multiscale structures, showing evidence of multiple outbursts from an asymptotic giant branch (AGB) progenitor. In this study, we use multiwavelength Hubble Space Telescope Wide Field Camera 3 observations to study the morphology of the inner 0.3 pc × 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission-line ratios of Hα λ6563, [O III] λ5007, and [S II] λ λ 6716,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec (∼0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line-emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multiscale morphology.
2001-06-01
This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the "Retina Nebula." The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.
Neubauer, Aljoscha S; Rothschuh, Antje; Ulbig, Michael W; Blum, Marcus
2008-03-01
Grading diabetic retinopathy in clinical trials is frequently based on 7-field stereo photography of the fundus in diagnostic mydriasis. In terms of image quality, the FF450(plus) camera (Carl Zeiss Meditec AG, Jena, Germany) defines a high-quality reference. The aim of the study was to investigate if the fully digital fundus camera Visucam(PRO NM) could serve as an alternative in clinical trials requiring 7-field stereo photography. A total of 128 eyes of diabetes patients were enrolled in the randomized, controlled, prospective trial. Seven-field stereo photography was performed with the Visucam(PRO NM) and the FF450(plus) camera, in random order, both in diagnostic mydriasis. The resulting 256 image sets from the two camera systems were graded for retinopathy levels and image quality (on a scale of 1-5); both were anonymized and blinded to the image source. On FF450(plus) stereoscopic imaging, 20% of the patients had no or mild diabetic retinopathy (ETDRS level < or = 20) and 29% had no macular oedema. No patient had to be excluded as a result of image quality. Retinopathy level did not influence the quality of grading or of images. Excellent overall correspondence was obtained between the two fundus cameras regarding retinopathy levels (kappa 0.87) and macular oedema (kappa 0.80). In diagnostic mydriasis the image quality of the Visucam was graded slightly as better than that of the FF450(plus) (2.20 versus 2.41; p < 0.001), especially for pupils < 7 mm in mydriasis. The non-mydriatic Visucam(PRO NM) offers good image quality and is suitable as a more cost-efficient and easy-to-operate camera for applications and clinical trials requiring 7-field stereo photography.
Free-form reflective optics for mid-infrared camera and spectrometer on board SPICA
NASA Astrophysics Data System (ADS)
Fujishiro, Naofumi; Kataza, Hirokazu; Wada, Takehiko; Ikeda, Yuji; Sakon, Itsuki; Oyabu, Shinki
2017-11-01
SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an astronomical mission optimized for mid-and far-infrared astronomy with a cryogenically cooled 3-m class telescope, envisioned for launch in early 2020s. Mid-infrared Camera and Spectrometer (MCS) is a focal plane instrument for SPICA with imaging and spectroscopic observing capabilities in the mid-infrared wavelength range of 5-38μm. MCS consists of two relay optical modules and following four scientific optical modules of WFC (Wide Field Camera; 5'x 5' field of view, f/11.7 and f/4.2 cameras), LRS (Low Resolution Spectrometer; 2'.5 long slits, prism dispersers, f/5.0 and f/1.7 cameras, spectral resolving power R ∼ 50-100), MRS (Mid Resolution Spectrometer; echelles, integral field units by image slicer, f/3.3 and f/1.9 cameras, R ∼ 1100-3000) and HRS (High Resolution Spectrometer; immersed echelles, f/6.0 and f/3.6 cameras, R ∼ 20000-30000). Here, we present optical design and expected optical performance of MCS. Most parts of MCS optics adopt off-axis reflective system for covering the wide wavelength range of 5-38μm without chromatic aberration and minimizing problems due to changes in shapes and refractive indices of materials from room temperature to cryogenic temperature. In order to achieve the high specification requirements of wide field of view, small F-number and large spectral resolving power with compact size, we employed the paraxial and aberration analysis of off-axial optical systems (Araki 2005 [1]) which is a design method using free-form surfaces for compact reflective optics such as head mount displays. As a result, we have successfully designed compact reflective optics for MCS with as-built performance of diffraction-limited image resolution.
Laser Technology in Interplanetary Exploration: The Past and the Future
NASA Technical Reports Server (NTRS)
Smith, David E.
2000-01-01
Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.
NASA Astrophysics Data System (ADS)
Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.
2017-11-01
When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.
Behavior of Compact Toroid Injected into C-2U Confinement Vessel
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Roche, T.; Allrey, I.; Sekiguchi, J.; Asai, T.; Conroy, M.; Gota, H.; Granstedt, E.; Hooper, C.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.; the TAE Team
2016-10-01
The compact toroid (CT) injector system has been developed for particle refueling on the C-2U device. A CT is formed by a magnetized coaxial plasma gun (MCPG) and the typical ejected CT/plasmoid parameters are as follows: average velocity 100 km/s, average electron density 1.9 ×1015 cm-3, electron temperature 30-40 eV, mass 12 μg . To refuel particles into FC plasma the CT must penetrate the transverse magnetic field that surrounds the FRC. The kinetic energy density of the CT should be higher than magnetic energy density of the axial magnetic field, i.e., ρv2 / 2 >=B2 / 2μ0 , where ρ, v, and B are mass density, velocity, and surrounded magnetic field, respectively. Also, the penetrated CT's trajectory is deflected by the transverse magnetic field (Bz 1 kG). Thus, we have to estimate CT's energy and track the CT trajectory inside the magnetic field, for which we adopted a fast-framing camera on C-2U: framing rate is up to 1.25 MHz for 120 frames. By employing the camera we clearly captured the CT/plasmoid trajectory. Comparisons between the fast-framing camera and some other diagnostics as well as CT injection results on C-2U will be presented.
Earth as a Tool for Astrobiology—A European Perspective
NASA Astrophysics Data System (ADS)
Martins, Zita; Cottin, Hervé; Kotler, Julia Michelle; Carrasco, Nathalie; Cockell, Charles S.; de la Torre Noetzel, Rosa; Demets, René; de Vera, Jean-Pierre; d'Hendecourt, Louis; Ehrenfreund, Pascale; Elsaesser, Andreas; Foing, Bernard; Onofri, Silvano; Quinn, Richard; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; Stalport, Fabien; ten Kate, Inge L.; van Loon, Jack J. W. A.; Westall, Frances
2017-07-01
Scientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201-243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing, data storage and data distribution is also needed. Finally, a coordinated EU or ESA education and outreach program would improve the participation of the public in the astrobiological activities.
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-02-01
Instantaneous full-field displacement fields can be measured using cameras. In fact, using high-speed cameras full-field spectral information up to a couple of kHz can be measured. The trouble is that high-speed cameras capable of measuring high-resolution fields-of-view at high frame rates prove to be very expensive (from tens to hundreds of thousands of euro per camera). This paper introduces a measurement set-up capable of measuring high-frequency vibrations using slow cameras such as DSLR, mirrorless and others. The high-frequency displacements are measured by harmonically blinking the lights at specified frequencies. This harmonic blinking of the lights modulates the intensity changes of the filmed scene and the camera-image acquisition makes the integration over time, thereby producing full-field Fourier coefficients of the filmed structure's displacements.
HUBBLE CAPTURES THE HEART OF STAR BIRTH
NASA Technical Reports Server (NTRS)
2002-01-01
NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is about 35,000 light-years across. The right-hand image, taken by WFPC2, provides a closer look at the flurry of star birth at the galaxy's core. The star clusters (blue) can be seen (and many more are likely obscured) amid thick lanes of gas and dust. This image shows that stars are often born in compact clusters within star bursts, and that dense gas and dust heavily obscures the star burst region. The brightest knot of star birth seen here is probably a giant cluster of stars, about 100 light-years in diameter, at the very center of the galaxy. The other star clusters are about 10 to 50 light-years in diameter. The entire star burst region shown here is about 3,000 light-years across. This galaxy is about 40 million light-years away in the southern constellation Columba. The observation was taken Aug. 14, 1997, and was the last of 13 Hubble Space Telescope amateur programs. Credits: Jim Flood, an amateur astronomer affiliated with Sperry Observatory at Union College in New Jersey, and Max Mutchler, a member of the Space Telescope Science Institute staff who volunteered to work with Jim.
Magnetic field experiment for Voyagers 1 and 2
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Aluna, M. H.; Burlaga, L. F.; Lepping, R. P.; Ness, N. F.; Neubauer, F. M.
1977-01-01
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured.
James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.
2010-10-01
The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA
NASA Astrophysics Data System (ADS)
Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.
Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2
NASA Astrophysics Data System (ADS)
Neukum, Gerhard; Jaumann, Ralf; Scholten, Frank; Gwinner, Klaus
2017-11-01
At the Institute of Space Sensor Technology and Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. For more than three years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. It combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolutions depending on the camera control settings can be generated. A high-end GPS/INS system in combination with the multi-angle image information yields precise and high-frequent orientation data for the acquired image lines. In order to handle these data a completely automated photogrammetric processing system has been developed, and allows to generate multispectral 3D-image products for large areas and with accuracies for planimetry and height in the decimeter range. This accuracy has been confirmed by detailed investigations.
Astronomy Data Visualization with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2015-08-01
We present innovative methods and techniques for using Blender, a 3D software package, in the visualization of astronomical data. N-body simulations, data cubes, galaxy and stellar catalogs, and planetary surface maps can be rendered in high quality videos for exploratory data analysis. Blender's API is Python based, making it advantageous for use in astronomy with flexible libraries like astroPy. Examples will be exhibited that showcase the features of the software in astronomical visualization paradigms. 2D and 3D voxel texture applications, animations, camera movement, and composite renders are introduced to the astronomer's toolkit and how they mesh with different forms of data.
Saturn's Magnetic Field from the Cassini Grand Finale orbits
NASA Astrophysics Data System (ADS)
Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.
2017-12-01
The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).
Terrestrial Planets: Comparative Planetology
NASA Technical Reports Server (NTRS)
1985-01-01
Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.
Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter
2015-04-01
Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925
Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Jones, Brandon M.
2005-01-01
Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory
NASA Technical Reports Server (NTRS)
Weinwurm, G.; Weber, R.
2005-01-01
The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.
Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers
NASA Technical Reports Server (NTRS)
Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.
2011-01-01
In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.
Heliophysics: Plasma Physics of the Local Cosmos
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2009-07-01
Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliunas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index.
Heliophysics: Plasma Physics of the Local Cosmos
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2011-08-01
Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
2015-08-14
Bursts of pink and red, dark lanes of mottled cosmic dust, and a bright scattering of stars — this NASA/ESA Hubble Space Telescope image shows part of a messy barred spiral galaxy known as NGC 428. It lies approximately 48 million light-years away from Earth in the constellation of Cetus (The Sea Monster). Although a spiral shape is still just about visible in this close-up shot, overall NGC 428’s spiral structure appears to be quite distorted and warped, thought to be a result of a collision between two galaxies. There also appears to be a substantial amount of star formation occurring within NGC 428 — another telltale sign of a merger. When galaxies collide their clouds of gas can merge, creating intense shocks and hot pockets of gas, and often triggering new waves of star formation. NGC 428 was discovered by William Herschel in December 1786. More recently a type of supernova designated SN2013ct was discovered within the galaxy by Stuart Parker of the BOSS (Backyard Observatory Supernova Search) project in Australia and New Zealand, although it is unfortunately not visible in this image. This image was captured by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field and Planetary Camera 2 (WFPC2). Image credit: ESA/Hubble and NASA and S. Smartt (Queen's University Belfast), Acknowledgements: Nick Rose and Flickr user pennine cloud NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Results from the GSFC fluxgate magnetometer on Pioneer 11
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.
The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star
NASA Technical Reports Server (NTRS)
Fox, Ori D.; Van Dyk, Schuyler D.; Dwek, Eli; Smith, Nathan; Filippenko, Alexei V.; Andrews, Jennifer; Arendt, Richard G.; Foley, Ryan J.; Kelly, Patrick L.; Miller, Adam;
2017-01-01
A blue source in pre-explosion Hubble Space Telescope (HST)/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 Sigma astrometric error circle (approx. 0." 24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently forpost-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0."061(+/-) 0."008 (15 +/- 2 pc) from the underlying and extended source ofemission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (less than 56 Myr) cluster and still argues for a massive (greater than 30 solar mass) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.;
2012-01-01
We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.
Planetary Magnetic Fields: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team
2016-06-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for Space Studies for their hospitality and attention to detail, such that the Study participants could turn their attention to focused discussions and innovative ideas. We also thank Charles ("Chuck") Carter of Eagre Games, Inc., for his assistance with graphics.
Ring Beholds a Delicate Flower
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers. The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star. Download the QuickTime movie for the animated version of this Ring Nebula image.Obituary: John J. Hillman, 1938-2006
NASA Astrophysics Data System (ADS)
Chanover, Nancy
2007-12-01
John J. Hillman, a dedicated NASA civil servant, spectroscopist, astrophysicist, planetary scientist, and mentor, died on February 12, 2006 of ocular melanoma at his home in Columbia, Maryland. His professional and personal interests were wide-reaching and varied, and he devoted his career to the advancement of our understanding of the beauty and wonder in the world around us. His love of nature, art, and science made him a true Renaissance man. John was born in Fort Jay, New York, on November 22, 1938, and was raised in Washington, D.C. He received his B.S., M.S., and Ph.D. degrees in Physics from American University in 1967, 1970, and 1975, respectively. He began working at NASA's Goddard Space Flight Center, then in its infancy, in 1969, juggling a full-time position as a Research Physicist, the completion of his M.S. and Ph.D. degrees, and a young family. His background in molecular spectroscopy enabled him to apply his skills to numerous disciplines within NASA: infrared and radio astronomy; electronic, vibrational, and rotational structure of interstellar molecules; solar and stellar atmospheres; and planetary atmospheres. He published more than 70 journal papers in these disciplines. He was a frequent contributor to the Ohio State University International Symposium on Molecular Spectroscopy, and possessed a rare ability to bridge the gap between laboratory and remote sensing spectroscopy, bringing scientists from different disciplines together to understand our Universe. The last fifteen years of John's career were devoted to the development of acousto-optic tunable filter (AOTF) cameras. He championed this technology as a low-cost, low-power alternative to traditional imaging cameras for in situ or remotely sensed planetary exploration. It was within this context that I got to know John, and eventually worked closely with him on the demonstration and application of this technology for planetary science using ground-based telescopes in New Mexico, California, and Hawaii. John's interest in AOTF technology did not stop at planetary science: he cleverly applied this powerful tool to some of his other areas of interest, including art and history. Hyperspectral imaging, when applied to oil paintings, can reveal drawings underneath a "finished" work of art, and John was keen to learn more about his favorite artists by making spectral image cubes of their famous paintings. He also participated in an effort by the National Museum of American History to preserve the Star Spangled Banner flag that motivated Francis Scott Key to pen our national anthem. Perhaps John's most famous "observing run" was conducted at the Smithsonian, on the Mall in Washington, D.C., with an AOTF camera mounted on scaffolding in front of the flag. Spectral imaging revealed locations on the flag with signs of deterioration not visible to the unaided eye. In yet another example of John's amazing ability to bring together people from various disciplines, the team of people who worked on the flag project included planetary scientists, molecular spectroscopists, textile conservators, and agricultural scientists with expertise in the proteins of wool and cotton. John was deeply committed to the scientific community, as demonstrated by his numerous service contributions. He spent two terms at NASA Headquarters, once in 1983-1985 as a Discipline Scientist for Planetary Astronomy, and once in 1999-2001 as a Discipline Scientist for the Planetary Astronomy and Planetary Atmospheres Programs in NASA's Solar System Exploration Division. He also served as a frequent reviewer for journals in planetary science, astrophysics, and molecular spectroscopy and served on numerous review panels for NASA and Goddard Space Flight Center. Although John spent the vast majority of his career at a NASA center, he loved teaching and working with students. He was occasionally called upon to teach an astronomy course at the University of Maryland, which he thoroughly enjoyed, and for the last several years of his career he was a Co-Director of the College Park Scholars program at the University of Maryland. There he had an opportunity to share his love of science with college freshmen and provide them with unique educational experiences such as small seminars, individualized attention, and field trips. Even at Goddard, John maintained contact with numerous graduate students, many of whom he brought to Goddard as postdoctoral fellows funded through the National Research Council Resident Research Associateship Program. He was a natural mentor, providing leadership, advice, and friendship to the junior scientists who worked with him over the years. One of the most exciting things about John was that he had numerous interests outside of astronomy. He enjoyed painting, and was a copyist at the National Gallery of Art. He was a skilled floral designer and won floral design contests in addition to owning a flower shop with one of his daughters. He was a gourmet chef, and could make a delicious meal out of the most basic of ingredients. He loved to ski, travel, garden, work on old cars, and read thriller novels. Most significantly, though, John was a deeply dedicated family man. He frequently shared stories about his adventures with his wife of 47 years, Patricia, his five children, his twelve grandchildren, and their extended family. With all of the professional accolades and successes he had received by the time he retired from Goddard, he viewed his family as his most significant accomplishment. The astronomical community suffered a great loss in the passing of John Hillman. His commitment to professional service, his dedication to mentoring younger scientists, and his ability to bring together scientists from widely varying disciplines to work on a problem enabled him to make unique contributions to our field. Those of us who knew him miss his outgoing, friendly, inquisitive, and generous personality. John greeted each day with optimism, as a discovery and an adventure waiting to happen.
Development of an Ultra-Violet Digital Camera for Volcanic Sulfur Dioxide Imaging
NASA Astrophysics Data System (ADS)
Bluth, G. J.; Shannon, J. M.; Watson, I. M.; Prata, F. J.; Realmuto, V. J.
2006-12-01
In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations. Images of volcanic SO2 plumes were collected at four active volcanoes with persistent passive degassing: Villarrica, located in Chile, and Santiaguito, Fuego, and Pacaya, located in Guatemala. Images were collected from distances ranging between 4 and 28 km away, with crisp detection up to approximately 16 km. Camera set-up time in the field ranges from 5-10 minutes and images can be recorded in as rapidly as 10-second intervals. Variable in-plume concentrations can be observed and accurate plume speeds (or rise rates) can readily be determined by tracing individual portions of the plume within sequential images. Initial fluxes computed from camera images require a correction for the effects of environmental light scattered into the field of view. At Fuego volcano, simultaneous measurements of corrected SO2 fluxes with the camera and a Correlation Spectrometer (COSPEC) agreed within 25 percent. Experiments at the other sites were equally encouraging, and demonstrated the camera's ability to detect SO2 under demanding meteorological conditions. This early work has shown great success in imaging SO2 plumes and offers promise for volcano monitoring due to its rapid deployment and data processing capabilities, relatively low cost, and improved interpretation afforded by synoptic plume coverage from a range of distances.
History of Hubble Space Telescope (HST)
1993-12-01
Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.
Photometric Study of Uranian Satellites
NASA Technical Reports Server (NTRS)
Kesten, Philip R.
1998-01-01
The best summary of my work at NASA is expressed in the following abstract, submitted the Division for Planetary Science of the American Astronomical Society and to be presented at the annual meeting in Madison in October. We report photometric measurements of Uranian satellites Miranda, Ariel, Umbriel and Titania (10.4 Aug. 1995), and Neptune's satellite Triton (21.2 Sept. 1995) with the infrared camera (IRCAM) and standard J (1.13 - 1.42 microns), H (1.53 - 1.81 microns), and K (2.00 - 2.41 microns) filters at the 3.8-m UKIRT telescope on Mauna Kea. The individual images frames are 256 x 256 pixels with a platescale of .286 arcsec/pixel, resulting in a 1.22 arc min field of view. This summer brought the IR photometry measurements nearly to a close. As indicated by the abstract above, I will present this work at the annual DPS meeting in October. In anticipation of the opening of the new Carl Sagan Laboratory for Cosmochemisty, of which I will be a participating member, I also devoted a considerable fraction of the summer to learning the biochemistry which underlies the experiments to be conducted. To put the end of the summary close to the beginning, it was a most productive summer.
The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint
NASA Astrophysics Data System (ADS)
Wakeford, H. R.; Sing, D. K.; Deming, D.; Lewis, N. K.; Goyal, J.; Wilson, T. J.; Barstow, J.; Kataria, T.; Drummond, B.; Evans, T. M.; Carter, A. L.; Nikolov, N.; Knutson, H. A.; Ballester, G. E.; Mandell, A. M.
2018-01-01
WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8–1.1 μm) and G141 (1.1–1.7 μm) spectroscopic grisms. We measure the predicted high-amplitude H2O feature centered at 1.4 μm and the smaller amplitude features at 0.95 and 1.2 μm, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 μm. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T eq = 1030{}-20+30 K, and atmospheric metallicity {151}-46+48× solar, which is relatively high with respect to the currently established mass–metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Schmidt, Carsten; Hannawald, Patrick; Offenwanger, Thomas; Sedlak, René; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2017-04-01
During the GW-LCYCLE campaign from January to February 2016 in Northern Scandinavia, we operated four instruments: two ground-based OH* IR-spectrometers (scanning and non-scanning mode at ALOMAR (69°N), Norway, and Kiruna (68°N), Sweden) and one ground-based OH* IR all-sky camera (at Kiruna) as well as one OH* IR-camera on board the research aircraft FALCON (field of view ca. 30°, spatial resolution 150 m x 150 m). Due to the differing spatial and temporal resolution of the instruments, this equipment allows the investigation of temporal and spatial gravity wave parameters in a wide spectral range. The flights of the research aircraft provide the opportunity to investigate gravity waves in between both measurement sites. During the campaign period, the dynamical situation changed due to a minor stratospheric warming. The effect of this warming on the OH*-layer is investigated using TIMED-SABER data. We provide an overview of the development of planetary and gravity wave parameters and energy density at mesopause height during the campaign period and present first results of the airborne measurements. Finally, we discuss possible wave sources and the influence of the stratospheric warming on wave parameters, and propagation.
Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks
NASA Astrophysics Data System (ADS)
Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.
2018-04-01
Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.
NASA Astrophysics Data System (ADS)
Niebur, S. M.; Singer, K.; Gardner-Vandy, K.
2012-08-01
Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on WomeninPlanetaryScience.com. Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.
ASTRO-ENTOMOLOGY? ANT-LIKE SPACE STRUCTURE PREVIEWS DEATH OF OUR SUN
NASA Technical Reports Server (NTRS)
2002-01-01
From ground-based telescopes, the so-called 'ant nebula' (Menzel 3, or Mz 3) resembles the head and thorax of a garden-variety ant. This dramatic NASA/ESA Hubble Space Telescope image, showing 10 times more detail, reveals the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun-like star. The Hubble images directly challenge old ideas about the last stages in the lives of stars. By observing Sun-like stars as they approach their deaths, the Hubble Heritage image of Mz 3 -- along with pictures of other planetary nebulae -- shows that our Sun's fate probably will be more interesting, complex, and striking than astronomers imagined just a few years ago. Though approaching the violence of an explosion, the ejection of gas from the dying star at the center of Mz 3 has intriguing symmetrical patterns unlike the chaotic patterns expected from an ordinary explosion. Scientists using Hubble would like to understand how a spherical star can produce such prominent, non-spherical symmetries in the gas that it ejects. One possibility is that the central star of Mz 3 has a closely orbiting companion that exerts strong gravitational tidal forces, which shape the outflowing gas. For this to work, the orbiting companion star would have to be close to the dying star, about the distance of the Earth from the Sun. At that distance the orbiting companion star wouldn't be far outside the hugely bloated hulk of the dying star. It's even possible that the dying star has consumed its companion, which now orbits inside of it, much like the duck in the wolf's belly in the story 'Peter and the Wolf.' (See http://oposite.stsci.edu/pubinfo/qt/ssudec.mov for an animation that shows how this might work.) A second possibility is that, as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Charged winds moving at speeds up to 1000 kilometers per second from the star, much like those in our sun's solar wind but millions of times denser, are able to follow the twisted field lines on their way out into space. These dense winds can be rendered visible by ultraviolet light from the hot central star or from highly supersonic collisions with the ambient gas that excites the material into florescence. No other planetary nebula observed by Hubble resembles Mz 3 very closely. M2-9 comes close, but the outflow speeds in Mz 3 are up to 10 times larger than those of M2-9. (See http://oposite.stsci.edu/pubinfo/PR/97/38/content/9738aw.jpg). Interestingly, the very massive, young star, Eta Carinae, shows a very similar outflow pattern (see http://oposite.stsci.edu/pubinfo/PR/96/23.html). Astronomers Bruce Balick (University of Washington) and Vincent Icke (Leiden University) used Hubble to observe this planetary nebula, Mz 3, in July 1997 with the Wide Field Planetary 2 camera. One year later, astronomers Raghvendra Sahai and John Trauger of the Jet Propulsion Lab in California snapped pictures of Mz 3 using slightly different filters. This intriguing image, which is a composite of several filters from each of the two datasets, was created by the Hubble Heritage Team. Image credit: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Sahai (Jet Propulsion Lab), B. Balick (University of Washington)
Surveillance of a 2D Plane Area with 3D Deployed Cameras
Fu, Yi-Ge; Zhou, Jie; Deng, Lei
2014-01-01
As the use of camera networks has expanded, camera placement to satisfy some quality assurance parameters (such as a good coverage ratio, an acceptable resolution constraints, an acceptable cost as low as possible, etc.) has become an important problem. The discrete camera deployment problem is NP-hard and many heuristic methods have been proposed to solve it, most of which make very simple assumptions. In this paper, we propose a probability inspired binary Particle Swarm Optimization (PI-BPSO) algorithm to solve a homogeneous camera network placement problem. We model the problem under some more realistic assumptions: (1) deploy the cameras in the 3D space while the surveillance area is restricted to a 2D ground plane; (2) deploy the minimal number of cameras to get a maximum visual coverage under more constraints, such as field of view (FOV) of the cameras and the minimum resolution constraints. We can simultaneously optimize the number and the configuration of the cameras through the introduction of a regulation item in the cost function. The simulation results showed the effectiveness of the proposed PI-BPSO algorithm. PMID:24469353
NASA Astrophysics Data System (ADS)
Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.
2014-11-01
After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.
NASA Technical Reports Server (NTRS)
Heldmann, J. L.; Toon, O. B.; Pollard, W. H.; Mellon, M. T.; Pitlick, J.; McKay, C. P.; Andersen, D. T.
2005-01-01
Images from the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft show geologically young small-scale features resembling terrestrial water-carved gullies. An improved understanding of these features has the potential to reveal important information about the hydrological system on Mars, which is of general interest to the planetary science community as well as the field of astrobiology and the search for life on Mars. The young geologic age of these gullies is often thought to be a paradox because liquid water is unstable at the Martian surface. Current temperatures and pressures are generally below the triple point of water (273 K, 6.1 mbar) so that liquid water will spontaneously boil and/or freeze. We therefore examine the flow of water on Mars to determine what conditions are consistent with the observed features of the gullies.
NASA Technical Reports Server (NTRS)
Springfield, C. W., Jr.
1985-01-01
The space telescope contains various scientific instrument (SI) modules which are mounted to the Focal Plane Structure (FPS) in a statically determinate manner. This is accomplished by using three registration fittings per SI module, one resisting three translations, another resisting two and the third resisting only one. Due to thermal insulating requirements these fittings are complex devices composed of numerous pieces. The structural integrity of these fittings is of great importance to the safety of the orbiter transporting the telescope, so in addition to the stress analyses performed during the design of these components, fracture susceptibility also needs to be considered. The pieces of the registration fittings for the Radial SI Module containing the Wide Field Planetary Camera are examined to determine which would endanger the orbiter if they fractured and what is the likelihood of their fracture. The latter is stated in terms of maximum allowable initial flaw sizes in these pieces.
Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01
NASA Technical Reports Server (NTRS)
1993-01-01
This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.
Cater, J P; Huffman, S D
1995-01-01
This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.
Markarian 315: A test case for the active galactic nucleus-merger hypothesis?
NASA Technical Reports Server (NTRS)
Mackenty, John W.; Simkin, Susan M.; Griffiths, Richard E.; Ulvestad, James S.; Wilson, Andrew S.
1994-01-01
Using the Hubble Space Telescope (HST) Wide Field/Planetary Camera, (WF/PC) we have detected a diffuse continuum knot in the inner regions of the Seyfert galaxy Markarian 315. This knot may be a remnant nucleus. It is associated with a complex, ringlike structure in both the continuum and ionized gas emission. We have measured the kinematics of the ionized gas in two position angles and find velocities which are consistent with a nonaxisymmetric gravitational disturbance. The galaxy is associated with an extended ionized filament, or tidal tail, and our measurements show that the ionized gas in this feature is redshifted by up to 500 km/s in the line of sight relative to the Seyfert nucleus. This combination of morphological and kinematic features suggests that Mrk 315 has suffered a disruptive, tidal interaction which has significantly influenced regions within 1 kpc of its nucleus.
A planetary telescope at the ISS
NASA Astrophysics Data System (ADS)
Korablev, O.; Moroz, V.; Avanesov, G.; Rodin, V.; Bellucci, G.; Vid Machenko, A.; Tejfel, V.
We present the development of a 40-cm telescope to be deployed at the Russian segment of International Space Station (ISS) dedicated to the observations of planets of Solar system, which primary goal will be tracking climate-related changes and other variable phenomena on planets. The most effective will be the observations of Venus, Mars, Jupiter, Saturn, and comets, while other interesting targets will be certainly considered. This space-based observatory will perform monitoring of Solar System objects on regular basis The observatory includes the 40-cm narrow-field (f:20) telescope at a pointing platform with guidance system assuring pointing accuracy of ~10", and an internal tracking system with an accuracy inferior to 1" during tens of minutes. Four focal plane instruments, a camera, two spectrometers and a spectropolarimeter, will perform imaging and spectral observations in the range from ~200 nm to ~3 μm.
NASA Astrophysics Data System (ADS)
Benni, P.
2017-06-01
(Abstract only) GPX is designed to search high density star fields where other surveys, such as WASP, HATNet, XO, and KELT would find challenging due to blending of transit like events. Using readily available amateur equipment, a survey telescope (Celestron RASA, 279 mm f/2.2, based in Acton, Massachusetts) was configured first with a SBIG ST-8300M camera then later upgraded to an FLI ML16200 camera and tested under different sampling scenarios with multiple image fields to obtain a 9- to 11-minute cadence per field. The resultant image resolution of GPX is about 2 arcsec/pixel compared to 13.7±23 arcsec/pixel of the aforementioned surveys and the future TESS space telescope exoplanet survey.
Resolved, Time-Series Observations of Pluto-Charon with the Magellan Telescopes
NASA Astrophysics Data System (ADS)
Elliot, J. L.; Person, M. J.; Adams, E. R.; Gulbis, A. A. S.; Kramer, E. A.
2005-08-01
In support of prediction refinements at MIT for stellar occultations by Pluto and Charon, resolved photometric observations of Pluto and Charon at optical wavelengths have been carried out with the Magellan telescopes at Las Campanas Observatory for each apparition since 2001. Both Sloan and Johnson-Kron-Cousins filters have been used. The median natural image quality for the site is about 0.7 arcsec (with some nights better than 0.3 arcsec). These data yield accurate light ratios for the two bodies as a function of: (1) wavelength, (2) Charon's orbital phase, and (3) the sub-Earth latitude for Pluto and Charon. This information is needed to interpret the location of their center of light, relative to their center of mass, for unresolved images of Pluto and Charon taken with wide-field astrometric instruments. The Raymond and Beverly Magellan Instant Camera ("MagIC") -- the instrument used for these observations -- has a focal-plane scale of 0.069 arcsec/pix and a field of 2.3 arcmin. This field is large enough so that many of our Pluto-Charon frames can be tied to the International Coordinate Reference Frame (ICRF) with stars in the UCAC2 catalog. Initial results for this program have been reported by Clancy et al. (Highlights of Astr. vol. 13, in press), who found a strong trend in the Charon to Pluto light ratio over the wavelength range spanned by the Sloan filters. Further results from this program used to predict the 2005 July 11 stellar occultation by Charon will be presented. We gratefully acknowledge support from NASA Grant NNG04GF25G from the Planetary Astronomy program.
NASA Technical Reports Server (NTRS)
Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.
1994-01-01
This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which variability could have been detected. Most of the variables are RR Lyrae stars on the horizontal branch. All of them have periods P greater than or approximately equal 8 h.
Recent Advances and Achievements at The Catalina Sky Survey
NASA Astrophysics Data System (ADS)
Leonard, Gregory J.; Christensen, Eric J.; Fuls, Carson; Gibbs, Alex; Grauer, Al; Johnson, Jess A.; Kowalski, Richard; Larson, Stephen M.; Matheny, Rose; Seaman, Rob; Shelly, Frank
2017-10-01
The Catalina Sky Survey (CSS) is a NASA-funded project fully dedicated to discover and track near-Earth objects (NEOs). Since its founding nearly 20 years ago CSS remains at the forefront of NEO surveys, and recent improvements in both instrumentation and software have increased both survey productivity and data quality. In 2016 new large-format (10K x 10K) cameras were installed on both CSS survey telescopes, the 1.5-m reflector and the 0.7-m Schmidt, increasing the field of view, and hence nightly sky coverage by 4x and 2.4x respectively. The new cameras, coupled with improvements in the reduction and detection pipelines, and revised sky-coverage strategies have yielded a dramatic upward trend of NEO discovery rates. CSS has also developed a custom adaptive queue manager for scheduling NEO follow-up astrometry using a remotely operated and recently renovated 1-m Cassegrain reflector telescope, improvements that have increased the production of follow-up astrometry for newly discovered NEOs and arc extensions for previously discovered objects by CSS and other surveys. Additionally, reprocessing of archival CSS data (which includes some 46 million individual astrometric measurements) through the new reduction and detection pipeline will allow for improved orbit determinations and increased arc extensions for hundreds of thousands of asteroids. Reprocessed data will soon feed into a new public archive of CSS images and catalog data products made available through NASA’s Planetary Data System (PDS). For the future, CSS is working towards improved NEO follow-up capabilities through a combination of access to larger telescopes, instrument upgrades and follow-up scheduling tools.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2017-11-01
The Hubble Space Telescope archive contains a large collection of images of η Carinae, and this paper analyses those most suitable for measuring its expanding Homunculus Nebula. Multiple intensity tracings through the Homunculus reveal the fractional increase in the overall size of the nebula; this avoids registration uncertainty, mitigates brightness fluctuations, and is independent of previous methods. Combining a 13 yr baseline of Wide Field Planetary Camera 2 images in the F631N filter, with a 4 yr baseline of Advanced Camera for Surveys/High Resolution Channel images in the F550M filter, yields an ejection date (assuming linear motion) of 1847.1 (±0.8 yr). This result improves the precision, but is in excellent agreement with the previous study by Morse et al., that used a shorter time baseline and a different analysis method. This more precise date is inconsistent with ejection during a periastron passage of the eccentric binary. Ejection occurred well into the main plateau of the Great Eruption, and not during the brief peaks in 1843 and 1838. The age uncertainty is dominated by a real spread in ages of various knots, and by some irregular brightness fluctuations. Several knots appear to have been ejected decades before or after the mean date, implying a complicated history of mass-loss episodes outside the main bright phase of the eruption. The extended history of mass ejection may have been largely erased by the passage of a shock through clumpy ejecta, as most material was swept into a thin shell with nearly uniform apparent age.
Hubble Views the Whirling Disk of NGC 4526
2014-10-24
This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space Telescope. Although this image paints a picture of serenity, the galaxy is anything but. It is one of the brightest lenticular galaxies known, a category that lies somewhere between spirals and ellipticals. It has hosted two known supernova explosions, one in 1969 and another in 1994, and is known to have a colossal supermassive black hole at its center that has the mass of 450 million suns. NGC 4526 is part of the Virgo cluster of galaxies. Ground-based observations of galaxies in this cluster have revealed that a quarter of these galaxies seem to have rapidly rotating disks of gas at their centers. The most spectacular of these is this galaxy, NGC 4526, and its spinning disk of gas, dust, and stars reaches out uniquely far from its heart, spanning some seven percent of the galaxy's entire radius. This disk is moving incredibly fast, spinning at more than 250 kilometers per second. The dynamics of this quickly whirling region were actually used to infer the mass of NGC 4526’s central black hole — a technique that had not been used before to constrain a galaxy’s central black hole. This image was taken with Hubble's Wide Field and Planetary Camera 2 and the Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
NASA Astrophysics Data System (ADS)
Grosjean, Martin; Guiot, Joel; Yu, Zicheng
2018-05-01
The publication of the paper by Harde (2017) in Global and Planetary Change has concerned many researchers and experts in the field. We, the authors of this Commentary, all being members of the Editorial Board of Global and Planetary Change share these concerns and see our personal reputations and the reputation of the journal at risk. The acceptance of this paper has exposed potential weaknesses in the implementation of the peer review system, and quality control mechanisms have failed in this particular case.
The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.
The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J.
2006-01-01
This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.
2016-01-06
This Nissan LEAF vehicle being tested on the Ames campus is equipped with cameras, sensors and cellular data networking, and uses robotics software originally developed for Ames’ K-10 and K-REX planetary rovers to operate autonomously. Shown here are Kathy Sun and Liam Pedersen, Nissan who are awaiting the arrival of the visiting group from Renault-Nissan Alliance for a demo ride across Ames.
Transiting Exoplanet Observations at Grinnell College
NASA Astrophysics Data System (ADS)
Sauerhaft, Julia; Slough, P.; Cale, B.; Kempton, E.
2014-01-01
Grinnell College, a small liberal arts college in Grinnell, Iowa with 1600 undergraduate students, is home to the Grant O. Gale Observatory. Over the past year, we have successfully detected extrasolar planets using the transit method with our 24-inch Cassegrain reflecting telescope equipped with a CCD camera. With little light pollution and an easily accessible observatory, Grinnell College is an optimal location for transiting exoplanet observations. With the current telescope set-up and CCD camera, we have taken time series data and created image calibration and post-processing programs that detect exoplanet transits at high photometric precision. In the future, we will continue to use these observation and data reduction procedures to conduct transiting exoplanet research. Goals for our research program include performing follow-up observations of transiting exoplanet candidates to confirm their planetary nature, searching for additional exoplanets in known planetary systems using the transit timing detection method, tracking long period transiting planets, and refining properties of exoplanets and their host stars. Ground-based transiting planet science is especially important in the post-Kepler era, and our dedicated mid-sized telescope with plenty of access to dark clear nights provides an ideal resource for a variety of follow up and exoplanet detection efforts.
Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale
NASA Technical Reports Server (NTRS)
Sandage, Allan; Bedke, John
1988-01-01
A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.
Brahms Mobile Agents: Architecture and Field Tests
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2002-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, rover/All-Terrain Vehicle (ATV), robotic assistant, other personnel in a local habitat, and a remote mission support team (with time delay). Software processes, called agents, implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system (e.g., return here later and bring this back to the habitat ). This combination of agents, rover, and model-based spoken dialogue interface constitutes a personal assistant. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a run-time system.
Fractal planetary rings: Energy inequalities and random field model
NASA Astrophysics Data System (ADS)
Malyarenko, Anatoliy; Ostoja-Starzewski, Martin
2017-12-01
This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.
The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software
NASA Astrophysics Data System (ADS)
Cicalò, S.; Schettino, G.; Di Ruzza, S.; Alessi, E. M.; Tommei, G.; Milani, A.
2016-04-01
The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possible to constrain relativistic theories of gravitation. In order to assess that all the scientific goals are achievable with the required level of accuracy, full cycle numerical simulations of the radio science experiment have been performed. Simulated tracking, accelerometer and optical camera data have been generated, and a long list of variables including the spacecraft initial conditions, the accelerometer calibrations and the gravity field coefficients have been determined by a least-squares fit. The simulation results are encouraging: the experiments are feasible at the required level of accuracy provided that some critical terms in the accelerometer error are moderated. We will show that BepiColombo will be able to provide at least an order of magnitude improvement in the knowledge of Love number k2, libration amplitudes and obliquity, along with a gravity field determination up to degree 25 with a signal-to-noise ratio of 10.
NASA Technical Reports Server (NTRS)
Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.
2001-01-01
The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.
Removing cosmic-ray hits from multiorbit HST Wide Field Camera images
NASA Technical Reports Server (NTRS)
Windhorst, Rogier A.; Franklin, Barbara E.; Neuschaefer, Lyman W.
1994-01-01
We present an optimized algorithm that removes cosmic rays ('CRs') from multiorbit Hubble Space Telescope (HST) Wide Field/Planetary Camera ('WF/PC') images. It computes the image noise in every iteration from the WF/PC CCD equation. This includes all known sources of random and systematic calibration errors. We test this algorithm on WF/PC stacks of 2-12 orbits as a function of the number of available orbits and the formal Poissonian sigma-clipping level. We find that the algorithm needs greater than or equal 4 WF/PC exposures to locate the minimal sky signal (which is noticeably affected by CRs), with an optimal clipping level at 2-2.5 x sigma(sub Poisson). We analyze the CR flux detected on multiorbit 'CR stacks,' which are constructed by subtracting the best CR filtered images from the unfiltered 8-12 orbit average. We use an automated object finder to determine the surface density of CRS as a function of the apparent magnitude (or ADU flux) they would have generated in the images had they not been removed. The power law slope of the CR 'counts' (gamma approximately = 0.6 for N(m) m(exp gamma)) is steeper than that of the faint galaxy counts down to V approximately = 28 mag. The CR counts show a drop off between 28 less than or approximately V less than or approximately 30 mag (the latter is our formal 2 sigma point source sensitivity without spherical aberration). This prevents the CR sky integral from diverging, and is likely due to a real cutoff in the CR energy distribution below approximately 11 ADU per orbit. The integral CR surface density is less than or approximately 10(exp 8)/sq. deg, and their sky signal is V approximately = 25.5-27.0 mag/sq. arcsec, or 3%-13% of our NEP sky background (V = 23.3 mag/sq. arcsec), and well above the EBL integral of the deepest galaxy counts (B(sub J) approximately = 28.0 mag/sq. arcsec). We conclude that faint CRs will always contribute to the sky signal in the deepest WF/PC images. Since WFPC2 has approximately 2.7x lower read noise and a thicker CCD, this will result in more CR detections than in WF/PC, potentially affecting approximately 10%-20% of the pixels in multiorbit WFPC2 data cubes.
Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images
NASA Astrophysics Data System (ADS)
Awumah, Anna; Mahanti, Prasun; Robinson, Mark
2016-10-01
Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).
Optical Meteor Systems Used by the NASA Meteoroid Environment Office
NASA Technical Reports Server (NTRS)
Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.
2015-01-01
The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera system, will be discussed.
GETTING TO THE HEART OF A GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269 Angstroms). The NICMOS image, taken at a wavelength of 16,000 Angstroms, was combined with the visible and near-infrared wavelengths taken by WFPC2. The WFPC2 image was taken in January 1996; the NICMOS data were taken in April 1998. Credits for the ground-based image: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for the WFPC2 image: NASA and John Trauger (Jet Propulsion Laboratory) Credits for the NICMOS image: NASA, ESA, and C. Marcella Carollo (Columbia University)
VizieR Online Data Catalog: Observation of six NSVS eclipsing binaries (Dimitrov+, 2015)
NASA Astrophysics Data System (ADS)
Dimitrov, D. P.; Kjurkchieva, D. P.
2017-11-01
We managed to separate a sample of about 40 ultrashort-period candidates from the Northern Sky Variability Survey (NSVS, Wozniak et al. 2004AJ....127.2436W) appropriate for follow-up observations at Rozhen observatory (δ>-10°). Follow-up CCD photometry of the targets in the VRI bands was carried out with the three telescopes of the Rozhen National Astronomical Observatory. The 2-m RCC telescope is equipped with a VersArray CCD camera (1340x1300 pixels, 20 μm/pixel, field of 5.35x5.25 arcmin2). The 60-cm Cassegrain telescope is equipped with a FLI PL09000 CCD camera (3056x3056 pixels, 12 μm/pixel, field of 17.1x17.1 arcmin2). The 50/70 cm Schmidt telescope has a field of view (FoV) of around 1° and is equipped with a FLI PL 16803 CCD camera, 4096x4096 pixels, 9 μm/pixel size. (4 data files).
Wide field NEO survey 1.0-m telescope with 10 2k×4k mosaic CCD camera
NASA Astrophysics Data System (ADS)
Isobe, Syuzo; Asami, Atsuo; Asher, David J.; Hashimoto, Toshiyasu; Nakano, Shi-ichi; Nishiyama, Kota; Ohshima, Yoshiaki; Terazono, Junya; Umehara, Hiroaki; Yoshikawa, Makoto
2002-12-01
We developed a new 1.0 m telescope with a 3 degree flat focal plane to which a mosaic CCD camera with 10 2k×4k chips is fixed. The system was set up in February 2002, and is now undergoing the final fine adjustments. Since the telescope has a focal length of 3 m, a field of 7.5 square degrees is covered in one image. In good seeing conditions, 1.5 arc seconds, at the site located in Bisei town, Okayama prefecture in Japan, we can expect to detect down to 20th magnitude stars with an exposure time of 60 seconds. Considering a read-out time, 46 seconds, of the CCD camera, one image is taken in every two minutes, and about 2,100 square degrees of field is expected to be covered in one clear night. This system is very effective for survey work, especially for Near-Earth-Asteroid detection.
GALAXIES IN THE YOUNG UNIVERSE [left
NASA Technical Reports Server (NTRS)
2002-01-01
This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.
2014-02-01
Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from the stellar atmosphere at the pericentre. We also detected three small dims in the phase-folded light curve. The combination of two of them agrees with the theoretical characteristics expected for secondary eclipse. Conclusions: Kepler-91b could be the previous stage of the planet engulfment, which has recently been detected for BD+48 740. Our estimations show that Kepler-91b will be swallowed by its host star in less than 55 Myr. Among the confirmed planets around giant stars, this is the closest to its host star. At pericentre, the star subtends an angle of 48°, covering around 10% of the sky as seen from the planet. The planetary atmosphere seems to be inflated probably due to the high stellar irradiation. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org
Deployable Wireless Camera Penetrators
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng
2008-01-01
A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an aerobot or a spacecraft onto a comet or asteroid. A system of 20 of these penetrators could be designed and built in a 1- to 2-kg mass envelope. Possible future modifications of the camera penetrators, such as the addition of a chemical spray device, would allow the study of simple chemical reactions of reagents sprayed at the landing site and looking at the color changes. Zoom lenses also could be added for future use.
Small format digital photogrammetry for applications in the earth sciences
NASA Astrophysics Data System (ADS)
Rieke-Zapp, Dirk
2010-05-01
Small format digital photogrammetry for applications in the earth sciences Photogrammetry is often considered one of the most precise and versatile surveying techniques. The same camera and analysis software can be used for measurements from sub-millimetre to kilometre scale. Such a measurement device is well suited for application by earth scientists working in the field. In this case a small toolset and a straight forward setup best fit the needs of the operator. While a digital camera is typically already part of the field equipment of an earth scientist the main focus of the field work is often not surveying. Lack in photogrammetric training at the same time requires an easy to learn, straight forward surveying technique. A photogrammetric method was developed aimed primarily at earth scientists for taking accurate measurements in the field minimizing extra bulk and weight of the required equipment. The work included several challenges. A) Definition of an upright coordinate system without heavy and bulky tools like a total station or GNS-Sensor. B) Optimization of image acquisition and geometric stability of the image block. C) Identification of a small camera suitable for precise measurements in the field. D) Optimization of the workflow from image acquisition to preparation of images for stereo measurements. E) Introduction of students and non-photogrammetrists to the workflow. Wooden spheres were used as target points in the field. They were more rugged and available in different sizes than ping pong balls used in a previous setup. Distances between three spheres were introduced as scale information in a photogrammetric adjustment. The distances were measured with a laser distance meter accurate to 1 mm (1 sigma). The vertical angle between the spheres was measured with the same laser distance meter. The precision of the measurement was 0.3° (1 sigma) which is sufficient, i.e. better than inclination measurements with a geological compass. The upright coordinate system is important to measure the dip angle of geologic features in outcrop. The planimetric coordinate systems would be arbitrary, but may easily be oriented to compass north introducing a direction measurement of a compass. Wooden spheres and a Leica disto D3 laser distance meter added less than 0.150 kg to the field equipment considering that a suitable digital camera was already part of it. Identification of a small digital camera suitable for precise measurements was a major part of this work. A group of cameras were calibrated several times over different periods of time on a testfield. Further evaluation involved an accuracy assessment in the field comparing distances between signalized points calculated form a photogrammetric setup with coordinates derived from a total station survey. The smallest camera in the test required calibration on the job as the interior orientation changed significantly between testfield calibration and use in the field. We attribute this to the fact that the lens was retracted then the camera was switched off. Fairly stable camera geometry in a compact size camera with lens retracting system was accomplished for Sigma DP1 and DP2 cameras. While the pixel count of the cameras was less than for the Ricoh, the pixel pitch in the Sigma cameras was much larger. Hence, the same mechanical movement would have less per pixel effect for the Sigma cameras than for the Ricoh camera. A large pixel pitch may therefore compensate for some camera instability explaining why cameras with large sensors and larger pixel pitch typically yield better accuracy in object space. Both Sigma cameras weigh approximately 0.250 kg and may even be suitable for use with ultralight aerial vehicles (UAV) which have payload restriction of 0.200 to 0.300 kg. A set of other cameras that were available were also tested on a calibration field and on location showing once again that it is difficult to reason geometric stability from camera specifications. Image acquisition with geometrically stable cameras was fairly straight forward to cover the area of interest with stereo pairs for analysis. We limited our tests to setups with three to five images to minimize the amount of post processing. The laser dot of the laser distance meter was not visible for distances farther than 5-7 m with the naked eye which also limited the maximum stereo area that may be covered with this technique. Extrapolating the setup to fairly large areas showed no significant decrease in accuracy accomplished in object space. Working with a Sigma SD14 SLR camera on a 6 x 18 x 20 m3 volume the maximum length measurement error ranged between 20 and 30 mm depending on image setup and analysis. For smaller outcrops even the compact cameras yielded maximum length measurement errors in the mm range which was considered sufficient for measurements in the earth sciences. In many cases the resolution per pixel was the limiting factor of image analysis rather than accuracy. A field manual was developed guiding novice users and students to this technique. The technique does not simplify ease of use for precision; therefore successful users of the presented method easily grow into more advanced photogrammetric methods for high precision applications. Originally camera calibration was not part of the methodology for the novice operators. Recent introduction of Camera Calibrator which is a low cost, well automated software for camera calibration, allowed beginners to calibrate their camera within a couple minutes. The complete set of calibration parameters can be applied in ERDAS LPS software easing the workflow. Image orientation was performed in LPS 9.2 software which was also used for further image analysis.
Analysis of calibration accuracy of cameras with different target sizes for large field of view
NASA Astrophysics Data System (ADS)
Zhang, Jin; Chai, Zhiwen; Long, Changyu; Deng, Huaxia; Ma, Mengchao; Zhong, Xiang; Yu, Huan
2018-03-01
Visual measurement plays an increasingly important role in the field o f aerospace, ship and machinery manufacturing. Camera calibration of large field-of-view is a critical part of visual measurement . For the issue a large scale target is difficult to be produced, and the precision can not to be guaranteed. While a small target has the advantage of produced of high precision, but only local optimal solutions can be obtained . Therefore, studying the most suitable ratio of the target size to the camera field of view to ensure the calibration precision requirement of the wide field-of-view is required. In this paper, the cameras are calibrated by a series of different dimensions of checkerboard calibration target s and round calibration targets, respectively. The ratios of the target size to the camera field-of-view are 9%, 18%, 27%, 36%, 45%, 54%, 63%, 72%, 81% and 90%. The target is placed in different positions in the camera field to obtain the camera parameters of different positions . Then, the distribution curves of the reprojection mean error of the feature points' restructure in different ratios are analyzed. The experimental data demonstrate that with the ratio of the target size to the camera field-of-view increas ing, the precision of calibration is accordingly improved, and the reprojection mean error changes slightly when the ratio is above 45%.
A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.
2018-03-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.
Zodiacal Exoplanets in Time: Searching for Young Stars in K2
NASA Astrophysics Data System (ADS)
Morris, Nathan; Mann, Andrew W.
2017-06-01
Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.
Development of the SEASIS instrument for SEDSAT
NASA Technical Reports Server (NTRS)
Maier, Mark W.
1996-01-01
Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.
Estimating the Magnetic Field Strength in Hot Jupiters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu
A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. Wemore » find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.« less
In Brief: Mars imagery now available on the web
NASA Astrophysics Data System (ADS)
Zielinski, Sarah
2007-06-01
More than 1200 images taken by the NASA Mars Reconnaissance Orbiter's High Resolution Imaging Experiment (HiRISE) camera have now been made available to the public on the Internet. HiRISE takes images of 6-kilometer-wide swaths of Mars, resolving features as small as 40 centimeters. The camera is expected to take images of about 1% of the planet over the next year and a half. The images-available at http://hirise.lpl.arizona.edu, a new node for NASA's Planetary Data System data archive-can be explored online with the IAS Viewer that allows for high quality images to be seen even with a slow or limited network connection.
Hubble Spots Northern Hemispheric Clouds on Uranus
NASA Technical Reports Server (NTRS)
1997-01-01
Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time.
Uranus is sometimes called the 'sideways' planet, because its rotation axis tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness).Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds.Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible.Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.'Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/SHOK—The First Russian Wide-Field Optical Camera in Space
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.
2018-02-01
Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.
Joint estimation of high resolution images and depth maps from light field cameras
NASA Astrophysics Data System (ADS)
Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki
2014-03-01
Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.
From Core to Solar Wind: Studying the Space Environment of Planets
NASA Astrophysics Data System (ADS)
Bagenal, F.
2004-05-01
Space physics permeates studies of the planets - from the magnetic field generated in a planetary core, through the charged particle bombardment of surfaces, the heating, excitation and ionization of an atmosphere or corona, to the acceleration of ions and electrons trapped in a planet's magnetosphere. This presentation provides an introductory overview of the space environment of planetary objects - from giant planets to tiny comets. The talk highlights three cases that illustrate the range of issues and applications of planetary space physics. (1) How has the solar wind interaction with Mars' strong, patchy remnant magnetization affected the loss of water? (2) How does the activity of volcanoes on Io trigger dynamics of the vast magnetosphere of Jupiter? (3) How could measurements of particles and fields by the Galileo spacecraft as it flew past Ganymede and Europa tell us that former has a liquid iron core and the latter a layer of liquid water?
You wouldn't go into the field with dirty sampling gear, would you?
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Voytek, M. A.; Hipkin, V.
2014-12-01
Planetary protection is a precautionary principle that brought together Western and Soviet interests at the height of the Cold War. Scientists on both sides lobbied for a guiding principle in the design of planetary missions that included how to prevent biological contamination of target planetary bodies to preserve their pristine nature until they could be studied in detail. Planetary protection policies today remain as relevant because the pace of exploration has been far slower than their expectation, which was to have completed the search for life in our solar system within 50 years. Today Planetary Protection Policy rides on our definitions of terran life and what we know of its limits on Earth and our limited knowledge of extraterrestrial environments. A brief history of planetary protection is presented with a reminder that the harmful contamination it protects against for Mars is the inability to detect biosignatures should they exist. For illustration, an imaginary life detection mission without planetary protection requirements is discussed. Finally, a brief review is given of current planetary protection implementation methods and new areas of research in this field.
Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology
NASA Astrophysics Data System (ADS)
Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.
2017-02-01
Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.
An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars
NASA Astrophysics Data System (ADS)
McGraw, Allison M.
2016-10-01
Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.
Planetary Magnetic Fields and Climate Evolution
NASA Astrophysics Data System (ADS)
Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.
We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then participate in chemical reactions that produce carbon monoxide (CO) and carbon dioxide (CO2). Models of the entire atmosphere system (including planetary plasma interactions) should continue to shed light on the connections between magnetic fields and climate, as well as models that consider a single planetary body in both magnetized and unmagnetized states. Future measurements, such as those that will be made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft to Mars, will provide better constraints on the importance of magnetic fields in the evolution of atmospheres.
Early Observations with the ACS Ramp Filters
NASA Astrophysics Data System (ADS)
Tsvetanov, Z.; Hartig, G.; Bohlin, R.; Tran, H. D.; Martel, A.; Sirianni, M.; Clampin, M.
2002-05-01
The Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST) is equipped with a set of ramp filters which provide imaging capability at 2% and 9% bandwidth in the range 3700-10700 Å. Each ramp filter consist of three segments where the middle segment can be used with both the Wide Field Channel (WFC) and High Resolution Channel (HRC), while the inner and outer segments can be used only with WFC. The monochromatic field of view is approximately 40'' by 80''. We will present observations of the planetary nebula (PN) NGC6543 (the Cat's Eye) taken with the ACS ramp filetrs in several key emission lines - [O II] 3727, [O III] 5007, H-alpha+[N II], and [S II] 6725. These four emission lines fall onto three separate middle ramp segments - FR388N, FR505N, and FR656N - and will allow inter-comparison between the ACS ramp filters and fixed bandpass narrow-band filters F502N and F658N for both the WFC and HRC detectors. These observations were taken as part of the HST Servicing Mission Orbital Verification program and were designed to test ramp filters performance. We will demostrate our ability to obtain monochromatic (i.e., emission line) images at arbitrary wavelength and recover the surface brightness distribution. This work was supported by a NASA contract and a NASA grant.
SOFIA: On the Pathway toward Habitable Worlds
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Angerhausen, D.; Becklin, E. E.; Greenhouse, M. A.; Horner, S.; Krabbe, A.; Swain, M. R.; Young, E. T.
2010-10-01
The U.S./German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA’s first light cameras and spectrometers, as well as future generations of instruments, will enable SOFIA to make unique contributions to the characterization of the physical properties of proto-planetary disks around young stellar objects and of the atmospheres of exoplanets that transit their parent stars. We describe several types of experiments that are being contemplated.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
Structured Light-Based Hazard Detection For Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry
2017-01-01
This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Vanessa; Reiter, Megan; Morzinski, Katie
2014-01-01
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 ± 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 ± 2 M {sub Jup}, making it one ofmore » the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 ± 1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.« less
DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donovan, Francis T.; Charbonneau, David; Knutson, Heather A.
2010-02-20
We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +- 0.021%, 0.230% +- 0.024%, 0.199% +- 0.054%, and 0.359% +- 0.060% at 3.6 {mu}m, 4.5 {mu}m, 5.8 {mu}m, and 8.0 {mu}m, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T{sub eff} = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. Themore » observed planet-to-star flux ratios in all four IRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet.« less
Evangelista, Dennis J.; Ray, Dylan D.; Hedrick, Tyson L.
2016-01-01
ABSTRACT Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts. PMID:27444791
Automated face detection for occurrence and occupancy estimation in chimpanzees.
Crunchant, Anne-Sophie; Egerer, Monika; Loos, Alexander; Burghardt, Tilo; Zuberbühler, Klaus; Corogenes, Katherine; Leinert, Vera; Kulik, Lars; Kühl, Hjalmar S
2017-03-01
Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably. © 2017 Wiley Periodicals, Inc.
Modeling Snow Regime in Cores of Small Planetary Bodies
NASA Astrophysics Data System (ADS)
Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.
2017-12-01
Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.
Operation of the University of Hawaii 2.2M telescope on Mauna Kea
NASA Technical Reports Server (NTRS)
Hall, Donald N. B.
1991-01-01
NASA's planetary astronomy program provides part of the funding for the 2.2 meter telescope. The parameters for time on the telescope are laid out. A major instrumental highlight has been the commissioning of a 256 x 256 near infrared camera which uses a Rockwell NICMOS-3 array. At the f/10 focus, image scales of 0.37 and 0.75 arcsec/pixel are available. A new, high quantum efficiency Tektronix 1024 x 1024 CCD saw first light on the telescope in 1991, and was available regularly from April 1991. Data from both of these detectors are transmitted directly to the Sun workstation for immediate analysis by the observers. The autoguider software was enhanced to permit guided tracking on objects have nonsideral motions (i.e., solar system objects).
HUBBLE SEES A VAST 'CITY' OF STARS
NASA Technical Reports Server (NTRS)
2002-01-01
In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory
Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.
2015-03-01
The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.
Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana
2010-01-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.
The influence of Mars' magnetic topology on atmospheric escape
NASA Astrophysics Data System (ADS)
Curry, S.; Luhmann, J. G.; DiBraccio, G. A.; Dong, C.; Xu, S.; Mitchell, D.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; McFadden, J. P.; Ma, Y. J.; Brain, D.
2017-12-01
At weakly magnetized planets such as Mars and Venus, the solar wind directly interacts with the upper atmosphere where ions can be picked up and swept away by the background convection electric field. These pick-up ions have a gyroradius on the planetary scale that is largely dominated by the interplanetary magnetic field (IMF). But at Mars, their trajectory is also influenced by the existence of remanent crustal magnetic fields, which are thought to create a shielding effect for escaping planetary ions when they are on the dayside. Consequently, the magnetic topology changes at Mars as magnetic reconnection occurs between the draped (IMF) and the crustal magnetic fields (closed). The resulting topology includes open field lines in the solar wind with one footprint attached to the planet. Using magnetohydrodynamic (MHD) and test particle simulations, we will explore the influence of the magnetic topology on ion escape. We will present escape rates for planetary ions for different crustal field positions during different IMF configurations, with +/-BY and +/-BZ components in the Mars Sun Orbit (MSO) coordinate system. We will also compare global maps of ion outflow and escape with open / closed magnetic field line maps and compare our results with ion fluxes and magnetic field data from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. Our results relating the dynamic magnetic field topology at Mars and planetary ion escape are an important aspect of magnetospheric physics and planetary evolution, both of which have applications to our own solar system and the increasing number of exoplanets discovered every year.
Preliminary optical design of PANIC, a wide-field infrared camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.
2008-07-01
In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.
The magnetic field and magnetospheric configuration of Uranus
NASA Technical Reports Server (NTRS)
Ness, Norman F.; Connerney, John E. P.; Lepping, Ronald P.; Schulz, Michael; Voigt, Gerd-Hannes
1991-01-01
A significant and unique planetary magnetic field discovered by Voyager 2 is presented. A large tilt of 58.6 deg of the magnetic-dipole axis from the rotation axis was found. Combined with a large offset of 0.3 RU of the magnetic dipole from the center of the planet, the moment of 0.23 gauss-RU3 leads to field magnitudes at the surface which vary widely between 0.1 and 1.0 gauss. A simple diagram illustrating the offset tilted dipole of Uranus and some field lines is shown. A more exact and accurate spherical-harmonic model of the planetary field, which includes both dipole and quadrupole moments, is derived. There exists a well-developed bipolar magnetic tail on the night side of the planet which rotates daily about the extended planet-sunline with Uranus because of the large obliquity of the Uranian rotation axis.
A dawn to dusk electric field in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Ip, W. I.
1983-01-01
It is shown that if Io-injected plasma is lost via a planetary wind-fixed Birkeland current system may result. This is due to the fact that the azimuthal centrifugal current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent centrifugal current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn to dusk electric field which at the orbit of Io is estimated to have a strength of 0.2 mV/m. However, the values of crucial parameters are not well known and the field at Io's orbit may well be significantly larger. Independent estimates derived from the local time asymmetry of the torus UV emission indicate a field of 1.5 mV/m.
Can light-field photography ease focusing on the scalp and oral cavity?
Taheri, Arash; Feldman, Steven R
2013-08-01
Capturing a well-focused image using an autofocus camera can be difficult in oral cavity and on a hairy scalp. Light-field digital cameras capture data regarding the color, intensity, and direction of rays of light. Having information regarding direction of rays of light, computer software can be used to focus on different subjects in the field after the image data have been captured. A light-field camera was used to capture the images of the scalp and oral cavity. The related computer software was used to focus on scalp or different parts of oral cavity. The final pictures were compared with pictures taken with conventional, compact, digital cameras. The camera worked well for oral cavity. It also captured the pictures of scalp easily; however, we had to repeat clicking between the hairs on different points to choose the scalp for focusing. A major drawback of the system was the resolution of the resulting pictures that was lower than conventional digital cameras. Light-field digital cameras are fast and easy to use. They can capture more information on the full depth of field compared with conventional cameras. However, the resolution of the pictures is relatively low. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR
NASA Technical Reports Server (NTRS)
2002-01-01
[lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii
Simulated orbits of heavy planetary ions at Mars for different IMF configurations
NASA Astrophysics Data System (ADS)
Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen
2014-11-01
We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.;
2014-01-01
We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.
Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b
NASA Astrophysics Data System (ADS)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.
2015-09-01
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.