Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
Magnetic field hourly averages from the Rome-GSFC experiment aboard Helios 1 and Helio 2
NASA Technical Reports Server (NTRS)
Mariani, F.; Ness, N. F.; Bavassano, B.; Bruno, R.; Buccellato, R.; Burlaga, L. F.; Cantarano, S.; Scearce, C. S.; Terenzi, R.; Villante, U.
1987-01-01
Plots of all the hourly averages computed from the solar magnetic field measurements obtained during the mission are given separately for Helios 1 and Helios 2. The magnitude and the direction of the averaged field are plotted versus the number of solar rotations as seen from Helios, counted from launch.
Soil Water Effects on Blue Oak Seedling Establishment
Doria R. Gordon; Kevin J. Rice; Jeffrey M. Welker
1991-01-01
A field experiment was conducted to examine the effects of soil water availability on blue oak (Quercus douglasii) seedling establishment. Acorns were planted either into cleared plots of 0, 10, 20, or 40 cm diameter. The cleared plots were located in two grazed and one ungrazed site. Half of the plots received drip irrigation in a split plot design...
Plot-scale field experiment of surface hydrologic processes with EOS implications
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.
1992-01-01
Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.
USDA-ARS?s Scientific Manuscript database
Research to measure soil erosion rates in the United States from natural rainfall runoff plots began in the early 1900’s. In Brazil, the first experimental study at the plot-scale was conducted in the 1940’s; however, the monitoring process and the creation of new experimental field plots have not c...
Infrared heater arrays for warming field plots scaled up to 5-m diameter
USDA-ARS?s Scientific Manuscript database
As Earth continues to warm globally, there is a need to conduct ecosystem plot warming experiments under conditions as representative of open fields in the future as possible. One promising approach is to use hexagonal arrays of infrared heaters such as described by Kimball et al. (2008). However, t...
Kevin J. Rice; Doria R. Gordon; Jeanine L. Hardison; Jeffrey M. Welker
1991-01-01
A field experiment was conducted to examine the effects of soil water availability on blue oak (Quercus douglasii) seedling establishment. Acorns were planted either into cleared plots of 0, 10, 20, or 40 cm diameter. The cleared plots were located in two grazed and one ungrazed site. Half of the plots received drip irrigation in a split plot design...
Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate
NASA Astrophysics Data System (ADS)
Ruckli, Regina; Rusterholz, Hans-Peter; Baur, Bruno
2013-02-01
Invasive species can have far-reaching impacts on ecosystems. Invasive plants may be able to change habitat structure and quality. We conducted a field experiment to examine whether the invasive plant Impatiens glandulifera affects native terrestrial gastropods. We also evaluated whether the invasive plant alters forest soil characteristics and microclimate which in turn may influence gastropod abundance. We sampled gastropods in plots installed in patches of I. glandulifera, in plots in which I. glandulifera was regularly removed by hand, and in control plots which were not yet colonized by the invasive plant. The three types of plots were equally distributed over three mixed deciduous forest areas that were slightly, moderately or heavily affected by a wind throw 11 years ago. A total of 33 gastropod species were recorded. Gastropod species richness was not affected by delayed effects of the wind throw, but it was significantly higher in invaded plots than in uninvaded plots. Similarly, gastropod abundance was higher in invaded plots than in the two types of control plots. Canonical correspondence analysis revealed marginally significant shifts of gastropod communities between the three types of plots and indicated that soil moisture, presence of I. glandulifera and cover of woody debris affected gastropod species composition. Field measurements showed that soil moisture was higher and daily soil temperature was more damped in patches of I. glandulifera than in the native ground vegetation. The changed microclimatic conditions may favour certain gastropod species. In particular, ubiquitous species and species with a high inundation tolerance increased in abundance in plots invaded by I. glandulifera. Our field experiment demonstrated that an invasive plant can indirectly affect native organisms by changing soil characteristics and microclimate.
Where are the Black Walnut Trees in Michigan? 1995
J. Michael Vasievich; Neal P. Kingsley
1995-01-01
The latest Michigan forest inventory was completed in 1993 by the North Central Forest Experiment Station and the Michigan DNR, Forest Management Division. In total, 18,484 sample points were examined on aerial photographs to identify ground sample plots. Of these, 10,849 forest plots were visited and measured on the ground by field crews. These plot measurements...
Post-harvest field manipulations to conserve waste rice for waterfowl
Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Kurtz, M.E.; Manley, S.W.
2005-01-01
Rice seeds escaping collection by combines during harvest (hereafter, waste rice) provide quality forage for migrating and wintering waterfowl in the Lower Mississippi Alluvial Valley (MAV) and other rice growing regions in the United States. Recent sample surveys across the MAV have revealed abundance of waste rice in fields declined an average of 71% between harvest and late autumn. Thus, we evaluated the ability of common post-harvest, field-management practices to conserve waste rice for waterfowl until early winter via controlled experiments in Mississippi rice test plots in 2001 and 2003 and analyses of data from MAV-wide surveys of waste rice in rice production fields in 2000-2002. Our experiments indicated test plots with burned rice stubble that were not flooded during autumn contained more waste rice than other treatments in 2001 (P?0.10). Waste-rice abundance in test plots did not differ among postharvest treatments in 2003 (P = 0.97). Our analyses of data from the MAV sample surveys did not detect differences in abundance of waste rice among fields burned, rolled, disked, or left in standing stubble post-harvest (P?0.04; Bonferroni corrected critical ( a= 0.017). Because results from test-plot experiments were inconclusive, we based our primary inference regarding best post-harvest treatments on patterns of rice abundance identified from the MAV surveys and previously documented environmental and agronomic benefits of managing harvested rice fields for wintering waterfowl. Therefore, we recommend leaving standing stubble in rice fields after harvest as a preliminary beneficial management practice. We suggest future research evaluate potential of postharvest practices to conserve waste rice for waterfowl and reduce straw in production rice fields managed for wintering waterfowl throughout the MAV.
Geophysical characterization of soil moisture spatial patterns in a tillage experiment
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.
2009-04-01
Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the most elevated places of the field showed lower ECa increments. When soil is wet topography dominates the hydrologic response of the field, while under drier conditions, hydraulic conductivity controls the soil water dynamics. These results show that when static soil properties, e.g. clay content, are spatially uniform, ECa can detect changes in dynamic properties like soil moisture content, characterizing their spatial pattern.
NASA Astrophysics Data System (ADS)
Pohanková, Eva; Orság, Matěj; Fischer, Milan; Hlavinka, Petr
2015-04-01
This paper evaluates two-year (2013 and 2014) results of field experiments with spring barley (cultivar Bojos) under reduced precipitation supply. The field experiments were carried out at the experimental station in Domanínek (Czech Republic; 49°31,470'N, 16°14,400'E, altitude 530 m a.s.l.) and conducted by Institute of Agrosystems and bioclimatology at Mendel Univerzity in Brno in cooperation with Global Change Research Centre AS CR. The field experiments consisted of small plots in two variants and three repetitions. The first variant was uncovered the second was partially covered to exclude rain through out the whole vegetation season. For the partial covering of the plot, a material which transmits solar radiation and diverts rainwater away from the percentage coverage of the plots was used. In 2013, the covered area of the experimental plot was 30%, and in 2014, it was 70%. The main aim was to determine whether there are any differences in the spring barley's development, growth and yield in the uncovered and the partially covered plots, and a comparison of the results. Firstly, differences of key parameters (seasonal dynamics of the leaf area index and above ground biomass, soil water content, yield components and yields) compared; secondly, the results of the field experiments served as input data for the crop growth model DAISY. Subsequently, the crop growth model' ability to simulate crop growth and crop development which were affected by the drought stress was explored. The results were assessed using the following statistical indexes: root mean square error (RMSE) and mean bias error (MBE). This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248, NAZV-JPI - project supported by Czech National Agency of Agricultural Research No. QJ1310123 "Crop modelling as a tool for increasing the production potential and food security of the Czech Republic under Climate Change" and project LD13030 supporting ES1106 COST Action.
Insect herbivory and plant adaptation in an early successional community.
Agrawal, Anurag A; Hastings, Amy P; Fines, Daniel M; Bogdanowicz, Steve; Huber, Meret
2018-05-01
To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long-term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect-mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di-phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Schild, Anne H. E.; Voracek, Martin
2015-01-01
Research has shown that forest plots are a gold standard in the visualization of meta-analytic results. However, research on the general interpretation of forest plots and the role of researchers' meta-analysis experience and field of study is still unavailable. Additionally, the traditional display of effect sizes, confidence intervals, and…
[Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun
2016-03-15
To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.
Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.
NASA Astrophysics Data System (ADS)
Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.
The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' 09°10'00''N, 70°13'49'' 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 36, respectively, for the five-month experiment, and by a factor 30 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.; Banfield, Jill; Chandler, Darrell P.
The Rifle IFRC continued to make excellent progress during the last 12 months. As noted above, a key field experiment (Best Western) was performed during 2011 as a logical follow-on to the Super 8 field experiment preformed in 2010. In the Super 8 experiment, we successfully combined desorption and bioreduction and deployed a number of novel tracer techniques to enhance our ability to interpret the biogeochemistry of the experiment. In the Best Western experiment, we used the same experimental plot (Plot C) as was used for Super 8. The overarching objective of the Best Western field experiment was to comparedmore » the impacts of abiotic vs. biotic increases in alkalinity and to assess the mass of the sorbed pool of U(VI) at Rifle at the field scale. Both of these objectives were met. Preliminary analysis of the data indicate that the underlying biogeochemical data sets were obtained that will support a mechanistic understanding of the underlying processes, including remarkable insight into previously unrecognized microbial processes taking place during acetate amendment of the subsurface for a second time.« less
Washitani, Yasuko; Hayakawa, Reiko; Li, Meihua; Shibata, Shozo
2017-06-01
Polymesoda spp., which represent bivalves in the mangrove ecosystem, inhabit the mangrove forests of the Indo-Pacific region. They tend not to be broadly distributed across zones within the mangrove forest, but are instead typically encountered in the mesozone. We conducted field rearing experiments on four plots which were set across a mangrove forest along the Urauchi River of Iriomote Island, from the seaward to landward sides, over a period of 10 months. We compared the survival rates of clams at these plots with different environment for four months. Salinity was also measured during the study period, and we established a correlation between survival rate and change in salinity of each plot. The survival rate of the plot in the mesozone was 90%, that of two plots which were positioned in the seaward zone of the mesozone was 40%, and that of the plot on the landward side was 0%. In plot 4, the ambient water of the bivalves was fresh water. The salinity of the seaward zone changed rapidly in one day, or the salinity of the ambient water surrounding the bivalves was high for a long period of time. In Plot 3, salinity change was gradual, and the average salinity was lower than in Plots 1 and 2. This study indicates that salinity level affects bivalve survival rate and that area similar the mesozone, where gradual salinity change and average salinity were neither too high nor too low, are suitable for these species.
Alba, Christina; NeSmith, Julienne E; Fahey, Catherine; Angelini, Christine; Flory, Stephen Luke
2017-03-01
Abiotic global change drivers affect ecosystem structure and function, but how they interact with biotic factors such as invasive plants is understudied. Such interactions may be additive, synergistic, or offsetting, and difficult to predict. We present methods to test the individual and interactive effects of drought and plant invasion on native ecosystems. We coupled a factorial common garden experiment containing resident communities exposed to drought (imposed with rainout shelters) and invasion with a field experiment where the invader was removed from sites spanning a natural soil moisture gradient. We detail treatments and their effects on abiotic conditions, including soil moisture, light, temperature, and humidity, which shape community and ecosystem responses. Ambient precipitation during the garden experiment exceeded historic norms despite severe drought in prior years. Soil moisture was 48% lower in drought than ambient plots, but the invader largely offset drought effects. Additionally, temperature and light were lower and humidity higher in invaded plots. Field sites spanned up to a 10-fold range in soil moisture and up to a 2.5-fold range in light availability. Invaded and resident vegetation did not differentially mediate soil moisture, unlike in the garden experiment. Herbicide effectively removed invaded and resident vegetation, with removal having site-specific effects on soil moisture and light availability. However, light was generally higher in invader-removal than control plots, whereas resident removal had less effect on light, similar to the garden experiment. Invasion mitigated a constellation of abiotic conditions associated with drought stress in the garden experiment. In the field, where other factors co-varied, these patterns did not emerge. Still, neither experiment suggested that drought and invasion will have synergistic negative effects on ecosystems, although invasion can limit light availability. Coupling factorial garden experiments with field experiments across environmental gradients will be effective for predicting how multiple stressors interact in natural systems.
Ecosystem Reversals of Fortune in Response to Long-Term Experimental N Deposition.
NASA Astrophysics Data System (ADS)
Vourlitis, G. L.
2017-12-01
Anthropogenic nitrogen (N) deposition has the capacity to alter terrestrial ecosystem structure and function; however, short-term (months-years) responses may be fundamentally different than long-term (years-decades) responses. Here the results of a 14 year field N addition experiment are reported for two different Southern Californian semi-arid shrublands, a post-fire chaparral and a mature coastal sage scrub (CSS), that have been exposed to 50 kgN ha-1 yr-1 since 2003. Since >90% of the anthropogenic N in this region consists of dry deposition, N was added during the late-summer or early-fall each year to assess how dry N inputs alter ecosystem processes. Both shrublands experienced complete reversals in their response to experimental N input. For example, post-fire chaparral plots exposed to added N had significantly lower net primary production (NPP) than control plots over the first 3 years of the experiment, but thereafter, the NPP in N plots increased consistently each year and became significantly higher than in control plots after 7 years of N fertilization. In CSS, NPP and the abundance of Artemisia californica, a co-dominant shrub, increased significantly in N plots over the first 6 years, but thereafter, NPP and the abundance of A. californica and Salvia mellifera, the other co-dominant shrub, declined. Now the N plots have a lower NPP and are dominated by the invasive annual Brassica nigra. These transient responses, and interactions between N accumulation and other factors such as post-fire succession (chaparral) and chronic drought (CSS), would have been missed if the experiment was ended after the end of a typical funding cycle, and highlighting the importance of long-duration field experiments in assessing ecosystem responses to chronic N enrichment.
Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara
2009-11-01
The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds
A series of simulated rainfall run-off experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall run-off events....
Liu, Ruohan; Nyoike, Teresia W; Liburd, Oscar E
2016-10-01
Greenhouse and field experiments were conducted to evaluate the effectiveness of site-specific tactics for management of the twospotted spider mite, Tetranychus urticae Koch, a major pest of greenhouse and field-grown strawberries (Fragaria x ananassa Duchesne). Two site-specific (spot) treatments, the miticide bifenazate (Acramite(®)) and the predatory mite Neoseiulus californicus McGregor, were compared with whole-plot treatments of bifenazate or N. californicus to determine whether T. urticae could be effectively managed in field-grown strawberry using only site-specific tactics. Additionally, the cost of site-specific tactics was compared with whole-plot treatments to determine the economic value of using site-specific management tactics for T. urticae in strawberries. In the greenhouse, all treatments equivalently reduced the number of T. urticae below control. In the field during the 2011-2012 season, more T. urticae eggs and motiles were in the whole-plot treatments of both N. californicus and bifenazate in the mid-season and late season, respectively, compared with the spot treatments. With the exception of site-specific N. californicus during the 2011-2012 field season, there were no differences in marketable yields between plots with site-specific treatments and whole-plot management. An economic analysis demonstrated a significant cost savings (75.3 %) with site-specific treatments of N. californicus compared with whole-plot application of N. californicus. Similarly, a 24.7 % reduction in cost was achieved in using site-specific bifenazate compared with whole-plot application of bifenazate. The findings indicate that site-specific treatments with N. californicus and bifenazate are competitive alternatives to whole-field application for T. urticae management in strawberries.
Comparison of different types of medium scale field rainfall simulators
NASA Astrophysics Data System (ADS)
Dostál, Tomáš; Strauss, Peter; Schindewolf, Marcus; Kavka, Petr; Schmidt, Jürgen; Bauer, Miroslav; Neumann, Martin; Kaiser, Andreas; Iserloh, Thomas
2015-04-01
Rainfall simulators are used in numerous experiments to study runoff and soil erosion characteristics. However, they usually differ in their construction details, rainfall generation, plot size and other technical parameters. As field experiments using medium to large scale rainfall simulators (plot length 3 - 8 m) are very much time and labor consuming, close cooperation of individual teams and comparability of results is highly desirable to enlarge the database of results. Two experimental campaigns were organized to compare three field rainfall simulators of similar scale (plot size), but with different technical parameters. The results were then compared, to identify parameters that are crucial for soil loss and surface runoff formation and test if results from individual devices can be reliably compared. The rainfall simulators compared were: field rainfall simulator of CTU Prague (the Czech Republic) (Kavka et al., 2012; EGU2015-11025), field simulator of BAW (Austria) (Strauss et al., 2002) and field simulator of TU Bergakademie Freiberg (Germany) (Schindewolf & Schmidt 2012). The device of CTU Prague is usually applied to a plot size of 9,5 x 2 m employing 4 nozzles SS Full Jet 40WSQ mounted on folding arm, working pressure is 0.8 bar, height of nozzles is 2.65 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The rainfall simulator of BAW is constructed as a modular system, which is usually applied for a length of 5 m (area 2 x 5 m), using 6 nozzles SS Full Jet 40WSQ. Usual working pressure is 0.25 bar. Elevation of nozzles is 2.6 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The device of TU Bergakademie Freiberg is also standard modular system, working usually with a plot size of 3 x 1 m, using 3 oscillating VeeJet 80/100 nozzles with an usual operating pressure of 0.5 bar. Intensity is regulated by the frequency of sweeps above the experimental plot. Comparison was done during two independent campaigns, where always two devices were present. Rainfall intensity for the experiments varied between 40 to 60 mm/h. Mutual comparison was carried out between the CTU Prague and TU Freiberg RSs at plot size of 3 x 1 m and Between CTU Prague and BAW RSs at plot size of 5 x 2 m. In general, the experiments revealed a significant effect of potential heterogeneities at the experimental plots and an effect of raindrop energy on both surface runoff formation and mainly soil loss. Therefore, coordination of methodology of the experiments and careful control of initial conditions seem to be a crucial point for comparability of results from individual devices. Detailed results will be presented on the poster. The research has been supported by the research grants SGS14/180/OHK1/3T/11, QJ1230056 and 7AMB14AT020. References Kavka, P., Davidová, T., Janotová, B., Bauer, M. a Dostál, T. 2012. Mobilní dešťový simulátor.(in Czech), Stavební obzor. 8, 2012. Schindewolf, M. & J. Schmidt (2012): Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation, Catena 91, pp. 47-55, DOI: 10.1016/j.catena.2011.01.007 Strauss P., J.Pitty, M.Pfeffer, A. Mentler (2000): Rainfall Simulation for Outdoor Experiments. In: P. Jamet, J. Cornejo(eds.): Current research methods to assess the environmental fate of pesticides. pp. 329-333, INRA Editions.
USDA-ARS?s Scientific Manuscript database
A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) were conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying re...
NASA Astrophysics Data System (ADS)
Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.
2013-12-01
The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged from 9.8 x 10-4 to 6.7 x 10-3 cm/s. Soil cores were collected and analyzed for soil hydraulic properties (texture, unsaturated hydraulic conductivity and moisture retention). From the grain size analyzes of soil samples collected every 10 cm until 1m depth, the soil is homogenous and on average 87% sand, 11% silt and 2% clay. We will be presenting results from the simulations and statistical comparisons to observations of soil moisture at four depths in each plot.
USDA-ARS?s Scientific Manuscript database
A small, fixed-wing UAS was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on...
Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast
Charles R. Berry
1987-01-01
In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. Deep subsoiling was beneficial regardless of Soil amendment. Where weeds were plentiful at the outset, they became serious...
Preferential transport of isoproturon at a plot scale and a field scale tile-drained site
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Flühler, Hannes
2001-06-01
Irrigation experiments using the tracers Brilliant Blue (BB) and Bromide (Br) were conducted on three plots of 1.4×1.4 m 2 (plot scale) and a field scale subsurface drained test site (900 m 2) to clarify mechanisms causing rapid transport of surface applied Isoproturon (IPU) during preferential flow events. One of the small plots (site 10) and the field scale test site are located on the same field. One day after irrigation of the plot scale sites the Br and IPU concentration in two vertical soil profiles as well as the macroporousity on separate profiles and hydraulic properties of single macropores were determined. During irrigation of the field scale test site discharge, soil moisture as well as the concentration of IPU and Br in the drainage outlet were measured. Preferential flow in deep penetrating earthworm burrows caused a fast breakthrough of IPU and Br into the tile drain (1.2 m depth) at the field scale site as well as leaching of IPU into the subsoil (>0.8 m) at site 10. The results suggest a hierarchy of preconditions for the occurrence of preferential flow events of which a sufficient number of deep penetrating macropores interconnected to the soil surface seems to be the most important one. Moreover there is evidence that facilitated transport of IPU attached to mobile soil particles occurred during the preferential flow events at the field scale site and site 10. The susceptibility for preferential flow as well as the susceptibility for facilitated transport appear to be intrinsic properties of the investigated soil.
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Maries, Alexandru; Singh, Chandralekha
2013-01-01
We investigate introductory physics students' difficulties in translating between mathematical and graphical representations and the effect of scaffolding on students' performance. We gave a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution (a conducting sphere concentric with a conducting spherical shell) to 95 calculus-based introductory physics students. We asked students to write a mathematical expression for the electric field in various regions and asked them to graph the electric field. We knew from previous experience that students have great difficulty in graphing the electric field. Therefore, we implemented two scaffolding interventions to help them. Students who received the scaffolding support were either (1) asked to plot the electric field in each region first (before having to plot it as a function of distance from the center of the sphere) or (2) asked to plot the electric field in each region after explicitly evaluating the electric field at the beginning, mid and end points of each region. The comparison group was only asked to plot the electric field at the end of the problem. We found that students benefited the most from intervention (1) and that intervention (2), although intended to aid students, had an adverse effect. Also, recorded interviews were conducted with a few students in order to understand how students were impacted by the aforementioned interventions.
NASA Astrophysics Data System (ADS)
Ge, Y.; Bai, G.; Irmak, S.; Awada, T.; Stoerger, V.; Graef, G.; Scoby, D.; Schnable, J.
2017-12-01
University of Nebraska - Lincoln's high throughput field plant phenotyping facility is a cable robot based system built on a 1-ac field. The sensor platform is tethered with eight cables via four poles at the corners of the field for its precise control and positioning. The sensor modules on the platform include a 4-band RGB-NIR camera, a thermal infrared camera, a 3D LiDAR, VNIR spectrometers, and environmental sensors. These sensors are used to collect multifaceted physiological, structural and chemical properties of plants from the field plots. A subsurface drip irrigation system is established in this field which allows a controlled amount of water and fertilizers to be delivered to individual plots. An extensive soil moisture sensor network is also established to monitor soil water status, and serve as a feedback loop for irrigation scheduling. In the first year of operation, the field is planted maize and soybean. Weekly ground truth data were collected from the plots to validate image and sensor data from the phenotyping system. This presentation will provide an overview of this state-of-the-art field plant phenotyping facility, and present preliminary data from the first year operation of the system.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine
2016-04-01
Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate isoproturon leaching patterns except for the large preferential flow events that were observed in the MSW and CONT plots. The timing of these preferential flow events could be reproduced by the model but not their magnitude. Additional simulations were carried out, assuming temporal variation of the IPU degradation rate to explain the leaching events observed at the end of the monitoring period (2010). Modeling results indicate that spatial and temporal variations in pesticide degradation rate due to tillage and compost application play a major role in the dynamics of isoproturon leaching. Both types of compost were found to reduce isoproturon leaching on the long-term (6 years) duration of the field experiment. Keywords: Compost amendment; Soil heterogeneity; Conventional tillage; Water flow; Isoproturon; HYDRUS-2D
Topping, Christopher John; Kjaer, Lene Jung; Hommen, Udo; Høye, Toke Thomas; Preuss, Thomas G; Sibly, Richard M; van Vliet, Peter
2014-07-01
Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors. © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Pegoraro, Dominique; Schlösser, Angelika; Thesing, Hannah; Seeger, Manuel; Ries, Johannes B.
2015-04-01
Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. This study aims at contributing fundamental data for understanding rainfall simulations in depth by studying the effect of the following parameters on the measurement results: 1. Plot design - round or rectangular plot: Can we identify differences in amount of runoff and erosion? 2. Water quality: What is the influence of the water's salt load on interrill erosion and infiltration as measured by rainfall experiments? 3. Water temperature: How much are the results conditioned by the temperature of water, which is subject to changes due to environmental conditions during the experiments? Preliminary results show a moderate increase of soil erosion with the water's salt load while runoff stays almost on the same level. With increasing water temperature, runoff increases continuously. At very high temperatures, soil erosion is clearly increased. A first comparison between round and rectangular plot indicates the rectangular plot to be the most suitable plot shape, but ambiguous results make further research necessary. The analysis of these three factors concerning their influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable.
Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah
2016-01-01
The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help in degraded soil for sustainable soil management. PMID:27803701
de Assis, T. A.
2015-01-01
This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290
Seed size- and density-related hidden treatments in common biodiversity experiments
Qinfeng Guo
2011-01-01
With a few exceptions, most well-known field biodiversity experiments on ecosystem functioning have been conducted in plant communities (especially grasslands) in which different numbers of species are planted as treatments. In these experiments, investigators have either kept the total seed weight or seed number constant across treatment plots. However, although in...
Ngala, Bruno M; Haydock, Patrick P J; Woods, Simon; Back, Matthew A
2015-05-01
The viability of potato cyst nematode (PCN) populations (Globodera pallida) was evaluated in three field experiments using Brassica juncea, Raphanus sativus and Eruca sativa amendments. These species were summer cultivated and autumn incorporated in experiment 1; in experiment 2, overwintered brassicaceous cover crops were spring incorporated. Experiment 3 involved determination of effects of metconazole application on biomass/glucosinolate production by B. juncea and R. sativus and on PCN pre- and post-incorporation. Glucosinolate contents were determined before incorporation. Following cover crop incorporation, field plots were planted with susceptible potatoes to evaluate the biofumigation effects on PCN reproduction. In experiment 1, PCN population post-potato harvest was reduced (P = 0.03) in B. juncea-treated plots, while R. sativus prevented further multiplication, but in experiment 2 there were no significant effects on PCN reproduction. In experiment 3, B. juncea or R. sativus either untreated or treated with metconazole reduced PCN populations. Glucosinolate concentrations varied significantly between different plant regions and cultivation seasons. Metconazole application increased the sinigrin concentration in B. juncea tissues. Glucosinolate concentrations correlated positively with PCN mortality for summer-cultivated brassicaceous plants. The results demonstrated that B. juncea and R. sativus green manures can play an important role in PCN management, particularly if included in an integrated pest management scheme. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Dostál, Tomáš; Zumr, David; Krása, Josef; Kavka, Petr; Strouhal, Luděk
2017-04-01
C factor, the protection effect of the vegetation cover, is a key parameter which is introduced in the basic empirical soil erosion relationships (e.g. USLE). The C factor values for various crops in various grow stages are usually estimated based on the catalogue values. As these values often do not fit to the observed data from the plot experiments or do not represent actually grown crops, we decided to validate and extend the database. We present a methodology and primary results of tens of the field rainfall simulation experiments conducted on several agricultural crops with different BBCH. The rainfall simulations were done with the mobile field rainfall simulator of the Czech Technical University. The tested plots of the size 2 x 8,7 m were repeatedly exposed to the artificial rainfalls with intensity of 60 mm/h and duration of 30 to 60 minutes. The experiments were always performed twice on a bare soil and twice on the vegetated plots (to mimic dry and wet initial soil conditions). The tests were done on several slopes in the Czech Republic, the soils were mostly Cambisols with various organic matter content and stoniness. Based on the results we will be able to correct and validate the C factor values for the currently most widely grown crops in the conditions of the Central Europe. The presentation is funded by Ministry of Agriculture of the Czech Republic (research project QJ1530181) and an internal student CTU grant.
Influence of Six Varieties of Cynodon on Four Meloidogyne spp.
Adeniji, M. O.; Chheda, H. R.
1971-01-01
Two years of giant star grass, Cynodon nlemluensis var. nlemfuensis, in a field plot markedly reduced the incidence of the root-knot nematodes. Tomato planted following the grass showed very little or no root galling and the yield was thrice that of tomato planted on an adjacent field plot previously cropped to tomato. Replicated greenhouse experiments indicated that six varieties of Cynodon were resistant to root-knot nematode but it took up to 6 months of grass growth to appreciably lower the nematode population. The nematodes were eliminated from the soil by all the six grass varieties after 18 months. PMID:19322377
Alternative fumigants and grafting for tomato and double-cropped muskmelon production in Florida
USDA-ARS?s Scientific Manuscript database
A field trial was conducted at the USDA, ARS Farm in Fort Pierce, FL in a field infested with root-knot nematodes (RKN) (Meloidogyne incognita), soil-borne pathogens, and weeds. A split plot experiment with four replications was used to evaluate rootstock/scion combinations in fumigated and herbicid...
THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS
A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...
The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment
NASA Astrophysics Data System (ADS)
Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa
2010-05-01
This paper presents results of three year field experiment, where two different composts produced from municipal solid wastes were applied to sandy soil. The experiment was established on soil developed from loam sand, according to U.S.D.A. textural classes (81% of sand, 12% of silt, and 7% of clay), of a slightly acidic reaction (pH KCl 6.05 - 6.44). The plough layer (0 - 25 cm) contained about 5.0 g/kg of organic carbon. Both composts were alkaline in reaction and contained high amounts of plant available forms of phosphorus, potassium and magnesium. Composts were used non-recurrently in rates of 18, 36, and 72 t/ha, calculated on dry matter basis. Control objects (0 and NPK) were plots without fertilization, as well as plots fertilized each year with mineral forms of NPK. Field experiment was conducted in 15 m2 plots, using five replications in a randomized block design. Spring triticale (x Triticosecale Wittm.) cultivated in a 3-year monoculture was used as the experiment plant. Soil samples were collected each year after harvesting. Changes in triticale yield were considered in relation to soil properties and nitrogen content in triticale straw and grain. Application of composts caused beneficial changes in soil fertility, connected mainly with an increase of soil organic matter and content of available forms of P, K, and Mg. These effects were observed throughout three years of the experiment. However, significantly higher values of organic carbon - as compared to control (0 and NPK) - were observed only in plots with medium and highest compost doses. This effect was very clear in the first year, while significant differences in soil carbon content were still observed in next two years. The yield of triticale straw and grain depended significantly on fertilization with composts, but beneficial effect of compost was observed only in the first year. Yield similar to NPK control was found only on plots where the highest dose of compost was applied. Next two years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.
Emission Factors of Nitrous Oxide by Organic Manure Fertilizers in Japanese Upland Fields
NASA Astrophysics Data System (ADS)
Sudo, S.
2011-12-01
Preliminary data of field experiments which were conducted to estimate emission factors of nitrous oxide by organic manure fertilizers in 10 Japan-wide experiment sites, 2010 was reported. We compared nitrous oxide emission from urea as chemical fertilizers and cow manure as organic applications, in 1o Japanese prefectures of Yamagata, Fukushima, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto and Kagoshima. Same amounts of nitrogen were applied in organic and inorganic fertilizers in each field. In each site, 3 replication plots were organized in randomized block design with zero-nitrogen application plots. N2O gas fluxes were measured every one week or more during cultivation seasons. We also measured several soil physical and chemical parameters of inorganic nitrogen species, soil moisture contents or WFPS (Water Filled Pore Space), soil temperatures, bulk densities etc. Gas fluxes ware measured by automated Shimadzu GC-2014 ECD gas chromatograph. Soil moistures were measured by Camplel's Hydrosense in each site. Vegetation of conducting fields were cabbage in 7 fields, wheat in 1, pear orchard and onion in 1. Microorganisms' abundance was also considered to clarify N2O emission processes by the PCR-DGGE method.
Masaka, Johnson; Nyamangara, Justice; Wuta, Menas
2016-01-01
An understanding of the contribution of manure applications to global atmospheric N2O loading is needed to evaluate agriculture's contribution to the global warming process. Two field experiments were carried out at Dufuya wetland (19°17'S; 29°21'E, 1260 m above sea level) to determine the effects of single and split manure applications on emissions of N2O from soil during the growing seasons of two rape and two tomato crops. Two field experiments were established. In the first experiment the manure was applied in three levels of 0, 15, and 30 Mg ha(-1) as a single application just before planting of the first tomato crop. In the second experiment the 15 and 30 Mg ha(-1) manure application rates were divided into four split applications of 3.75 and 7.5 Mg ha(-1) respectively, for each of the four cropping events. Single applications of 15 and 30 Mg ha(-1) manure once in four cropping events had higher emissions of N2O than those recorded on plots that received split applications of 3.75 and 7.5 Mg ha(-1) manure at least up to the second test crop. Thereafter N2O emissions on plots subjected to split applications of manure were higher or equal to those recorded in plots that received single basal applications of 30 Mg ha(-1) applied a week before planting the first crop. Seasonal split applications of manure to wetland vegetable crops can reduce emissions of N2O at least up to the second seasonal split application.
Population dynamics of hispid cotton rats (Sigmodon hispidus) across a nitrogen-amended landscape
Clark, J.E.; Hellgren, E.C.; Jorgensen, E.E.; Tunnell, S.J.; Engle, David M.; Leslie, David M.
2003-01-01
We conducted a mark-recapture experiment to examine the population dynamics of hispid cotton rats (Sigmodon hispidus) in response to low-level nitrogen amendments (16.4 kg nitrogen/ha per year) and exclosure fencing in an old-field grassland. The experimental design consisted of sixteen 0.16-ha plots with 4 replicates of each treatment combination. We predicted that densities, reproductive success, movement probabilities, and survival rates of cotton rats would be greater on nitrogen-amended plots because of greater aboveground biomass and canopy cover. Population densities of cotton rats tended to be highest on fenced nitrogen plots, but densities on unfenced nitrogen plots were similar to those on control and fenced plots. We observed no distinct patterns in survival rates, reproductive success, or movement probabilities with regard to nitrogen treatments. However, survival rates and reproductive success tended to be higher for cotton rats on fenced plots than for those on unfenced plots and this was likely attributable to decreased predation on fenced plots. As low-level nitrogen amendments continue to be applied, we predict that survival, reproduction, and population-growth rates of cotton rats on control plots, especially fenced plots with no nitrogen amendment, will eventually exceed those on nitrogen-amended plots as a result of higher plant-species diversity, greater food availability, and better quality cover.
Iglesias, Javier; Castillejo, José; Castro, Ramón
2003-11-01
Over two years, six consecutive field experiments were done in which the chemical molluscicide metaldehyde and the nematode biocontrol agent Phasmarhabditis hermaphrodita (Schneider) were applied at the standard field rates to replicated mini-plots successively planted with lettuce, Brussels sprouts, leaf beet and cabbage, to compare the effectiveness of different treatments in reducing slug damage to the crops. Soil samples from each plot were taken prior to the start of the experiments, and then monthly, to assess the populations of slugs, snails, earthworms, nematodes, acarids and collembolans. The experiments were done on the same site and each plot received the same treatment in the six experiments. The six treatments were: (1) untreated controls, (2) metaldehyde pellets, (3 and 4) nematodes applied to the planted area 3 days prior to planting without or with previous application of cow manure slurry, (5) nematodes applied to the area surrounding the planted area 3 days prior to planting, and (6) nematodes applied to the planted area once (only in the first of the six consecutive experiments). Only the metaldehyde treatment and the nematodes applied to the planted area at the beginning of each experiment without previous application of manure significantly reduced slug damage to the plants, and only metaldehyde reduced the number of slugs contaminating the harvested plants. The numbers of slugs, snails and earthworms in soil samples were compared among the six treatments tested: with respect to the untreated controls, the numbers of Deroceras reticulatum (Müller) were significantly affected only in the metaldehyde plots, and the numbers of Arion ater L only in the plots treated with nematodes applied to the planted area 3 days prior to planting without previous application of manure; numbers of snails (Ponentina ponentina (Morelet) and Oxychilus helveticus (Blum)) were not affected by the treatment. The total numbers of all earthworm species and of Lumbricus spp were unaffected by the treatment, but Dendrobaena spp increased significantly in the plots treated with manure. The numbers of nematodes, acarids and collembolans in soil samples were compared between the untreated controls and the treatments with nematodes applied 3 days prior to planting to the planted area or to the surrounding area, without previous application of manure: the treatment had a significant effect on the number of nematodes in soil samples, but acarids and collembolans were unaffected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becking, R. W.; Olson, J. S.
1978-03-01
This report summarizes field work over two summers (1976 and 1977) to relocate, monument and reinventory permanent vegetation plots in the Great Smoky Mountains National Park. These plots were first established by the senior author and R.H. Whittaker in 1959-62. The inventory results are discussed in terms of vegetation changes in high-altitudinal forest ecosystems, in particular the spruce-fir forests, and the factors, climate shift and biotic and abiotic agents, bringing about vegetation change. A second aspect of the report summarizes experience and offers recommendations for establishment of permanent vegetation plots for the purpose of providing a monitoring tool with whichmore » to measure long-term ecological change.« less
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Outlines several laboratory procedures and demonstrations including electric fields using sawdust, experiments with capacitors, particle spacing in a vapor and a liquid, metrology, momentum, Moire patterns and interference fringes, equipping for practical electronics, and using programmable calculators for rapid plotting of graphs. (DS)
[Effects of Different Terrain Farmland on Codonopsis pilosula Growth in Loess Plateau Dry Areas].
Wang, Hua-dong; Wu, Fa-ming
2014-12-01
To study the effects of different terrain farmland on Codonopsis pilosula growth in arid regions, and then to provide basis for choosing appropriate terrain for Codonopsis pilosula cultivation in the northwest region. Based on the observation of field production,plot cultivation experiment was designed to observe and record the effects of different terrain farmland on Codonopsis pilosula growth period and yeild, and to analyze the terrain effects on Codonopsis pilosula production comprehensively. There were no significant differences between field production and plot cultivation experiment. The results both showed that different terrain farmland significantly affected Codonopsis pilosula growth. Shade slope was the best, then sunny slope followed, terrace and ridge were not suitable for Codonopsis pilosula growth. The terrain is a critical part in Codonopsis pilosula production. To ensure the stability of Codonopsis pilosula production and economic benefits, it is best to choose the shade slope for cultivation.
NASA Astrophysics Data System (ADS)
Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.
2007-12-01
Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, T.E.; Skelly, J.M.; Steiner, K.C.
1993-06-01
Black cherry seedlings of two open-pollinated families were exposed to ambient ozone in open plots (100%) and plots receiving non-filtered (95%), half-filtered (60%) and full-filtered (40%) concentrations via open-top chambers between early June and late-September 1992 in a replicated field experiment in central Pennsylvania. Seasonal 24-hour ambient ozone concentration averaged 34 ppb with a peak 1-hour concentration of 110 ppb. Foliar symptoms of ozone damage (adaxial stipple) occurred most prominently in open and non-filtered plots and differed between families. Net photosynthetic rate for both families was significantly lower in open and non-filtered plots compared with half- and full-filtered plots onmore » most dates, while ozone concentration had no consistent effect on leaf conductance or dark respiration. Leaf conductance of the ozone sensitive family was significantly greater than the ozone tolerant family on most dates. First-year height and diameter growth were significantly lower in open and non-filtered plots compared with half- and full-filtered plots for both families.« less
NASA Astrophysics Data System (ADS)
Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing
2017-04-01
A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.
Plant community composition and vegetation height, Barrow, Alaska, Ver. 1
Siegrist, Julia; Norby, Richard; Sloan, Victoria; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah
2014-04-25
This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.
Round versus rectangular: Does the plot shape matter?
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.
2016-04-01
Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference: Iserloh, T., Pegoraro, D., Schlösser, A., Thesing, H., Seeger, M., Ries, J.B. (2015): Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff. Geophysical Research Abstracts, Vol. 17, EGU2015-5817.
Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride
ERIC Educational Resources Information Center
Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.
2017-01-01
In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…
ERIC Educational Resources Information Center
Schlamadinger, Diana E.; Kats, Dina I.; Kim, Judy E.
2010-01-01
Laboratory experiments that focus on protein folding provide excellent opportunities for undergraduate students to learn important topics in the expanding interdisciplinary field of biophysics. Here, we describe the use of Stern-Volmer plots to determine the extent of solvent accessibility of the single tryptophan residue (trp-59) in unfolded and…
Hedman, C.W.; Grace, S.L.; King, S.E.
2000-01-01
Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely, non-benchmark plots contained fewer species characteristic of relic longleaf pine/wiregrass communities and more ruderal species common to highly disturbed sites. The benchmark group included 12 naturally regenerated longleaf plots and 22 loblolly, slash, and longleaf pine plantation plots encompassing a broad range of silvicultural disturbances. Non-benchmark plots included eight afforested old-field plantation plots and seven cutover plantation plots. Regardless of overstory species, all afforested old fields were low either in native species richness or in abundance. Varying degrees of this groundcover condition were also found in some cutover plantation plots that were classified as non-benchmark. Environmental variables strongly influencing vegetation patterns included agricultural history and fire frequency. Results suggest that land-use history, particularly related to agriculture, has a greater influence on groundcover composition and structure in southern pine forests than more recent forest management activities or pine cover type. Additional research is needed to identify the potential for afforested old fields to recover native herbaceous species. In the interim, high-yield plantation management should initially target old-field sites which already support reduced numbers of groundcover species. Sites which have not been farmed in the past 50-60 years should be considered for longleaf pine restoration and multiple-use objectives, since they have the greatest potential for supporting diverse native vegetation. (C) 2000 Elsevier Science B.V.
Pesticide storage and release in unsaturated soil in Illinois, USA
Roy, W.R.; Krapac, I.G.; Chou, S.-F.J.; Simmons, F.W.
2001-01-01
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1 x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha-1 and 1.3 kg ha-1, respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha-1). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1 x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 ?? L-1. Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 ??g L-1. Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.
NASA Astrophysics Data System (ADS)
Campbell, J. L.; Rustad, L.; Driscoll, C. T.; Fahey, T.; Garlick, S.; Groffman, P.; Schaberg, P. G.
2016-12-01
It is increasingly evident that human-induced climate change is altering the prevalence and severity of extreme weather events. Ice storms are an example of a rare and typically localized extreme weather event that is difficult to predict and has impacts that are poorly understood. We used long-term data and a field manipulation experiment to evaluate how ice storms alter the structure, function, and composition of forest ecosystems. Plots established after a major ice storm in the Northeast in 1998 were re-sampled to evaluate longer-term (17 yr) responses of tree health, productivity, and species composition. Results indicate, that despite changes in herbaceous vegetation in the years immediately after the ice storm, the forest canopy recovered, albeit with some changes in composition, most notably a release of American Beech. An ice storm field manipulation experiment was used to evaluate mechanistic understanding of short term ecological responses. Water from a stream was sprayed above the forest canopy when air temperatures were below freezing, which was effective in simulating a natural ice storm. The experimental design consisted of three levels of ice thickness treatment with two replicates per treatment. The plots with the two more severe icing treatments experienced significant damage to the forest canopy, creating gaps. These plots also had large inputs of fine and coarse woody debris to the forest floor. The exposure to light and presence of brush piles in the more heavily damaged plots resulted in warming with increased spatial variability of soil temperature. Preliminary results from the early growing season have shown no significant changes in soil respiration or soil solution losses of nutrients despite significant forest canopy damage. Further monitoring will determine whether these trends continue in the future.
Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini
2011-01-01
Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.
Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.
Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J
2017-04-01
Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer
2017-04-01
Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.
Advancements in LiDAR-based registration of FIA field plots
Demetrios Gatziolis
2012-01-01
Meaningful integration of National Forest Inventory field plot information with spectral imagery acquired from satellite or airborne platforms requires precise plot registration. Global positioning system-based plot registration procedures, such as the one employed by the Forest Inventory and Analysis (FIA) Program, yield plot coordinates that, although adequate for...
Sylvio Mannel; Mark A. Rumble; Maribeth Price; Thomas M. Juntti; Dong Hua
2006-01-01
Many aspects of ecological research require measurement of characteristics within plots. Often, the time spent establishing plots is small relative to the time spent collecting and recording data. However, some studies require larger numbers of plots, where the time spent establishing the plot is consequential to the field effort. In open habitats, circular plots are...
NASA Astrophysics Data System (ADS)
Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter
2014-11-01
Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Spruce-fir forest changes during a 30-year nitrogen saturation experiment
Steven G. McNulty; Johnny L. Boggs; John D. Aber; Lindsey E. Rustad
2017-01-01
A field experiment was established in a high elevation red spruce (Picea rubens Sarg.) â balsam fir (Abies balsamea) forest on Mount Ascutney Vermont, USA in 1988 to test the nitrogen (N) saturation hypothesis, and to better understand the mechanisms causing forest decline at the time. The study established replicate control, lowand high dose nitrogen addition plots (i...
Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice
NASA Astrophysics Data System (ADS)
Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.
2017-12-01
Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.
RUNON a hitherto little noticed factor - Field experiments comparing RUNOFF/RUNON processes
NASA Astrophysics Data System (ADS)
Kohl, Bernhard; Achleitner, Stefan; Lumassegger, Simon
2017-04-01
When ponded water moves downslope as overland flow, an important process called runon manifests itself, but is often ignored in rainfall-runoff studies (Nahar et al. 2004) linking infiltration exclusively to rainfall. Runon effects on infiltration have not yet or only scarcely been evaluated (e.g. Zheng et al. 2000). Runoff-runon occurs when spatially variable infiltration capacities result in runoff generated in one location potentially infiltrating further downslope in an area with higher infiltration capacity (Jones et al. 2013). Numerous studies report inverse relationships between unit area volumes of overland flow and plot lengths (Jones et al. 2016). This is an indication that the effects of rainfall and runon often become blurred. We use a coupled hydrological/2D hydrodynamic model to simulate surface runoff and pluvial flooding including the associated infiltration process. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) the influence of land use and soil conservation on pluvial flash flood modeling is assessed. Field experiments are carried out with a portable irrigation spray installation at different locations with a plot size 5m width and 10m length. The test plots were subjected first to a rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour mid accentuated rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h for 1hour. Finally, runon was simulated by upstream feeding of the test plots using two different inflow intensities. The irrigation test showed expected differences of runoff coefficients depending on the various agricultural management. However, these runoff coefficients change with the applied process (rainfall or runon). While a decrease was observed on a plot with a closed litter layer, runoff coefficient from runon increases on poor covered plots. At the same time, a similar variety in the characteristics of the infiltration behavior between rainfall and runoff could be observed. This extension of artificial rainfall simulations with concurrent and successive runon tests will enhance our process understanding.
Snowmelt Runoff From Planted Conifers in Southwestern Wisconsin
Richard S. Sartz; David N. Tolsted
1976-01-01
Snowmelt overland flow was measured for one season from 10-year-old plantations of red pine, Norway spruce, European larch, and from old field control plots, on both north and south slopes. Pine and spruce plots produced more runoff than larch and old field plots; and south slope plots produced more runoff than north slope plots.
Optimum Timing for Spraying Out Greenbridge with Roundup to Control Rhizoctonia in Barley
USDA-ARS?s Scientific Manuscript database
A field experiment was conducted in 2007 in a field at the ARS Palouse Conservation Farm with a high level of both R. solani and R. oryzae. Volunteer and weeds were allowed to grow over the winter, and plots were sprayed out with Roundup at 8 wks, 6 wks, 4 wks, 2 wks, 1 wk, and 2 days before plantin...
Insecticidal Management and Movement of the Brown Stink Bug, Euschistus servus, in Corn
Reisig, Dominic D.
2011-01-01
In eastern North Carolina, some brown stink bugs, Euschistus servus (Say) (Hemiptera: Pentatomidae) are suspected to pass the F1 generation in wheat (Triticum aestivum L.) (Poales: Poaceae) before moving into corn (Zea mays L.) (Poales: Poaceae). These pests can injure corn ears as they develop. To test their effectiveness as a management tactic, pyrethroids were aerially applied to field corn in two experiments, one with 0.77 ha plots and another with 85 ha plots. Euschistus servus population abundance was monitored over time in both experiments and yield was assessed in the larger of the two experiments. In the smaller experiment, the populations were spatially monitored in a 6.3 ha area of corn adjacent to a recently harvested wheat field (352 sampling points of 6.1 row-meters in all but the first sampling event). Overall E. servus abundance decreased throughout the monitoring period in the sampling area of the smaller experiment, but remained unchanged over time in the large-scale experiment. During all sampling periods in both experiments, abundance was the same between treatments. Yield was unaffected by treatment where it was measured in the larger experiment. In the smaller experiment, E. servus were initially aggregated at the field edge of the corn (two, six and 13 days following the wheat harvest). Sixteen days following the wheat harvest they were randomly distributed in the corn. Although it was not directly measured, stink bugs are suspected to move the cornfield edge as a result of the adjacent wheat harvest. More study of the biology of E. servus is needed, specifically in the area of host preference, phenology and movement to explain these phenomena and to produce better management strategies for these pests. PMID:22950984
Tyree, Melvin T.; Engelbrecht, Bettina M.J.; Vargas, Gustavo; Kursar, Thomas A.
2003-01-01
Studies of the desiccation tolerance of the seedlings of five tropical trees were made on potted plants growing in a greenhouse. Pots were watered to field capacity and then dehydrated for 3 to 9 weeks to reach various visual wilting stages, from slightly wilted to dead. Saturated root hydraulic conductance was measured with a high-pressure flowmeter, and whole-stem hydraulic conductance was measured by a vacuum chamber method. Leaf punches (5.6-mm diameter) were harvested for measurement of leaf water potential by a thermocouple psychrometer method and for measurement of fresh and dry weight. In a parallel study, the same five species were studied in a field experiment in the understory of a tropical forest, where these species frequently germinate. Control seedlings were maintained in irrigated plots during a dry season, and experimental plants were grown in similar plots with rain exclusion shelters. Every 2 to 4 weeks, the seedlings were scored for wilt state and survivorship. After a 22-week drought, the dry plots were irrigated for several weeks to verify visual symptoms of death. The field trials were used to rank drought performance of species, and the greenhouse desiccation studies were used to determine the conditions of moribund plants. Our conclusion is that the desiccation tolerance of moribund plants correlated with field assessment of drought-performance for the five species (r2 > 0.94). PMID:12857825
Tyree, Melvin T; Engelbrecht, Bettina M J; Vargas, Gustavo; Kursar, Thomas A
2003-07-01
Studies of the desiccation tolerance of the seedlings of five tropical trees were made on potted plants growing in a greenhouse. Pots were watered to field capacity and then dehydrated for 3 to 9 weeks to reach various visual wilting stages, from slightly wilted to dead. Saturated root hydraulic conductance was measured with a high-pressure flowmeter, and whole-stem hydraulic conductance was measured by a vacuum chamber method. Leaf punches (5.6-mm diameter) were harvested for measurement of leaf water potential by a thermocouple psychrometer method and for measurement of fresh and dry weight. In a parallel study, the same five species were studied in a field experiment in the understory of a tropical forest, where these species frequently germinate. Control seedlings were maintained in irrigated plots during a dry season, and experimental plants were grown in similar plots with rain exclusion shelters. Every 2 to 4 weeks, the seedlings were scored for wilt state and survivorship. After a 22-week drought, the dry plots were irrigated for several weeks to verify visual symptoms of death. The field trials were used to rank drought performance of species, and the greenhouse desiccation studies were used to determine the conditions of moribund plants. Our conclusion is that the desiccation tolerance of moribund plants correlated with field assessment of drought-performance for the five species (r(2) > 0.94).
Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery
NASA Astrophysics Data System (ADS)
Cherkauer, Keith; Hearst, Anthony
2015-04-01
Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.
Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer
2017-12-31
Aggregate breakdown influences the availability of soil particles for size-selective sediment transport with surface runoff during erosive rainfall events. Organic matter management is known to affect aggregate stability against breakdown, but little is known about how this translates into rainfall-induced aggregate fragmentation and sediment transport under field conditions. In this study, we performed field experiments in which artificial rainfall was applied after pre-wetting on three pairs of arable soil plots (1.5×0.75m) six weeks after incorporating a mixture of grass and wheat straw into the topsoil of one plot in each pair (OI treatment) but not on the other plot (NI treatment). Artificial rainfall was applied for approximately 2h on each pair at an intensity of 49.1mmh -1 . In both treatments, discharge and sediment concentration in the discharge were correlated and followed a similar temporal pattern after the onset of surface runoff: After a sharp increase at the beginning both approached a steady state. But the onset of runoff was more delayed on the OI plots, and the discharge and sediment concentration were in average only roughly half as high on the OI as on the NI plots. With increasing discharge the fraction of coarse sediment increased. This relationship did not differ between the two treatments. Thus, due to the lower discharge, the fraction of fine particles in the exported sediment was larger in the runoff from the OI plots than from the NI plots. The later runoff onset and lower discharge rate was related to a higher initial aggregate stability on the OI plots. Terrestrial laser scanning proved to be a very valuable method to map changes in the micro-topography of the soil surfaces. It revealed a much less profound decrease in surface roughness on the OI than on the NI plots. Copyright © 2017 Elsevier B.V. All rights reserved.
Wandscheer, Alana C D; Marchesan, Enio; Santos, Sandro; Zanella, Renato; Silva, Marília F; Londero, Guilherme P; Donato, Gabriel
2017-01-01
The objective of this study was to verify the richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides of the rice paddy fields. In the crop seasons of 2012/13 and 2013/14, field experiments were performed, which consisted of single-dose applications of the fungicides trifloxystrobin + tebuconazole and tricyclazole, and the insecticides lambda-cyhalothrin + thiamethoxam and diflubenzuron, in 10 m2 experimental plots, over rice plants in the R3 stage. Control plots with and without rice plants were maintained in order to simulate a natural environment. Soil samples were collected during rice cultivation for assessment of the macroinvertebrate fauna. Chemical-physical parameters assessed in the experiments included temperature, pH and oxygen dissolved in the water and pesticide persistence in the water and in the soil. The application of a single dose of the pesticides and fungicides in the recommended period does not cause significant negative effects over the richness and density of the macroinvertebrates. Tebuconazole, tricyclazole and thiamethoxam showed high persistence in the irrigation water of rice paddy fields. Thus, the doses and number of applications of these products in crops should be carefully handled in order to avoid contamination of the environment.
Detrital Controls on Dissolved Organic Matter in Soils: A Field Experiment
NASA Astrophysics Data System (ADS)
Lajtha, K.; Crow, S.; Yano, Y.; Kaushal, S.; Sulzman, E.; Sollins, P.
2004-12-01
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils and soil density fractions from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the effect of adding woody debris was to increase dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; %hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and narrower C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among detrital treatments in the field, suggesting microbial equalization of DOM leachate in the field. In long-term laboratory incubations, light fraction material did not have higher rates of respiration than heavy fraction or bulk soils, suggesting that physical protection or N availability controls different turnover times of heavy fraction material, rather than differences in chemical lability. Soils from plots that had both above- and below-ground litter inputs excluded had significantly lower DOC loss rates, and a non-significant trend for lower respiration rates . Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.
Behle, Robert W; Hibbard, Bruce E; Cermak, Steven C; Isbell, Terry A
2008-06-01
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.
Using canopy resistance for infrared heater control when warming open-field plots
USDA-ARS?s Scientific Manuscript database
Several research groups are using or planning to use arrays of infrared heaters to simulate global warming in open-field plots with a control strategy that involves maintaining a constant rise in canopy temperatures of the heated plots above those of un-heated Reference plots. . However, if the warm...
NASA Astrophysics Data System (ADS)
Möller, Rebecca; Möller, Marco; Kukla, Peter A.; Schneider, Christoph
2018-01-01
We report results from a field experiment investigating the influence of volcanic tephra coverage on glacier ablation. These influences are known to be significantly different from those of moraine debris on glaciers due to the contrasting grain size distribution and thermal conductivity. Thus far, the influences of tephra deposits on glacier ablation have rarely been studied. For the experiment, artificial plots of two different tephra types from Eyjafjallajökull and Grímsvötn volcanoes were installed on a snow-covered glacier surface of Vatnajökull ice cap, Iceland. Snow-surface lowering and atmospheric conditions were monitored in summer 2015 and compared to a tephra-free reference site. For each of the two volcanic tephra types, three plots of variable thickness ( ˜ 1.5, ˜ 8.5 and ˜ 80 mm) were monitored. After limiting the records to a period of reliable measurements, a 50-day data set of hourly records was obtained, which can be downloaded from the Pangaea data repository (https://www.pangaea.de; doi:10.1594/PANGAEA.876656). The experiment shows a substantial increase in snow-surface lowering rates under the ˜ 1.5 and ˜ 8.5 mm tephra plots when compared to uncovered conditions. Under the thick tephra cover some insulating effects could be observed. These results are in contrast to other studies which depicted insulating effects for much thinner tephra coverage on bare-ice glacier surfaces. Differences between the influences of the two different petrological types of tephra exist but are negligible compared to the effect of tephra coverage overall.
Integrated systems of weed management in organic transplated vidalia sweet onion production
USDA-ARS?s Scientific Manuscript database
Field experiments were conducted from 2008 through 2010 near Lyons, GA to develop integrated weed management systems for organic Vidalia® sweet onion production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were so...
Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel
2007-05-25
The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation cover); the other 4 plots had almost full cover with natural vegetation in one year. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation cover reducing runoff and sediments. Runoff and sediments were negligible in covered plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study area (34% of recorded rains en 12 years). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.
USDA-ARS?s Scientific Manuscript database
Subsurface band application of poultry litter has been shown to be effective in reducing nutrients in runoff and leachate, relative to surface broadcast application of litter. Some field plot arrangements, such as plots having adjacent pits in the soil, prevent the use of conventional field equipme...
Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?
USDA-ARS?s Scientific Manuscript database
Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...
Shahidain, R; Mullins, R D; Sisken, J E
2001-02-01
To determine whether extremely low frequency electromagnetic fields can alter average free cytosolic calcium ion concentrations [Ca2+]i and transient increases in [Ca2+]i in populations of ROS 17/2.8 cells. Cells loaded with the calcium-selective luminescent photoprotein, aequorin, were placed in the bottom of a sample chamber, which was inserted into the gap of a previously described air gap reactor system where they were exposed either to sinusoidal magnetic fields at a variety of frequencies and flux densities or to sham conditions. Real-time recordings of photon counts due to aequorin luminescence were obtained and data were analysed with the use of probit plots. Probit plots of data obtained from cells exposed to the various magnetic fields were virtually superimposable over the data obtained for the same cultures during pre- and post-exposure sham or no-field periods. These experiments provided no evidence for any effects of ELF EMF, either positive or negative, on either average [Ca2+]i or on transient increases in [Ca2+]i.
Zelikova, Tamara J.; Hufbauer, Ruth A.; Reed, Sasha C.; Wertin, Timothy M.; Fettig, Christa; Belnap, Jayne
2013-01-01
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green-up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site-specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.
Zelikova, Tamara J; Hufbauer, Ruth A; Reed, Sasha C; Wertin, Timothy; Fettig, Christa; Belnap, Jayne
2013-05-01
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green-up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site-specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.
NASA Astrophysics Data System (ADS)
Hearst, Anthony A.
Complex planting schemes are common in experimental crop fields and can make it difficult to extract plots of interest from high-resolution imagery of the fields gathered by Unmanned Aircraft Systems (UAS). This prevents UAS imagery from being applied in High-Throughput Precision Phenotyping and other areas of agricultural research. If the imagery is accurately geo-registered, then it may be possible to extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. Future work will focus on further enhancing the plot extraction accuracy through additional image processing techniques so that it becomes sufficiently accurate for all practical purposes in agricultural research and potentially other areas of research.
Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.
Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.
Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice
Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.
2013-01-01
The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, S.; Kamotani, Y.
1996-01-01
This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.
Analysis of variance calculations for irregular experiments
Jonathan W. Wright
1977-01-01
Irregular experiments may be more useful than much smaller regular experiments and can be analyzed statistically without undue expenditure of time. For a few missing plots, standard methods of calculating missing-plot values can be used. For more missing plots (up to 10 percent), seedlot means or randomly chosen plot means of the same seedlot can be substituted for...
NASA Astrophysics Data System (ADS)
Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.
2016-12-01
Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one pathway for C loss. The soil microfauna was dominated by nematodes; plant parasites and bacterial and fungal feeders were more abundant in fertilized plots than in controls, with fewer predaceous and omnivorous nematodes. Overall, N fertilization altered soil biogeochemical characteristics, soil food webs, and C cycling.
NASA Astrophysics Data System (ADS)
Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Glenn, A. J.; Maas, S.; Gervais, M.
2013-12-01
Perennial legume forages may have the potential to increase soil carbon sequestration and decrease nitrous oxide (N2O) emissions to the atmosphere when introduced into annual cropping systems. However, little is known about what short-term effect the return to annual cropping following termination of perennial legume forage would have on carbon dioxide (CO2) and N2O emissions. Furthermore, there are few quantitative measurements about this impact on the Canadian Prairies. A long-term field experiment to continuously measure CO2 and N2O fluxes was established at the Trace Gas Manitoba (TGAS-MAN) Long Term Greenhouse Gas Monitoring Site at Glenlea, Manitoba using the flux gradient micrometeorlogical technique with a tunable diode laser analyzer. The soil is poorly drained clay in the Red River Valley. The field experiment consisted of four 4-hectare plots planted to corn in 2006 and faba bean in 2007. In 2008, grass-alfalfa forage was introduced to two plots (annual - perennial) and grown until 2011 whereas the other two plots (annual) were planted to annual crops: spring wheat, rapeseed, barley and spring wheat in 2008, 2009, 2010 and 2011, respectively. In late September of 2011 the grass-alfalfa forage was killed and in 2012 all four plots were planted with corn. Termination of the grass-alfalfa forage resulted in greater fall CO2 emissions in 2011, greater spring melt CO2 emissions and net annual N2O emissions in 2012 from the annual-perennial plots when compared to the annual plots. Over seven crop years (2006-2012), the annual - perennial system increased carbon uptake by 3.4 Mg C ha-1 and reduced N2O emissions by 3.0 Mg CO2-eq ha-1 compared to the annual system. However after accounting for harvest removals both the annual and annual-perennial systems were net carbon sources of 5.7 and 2.5 Mg C ha-1 and net GHG sources of 38 and 24 Mg CO2-eq ha-1 respectively. We are currently following the long-term impacts of inclusion of perennial forages in an annual cropping system.
Pacholski, Andreas
2016-03-21
Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha(-1)). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from experiments with taller plants should be treated more carefully.
Pacholski, Andreas
2016-01-01
Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha-1). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from experiments with taller plants should be treated more carefully. PMID:27023010
Shrestha, R. B.; Parajulee, M. N.
2010-01-01
A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the other species. Ground beetle species abundance, diversity, and species richness were significantly higher in conservation tillage plots. This suggests that field conditions arising from the practice of conservation tillage may support higher predacious ground beetle activity than might be observed under field conditions arising from conventional tillage practices. PMID:21062204
Horváth, E; Szabó, R
2014-01-01
The experiment was set up in an area of 9 ha that was split into 4 plots: in plot 1 the row spacing was 12 cm and the seeding rate was 10 kg; in plot 2 the row spacing was 24 cm and the seeding rate was 10 kg; in plot 3 the row spacing was 24 cm and the seeding rate was 8 kg; in plot 4 the row spacing was 12 cm and the seeding rate was 8 kg. After the weed surveying, the total weed coverage was established as follows: in plot 1 the total weed coverage was 11.34%, in plot 2 it was 12.3%, in plot 3 it was 18%, and in plot 4 the total weed coverage was 15%. Based on the weed survey, on the test area the following dicotyledon weeds belonging to the T4 Raunkiaer plant life-form category occupied the highest percentage: heal-all, black-bindweed, goosefoot. The proportion of the perennial dicotyledons: field bindweed (G3), tuberous pea (G1), white campion (H3) was negligible. In all four cases the weed control was executed using the same herbicide in the same doses and with regard to the weed species it showed the same level of efficiency. The smaller row spacing and higher seeding rate has a beneficial effect on the weed suppressing capacity of the crop, the crop's weed suppressing capacity is better and the development of the weeds becomes worse.
Assessing manure management strategies through small-plot research and whole-farm modeling
Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.
2008-01-01
Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.
Marvasi, Massimiliano; Hochmuth, George J; Giurcanu, Mihai C; George, Andrée S; Noel, Jason T; Bartz, Jerry; Teplitski, Max
2013-01-01
Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinger, T.; Groppe, K.; Schmid, B.
In 1994 we initiated a long-term field experiment in a calcareous grassland to study the effects of elevated CO{sub 2} on individuals, populations, and communities. Clonal replicates of 54 genotypes of the dominant grass Bromus erectus were grown in communities planted at three levels of biodiversity (5-, 12-, 31-species plots) and exposed to ambient and elevated CO{sub 2}. The same genotypes were also individually grown in tubes within the field plots. Some genotypes were infected by the endophytic fungus Epichloee typhina. Elevated CO{sub 2} had no significant effects on plant growth, however, there was large variation among genotypes in allmore » measured characters. A significant CO{sub 2}-by-genotype interaction was found for leaf length in the competition-free tubes. Infection by the endophyte led to the abortion of all inflorescences but increased vegetative growth, especially under competitive conditions.« less
Effect of Sugarcane Mosaic caused by Sorghum mosaic virus on sugarcane in Louisiana
USDA-ARS?s Scientific Manuscript database
Sugarcane mosaic is caused by two viruses, Sugarcane mosaic virus (SCVM) or Sorghum mosaic virus (SrMV). In Louisiana, SrMV is the predominant mosaic pathogen affecting sugarcane. In a field experiment established in 2012, plots were planted with seed cane with or without mosaic symptoms. The mosaic...
USDA-ARS?s Scientific Manuscript database
A three-year field experiment was conducted to evaluate the role of inversion tillage, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two inversion tillage systems: fall inversion tillage (IT...
Komor, Stephen C.; Emerson, Douglas G.
1994-01-01
Four month-long field experiments investigated movements of water and solutes through unsaturated sand plains near Princeton, Minnesota, and Oakes, North Dakota. Atrazine and bromide were applied to bare soils and soils planted with corn. The field plots were irrigated according to local farming practices. At the end of each experiment, unsaturated soils were analyzed for atrazine and bromide concentrations and oxygen and hydrogen isotope compositions of soil water. Most soil water was affected by evaporation but groundwater beneath the plots had no evaporative isotopic signature. Therefore most recharge consisted of water that was unaffected by evaporation. Sources of such water may have included snowmelt, prolonged or high-intensity rainfalls that were not interrupted by periods of drying, and water that moved through preferential flow paths. Preferential flow also was suggested by the detection of atrazine, deethylatrazine, and bromide in groundwater shortly after each application of irrigation water at Princeton and by isolated concentrations of atrazine and bromide in soil well below the main masses of chemicals at Oakes.
Permanent field plot methodology and equipment
Thomas G. Cole
1993-01-01
Long-term research into the composition, phenology, yield, and growth rates of agroforests can be accomplished with the use of permanent field plots. The periodic remeasurement of these plots provides researchers a quantitative measure of what changes occur over time in indigenous agroforestry systems.
Bajer, Anna; Rodo, Anna; Alsarraf, Mohammed; Dwużnik, Dorota; Behnke, Jerzy M; Mierzejewska, Ewa J
2017-11-15
The effect of agricultural activities on the environment has been falling in many areas of Europe in recent years and the associated abandonment of crop fields, meadows and pastures may enable an increase in tick densities. In the present study we assessed whether regular mowing would have a negative effect on Dermacentor reticulatus populations and whether the cessation of regular mowing would cause an increase in abundance of D. reticulatus ticks. Two field experiments were conducted during a five-year period (2012-2016) in the Mazowieckie (Mazovia) region of Central Poland. Experiment 1: The long-term effect of mowing on tick population was tested in the meadow ecosystem of Stoski, an old fallow land plot that was mowed three times a year. Experiment 2: Neglecting the cultivation by abandonment of arable land was evaluated in Kury village. Four areas (2 experimental 'fallow lands', 2 control meadows) were selected. The first fallow land plot was a fenced off area comprising mostly of a horse pasture and the second fallow land plot was designated in an old abandoned orchard. At each site, ticks were collected in consecutive springs and autumns by dragging at least twice during each season from experimental and control areas. Altogether 1452 D. reticulatus ticks were collected and their densities were compared by multifactorial ANOVA. In the end of the first experiment, a significant decrease (6 times) in tick abundance was observed in the mowed area in comparison to old fallow land. In the end of the second experiment, tick abundance was three times higher in the experimental fallow lands in comparison to the control meadows. In conclusion it was found that regular mowing significantly reduced the density of questing D. reticulatus ticks in open areas. Cessation of mowing may enhance the number of ticks and the associated risk of acquiring tick-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik
2015-12-01
Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.
Soil Carbon Response to Soil Warming and Nitrogen Deposition in a Temperate Deciduous Forest
NASA Astrophysics Data System (ADS)
Parton, W. J.; Savage, K. E.; Davidson, E. A.; Trumbore, S.; Frey, S. D.
2011-12-01
While estimates of global soil C stocks vary widely, it is clear that soils store several times more C than is present in the atmosphere as CO2, and a significant fraction of soil C stocks are potentially subject to faster rates of decomposition in a warmer world. We address, through field based studies and modeling efforts, whether manipulations of soil temperature and nitrogen supply affect the magnitude and relative age of soil C substrates that are respired from a temperate deciduous forest located at Harvard Forest, MA. A soil warming and nitrogen addition experiment was initiated at the Harvard Forest in 2006. The experiment consists of six replicates of four treatments, control, heated, nitrogen, and heat+nitrogen addition. Soil temperatures in the heated plots are continuously elevated 5 oC above ambient and for the fertilized plots an aqueous solution of NH4NO3 is applied at a rate of 5 g m-2 yr-1. Soil C efflux from these plots was measured (n=24, 6 per treatment) biweekly throughout the year, while 14CO2 was measured (3 samples per treatment) several times during the summer months from 2006-2010. Following treatment, observed rates of annual C efflux increased under heating and nitrogen additions with heating treatments showing the greatest increase in respired C. The difference between control and treatments was greatest during the initial year following treatment; however this difference decreased in the subsequent 3 years of measurement. The plots designated for heating had a higher 14C signature from CO2 efflux prior to the heating (presumably due to spatial heterogeneity). However, because of the high spatial heterogeneity in measured 14C among treatments, no significant difference among treatments was observed from 2006 through 2010. Long term datasets (1995 through 2010) of soil C stocks, radiocarbon content, and CO2 efflux were used to parameterize the ForCent model for Harvard forest. The model was then run with the same treatment parameters as the field experiment for comparison of soil C efflux and 14C. Model results show increased annual C efflux for heated, nitrogen and nitrogen+heat plots with the largest increase in respired C from heated treatments. However there was little difference in simulated 14C respired from any treatment plots. While heating speeds up decomposition of all soil C pools in the model, the absolute amount of increased decomposition from the older pools (with higher 14C) was not large enough to make a difference in 14C composition of respired C, even as the more labile pool with lower 14C was gradually depleted. These results demonstrate that experiments conducted over several years do not provide great insight into the dynamics of slowly cycling soil C.
Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu
2016-01-01
A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160
Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu
2016-01-01
A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandolfo, D.; McKay, F.; Medal, J.C.
An open-field experiment was conducted to assess the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buenos Aires, Argentina, and a S. viarum control plot was established 40 km from the campus. One hundred adult beetles were released in each plot at the beginning of the experiment during the vegetative stage of the plants, and forty additional beetles were released in the S. melongena plot at the flowering stage. Allmore » the plants in each plot were checked twice a week and the number of adults, immatures, and eggs recorded. Results showed almost a complete rejection of eggplant by G. boliviana. No noticeable feeding damage was ever recorded on eggplant. The experiment was ended when the eggplants started to senesce or were severely damaged by whiteflies and spider mites. The results of this open-field experiment corroborate previous quarantine/laboratory host-specificity tests indicating that a host range expansion of G. boliviana to include eggplant is highly unlikely. Gratiana boliviana was approved for field release in May 2003 in the USA. To date, no non-target effects have been observed either on eggplant or native species of Solanum. (author) [Spanish] Una prueba de campo fue conducida para evaluar la especificidad del escarabajo suramericano defoliador Gratiana boliviana Spaeth para control biologico de Solanum viarum Dunal en los Estados Unidos. La prueba con berenjena se realizo en el campo experimental de la Universidad de Buenos Aires, Argentina, y una parcela control con S. viarum fue establecida a 40 km. Cien escarabajos adultos fueron liberados en cada parcela al inicio del experimento durante la fase vegetativa, y cuarenta escarabajos adicionales fueron liberados en la parcela de berenjena durante la floracion. Todas las plantas en cada parcela fueron inspeccionadas dos veces a la semana y el numero de adultos, larvas, y posturas fueron registrados. Resultados indicaron un casi completo rechazo de la berenjena por G. boliviana. Ningun dano visible de defoliacion en la berenjena fue detectado. Las pruebas concluyeron cuando las plantas de berenjena alcazaron su madurez o fueron severamente danadas por mosca blanca y acaros. Resultados corroboran previas pruebas de especificidad en laboratorio/cuarentena que indican que la berenjena no es un hospedero de G. boliviana y que la posibilidad de llegar a ser una plaga de este cultivo es muy remota. Gratiana boliviana fue aprobado para ser liberado en el campo en mayo del 2003. Ningun dano ha sido observado hasta la fecha a plantas no blanco. (author)« less
Cocco, Arturo; Lentini, Andrea; Serra, Giuseppe
2014-01-01
Abstract Mating disruption field experiments to control the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were carried out in 2008 and 2009 in two commercial vineyards in Sardinia (Italy). The effectiveness of mating disruption was evaluated by testing reservoir dispensers loaded with 100 mg (62.5 g/ha) and 150 mg (93.8 g/ha) of the sex pheromone in 2008 and 2009, respectively. The number of males captured in pheromone traps, the P. ficus population density and age structure, the parasitism rate, the percentage of ovipositing females, and the crop damage were compared between disrupted and untreated plots. In both field trials, the number of males captured in mating disruption plots was significantly reduced by 86% and 95%, respectively. Mating disruption at the initial dose of 62.5 g/ha of active ingredient gave inconclusive results, whereas the dose of 93.8 g/ha significantly lowered the mealybug density and modified the age structure, which showed a lower percentage of ovipositing females and a higher proportion of preovipositing females. Mating disruption did not affect negatively the parasitism rate, which was higher in the disrupted than in the control plots (>1.5-fold). Crop damage at harvest was very low in both field trials and did not differ between treatments. Mating disruption was effective in wide plots protected with dispensers loaded with 150 mg of the sex pheromone, showing its potential to be included in the overall integrated control programs in Mediterranean wine-growing regions. PMID:25347835
Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil
NASA Astrophysics Data System (ADS)
Burkhardt, M.; Kasteel, R.; Vereecken, H.
Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.
Determining erosion relevant soil characteristics with a small-scale rainfall simulator
NASA Astrophysics Data System (ADS)
Schindewolf, M.; Schmidt, J.
2009-04-01
The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.
Global Modeling, Field Campaigns, Upscaling and Ray Desjardins
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Hall, F. G.
2012-01-01
In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers.
Experimental conformational energy maps of proteins and peptides.
Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N
2017-06-01
We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
True versus perturbed forest inventory plot locations for modeling: a simulation study
John W. Coulston; Kurt H. Riitters; Ronald E. McRoberts; William D. Smith
2006-01-01
USDA Forest Service Forest Inventory and Analysis plot information is widely used for timber inventories, forest health assessments, and environmental risk analyses. With few exceptions, true plot locations are not revealed; the plot coordinates are manipulated to obscure the location of field plots and thereby preserve plot integrity. The influence of perturbed plot...
NASA Astrophysics Data System (ADS)
Han, Dongmei; Zhou, Tiantian
2018-04-01
Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.
Theresa B. Jain; Jeremy S. Fried
2010-01-01
This field guide supplemental describes the data items to record for Fire Effects and Recovery Study (FERS) plots; it is a supplement to the 2010 Field Instructions for the Annual Inventory of California, Oregon, and Washington (i.e., "2010 PFSL manual"). These plots are pre-selected; data items are required as specified when FIRE PLOT = Y. Additional...
Co-evolution of soils and vegetation in the Aísa Valley Experimental Station (Central Pyrenees)
NASA Astrophysics Data System (ADS)
Serrano Muela, Maria Pilar; Nadal Romero, Estela; Lasanta, Teodoro; María García Ruiz, José
2013-04-01
Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. This study analyzes soil and vegetation characteristics under various plant covers, using information from the Aísa Valley Experimental Station (AVES), Spanish Pyrenees, from 1991 to 2010. The land uses considered were: dense shrub cover, grazing meadow, abandoned field, cereal (barley), abandoned shifting agriculture, active shifting agriculture, burnt1 and burnt2 plots, and in-fallow plot. All the plots were installed on a field abandoned 45 years ago. Some of the plots did not change in plant cover through the study period (e.g., the meadow, cereal and shifting agriculture plots), but others underwent changes in density and composition, such as: (i) The dense shrub cover plot represents the natural evolution of the abandoned field. When the AVES was equipped, this plot was completely dominated by Genista scorpius, with a few stands of Rosa gr. Canina. Twenty years later, Genista scorpius is affected of senescence and shows almost no regeneration capacity. (ii) The abandoned field had previously been cultivated with cereals until 1993. Once abandoned, the progression of plant colonization was very rapid. Firstly with grasses and, 10 years later, with Genista scorpius. At present, this latter occupies more than 50% of the plot. (iii) The evolution of plant colonization in the abandoned shifting agriculture plot was slower than that in the 'normal' abandoned field, mainly because of the differences in fertilization when they were cultivated. (iv) One of the burnt plots evolved from 0% to a coverage of almost 100% in a shot period, whereas the other plot remained with a shrub density of about 60% several years after the fire. Soil samples (superficial and depth) were analyzed to obtain physical and chemical properties: structure, texture, pH, CaCO3, Organic Matter and various anions and cations. The main purpose was to detect differences in the soil properties as a consequence of land cover/land uses.
Where do the Field Plots Belong? A Multiple-Constraint Sampling Design for the BigFoot Project
NASA Astrophysics Data System (ADS)
Kennedy, R. E.; Cohen, W. B.; Kirschbaum, A. A.; Gower, S. T.
2002-12-01
A key component of a MODIS validation project is effective characterization of biophysical measures on the ground. Fine-grain ecological field measurements must be placed strategically to capture variability at the scale of the MODIS imagery. Here we describe the BigFoot project's revised sampling scheme, designed to simultaneously meet three important goals: capture landscape variability, avoid spatial autocorrelation between field plots, and minimize time and expense of field sampling. A stochastic process places plots in clumped constellations to reduce field sampling costs, while minimizing spatial autocorrelation. This stochastic process is repeated, creating several hundred realizations of plot constellations. Each constellation is scored and ranked according to its ability to match landscape variability in several Landsat-based spectral indices, and its ability to minimize field sampling costs. We show how this approach has recently been used to place sample plots at the BigFoot project's two newest study areas, one in a desert system and one in a tundra system. We also contrast this sampling approach to that already used at the four prior BigFoot project sites.
Isotope shift, nonlinearity of King plots, and the search for new particles
NASA Astrophysics Data System (ADS)
Flambaum, V. V.; Geddes, A. J.; Viatkina, A. V.
2018-03-01
We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron-deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z =99 have been possibly identified. In addition, it has been recently suggested to use the measurements of King plot nonlinearity in a search for hypothetical new light bosons. On the other hand, one can find the nonlinear corrections to the King plot arising already in the standard model framework. We investigate contributions to the nonlinearity arising from relativistic effects in the isotope field shift, the nuclear polarizability, and many-body effects. It is found that the nuclear polarizability contribution can lead to the significant deviation of the King plot from linearity. Therefore, the measurements of the nonlinearity of King plots may be applied to obtain the nuclear polarizability change between individual isotopes. We then proceed with providing a rough analytical estimate of the nonlinearity arising solely from the effect of a hypothetical scalar boson. Our predictions give theoretical limitations on the sensitivity of the search for new interactions and should help to identify the most suitable atoms for corresponding experiments.
Hormone and pathogen content in soil after litter applications
USDA-ARS?s Scientific Manuscript database
Poultry litter applications at agronomic rates established for a crop’s P or N requirements may contain as much as 385 mg estradiol ha-1, 605 mg testosterone ha-1, 4.4(10)12 Escherichia coli cells ha-1, and 4.4(10)13 fecal enterococci cells ha-1. Field experiments from small plot- to small watershed...
Evaluation of field performance of poplar clones using selected competition indices.
Chandler Brodie; D.S. DeBell
2004-01-01
Use of competition indices in the analysis of forestry experiments may improve detection and understanding of treatment effects, and thereby improve the application of results. In this paper, we compared the performance of eight indices in an analysis of a spacing trial of four Populus clones planted in pure and mixed clonal plots. Indices were...
Management of sheath blight and narrow brown leaf spot with biocontrol agents in organic rice, 2010
USDA-ARS?s Scientific Manuscript database
The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Plots consisted of seven 18-ft rows, and spaced 7 inches between rows. There ...
Hillslope run-off thresholds with shrink–swell clay soils
Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Lane, John W.; Uribe, Hamil C.; Arumí, José Luis; Selker, John S.
2015-01-01
Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run-off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run-off was not observed until soil water content of the profile reached field capacity, and the apertures of surface-connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single-ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run-off response to the cumulative precipitation amount.
47 CFR 73.186 - Establishment of effective field at one kilometer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coordinate paper, plot field strengths as ordinate and distance as abscissa. (ii) Using semi-log coordinate paper, plot field strength times distance as ordinate on the log scale and distance as abscissa on the...
Convex Arrhenius plots and their interpretation
Truhlar, Donald G.; Kohen, Amnon
2001-01-01
This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed. This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses. PMID:11158559
Deriving Temporal Height Information for Maize Breeding
NASA Astrophysics Data System (ADS)
Malambo, L.; Popescu, S. C.; Murray, S.; Sheridan, R.; Richardson, G.; Putman, E.
2016-12-01
Phenotypic data such as height provide useful information to crop breeders to better understand their field experiments and associated field variability. However, the measurement of crop height in many breeding programs is done manually which demands significant effort and time and does not scale well when large field experiments are involved. Through structure from motion (SfM) techniques, small unmanned aerial vehicles (sUAV) or drones offer tremendous potential for generating crop height data and other morphological data such as canopy area and biomass in cost-effective and efficient way. We present results of an on-going UAV application project aimed at generating temporal height metrics for maize breeding at the Texas A&M AgriLife Research farm in Burleson County, Texas. We outline the activities involved from the drone aerial surveys, image processing and generation of crop height metrics. The experimental period ran from April (planting) through August (harvest) 2016 and involved 36 maize hybrids replicated over 288 plots ( 1.7 Ha). During the time, crop heights were manually measured per plot at weekly intervals. Corresponding aerial flights were carried out using a DJI Phantom 3 Professional UAV at each interval and images captured processed into point clouds and image mosaics using Pix4D (Pix4D SA; Lausanne, Switzerland) software. LiDAR data was also captured at two intervals (05/06 and 07/29) to provide another source of height information. To obtain height data per plot from SfM point clouds and LiDAR data, percentile height metrics were then generated using FUSION software. Results of the comparison between SfM and field measurement height show high correlation (R2 > 0.7), showing that use of sUAV can replace laborious manual height measurement and enhance plant breeding programs. Similar results were also obtained from the comparison of SfM and LiDAR heights. Outputs of this project are helping plant breeders at Texas A&M automate routine height measurements in maize and quickly make actionable decisions and discover new hybrids.
del-Val, Ek; Armesto, Juan J; Barbosa, Olga; Marquet, Pablo A
2007-09-01
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.
Evaluation of compost blankets for erosion control from disturbed lands.
Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G
2011-03-01
Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier Ltd. All rights reserved.
Precise FIA plot registration using field and dense LIDAR data
Demetrios Gatziolis
2009-01-01
Precise registration of forest inventory and analysis (FIA) plots is a prerequisite for an effective fusion of field data with ancillary spatial information, which is an approach commonly employed in the mapping of various forest parameters. Although the adoption of Global Positioning System technology has improved the precision of plot coordinates obtained during...
Do Plot Studies Generate “Directionally” Correct Assessments of Field Level Phosphorus Losses?
USDA-ARS?s Scientific Manuscript database
The National P Research Project (NPRP) coordinated a tremendous amount of research at the plot scale to assess the influence of nutrient management on P transport at the fields scale. The objectives of this research were to determine of plot scale rainfall simulations could be used to assess P trans...
NASA Astrophysics Data System (ADS)
Han, S.; Son, Y.; Lee, S.; Jo, W.; Yoon, T.; Park, C.; Ko, S.; Kim, J.; Han, S.; Jung, Y.
2012-12-01
Temperature increase due to climate change is expected to affect tree growth and distribution [Way and Oren, 2010]. The responses of trees to warming vary with tree species, ontogenic stages, tree life forms, and biomes. Especially, seedling stage is a vulnerable period for tree survival and competition [Saxe et al., 2007] and thus research on effects of temperature increase on seedling stage is needed. We aimed to examine the responses of coniferous seedlings to future temperature increase by conducting an open-field warming experiment. An experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to 3°C higher than that of control plots constantly. The seeds of Pinus densiflora and Abies holophylla were planted in each 1 m × 1 m plot (n=3) in April, 2012. Seedling growth, root collar diameter (RCD) and height of 45 individuals of each plot were measured in June and July, 2012. The survival rate of seedlings was also measured. Survival rate of P. densiflora was lower in warming plots (93.3%) than in control plots (100.0%, p<0.05) and that of A. holophylla was also decreased in warming plots (79.3%) than in control plots (97.0%, p<0.01). RCD and height of P. densiflora seedlings were not significantly different between control and warming plots, however, height of A. holophylla was significantly higher in warming plots in June and July (p<0.01). Comparatively, RCD of A. holophylla was only higher in control plots in June. While there is still a lack of case studies on the growth of seedlings under experimental warming, a few studies reported increased seedling growth [Yin et al., 2008] or and no difference [Han et al., 2009] in warming plots. Different responses of seedling growth between two species of the current study might be derived from species-specific acclimation to temperature increase and/or other limiting factors [Way and Oren, 2010]. This result is, to our knowledge, unprecedented and will contribute to the knowledge of species-specific growth response of tree species and to development of model predicting species distribution in future climate regime. Future work on physiological traits of seedlings and analysis on environmental factors will provide mechanism of seedling response to increased temperature. [This work was supported by 'Korea Forest Service (S111112L080110)'.
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.
2009-04-01
Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between CT and DD plots, while the FKM2 map showed both differences between CT and DD and topography-associated features. Using the FKM1 and FKM2 maps as secondary information accounted for 30% of the total SOC variability, whereas plot and management average SOC explained 44 and 41%, respectively. Cross validation of SKlm using FKM2 reduced the RMSE by 8% and increased the efficiency index almost 70% as compared to Ordinary Kriging. This work shows how ECa can improve the spatial characterization of SOC, despite its low correlation and the small size of the plots used in this study.
Effects of environmental change on plant species density: Comparing predictions with experiments
Gough, L.; Grace, J.B.
1999-01-01
Ideally, general ecological relationships may be used to predict responses of natural communities to environmental change, but few attempts have been made to determine the reliability of predictions based on descriptive data. Using a previously published structural equation model (SEM) of descriptive data from a coastal marsh landscape, we compared these predictions against observed changes in plant species density resulting from field experiments (manipulations of soil fertility, flooding, salinity, and mammalian herbivory) in two areas within the same marsh. In general, observed experimental responses were fairly consistent with predictions. The largest discrepancy occurred when sods were transplanted from high- to low-salinity sites and herbivores selectively consumed a particularly palatable plant species in the transplanted sods. Individual plot responses to some treatments were predicted more accurately than others. Individual fertilized plot responses were not consistent with predictions (P > 0.05), nor were fenced plots (herbivore exclosures; R2 = 0.15) compared to unfenced plots (R2 = 0.53). For the remaining treatments, predictions reasonably matched responses (R2 = 0.63). We constructed an SEM for the experimental data; it explained 60% of the variance in species density and showed that fencing and fertilization led to decreases in species density that were not predicted from treatment effects on community biomass or observed disturbance levels. These treatments may have affected the ratio of live to dead biomass, and competitive exclusion likely decreased species density in fenced and fertilized plots. We conclude that experimental validation is required to determine the predictive value of comparative relationships derived from descriptive data.
NASA Astrophysics Data System (ADS)
Brocks, Sebastian; Bendig, Juliane; Bareth, Georg
2016-10-01
Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott's refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.
Mitchell, Everett R
2002-05-01
Experiments were conducted in plantings of cabbage in spring 1999 and 2000 to evaluate a novel, new matrix system for delivering sex pheromone to suppress sexual communication by diamondback moth, Plutella xylostella (L.). The liquid, viscous, slow-release formulation contained a combination of diamondback moth pheromone, a blend of Z-11-hexadecenyl acetate, 27%:Z-11-hexadecen-1-ol, 1%:Z-11-tetradecen-1-ol, 9%:Z-11-hexadecenal, 63%, and the insecticide permethrin (0.16% and 6% w/w of total formulated material, respectively). Field trapping experiments showed that the lure-toxicant combination was highly attractive to male moths for at least four weeks using as little as a 0.05 g droplet of formulated material per trap; and the permethrin insecticide had no apparent influence on response of moths to lure baited traps. Small field plots of cabbage were treated with the lure-toxicant-matrix combination using droplets of 0.44 and 0.05 g each applied to cabbage in a grid pattern at densities ranging from 990 to 4396 droplets/ha to evaluate the potential for disrupting sexual communication of diamondback moth. There was no significant difference in the level of suppression of sexual communication of diamondback moth, as measured by captures of males in pheromone-baited traps located in the treated plots, versus moths captured in untreated control plots, among the treatments regardless of droplet size (0.05 or 0.44 g) or number of droplets applied per ha. Plots treated with the smallest droplet size (0.05 g) and with the fewest number of droplets per ha (990) suppressed captures of male diamondback moths > 90% for up to 3 weeks post treatment. Although laboratory assays showed that the lure-toxicant combination was 100% effective at killing the diamondback moth, the mode of action in the field trials was not determined. The results indicate that the liquid, viscous, slow release formulation containing diamondback moth pheromone could be used to effectively suppress sexual communication of this pest in cabbage and other crucifers, although as many as three applications probably would be required for suppression over an entire growing season.
Millwood, Reginald; Nageswara-Rao, Madhugiri; Ye, Rongjian; Terry-Emert, Ellie; Johnson, Chelsea R; Hanson, Micaha; Burris, Jason N; Kwit, Charles; Stewart, C Neal
2017-05-02
Switchgrass is C 4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F 1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.
NASA Astrophysics Data System (ADS)
Adachi, Kazuhide; Ohno, Satoshi; Furuhata, Masami; Ogura, Chikara; Tanimoto, Takeshi
The drainage efficiency of a subsurface drainage system for avoidance of standing water on the plow pan of clayey field was evaluated. A subsurface drainage system with a main drain and orthogonally adjoined rice husk trench drains joined by vertical rice husk drains was constructed on a test plot and compared to an identical control plot of paddy field converted to upland use under soybean cultivation. The ratio of total underdrain discharge to rainfall in the improved plot greatly increased over two years compared to that in a control plot. In the improved plot, the peak underdrain discharge per hour associated with some heavy rainfalls was around 3 mm/h in the first year but decreased to about 2 mm/h in the second year. By improving drainage in the paddy field, standing water on the plow pan was quickly eliminated after rain events and the period of flooding on the plow pan during the soybean growing season was greatly reduced. However, underdrain discharge in the improved plot decreased greatly in the third year to be at the same level as in the control plot, and rain water flooded the plow pan for extended periods of time.
Digital data collection in forest dynamics plots
Faith Inman-Narahari; Christian Giardina; Rebecca Ostertag; Susan Cordell; Lawren Sack
2010-01-01
Summary 1. Computers are widely used in all aspects of research but their application to in-field data collection for forest plots has rarely been evaluated. 2. We developed digital data collection methods using ESRI mapping software and ruggedized field computers to map and measure ~30 000 trees in two 4-ha forest dynamics plots in wet and dry...
Blodgett Forest Warming Experiment 1
Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret
2017-03-24
Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.
Scaling Aspen-FACE experimental results to century and landscape scales
Eric J. Gustafson; Mark E. Kubiske; Brian R. Sturtevant; Brian R. Miranda
2013-01-01
The Aspen-FACE experiment generated 11 years of empirical data on the effect of CO2 enrichment and elevated ozone on the growth of field-grown trees (maple, birch and six aspen clones) in northern Wisconsin, but it is not known how these short-term plot-level responses might play out at the landscape scale over multiple decades where competition...
Determining stocking, forest type and stand-size class from forest inventory data
Mark H. Hansen; Jerold T. Hahn
1992-01-01
This paper describes the procedures used by North Central Forest Experiment Station's Forest Inventory and Analysis Work Unit (NCFIA) in determining stocking, forest type, and stand-size class. The stocking procedure assigns a portion of the stocking to individual trees measured on NCFIA 10-point field plots. Stand size and forest type are determined as functions...
Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.
Regan, David G; Kuchel, Philip W
2002-01-01
The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed. PMID:12080109
Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.
Regan, David G; Kuchel, Philip W
2002-07-01
The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed.
Soil erodibility variability in laboratory and field rainfall simulations
NASA Astrophysics Data System (ADS)
Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán
2017-04-01
Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?
Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef
2016-12-01
Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2 = 0.92, RMSE = 50.57 m 3 ha -1 ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.
Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.
2012-04-01
Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our comprehensive data set of Hawaii paleointensity on about the last 4 ka.
Targeted Removal of Ant Colonies in Ecological Experiments, Using Hot Water
Tschinkel, Walter R.; King, Joshua R.
2007-01-01
Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants. PMID:20233079
Novara, Agata; Keesstra, Saskia; Cerdà, Artemio; Pereira, Paulo; Gristina, Luciano
2016-04-15
Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using (13)C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO2 emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C3soil was replaced with C4soil. The SOC and δ(13)C were measured after 145.2mm rainfall in the upper (2m far from C4strip), middle (4m far from C4strip) lower (6m far from C4strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO2 emission rate of soils in each area. OC was mainly lost in the sediments as 2.08g(-)(2) of C was lost after 145.2mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C4 origin. The C4-SOC content decreased along the 6m length of the plot, and in the sediments collected by the Gerlach collector. CO2 emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO2 in C3 and C4 portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Targeted removal of ant colonies in ecological experiments, using hot water.
Tschinkel, Walter R; King, Joshua R
2007-01-01
Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants.
NASA Astrophysics Data System (ADS)
Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt
2016-04-01
Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P < 0.05) differences on the number of pods per plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the watershed.
M. A. White; J. D. Shaw; R. D. Ramsey
2005-01-01
An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....
Split-plot microarray experiments: issues of design, power and sample size.
Tsai, Pi-Wen; Lee, Mei-Ling Ting
2005-01-01
This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.
Feng, Wenting; Liang, Junyi; Hale, Lauren E.; ...
2017-06-09
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Wenting; Liang, Junyi; Hale, Lauren E.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less
Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi
2017-11-01
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change. © 2017 John Wiley & Sons Ltd.
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...
2017-07-26
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.
2017-07-01
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
Controlled soil warming powered by alternative energy for remote field sites.
Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela
2013-01-01
Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.
Effect of rainfall simulator and plot scale on overland flow and phosphorus transport.
Sharpley, Andrew; Kleinman, Peter
2003-01-01
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.
dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R
2009-06-30
The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.
Temperature adaptation of bacterial communities in experimentally warmed forest soils.
Rousk, Johannes; Frey, Serita D; Bååth, Erland
2012-10-01
A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.
Marvasi, Massimiliano; Hochmuth, George J.; Giurcanu, Mihai C.; George, Andrée S.; Noel, Jason T.; Bartz, Jerry; Teplitski, Max
2013-01-01
Main Objectives Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. Experimental Design Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey’s multiple comparison testing procedure. Most Important Discoveries and Significance The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth. PMID:24324640
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bopp IV, C.J.; Lundstrom, C.C.; Johnson, T.M.
2010-02-01
The attenuation of groundwater contamination via chemical reaction is traditionally evaluated by monitoring contaminant concentration through time. However, this method can be confounded by common transport processes (e.g. dilution, sorption). Isotopic techniques bypass the limits of concentration methods, and so may provide improved accuracy in determining the extent of reaction. We apply measurements of {sup 238}U/{sup 235}U to a U bioremediation field experiment at the Rifle Integrated Field Research Challenge Site in Rifle, Colorado (USA). An array of monitoring and injection wells was installed on a 100 m{sup 2} plot where U(VI) contamination was present in the groundwater. Acetate-amended groundwatermore » was injected along an up-gradient gallery to encourage the growth of dissimilatory metal reducing bacteria (e.g. Geobacter species). During amendment, U concentration dropped by an order of magnitude in the experiment plot. We measured {sup 238}U/{sup 235}U in samples from one monitoring well by MC-ICP-MS using a double isotope tracer method. A significant {approx}1.00{per_thousand} decrease in {sup 238}U/{sup 235}U occurred in the groundwater as U(VI) concentration decreased. The relationship between {sup 238}U/{sup 235}U and concentration corresponds approximately to a Rayleigh distillation curve with an effective fractionation factor ({alpha}) of 1.00046. We attribute the observed U isotope fractionation to a nuclear field shift effect during enzymatic reduction of U(VI){sub (aq)} to U(IV){sub (s)}.« less
Effect of winter cover crops on nematode population levels in north Florida.
Wang, K-H; McSorley, R; Gallaher, R N
2004-12-01
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P = 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P = 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.
Deliopoulos, T; Minnis, S T; Jones, P W; Haydock, P P J
2010-03-01
Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P < 0.01) from wk-2 to wk-4 after planting. Inoculation of physiologically-aged potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.
[Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].
Perez, Eddy; Pacheco, Luis F
2014-12-01
Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.
Adamczewski, K; Kierzek, R; Matysiak, K
2009-01-01
Sulfonylurea herbicides are widely used for grass and broadleaf weed control in winter cereals in Poland developed resistance, especially in Silky bent grass (Apera spica-venti). The aim of the study was to evaluate the possibility of resistance increase after six years used of some herbicide for control of A. spica-venti in winter cereals monoculture. The field experiments were conducted in Agricultural Experimental Station at Winna Gora. During six years the herbicides: chlorsulfuron, sulfosulfuron, iodosulfuron and isoproturon were applied. In fourth, fifth and sixth years A. spica-venti seed from the experiment was collected and used in greenhouse experiment. The obtained results indicated that after six years usage of the herbicides resistance of A. spica-venti to sulfonylurea herbicides were found. Results obtained in field condition were confirmed in greenhouse experiment. Resistance process was found also on untreated plots. It was indicated that resistance is transferred also by pollen.
Farrell, Kelly Anne; Harpole, W. Stanley; Stein, Claudia; Suding, Katharine N.; Borer, Elizabeth T.
2015-01-01
Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities. PMID:26158494
Visualizing the deep end of sound: plotting multi-parameter results from infrasound data analysis
NASA Astrophysics Data System (ADS)
Perttu, A. B.; Taisne, B.
2016-12-01
Infrasound is sound below the threshold of human hearing: approximately 20 Hz. The field of infrasound research, like other waveform based fields relies on several standard processing methods and data visualizations, including waveform plots and spectrograms. The installation of the International Monitoring System (IMS) global network of infrasound arrays, contributed to the resurgence of infrasound research. Array processing is an important method used in infrasound research, however, this method produces data sets with a large number of parameters, and requires innovative plotting techniques. The goal in designing new figures is to be able to present easily comprehendible, and information-rich plots by careful selection of data density and plotting methods.
Hejda, Martin
2012-01-01
The aim was to estimate the impacts of invasive Impatiens parviflora on forests’ herbal layer communities. A replicated Before-After-Control-Impact field experiment and comparisons with adjacent uninvaded plots were used. The alien’s impact on species richness was tested using hierarchical generalized mixed effect models with Poisson error structure. Impact on species composition was tested using multivariate models (DCA, CCA, RDA) and Monte-Carlo permutation tests. Removal plots did not differ in native species richness from neither invaded nor adjacent uninvaded plots, both when the treatment’s main effect or its interaction with sampling time was tested (Chi2 = 0.4757, DF = 2, p = 0.7883; Chi2 = 7.229, DF = 8, p = 0.5121 respectively). On the contrary, ordination models revealed differences in the development of plots following the treatments (p = 0.034) with the invaded plots differing from the adjacent uninvaded (p = 0.002). Impatiens parviflora is highly unlikely to impact native species richness of invaded communities, which may be associated with its limited ability to create a dense canopy, a modest root system or the fact the I. parviflora does not represent a novel and distinctive dominant to the invaded communities. Concerning its potential impacts on species composition, the presence of native clonal species (Athyrium filix-femina, Dryopteris filix-mas, Fragaria moschata, Luzula luzuloides, Poa nemoralis) on the adjacent uninvaded plots likely makes them different from the invaded plots. However, these competitive and strong species are more likely to prevent the invasion of I. parviflora on the adjacent uninvaded plots rather than being themselves eliminated from the invaded communities. PMID:22768091
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D
Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices
NASA Astrophysics Data System (ADS)
Tanner, Smadar; Katra, Itzhak; Zaady, Eli
2016-04-01
Eolian (wind) erosion is a widespread process and a major form of soil degradation in arid and semi-arid regions. The present study examined changes in soil properties and eolian soil loss at a field scale in response to different soil treatments in two rain-fed agricultural practices. Field experiments with a boundary-layer wind tunnel and soil analysis were used to obtain the data. Two practices with different soil treatments (after harvest), mechanical tillage and stubble grazing intensities, were applied in the fallow phase of the rotation (dry season). The mechanical tillage and the stubble grazing had an immediate and direct effects on soil aggregation but not on the soil texture, and the contents of soil water, organic matter, and CaCO3. Higher erosion rates, that was measured as fluxes of total eolian sediment and particulate matter <10 μm (PM10), were recorded under mechanical tillage and grazing intensities compared with the undisturbed topsoil of the control plots. The erosion rates were higher in grazing plots than in tillage plots. The calculated soil fluxes in this study indicate potentially rapid soil degradation due to loss of fine particles by wind. The finding may have implications for long-term management of agricultural soils in semi-arid areas.
Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation
NASA Astrophysics Data System (ADS)
Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.
2018-05-01
The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.
STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of the temperature pressure and plasma
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Murphy, G.
1983-01-01
Designed to withstand the thermal extremes of the STS-3 mission through the use of heaters and thermal blankets, the plasma diagnostics package sat on the release/engagement mechanism on the OSS-1 payload pallet without a coldplate and was attached to the RMS for two extended periods. Plots show temperature versus mission elapsed time for two temperature sensors. Pressure in the range of 10 to the -3 power torr and 10 to the -7 power torr, measured 3 inches from the skin of the package is plotted against GMT during the mission. The most distinctive feature of the pressure profile is the modulation at the obit period. It was found that pressure peaks when the atmospheric gas is rammed into the cargo bay. Electric and magnetic noise spectra and time variability due to orbiter systems, UHF and S-band transmitter field strengths, and measurements of the ion spectra obtained both in the cargo bay and during experiments are plotted.
Does tree diversity increase wood production in pine forests?
Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep
2003-04-01
Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.
NASA Astrophysics Data System (ADS)
Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.
2018-06-01
The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.
Amanullah; Khan, Adil
2015-01-01
Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha(-1)) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha(-1)) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition.
Amanullah
2015-01-01
Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boon, G.T.; Bouwman, L.A.; Bloem, J.
1998-10-01
To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reducedmore » crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.« less
Site Characterization for Radar Experiments
1990-08-01
accomplished waz "New Mine Detection Technologies," Mr. Jack Stoll, Principal Investigator. The Environmental Systems Division (EST) of the Environmental...Mr. Steve Bong of Hilton Systems visiting the proposed study site in M’rch to select specific locations for the test plots. The field data coll in...Technology/Lincoln Laboratory (MIT/LL) described an airborne 35-Ghz radar imaging system . The MIT/LL would employ various kinds of processing on the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimasa, Y.; Ichimasa, M.; Jiang, H.
1995-10-01
The oxidation activity of molecular tritium (HT) in soils and vegetation collected in experimental plots during the 1994 chronic HT release experiment at Chalk River was determined in vitro laboratory experiments after the release. HT oxidation activity was highest in surface soils in the natural plot, about 3-4 times that in soils in the cultivated plots. HT oxidation activity in weeds and Komatsuna leaves was about 2 and 0.4% of that in the cultivated soil, respectively. The number of HT-oxidizing bacteria isolated from soils was highest in the surface soil (0-5 cm) in the natural plot. The viable cell numbersmore » in surface soils in the cultivated and natural plots were almost the same. The total occurrence rates of HT-oxidizing bacteria in the surface soils were 22% in the natural plot, and 7.5% in the cultivated plot. The occurrence rates of HT-oxidizing airborne bacteria during the release on two culture media were 4.2 and 1.9%. 16 refs., 3 figs., 3 tabs.« less
Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan
2016-01-01
Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964
Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan
2016-10-03
Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.
Graphite tail powder and liquid biofertilizer as trace elements source for ground nut
NASA Astrophysics Data System (ADS)
Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made
2018-02-01
Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.
Gold, L S; Manley, N B; Slone, T H; Garfinkel, G B; Ames, B N; Rohrbach, L; Stern, B R; Chow, K
1995-01-01
This paper presents two types of information from the Carcinogenic Potency Database (CPDB): (a) the sixth chronological plot of analyses of long-term carcinogenesis bioassays, and (b) an index to chemicals in all six plots, including a summary compendium of positivity and potency for each chemical (Appendix 14). The five earlier plots of the CPDB have appeared in this journal, beginning in 1984 (1-5). Including the plot in this paper, the CPDB reports results of 5002 experiments on 1230 chemicals. This paper includes bioassay results published in the general literature between January 1989 and December 1990, and in Technical Reports of the National Toxicology Program between January 1990 and June 1993. Analyses are included on 17 chemicals tested in nonhuman primates by the Laboratory of Chemical Pharmacology, National Cancer Institute. This plot presents results of 531 long-term, chronic experiments of 182 test compounds and includes the same information about each experiment in the same plot format as the earlier papers: the species and strain of test animal, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. We refer the reader to the 1984 publications (1,6,7) for a detailed guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The six plots of the CPDB are to be used together since results of individual experiments that were published earlier are not repeated. Appendix 14 is designed to facilitate access to results on all chemicals. References to the published papers that are the source of experimental data are reported in each of the published plots. For readers using the CPDB extensively, a combined plot is available of all results from the six separate plot papers, ordered alphabetically by chemical; the combined plot in printed form or on computer tape or diskette is available from the first author. A SAS database is also available. PMID:8741772
Interpreting Medical Information Using Machine Learning and Individual Conditional Expectation.
Nohara, Yasunobu; Wakata, Yoshifumi; Nakashima, Naoki
2015-01-01
Recently, machine-learning techniques have spread many fields. However, machine-learning is still not popular in medical research field due to difficulty of interpreting. In this paper, we introduce a method of interpreting medical information using machine learning technique. The method gave new explanation of partial dependence plot and individual conditional expectation plot from medical research field.
Seedling production and pest problems at a South Georgia nursery
Stephen W. Fraedrich; L. David Dwinell; Michelle M. Cram
2002-01-01
Pine seedling production and pest problems were evaluated in methyl bromide-fumigated and nonfumigated plots in two fields at a South Georgia nursery. In one field, fumigation increased loblolly pine seedling bed density in only 1 of 4 years. Seedlings were often significantly larger in fumigated than nonfumigated plots. In the other field, no differences were observed...
John Henry--The Steel Driving Man
ERIC Educational Resources Information Center
Murphy, David E.; Gulley, Laura L.
2005-01-01
The story of John Henry provided the setting for sixth-grade class to participate in a John Henry Day of mathematics experiments. The students collected data from experiments where students competed against machines and technology. The student analyzed the data by comparing two box plots, a box plot of human data, and a box plot of machine or…
ERIC Educational Resources Information Center
Boiani, James A.
1986-01-01
Describes an experiment which uses the Gran plot for analyzing free ions as well as those involved in an equilibrium. Discusses the benefits of using Gran plots in the study of acids, as well as other analytes in solutions. Presents background theory along with a description of the experimental procedures. (TW)
Commercial application of rainfall simulation
NASA Astrophysics Data System (ADS)
Loch, Rob J.
2010-05-01
Landloch Pty Ltd is a commercial consulting firm, providing advice on a range of land management issues to the mining and construction industries in Australia. As part of the company's day-to-day operations, rainfall simulation is used to assess material erodibility and to investigate a range of site attributes. (Landloch does carry out research projects, though such are not its core business.) When treated as an everyday working tool, several aspects of rainfall simulation practice are distinctively modified. Firstly, the equipment used is regularly maintained, and regularly upgraded with a primary focus on ease, safety, and efficiency of use and on reliability of function. As well, trained and experienced technical support is considered essential. Landloch's chief technician has over 10 years experience in running rainfall simulators at locations across Australia and in Africa and the Pacific. Secondly, the specific experimental conditions established for each set of rainfall simulator runs are carefully considered to ensure that they accurately represent the field conditions to which the data will be subsequently applied. Considerations here include: • wetting and drying cycles to ensure material consolidation and/or cementation if appropriate; • careful attention to water quality if dealing with clay soils or with amendments such as gypsum; • strong focus on ensuring that the erosion processes considered are those of greatest importance to the field situation of concern; and • detailed description of both material and plot properties, to increase the potential for data to be applicable to a wider range of projects and investigations. Other important company procedures include: • For each project, the scientist or engineer responsible for analysing and reporting rainfall simulator data is present during the running of all field plots, as it is essential that they be aware of any specific conditions that may have developed when the plots were subjected to rain; and • Regular calibration of all equipment. In general, typical errors when rainfall simulation is carried out by inexperienced researchers include: • Failure to accurately measure rainfall rates (the most common error); • Inappropriate initial conditions, including wetting treatments; • Use of inappropriately small plots - relating to our concern at the erosion processes considered be those of genuine field relevance; • Inappropriate rainfall kinetic energies; and • Failure to observe critical processes operating on the study plots, such as saturation excess or the presence of impeding layers at shallow depths. Landloch regularly uses erodibility data to design stable batter profiles for minesite waste dumps. Subsequent monitoring of designed dumps has confirmed that modelled erosion rates are consistent with those subsequently measured under field conditions.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.
1981-01-01
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.
Effects of soil management techniques on soil water erosion in apricot orchards.
Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi
2016-05-01
Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.
Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.
Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji
2017-01-30
Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.
Abbott, Jessica M; Grosberg, Richard K; Williams, Susan L; Stachowicz, John J
2017-12-01
Genetic diversity within key species can play an important role in the functioning of entire communities. However, the extent to which different dimensions of diversity (e.g., the number of genotypes vs. the extent of genetic differentiation among those genotypes) best predicts functioning is unknown and may yield clues into the different mechanisms underlying diversity effects. We explicitly test the relative influence of genotypic richness and genetic relatedness on eelgrass productivity, biomass, and the diversity of associated invertebrate grazers in a factorial field experiment using the seagrass species, Zostera marina (eelgrass). Genotypic richness had the strongest effect on eelgrass biomass accumulation, such that plots with more genotypes at the end of the experiment attained a higher biomass. Genotypic diversity (richness + evenness) was a stronger predictor of biomass than richness alone, and both genotype richness and diversity were positively correlated with trait diversity. The relatedness of genotypes in a plot reduced eelgrass biomass independently of richness. Plots containing eelgrass with greater trait diversity also had a higher abundance of invertebrate grazers, while the diversity and relatedness of eelgrass genotypes had little effect on invertebrate abundance or richness. Our work extends previous findings by explicitly relating genotypic diversity to trait diversity, thus mechanistically connecting genotypic diversity to plot-level yields. We also show that other dimensions of diversity, namely relatedness, influence eelgrass performance independent of trait differentiation. Ultimately, richness and relatedness captured fundamentally different components of intraspecific variation and should be treated as complementary rather than competing dimensions of biodiversity affecting ecosystem functioning. © 2017 by the Ecological Society of America.
Use of palm-mat geotextiles for rainsplash erosion control
NASA Astrophysics Data System (ADS)
Bhattacharyya, R.; Fullen, M. A.; Davies, K.; Booth, C. A.
2010-07-01
Soil detachment by raindrop action (rainsplash erosion) is a very important subprocess of erosion by water. It is a particular problem in the UK as most soils are sandy or loamy sand in texture and lands have gentle to medium slope. However, few studies report potential rainsplash erosion control options under field conditions. Hence, the utilization of palm-mat geotextiles as a rainsplash erosion control technique was investigated at Hilton, east Shropshire, U.K. (52°33'5.7″ N, 2°19'18.3″ W). Geotextile-mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Two-year field experiments were conducted at Hilton to study the effects of emplacing Borassus and Buriti mats on rainsplash erosion of a loamy sand soil. Two sets (12 plots each) of experiments were established to study the effects of these mats on splash height and splash erosion. Splash height needs to be known to assess the transport mechanism of major soil fraction and its constituents on sloping land by rainsplash. In both sets, six randomly-selected plots were covered with mats, and the rest were bare. Results (during 22/01/2007‒23/01/2009; total precipitation = 1731.5 mm) show that Borassus mat-covered plots had ˜ 89% ( P < 0.001) less total splash erosion (2.97 kg m - 2 ) than bare plots (27.02 kg m - 2 ). Comparatively, mean splash height from Borassus mat-covered plots (0.12 m) was significantly ( P < 0.001) less than the bare plots, by ˜ 54%. However, Buriti mat-cover on bare plots had no significant ( P > 0.05) effect in rainsplash erosion control during that period, although plots with Buriti mats significantly ( P < 0.05) decreased splash height (by ˜ 18%) compared with bare plots (0.26 m). Buriti mats, probably due to their ˜ 43, 62 and 50% lower cover percentage (44%), mass per unit area (413 g - 2 ) and thickness (10 mm), respectively, compared with Borassus mats, were not effective in rainsplash erosion control. Both mats did not significantly ( P > 0.05) improve selected soil properties (i.e., soil organic matter, particle size distribution, aggregate stability and total soil carbon) as soil organic matter (SOM) input from mat-decomposition was much less than total SOM content. However, the changes in fine and medium sand contents (after 2 years) in the Borassus covered plots were significantly ( P < 0.05; n = 6) related to the total rainsplash erosion during 2007‒2009. Emplacement of Borassus and Buriti mats on bare soils did not decrease SOM contents after 2 years, indicating that improvements in some soil properties might occur over longer durations. After ˜ 10 months, Buriti mats lost ˜ 70% of their initial weight ( P < 0.001) and their initial cover percentage ( C, %) decreased drastically ( P < 0.05); whereas, Borassus mats maintained similar C to the initial condition, although mass per unit area decreased by ˜ 20% ( P < 0.05). Moreover, the functional longevity of Borassus mats was ˜ 2 years against only 1 year for Buriti mats. Hence, use of Borassus mats is highly effective for rainsplash erosion control in the UK.
The Fowler-Nordheim behavior and mechanism of photo-sensitive field from SnS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryawanshi, Sachin R.; Chaudhari, Nilima S.; Warule, Sambhaji S.
2015-06-24
Here in, we report photo-sensitive field emission measurements of SnS{sub 2} nanosheets at base pressure of ∼1×10{sup −8} mbar are reported. The nonlinear Fowler-Nordheim (F-N) plot is elucidate according to a (F-N) model of calculation based on shift in a saturation of conduction band current density after light illumination and prevalence of valence band current density at high electric field values. The model of calculation suggests that the slope variation before and after visible light illumination of the F-N plot, in the high-field and low-field regions, does not depend on the magnitude of saturation but also depend on charge carriermore » (electron) concentration get increased in conduction band. The F-N model of calculation is important for the fundamental understanding of the photo-sensitive field emission mechanism of semiconducting SnS{sub 2}. The replicate F-N plots exhibit similar features to those observed experimentally. The model calculation suggests that the nonlinearity of the F-N plot is a characteristic of the photo-enhanced energy band structure of the photo-sensitive semiconductor material.« less
Xie, Xiao Li; Wang, Wei; Tian, Wen Wen; Xie, Ke Jun
2017-11-06
Paddy soils have been widely recognized as important carbon sinks. However, paddy field abandonment is increasing in the hilly area in subtropical China. Soil waterlogging and weed burning are common practices in abandoned paddy fields, which could affect vegetation cover and carbon sequestration. An rice cultivation experiment was ceased in 2006, and four new treatments were applied as waterlogging (W), drainage (D), waterlogging combined with burning (WB), and drainage combined with burning (DB). Waterlogging altered the vegetation cover and caused an associated change in biomass. Paspalum paspaloides, Murdannia triquetra, and Bidens frondosa dominated W and WB plots, and Microstegium vimineum and Bidens frondosa dominated D and DB plots. Abandonment of paddy fields led to a rapid decrease in soil organic carbon (SOC), and waterlogging accelerates SOC loss which should be attributed mainly to alteration of the vegetation cover. Six years' rice cultivation increased SOC content by 13.5% (2.4 g kg -1 ) on average. In contrast, six years' abandonment reduced SOC content by 14.5% (3.0 g kg -1 ) on average. Decline rate of SOC was 0.38, 0.64, 0.30, and 0.65 g kg -1 a -1 for D, W, DB, and WB, respectively. Such results indicate a significant risk of SOC loss from abandoned paddy fields.
Amazonian landscapes and the bias in field studies of forest structure and biomass.
Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul
2014-12-02
Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.
Integrating P3 Data Into P2 Analyses: What is the Added Value
James R. Steinman
2001-01-01
The Forest Inventory and Analysis and Forest Health Monitoring Programs of the USDA Forest Service are integrating field procedures for measuring their networks of plots throughout the United States. These plots are now referred to as Phase 2 (P2) and Phase 3 (P3) plots, respectively, and 1 out of every 16 P2 plots will also be a P3 plot. Mensurational methods will be...
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.; /Northern Illinois U. /Northern Illinois U.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased P. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in P. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased f. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in f. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
On the effective field theory for quasi-single field inflation
NASA Astrophysics Data System (ADS)
Tong, Xi; Wang, Yi; Zhou, Siyi
2017-11-01
We study the effective field theory (EFT) description of the virtual particle effects in quasi-single field inflation, which unifies the previous results on large mass and large mixing cases. By using a horizon crossing approximation and matching with known limits, approximate expressions for the power spectrum and the spectral index are obtained. The error of the approximate solution is within 10% in dominate parts of the parameter space, which corresponds to less-than-0.1% error in the ns-r diagram. The quasi-single field corrections on the ns-r diagram are plotted for a few inflation models. Especially, the quasi-single field correction drives m2phi2 inflation to the best fit region on the ns-r diagram, with an amount of equilateral non-Gaussianity which can be tested in future experiments.
Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan
2012-01-01
Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.
Experimental warming effects on the bacterial community structure and diversity
NASA Astrophysics Data System (ADS)
Kim, W.; Han, S.; Adams, J.; Son, Y.
2014-12-01
The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.
John C. Byrne
1993-01-01
Methods for solving some recurring problems of maintaining a permanent plot data base for growth and yield reseuch are described. These methods include documenting data from diverse sampling designs, changing sampling designs, changing field procedures, and coordinating activities in the plots with the land management agency. Managing a permanent plot data base (...
Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Heiniger, Ron; Kuhar, Thomas; Malone, Sean; Philips, Chris; Tilley, M Scott
2017-06-01
Cereal leaf beetle, Oulema melanopus L., is a pest of small grains and the literature conflicts on whether it is more abundant in sparse or dense stands of wheat. Our objectives were to determine the impact of stand denseness on cereal leaf beetle abundance and to investigate the regional dispersion of cereal leaf beetles across North Carolina and Virginia. One-hundred twenty fields were sampled across North Carolina and Virginia during 2011 for stand denseness, and cereal leaf beetle eggs, larvae, and adults. Two small-plot wheat experiments were planted in North Carolina using a low and a high seeding rate. Main plots were split, with one receiving a single nitrogen application and one receiving two. Egg density, but not larva or adult density, was positively correlated with stand denseness in the regional survey. Furthermore, regional spatial patterns of aggregation were noted for both stand denseness and egg number. In the small-plot experiments, seeding rate influenced stand denseness, but not nitrogen application. In one experiment, egg densities per unit area were higher in denser wheat, while in the other experiment, egg densities per tiller were lower in denser wheat. Larvae were not influenced by any factor. Overall, there were more cereal leaf beetle eggs in denser wheat stands. Previous observations that sparse stands of wheat are more prone to cereal leaf beetle infestation can be attributed to the fact that sparser stands have fewer tillers, which increases the cereal leaf beetle to tiller ratio compared with denser stands. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Waheed, Tahir
This study investigated the possibility of using ground-based remotely sensed hyperspectral observations with a special emphasis on detection of water, weed and nitrogen stresses contributing towards in-season decision support for precision crop management (PCM). A three factor split-split-plot experiment, with four randomized blocks as replicates, was established during the growing seasons of 2003 and 2004. Corn (Zea mays L.) hybrid DKC42-22 was grown because this hybrid is a good performer on light soils in Quebec. There were twelve 12 x 12m plots in a block (one replication per treatment per block) and the total number of plots was 48. Water stress was the main factor in the experiment. A drip irrigation system was laid out and each block was split into irrigated and non-irrigated halves. The second main factor of the experiment was weeds with two levels i.e. full weed control and no weed control. Weed treatments were assigned randomly by further splitting the irrigated and non-irrigated sub-blocks into two halves. Each of the weed treatments was furthermore split into three equal sub-sub-plots for nitrogen treatments (third factor of the experiment). Nitrogen was applied at three levels i.e. 50, 150 and 250 kg N ha-1 (Quebec norm is between 120-160 kg N ha-1). The hyperspectral data were recorded (spectral resolution = 1 nm) mid-day (between 1000 and 1400 hours) with a FieldSpec FR spectroradiometer over a spectral range of 400-2500 run at three growth stages namely: early growth, tasseling and full maturity, in each of the growing season. There are two major original contributions in this thesis: First is the development of a hyperspectral data analysis procedure for separating visible (400-700 nm), near-infrared (700-1300 nm) and mid-infrared (1300-2500 nm) regions of the spectrum for use in discriminant analysis procedure. In addition, of all the spectral band-widths analyzed, seven waveband-aggregates were identified using STEPDISC procedure, which were the most effective for classifying combined water, weed, and nitrogen stress. The second contribution is the successful classification of hyperspectral observations acquired over an agricultural field, using three innovative artificial intelligence approaches; support vector machines (SVM), genetic algorithms (GA) and decision tree (DT) algorithms. These AI approaches were used to evaluate a combined effect of water, weed and nitrogen stresses in corn and of all the three AI approaches used, SVM produced the best results (overall accuracy ranging from 88% to 100%). The general conclusion is that the conventional statistical and artificial intelligence techniques used in this study are all useful for quickly mapping combined affects of irrigation, weed and nitrogen stresses (with overall accuracies ranging from 76% to 100%). These approaches have strong potential and are of great benefit to those investigating the in-season impact of irrigation, weed and nitrogen management for corn crop production and other environment related challenges.
Climate Change Feedbacks from Interactions Between New and Old Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukes, Jeffrey S.; Phillips, Richard P.
Priming effects, or responses of SOM decomposition rates to inputs of new, labile carbon (C), have the potential to dramatically alter projections of ecosystem C storage. Priming effects occur in most ecosystems, are significant in magnitude, and are highly sensitive to global changes. Nevertheless, our mechanistic understanding of priming effects remains poor, and this has prevented the inclusion of these dynamics into current Earth system models (ESMs). We conducted two manipulative experiments in the field to quantify how priming effects influence SOM dynamics. Specifically, we asked: To what extent do inputs of “new” root-derived carbon (C) influence “older” C inmore » SOM, and are the magnitude and direction of these effects sensitive to climate? We addressed these questions within the Boston-Area Climate Experiment - an old-field ecosystem that has been subjected to three precipitation treatments (ambient, -50%, and +50% of each precipitation event during the growing season) and four warming treatments (from ambient to +4°C) since 2008. In the first experiment, we installed root and fungal ingrowth cores into the plots. Each core was filled with SOM that had an isotopic signature (of its C compounds) that differed from the vegetation in the plots such that inputs of “new” C from roots/fungi could be quantified using the change in isotopic signatures of C in the cores. Further, we used cores with different mesh sizes to isolate root vs. mycorrhizal fungal inputs. We found that belowground C fluxes were dominated by root inputs (as opposed to mycorrhizal inputs), and that root-derived inputs were greatest in the plots subjected to experimental warming. Given that that the warming-induced increase in belowground C flux did not result in a net increase in soil C, we conclude that the warming treatment likely enhanced priming effects in these soils. In the second experiment, we experimentally dripped dissolved organic C compounds into soils in the BACE plots to simulate root-derived C fluxes. Specifically, we constructed artificial roots attached to an automated peristaltic pump to deliver the compounds to soil semi-continuously during the peak of the growing season. We found that changes in exudate quality had small but significant effects on microbial activities, often interacting with N availability and temperature-induced changes. These results further underscore the importance of priming effects, especially under warming conditions. Collectively, our results provide some of the first field-based estimates of how soil moisture and temperature can directly and indirectly alter root-induced changes in SOM dynamics. This exploratory project lays the groundwork for further research on priming that incorporates effects of plant species and microbial communities to global changes. Such information should enable the development of more mechanistic and better predictive models of SOM decomposition under increased greenhouse gas levels, with the ultimate goal of reducing the level of uncertainty in projections of future climate.« less
2014-03-01
Trees and woody vines are sampled in large plots with 9 m (30 ft) radii. Saplings, shrubs , and herbs are sampled in nested smaller plots with 2 m (5 ft... woody vines in 9 m (30 ft) radius plots and saplings, shrubs , and herbaceous species in 2 m (5 ft) radius plots. In herbaceous meadows, only the 2 m (5...suggests stratifying vegetation by growth forms of trees, shrubs , herbs, and vines and sampling plant communities by using nested circular plots
Hayashi, Kentaro; Nishimura, Seiichi; Yagi, Kazuyuki
2008-02-15
Ammonia (NH(3)) volatilization from a paddy field following applications of urea was measured. Two lysimeters of Gray Lowland soil with a pH (H(2)O) of 5.7 were used for the experiment. Urea was applied at a rate of 50 kg N ha(-1) by incorporation as the basal fertilization (BF) and at rates of 30 and 10 kg N ha(-1) by top-dressing as the first (SF1) and second (SF2) supplemental fertilizations, respectively. Two wind tunnels per lysimeter were installed just after BF; one was transplanted with rice plants (PR plot), and the other was without rice plants (NR plot). Weak volatilization was observed at the PR plots after BF. By contrast, strong volatilization was observed at the PR plots after SF1 with a maximum flux of 150 g N ha(-1) h(-1); however, almost no volatilization was observed after SF2. The NH(3) volatilization loss accounted for 2.1%, 20.9%, 0.5%, and 8.2% of the applied urea at each application, BF, SF1, SF2, and the total application, respectively, for which only the net fluxes as volatilization were accumulated. The NH(3) volatilization fluxes from the paddy water surface (F(vol)) at the NR plots were estimated using a film model for its verification. After confirmation of good correlation, the film model was applied to estimate F(vol) at the PR plots. The NH(3) exchange fluxes by rice plants (F(ric)) were obtained by subtracting F(vol) from the observed net NH(3) flux. The derived F(ric) showed that the rice plants emitted NH(3) remarkably just after SF1 when a relatively high rate of urea was applied, although they absorbed atmospheric NH(3) in the other periods. In conclusion, rice plants are essentially an absorber of atmospheric NH(3); however, they turn into an emitter of NH(3) under excess nutrition of ammoniacal nitrogen.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos
2014-01-01
The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.
USDA-ARS?s Scientific Manuscript database
A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...
Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers
USDA-ARS?s Scientific Manuscript database
Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...
Gold, L S; Slone, T H; Backman, G M; Magaw, R; Da Costa, M; Lopipero, P; Blumenthal, M; Ames, B N
1987-01-01
This paper is the second chronological supplement to the Carcinogenic Potency Database, published earlier in this journal (1,2,4). We report here results of carcinogenesis bioassays published in the general literature between January 1983 and December 1984, and in Technical Reports of the National Cancer Institute/National Toxicology Program between January 1983 and May 1986. This supplement includes results of 525 long-term, chronic experiments of 199 test compounds, and reports the same information about each experiment in the same plot format as the earlier papers: e.g., the species and strain of test animal, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. We refer the reader to the 1984 publications for a description of the numerical index of carcinogenic potency (TD50), a guide to the plot of the database, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The three plots of the database are to be used together, since results of experiments published in earlier plots are not repeated. Taken together, the three plots include results for more than 3500 experiments on 975 chemicals. Appendix 14 is an index to all chemicals in the database and indicates which plot(s) each chemical appears in. PMID:3691431
Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Awuni, G. A.
2015-01-01
Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232
Thomas, S. H.
1994-01-01
Field trials were conducted during 1986, 1988, 1989, and 1991 to compare the effects of 1,3-dichloropropene, fenamiphos, and carbofuran on yield and quality of chile peppers (Capsicum annuum) in soil infested with Meloidogyne incognita. When compared with untreated plots, numbers of M. incognita juveniles recovered from soil 60 and(or) 90 days after chile pepper emergence were reduced (P = 0.05) following 1,3-D treatment every year except 1986. Nematode numbers were also reduced (P = 0.05) by fenamiphos in 1989. Chile pepper yields were significantly higher than those in untreated control plots (P = 0.05) all 4 years in plots treated with 1,3-D and in 1989 in plots treated with fenamiphos. Use of carbofuran did not significantly reduce nematode numbers or enhance yields in these experiments. Green chile pepper fruit quality was enhanced (P = 0.05) following 1,3-D treatments in 1988 and 1989 but was unaffected by fenamiphos or carbofuran application. Increasing placement depth of 1,3-D from 28 to 48 cm increased (P = 0.05) red chile pepper yield compared with that obtained with conventional placement in 1988 only, and did not affect green chile pepper yield. PMID:19279948
Rain concentration and sheltering effect of solar panels on cultivated plots
NASA Astrophysics Data System (ADS)
Elamri, Yassin; Cheviron, Bruno; Mange, Annabelle; Dejean, Cyril; Liron, François; Belaud, Gilles
2018-02-01
Agrivoltaism is the association of agricultural and photovoltaic energy production on the same land area, coping with the increasing pressure on land use and water resources while delivering clean and renewable energy. However, the solar panels located above the cultivated plots also have a seemingly yes unexplored effect on rain redistribution, sheltering large parts of the plot but redirecting concentrated fluxes on a few locations. The spatial heterogeneity in water amounts observed on the ground is high in the general case; its dynamical patterns are directly attributable to the mobile panels through their geometrical characteristics (dimensions, height, coverage percentage) and the strategies selected to rotate them around their support tube. A coefficient of variation is used to measure this spatial heterogeneity and to compare it with the coefficient of uniformity that classically describes the efficiency of irrigation systems. A rain redistribution model (AVrain) was derived from literature elements and theoretical grounds and then validated from experiments in both field and controlled conditions. AVrain simulates the effective rain amounts on the plot from a few forcing data (rainfall, wind velocity and direction) and thus allows real-time strategies that consist in operating the panels so as to limit the rain interception mainly responsible for the spatial heterogeneities. Such avoidance strategies resulted in a sharp decrease in the coefficient of variation, e.g. 0.22 vs. 2.13 for panels held flat during one of the monitored rain events, which is a fairly good uniformity score for irrigation specialists. Finally, the water amounts predicted by AVrain were used as inputs to Hydrus-2D for a brief exploratory study on the impact of the presence of solar panels on rain redistribution at shallow depths within soils: similar, more diffuse patterns were simulated and were coherent with field measurements.
Ambrose, H.E.; Wilzbach, M.A.; Cummins, K.W.
2004-01-01
Periphyton response to riparian canopy opening and salmon carcass addition in coastal streams of northern California was evaluated in a manipulative field experiment. The experiment followed a split-plot design, with streams as whole plots and two 100-m reaches in each of 6 streams as subplots. At the subplot level, riparian hardwoods were removed from one reach in each stream. At the whole-plot level, carcasses were added to both open- and closed-canopy reaches of 3 of the streams. Thus, treatments consisted of reaches with open or closed canopies, in the presence and absence of carcasses. Nutrient limitation of the periphyton was assessed in 2 streams (1 with carcasses and 1 without carcasses) using nutrient-diffusing clay saucers (N-enriched, P-enriched, N+P-enriched, or unenriched control) incubated in open- and closed-canopy reaches in the streams. Canopy and carcass treatments did not affect gross primary productivity or periphyton biomass on natural substrates. The periphyton assemblage consisted primarily of diatoms in all reaches on all dates. N amendment of agar in nutrient-diffusing, clay saucers and canopy removal increased biofilm ash-free dry mass on the saucers, but carcass introduction did not. Failure of periphyton to respond to carcass addition may have reflected overriding light limitation, inadequate within-stream retention of carcass nutrients, and/or limitations of the study design.
NASA Astrophysics Data System (ADS)
de Vente, J.; Solé-Benet, A.; López, J.; Boix-Fayos, C.
2012-04-01
In close collaboration with stakeholders promising soil and water conservation measures were selected as part of the EU funded DESIRE project. These measures were monitored for nearly three years at an experimental farm in the upper Guadalentin (SE-Spain). Four Sustainable Land Management (SLM) measures were implemented on rainfed almonds: a) reduced tillage, b) green manure, c) straw mulch, d) traditional water harvesting. A fifth measure (e) reduced tillage of cereals, was compared to conventional mouldboard tillage. Here, we present monitoring results according to biophysical and socioeconomic criteria. SLM measures a, b and e, aim to reduce soil and water loss through runoff. Therefore, for each measure three replica erosion-runoff plots and a control plot were installed to monitor soil and water loss and soil moisture content at two depths. SLM measures c and d aim to increase soil water content by preventing soil evaporation and adding additional water by water harvesting respectively. In these fields, the volume of harvested water was registered and soil water content was monitored. In all experiments, farm operation costs and crop harvest were monitored as well. In the almond fields, green manure and reduced tillage significantly reduced soil and water loss as compared to the control plot with normal tillage operations. Also for the cereal field, results show lower erosion rates under reduced tillage as compared to traditional tillage operation. In two successive years, the highest almond harvest was found in the field with water harvesting (d), followed by the green manure field (b), though no significant differences were found in soil water content with their control plots. Mulching did not show a significant effect on soil water content or harvest. Four of the selected SLM options showed a positive effect on the protection of soil and water resources, and were beneficial for crop yield. Whereas, reduced tillage also results in lower production costs, the other measures (green manure, mulching and water harvesting) require initial and/or maintenance costs. Therefore, even though these measures may lead to a higher farm income, due to the high inter-annual variability of harvest, they face a lower acceptance by most farmers of rainfed agriculture in semiarid SE spain.
Procedures to handle inventory cluster plots that straddle two or more conditions
Jerold T. Hahn; Colin D. MacLean; Stanford L. Arner; William A. Bechtold
1995-01-01
We review the relative merits and field procedures for four basic plot designs to handle forest inventory plots that straddle two or more conditions, given that subplots will not be moved. A cluster design is recommended that combines fixed-area subplots and variable-radius plot (VRP) sampling. Each subplot in a cluster consists of a large fixed-area subplot for...
Thomas Shelton
2013-01-01
A small-plot field trial was conducted to examine the area of influence of fipronil at incremental distances away from treated plots on the Harrison Experimental Forest near Saucier, MS. Small treated (water and fipronil) plots were surrounded by untreated wooden boards in an eight-point radial pattern, and examined for evidence of termite feeding every 60 d for 1 yr...
J. A. Blackard; M. V. Finco; E. H. Helmer; G. R. Holden; M. L. Hoppus; D.M. Jacobs; A. J. Lister; G. G. Moisen; M. D. Nelson; R. Riemann; B. Ruefenacht; D. Salajanu; D. L. Weyermann; K. C. Winterberger; T. J. Brandeis; R. L. Czaplewski; R. E. McRoberts; P. L. Patterson; R. P. Tymcio
2008-01-01
A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed models relating field-measured response variables to plot attributes...
NASA Astrophysics Data System (ADS)
Martínez-Martínez, Silvia; Neveu, Aurore; Acosta, Jose A.; Zornoza, Raúl; Gómez, M. Dolores; Faz, Ángel
2017-04-01
Mining and its subsequent activities have been found to degrade the land to a significant extent. Phytostabilization aims to generate a functional soil ecosystem that supports plant growth over contaminated wastes, lessening surface and subsurface water flow, providing stability to soil through the development of extensive root systems, and hastening successional development. A field experiment was carried out in Santa Antonieta tailing pond, located in Cartagena-La Unión mining district (SE Spain) in order to know the reasons why important differences in the percentage of plant cover were observed in the studied areas two years after the end of assisted phytostabilization. The main objectives of this research were to: a) determine the vegetation cover and biodiversity of the four plots selected; b) evaluate which soil physicochemical properties influence significant the growth and development of plant species and c) identify in which soil fractions are mostly retained Pb and Zn. The results of this study showed that the highest percentage of vegetation cover was registered in the plot 1 (85%), while the lowest percentage was observed in Plot 3 where no plant grew as in the control plot. The most influential physicochemical properties on the growth and development of the plant species that grew on the plots were: pH, electrical conductivity, inorganic carbon and bioavailable phosphorus.With regard to sequential extraction, Pb and Zn were in a very high percentage in the residual fraction. The highest concentration of bioavailable metal was observed with Zn in plot 3, around 15%, probably due to its acidity (pH value of 3.2) and this may be the cause of this plot is devoid of vegetation. For future research in the study area, a new sampling of plant species that continue growing on plots would need to be carried out to determine if metals continue to accumulate in the rhizosphere or are accumulating at the aerial part of the plant, and avoid possible environmental risks.
Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area
Nishar, Abdul; Bader, Martin K.-F.; O’Gorman, Eoin J.; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian
2017-01-01
Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming. PMID:28326088
Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area.
Nishar, Abdul; Bader, Martin K-F; O'Gorman, Eoin J; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian
2017-01-01
Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming.
Slope Stability of Geosynthetic Clay Liner Test Plots
Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...
NASA Astrophysics Data System (ADS)
Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.
2016-05-01
Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Dae -Heung; Anderson-Cook, Christine Michaela
When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less
Jang, Dae -Heung; Anderson-Cook, Christine Michaela
2017-04-12
When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less
Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.
2015-01-01
Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.
Honu, Y.A.K.; Gibson, D.J.; Middleton, B.A.
2006-01-01
Soil nutrients and disturbance are two of the main abiotic factors that influence plant dominance (canopy cover), density, and fecundity in early successional old field plant communities. The manner in which the dominant species in old field successional systems respond to the interaction of nutrients and disturbance is poorly known. We examined the dominance, density of flowering tillers, and reproductive output of Tridens flavus, a perennial, warm-season bunchgrass that is important in old field succession, to varying soil nutrient and disturbance regimes. We tested the hypothesis that the interaction between nutrients and disturbance would influence the performance (cover, density, fecundity) of T. flavus. To test this hypothesis, we subjected 25 m2 experimental plots to various combinations of fertilizer and mowing treatments for eight years after initially plowing the field. The performance of T. flavus was measured by estimating percent cover for 8 years (1996-2003) and both density of flowering tillers and reproductive output (panicle length and number of branches per panicle) for three years (2001-2003). The pattern of canopy cover of T. flavus over the first eight years of succession varied over time depending on mowing regime. Dominance was significantly higher in plots that were fertilized only in years one and five than in annually fertilized and unfertilized control plots. The length of panicles and density of flowering tillers were both significantly greater in annually mowed plots than in unmowed plots. In the absence of mowing in particular, T. flavus became overtopped by woody species and declined in this old field community. Therefore, disturbances such as mowing and fertilization may be important in maintaining grasses such as Tridens flavus in old fields.
USDA-ARS?s Scientific Manuscript database
A field research facility with two pairs of replicated agricultural test plots (four total) was established at a location in northwest Ohio during 2005 for the purpose of studying water table management strategies. Initial efforts at this field research facility were devoted to evaluating difference...
Prefield methods: streamlining forest or nonforest determinations to increase inventory efficiency
Sara Goeking; Gretchen Moisen; Kevin Megown; Jason Toombs
2009-01-01
Interior West Forest Inventory and Analysis has developed prefield protocols to distinguish forested plots that require field visits from nonforested plots that do not require field visits. Recent innovations have increased the efficiency of the prefield process. First, the incorporation of periodic inventory data into a prefield database increased the amount of...
USDA-ARS?s Scientific Manuscript database
Most water quality studies are conducted at the plot, field, or watershed scale; however, studies that integrate the three scales provide information to scale results obtained at one scale to a greater area. The objective of this study was to analyze runoff and water quality measured (1997-2001) fr...
NASA Astrophysics Data System (ADS)
Tindall, James A.; Vencill, William K.
1995-03-01
The objectives were to determine how atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine), dicamba (3-6-dichloro-2-methoxybenzoic acid), and 2,4-D (2,4-dichlorophenoxy-acetic acid) move through claypan soils (fine montmorillonitic, mesic Udollic Ochraqualf Mollic albaqualf, Mexico silty loam) at the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri, and the role of preferential flowpaths in that movement. Twelve intact soil cores (30 cm diameter by 40 cm height), were excavated sequentially, four from each of the following depths: 0-40 cm, 40-80 cm, and 80-120 cm. These cores were used to study preferential flow characteristics using dye staining experiments and to determine hydraulic properties. Six undisturbed experimental field plots, with a 1 m 2 surface area (two sets of three each), were instrumented at the Missouri MSEA on 11 May 1991: 1 m 2 zero-tension pan lysimeters were installed at 1.35 m depths in Plots 1-3 and at 1.05 m depths in Plots 4-6. Additionally, each plot was planted with soybeans ( Glycine max L.) and instrumented with suction lysimeters and tensiometers at 15 cm depth increments. A neutron probe access tube was installed in each plot to determine soil water content at 15 cm intervals. All plots were enclosed with a raised frame (of 8 cm height) to prevent surface runoff, and were allowed to equilibrate for a year before data collection. During this waiting period, all suction and pan lysimeters were purged monthly and were sampled immediately prior to herbicide application in May 1992 to obtain background concentrations. Atrazine, 2,4-D, and dicamba moved rapidly through the soil, probably owing to the presence of preferential flowpaths. Staining of laboratory cores showed a positive correlation between the per cent area stained by depth and the subsequent breakthrough of Br - in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.
NASA Astrophysics Data System (ADS)
Prendergast-Miller, Miranda T.; Jones, David; Hodson, Mark E.
2017-04-01
Earthworms are regarded as ecosystem engineers, integral to soil processes such as aggregation, nutrient cycling, water infiltration, plant growth and microbial function. Earthworm surveys were conducted for one year on hedge-to-field transects in arable and pasture fields (Yorkshire, UK). The transects incorporated hedgerow and field margin habitats and extended 60 m into the arable or pasture field. At defined distances, earthworm abundance and biomass were recorded, and earthworms were identified to species and ecological group. Soil density, moisture and temperature were also measured. Additional transects were surveyed on experimental plots with arable-to-ley conversions in the arable fields (wheat crop to grass-clover ley), and tilled plots in the pasture fields (grass-clover ley to wheat crop). The conversion plots were established to determine the benefit of grass-clover leys on soil function; and the tilled pasture plots were established to compare the impact of conventional or minimum tillage practices on earthworm abundance and diversity. A baseline survey was conducted before establishment of the experimental ley and tillage plots. The results showed differences in earthworm abundance, with greater earthworm numbers in the pasture soils compared to arable soils. In both soils, abundance of ecological group was endogeic > epigeic > anecic, and each group was dominated by the same species: Allolobophora chlorotica, Lumbricus castaneus and Apporectodea longa. After one year of treatment, there was some indication of increased earthworm abundance in the arable-to-ley conversion strips. Conversely, tillage in the pasture plots tended to reduce earthworm abundance, and conventional tillage tended to have the greater impact. However, within these major changes, there was also evidence of spatial (distance along transect; field location) and temporal (seasonal) variation on earthworm abundance. Although conversion to ley or tillage did not alter the pattern of ecological grouping, there were changes in species diversity which will also be discussed. This earthworm study is part of a larger project which aims to (1) link soil biodiversity (microbes, soil fauna) with soil function (productivity, water infiltration, drought resilience), and (2) demonstrate the benefits of grass-clover leys and minimum tillage in boosting soil biodiversity, soil function, and hence, sustainable agricultural productivity.
Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda
NASA Astrophysics Data System (ADS)
Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann
2017-04-01
Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or maintenance adopted by farmers. Terracing should be complemented by continuous fertility amendments (organic material inputs), use of improved agronomic and management practices considering agro-ecological zone conditions. In general, radical terracing was found to be the most effective soil erosion control measure on both sites.
NASA Astrophysics Data System (ADS)
Walker, D. A.; Breen, A. L.; Broderson, D.; Epstein, H. E.; Fisher, W.; Grunblatt, J.; Heinrichs, T.; Raynolds, M. K.; Walker, M. D.; Wirth, L.
2013-12-01
Abundant ground-based information will be needed to inform remote-sensing and modeling studies of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE). A large body of plot and map data collected by the Alaska Geobotany Center (AGC) and collaborators from the Arctic regions of Alaska and the circumpolar Arctic over the past several decades is being archived and made accessible to scientists and the public via the Geographic Information Network of Alaska's (GINA's) 'Catalog' display and portal system. We are building two main types of data archives: Vegetation Plot Archive: For the plot information we use a Turboveg database to construct the Alaska portion of the international Arctic Vegetation Archive (AVA) http://www.geobotany.uaf.edu/ava/. High quality plot data and non-digital legacy datasets in danger of being lost have highest priority for entry into the archive. A key aspect of the database is the PanArctic Species List (PASL-1), developed specifically for the AVA to provide a standard of species nomenclature for the entire Arctic biome. A wide variety of reports, documents, and ancillary data are linked to each plot's geographic location. Geoecological Map Archive: This database includes maps and remote sensing products and links to other relevant data associated with the maps, mainly those produced by the Alaska Geobotany Center. Map data include GIS shape files of vegetation, land-cover, soils, landforms and other categorical variables and digital raster data of elevation, multispectral satellite-derived data, and data products and metadata associated with these. The map archive will contain all the information that is currently in the hierarchical Toolik-Arctic Geobotanical Atlas (T-AGA) in Alaska http://www.arcticatlas.org, plus several additions that are in the process of development and will be combined with GINA's already substantial holdings of spatial data from northern Alaska. The Geoecological Atlas Portal uses GINA's Catalog tool to develop a web interface to view and access the plot and map data. The mapping portal allows visualization of GIS data, sample-point locations and imagery and access to the map data. Catalog facilitates the discovery and dissemination of science-based information products in support of analysis and decision-making concerned with development and climate change and is currently used by GINA in several similar archive/distribution portals.
De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves
NASA Astrophysics Data System (ADS)
Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.
2013-12-01
Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss found. Research is supported by an ONR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF. A schematic plot of the experiment, with measured Alfvén wave magnetic field vector over-plotted. The plot shows a plane transverse to the background magnetic mirror field, in which a population of fast electrons is trapped and formed a hot electron ring. It has been observed the shear Alfvén wave can effectively de-trap the mirror confined fast electrons.
Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2016-04-01
Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between EDTA and CaCl2-extracted metals (Kd-1). In the second approach we have calculated Kd from generic equations (literature), using soil organic carbon (SOC) and pH for Cd, and SOM, pH and DOC for Cu (Kd-2). Lysimeter data of Cu leaching were successfully reproduced by using first Kd-1 approach for three plots (model efficiency ESGW=0.97, EMSW=0.37; ECONT=0.95). Smaller agreement in MSW plot could be explained by the less stabile organic matter of MSW composts which increased its Cu mobile fraction after soil incorporation. The Cd leaching could be reproduced with the second Kd-2 approach for the two amended plots (ESGW=0.55, EMSW=0.80) while control plot simulations produced poorer fitting (ECONT=-0.57), probably due to an overestimation of the influence of the low pH of that plot on Kd-2(Cd). However, numerical modeling revealed interesting results in which, even with the high values of hydraulic conductivity in the interfurrow zones, the Cd and Cu showed low mobility. Although, the amended plots showed increased metal leaching below the tilled layer in both amended plots, their mobility in the tilled layer is reduced due to retention capacity of the applied composts. Acknowledgements: the involvement of INRA and Veolia members in the QualiAgro experiment and the financial support of Veolia are gratefully acknowledged Keywords: Compost amendments; Soil heterogeneity; Trace metals; Sorption; HYDRUS-2D
NASA Astrophysics Data System (ADS)
Duan, L.; Xie, D.; Zhang, T.; Huang, Y.
2017-12-01
Reactive nitrogen emission and deposition has been greatly reduced in recent years in China. To study the responses of soil water chemistry to decreasing nitrogen deposition, a field manipulating experiment was carried out in Tieshanping, a nitogen-saturated forest near Chongqing city in southwest China. After ten-year application of NH4NO3 or NaNO3 to simulate doubling nitrogen deposition with different nitrogen forms during 2005-2014, the nitrogen fertilizers were stopped applying at the end of 2014 to simulate decrease in nitrogen deposition. The continuous observing results on the changes of soil water chemistry in the next two years (2015 and 2016) showed very quick decrease in NO3- (the major form of inorganic nitrogen in soil water, because almost all NH4+ added being nitrified) concentration at the nitrogen fertilizing plots, to similar level at the reference plots without N fertilizer application. The NO3- concentrations of soil water at the NH4NO3 plots were even lower than those at the NaNO3 plots. The previous experiment on the effects of nitrogen addition had showed that NH4+ deposition, instead of NO3- deposition, increased N retention in the forest ecosystem, and led to lower NO3- concentration in soil water. The nitrogen sink seemed remained in the two years after the cease of N addition. Although the total NO3- leaching decreased after nitrogen reduction, the pH of soil water had not showed significantly increasing trend. Therefore, the recovery of Tieshanping forest ecosystem from acidification was slow, which requiring further emission abatement of reactive nitrogen in the future.
Gold, L S; Manley, N B; Slone, T H; Garfinkel, G B; Rohrbach, L; Ames, B N
1993-01-01
This paper is the fifth plot of the Carcinogenic Potency Database (CPDB) that first appeared in this journal in 1984 (1-5). We report here results of carcinogenesis bioassays published in the general literature between January 1987 and December 1988, and in technical reports of the National Toxicology Program between July 1987 and December 1989. This supplement includes results of 412 long-term, chronic experiments of 147 test compounds and reports the same information about each experiment in the same plot format as the earlier papers: the species and strain of test animal, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. We refer the reader to the 1984 publications (1,5,6) for a guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The five plots of the database are to be used together, as results of individual experiments that were published earlier are not repeated. In all, the five plots include results of 4487 experiments on 1136 chemicals. Several analyses based on the CPDB that were published earlier are described briefly, and updated results based on all five plots are given for the following earlier analyses: the most potent TD50 value by species, reproducibility of bioassay results, positivity rates, and prediction between species.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8354183
Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy
NASA Astrophysics Data System (ADS)
John, Cédric M.
2004-04-01
Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.
NASA Technical Reports Server (NTRS)
Hancock, G. D.; Waite, W. P.
1984-01-01
Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.
NASA Astrophysics Data System (ADS)
Marwan, Norbert
2003-09-01
In this work, different aspects and applications of the recurrence plot analysis are presented. First, a comprehensive overview of recurrence plots and their quantification possibilities is given. New measures of complexity are defined by using geometrical structures of recurrence plots. These measures are capable to find chaos-chaos transitions in processes. Furthermore, a bivariate extension to cross recurrence plots is studied. Cross recurrence plots exhibit characteristic structures which can be used for the study of differences between two processes or for the alignment and search for matching sequences of two data series. The selected applications of the introduced techniques to various kind of data demonstrate their ability. Analysis of recurrence plots can be adopted to the specific problem and thus opens a wide field of potential applications. Regarding the quantification of recurrence plots, chaos-chaos transitions can be found in heart rate variability data before the onset of life threatening cardiac arrhythmias. This may be of importance for the therapy of such cardiac arrhythmias. The quantification of recurrence plots allows to study transitions in brain during cognitive experiments on the base of single trials. Traditionally, for the finding of these transitions the averaging of a collection of single trials is needed. Using cross recurrence plots, the existence of an El Niño/Southern Oscillation-like oscillation is traced in northwestern Argentina 34,000 yrs. ago. In further applications to geological data, cross recurrence plots are used for time scale alignment of different borehole data and for dating a geological profile with a reference data set. Additional examples from molecular biology and speech recognition emphasize the suitability of cross recurrence plots. Diese Arbeit beschäftigt sich mit verschiedenen Aspekten und Anwendungen von Recurrence Plots. Nach einer Übersicht über Methoden, die auf Recurrence Plots basieren, werden neue Komplexitätsmaße eingeführt, die geometrische Strukturen in den Recurrence Plots beschreiben. Diese neuen Maße erlauben die Identifikation von Chaos-Chaos-Übergängen in dynamischen Prozessen. In einem weiteren Schritt werden Cross Recurrence Plots eingeführt, mit denen zwei verschiedene Prozesse untersucht werden. Diese bivariate Analyse ermöglicht die Bewertung von Unterschieden zwischen zwei Prozessen oder das Anpassen der Zeitskalen von zwei Zeitreihen. Diese Technik kann auch genutzt werden, um ähnliche Abschnitte in zwei verschiedenen Datenreihen zu finden. Im Anschluß werden diese neuen Entwicklungen auf Daten verschiedener Art angewendet. Methoden, die auf Recurrence Plots basieren, können an die speziellen Probleme angepaßt werden, so daß viele weitere Anwendungen möglich sind. Durch die Anwendung der neu eingeführten Komplexitätsmaße können Chaos-Chaos-Übergänge in Herzschlagdaten vor dem Auftreten einer lebensbedrohlichen Herzrhythmusstörung festgestellt werden, was für die Entwicklung neuer Therapien dieser Herzrhythmusstörungen von Bedeutung sein könnte. In einem weiteren Beispiel, in dem EEG-Daten aus einem kognitiv orientierten Experiment untersucht werden, ermöglichen diese Komplexitätsmaße das Erkennen von spezifischen Reaktionen im Gehirn bereits in Einzeltests. Normalerweise können diese Reaktionen erst durch die Auswertung von vielen Einzeltests erkannt werden. Mit der Hilfe von Cross Recurrence Plots wird die Existenz einer klimatischen Zirkulation, die der heutigen El Niño/ Southern Oscillation sehr ähnlich ist, im Nordwesten Argentiniens vor etwa 34000 Jahren nachgewiesen. Außerdem können mit Cross Recurrence Plots die Zeitskalen verschiedener Bohrlochdaten aufeinander abgeglichen werden. Diese Methode kann auch dazu genutzt werden, ein geologisches Profil mit Hilfe eines Referenzprofiles mit bekannter Zeitskala zu datieren. Weitere Beispiele aus den Gebieten der Molekularbiologie und der Spracherkennung unterstreichen das Potential dieser Methode.
Chemical methods and phytoremediation of soil contaminated with heavy metals.
Chen, H M; Zheng, C R; Tu, C; Shen, Z G
2000-07-01
The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.
Tritium behavior on a cultivated plot in the 1994 chronic HT release experiment at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, H.; Yokoyama, S.; Kinouchi, N.
1995-10-01
The behavior of HT and HTO in air and surface soil has been studied extensively in the chronic HT release experiment carried out at Chalk River during the summer of 1994. HTO concentrations in air moisture and soil water collected in a cultivated plot showed similar time-variations, increasing rapidly during the first and second days and becoming gradual after the first 3-4 days. The air HTO concentration decreased during and following rainfall but recovered within a day. The rainfall reduced the HTO concentrations in ridge soil water but little in furrows. Time histories of HTO concentrations in air moisture andmore » soil water suggest that the system was near steady-state within a continuous HT release period of 12 days, in spite of the presence of rain during the period. The air HTO concentrations on clear days showed diurnal cycles that were higher during daytime than at night. The experimental field had a very complex soil regime with respect to HT deposits. The deposits to soil surface varied depending on soil conditions. 12 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Hanson, E. W.; Burakowski, E. A.
2014-12-01
For much of the northern United States, the months surrounding the winter solstice are times of increased darkness, low temperatures, and frozen landscapes. It's a time when many high school science educators, who otherwise would venture outside with their classes, hunker down and are wary of the outdoors. However, a plethora of learning opportunities lies just beyond the classroom. Working collaboratively, a high school science teacher and a snow scientist have developed multiple activities to engage students in the scientific process of collecting, analyzing and interpreting the winter world using snow data to (1) learn about the insulative properties of snow, and (2) to learn about the role of snow cover on winter climate through its reflective properties while participating in a volunteer network that collects snow depth, albedo (reflectivity), and density data. These outdoor field-based snow investigations incorporate Next Generation Science Standards (NGSS) and disciplinary core ideas, including ESS2.C: The roles of water in Earth's surface processes and ESS2.D: Weather and Climate. Additionally, the lesson plans presented address Common Core State Standards (CCSS) in Mathematics, including the creation and analysis of bar graphs and time series plots (CCSS.Math.HSS-ID.A.1) and xy scatter plots (CCSS.Math.HSS-ID.B.6). High school students participating in the 2013/2014 snow sampling season described their outdoor learning experience as "authentic" and "hands-on" as compared to traditional class indoors. They emphasized that learning outdoors was essential to their understanding of underlying content and concepts because they "learn through actual experience."
NASA Astrophysics Data System (ADS)
Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H.
2016-08-01
Steep vegetation-free talus slopes in high mountain environments are prone to superficial slope failures and surface erosion. Eco-engineering measures can reduce slope instabilities and thus contribute to risk mitigation. In a field experiment, we established mycorrhizal and nonmycorrhizal research plots and determined their biophysical contribution to small-scale soil fixation. Mycorrhizal inoculation impact on plant survival, aggregate stability, and fine root development was analyzed. Here we present plant survival (ntotal = 1248) and soil core (ntotal = 108) analyses of three consecutive years in the Swiss Alps. Soil cores were assayed for their aggregate stability coefficient (ASC), root length density (RLD), and mean root diameter (MRD). Inoculation improved plant survival significantly, but it delayed aggregate stabilization relative to the noninoculated site. Higher aggregate stability occurred only after three growing seasons. Then also RLD tended to be higher and MRD increased significantly at the mycorrhizal treated site. There was a positive correlation between RLD, ASC, and roots <0.5 mm, which had the strongest impact on soil aggregation. Our results revealed a temporal offset between inoculation effects tested in laboratory and field experiments. Consequently, we recommend to establish an intermediate to long-term field experimental monitoring before transferring laboratory results to the field.
2-undecanone and 2-tridecanone in field-grown onion.
Antonious, George F
2013-01-01
A field study was conducted to investigate the impact of soil amendments on concentrations of two volatile organic compounds, 2-undecanone and 2-tridecanone, in onion bulbs. The soil in five plots was mixed with sewage sludge, five plots were mixed with yard waste compost, five plots were mixed with laying hen manure each at 15 t acre(-1), and five unamended plots that never received soil amendments were used for comparison purposes. Plots (n = 20) were planted with onion, Allium cepa L. var. Super Star-F1 bulbs. Gas chromatographic/mass spetrometric (GC/MS) analyses of mature onion bulbs crude extracts revealed the presence of two major fragment ions that correspond to 2-undecanone and 2-tridecanone. Soil amended with yard waste compost enhanced 2-undecanone and 2-tridecanone production by 31 and 59%, respectively. Soil amended with chicken manure enhanced 2-undecanone and 2-tridecanone production by 28 and 43%, respectively. Concentrations of 2-undecanone and 2-tridecanone were lowest in onion bulbs of plants grown in sewage sludge and unamended soil, respectively. The increased concentrations of 2-undecanone and 2-tridecanone in onion bulbs may provide a protective character against insect and spider mite attack in field grown onions.
NASA Astrophysics Data System (ADS)
Cerdà, A.; Azorin-Molina, C.; Iserloh, Th.
2012-04-01
Soil erosion is being scientifically researched for more tan one century, but there is some knowledge lacks that should be researched. Within the factors of the soil erosion wind and rain were studied, but little is know about the impact of the combination of both. Soil erosion by wind was mainly studied on drylands and agriculture land (Sterk and Spaan, 1997; Bielders et al., 2002; Rajot et al., 2003; Zobeck et al., 2003). Soil erosion by water was studied in many ecosystems but it is especially active on agriculture land (Cerdà et al., 2009) and under Mediterranean climatic conditions (Cerdà et al., 2010). The importance of wind on soil erosion is base in the fact that rainstorms occurs with wind, adding a driving component to the falling raindrops. The influence of wind on raindrops is clear, but there is not measurements and there is no information of this influence under field conditions with natural rainfall events.This paper aims to determine the interaction between wind and rain as factors of the soil losses under Mediterranean climatic conditions and different agriculture managements and land uses. Since 2003, the El Teularet-Serra de Enguera Soil Erosion Experimental Station located in Eastern Spain is measuring the soil losses in plots under different land uses and land managements. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands by means of simulated rainfall experiments and plots of different sizes. The soil erosion measure ments are done by means of 13 plots, each of them composed of 5 subplots of 1, 2, 4, 16 and 48 m2 under different land uses and managements. Two plots are covered by two different types of shrubs: Quercus coccifera and Ulex parviflorus, respectively. Three plots reproduce the use of herbicides, one is ploughed, and three plots follow conservation practices (oats and beans with no-tillage, with tillage, and with a vege- tation cover of weeds). Other plots are covered with straw, chipped branches of olive and with a geotextil developed specifically to control erosion on agricultural fields. The Soil Erosion Experimental Station of the El Teularet-Serra de Enguera is located in Eastern Spain. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands. Agriculture is the main source of sedi ments on the mountainous areas of Spain due to the current management. The exper imental station of the El Teularet-Sierra de Enguera is composed also of a meteorological station with tipping-bucket raingauges (0.2 mm), and sensors that measure soil and air moisture and temperature, wind direction and speed and the sun radiation connected to a data-logger that record these data every five minutes. This paper will review the data collected during the period 2004 to 2011 in order to determine if the wind direction and wind speed determined the soil erosion rates. In this way it will be clarified the infliuence of wind on the soil erosion processes.The results will be compared to the measurement collected at the Montesa experimental station devoted to the study of soil erosion on citrus orchards. The experimental setup within the citrus plantation is being supported by the research project CGL2008- 02879/BTE.
In pursuit of a science of agriculture: the role of statistics in field experiments.
Parolini, Giuditta
2015-09-01
Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, D.
In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomlymore » selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.« less
NASA Astrophysics Data System (ADS)
Shougrakpam, Sangeeta; Sarkar, Rupak; Dutta, Subashisa
2010-10-01
Saturated macropore flow is the dominant hydrological process in tropical and subtropical hilly watersheds of northeast India. The process of infiltration into saturated macroporous soils is primarily controlled by size, network, density, connectivity, saturation of surrounding soil matrix, and depthwise distribution of macropores. To understand the effects of local land use, land cover and management practices on soil macroporosity, colour dye infiltration experiments were conducted with ten soil columns (25 × 25 × 50 cm) collected from different watersheds of the region under similar soil and agro-climatic zones. The sampling sites included two undisturbed forested hillslopes, two conventionally cultivated paddy fields, two forest lands abandoned after Jhum cultivation, and two paddy fields, one pineapple plot and one banana plot presently under active cultivation stage of the Jhum cycle. Digital image analyses of the obtained dye patterns showed that the infiltration patterns differed significantly for different sites with varying land use, land cover, and cultivation practices. Undisturbed forest soils showed high degree of soil macroporosity throughout the soil profile, paddy fields revealed sealing of macropores at the topsoil due to hard pan formation, and Jhum cultivated plots showed disconnected subsoil macropores. The important parameters related to soil macropores such as maximum and average size of macropores, number of active macropores, and depthwise distribution of macropores were estimated to characterise the soil macroporosity for the sites. These experimentally derived quantitative data of soil macroporosity can have wide range of applications in the region such as water quality monitoring and groundwater pollution assessment due to preferential leaching of solutes and pesticides, study of soil structural properties and infiltration behaviour of soils, investigation of flash floods in rivers, and hydrological modelling of the watersheds.
NASA Astrophysics Data System (ADS)
mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.
2016-08-01
Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.
SPRUCE Porewater Chemistry Data for Experimental Plots Beginning in 2013
Griffiths, N. A. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set reports the chemistry of porewater in the SPRUCE plots located in the S1 bog. Sample collection and analyses started in August of 2013 and will continue for the duration of the experiment. Results will be added to this data set and released to the public periodically as quality assurance and publication of results are accomplished. These data are the pre- and post-treatment data from the warming and elevated CO2 treatments associated with the SPRUCE experiment. There are 10 experimental plots in SPRUCE: 5 temperature treatments (+0, +2.25, +4.5, +6.75, +9°C) at ambient CO2, and the same 5 temperature treatments at elevated CO2 (+500 ppm). There are 7 additional ambient plots without experimental enclosures, and thus a total of 17 plots.
Milan, Marco; Ferrero, Aldo; Letey, Marilisa; De Palo, Fernando; Vidotto, Francesco
2013-01-01
The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.
Peterson, Jennifer M; Bell, Susan S
2012-07-01
Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that entrapment of propagules by salt-marsh plants may be facilitative if propagules are dispersed beyond the established tree line by spring or storm tides, and that facilitation may be sustained over time. We conclude that salt-marsh ecotone permeability may modulate landward encroachment by A. germinans, and that interactions among the early life history stages of black mangroves and neighboring plants may direct community responses to climate change.
Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots
Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...
Rainfall-runoff model parameter estimation and uncertainty evaluation on small plots
USDA-ARS?s Scientific Manuscript database
Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied, then halted 60 minutes after initiation of runoff, with plot-scale monitoring of runoff ever...
NASA Astrophysics Data System (ADS)
Tamimi, Nesreen; Marei Sawalha, Amer; Schaumann, Gabriele E.
2014-05-01
Olive mill wastewater (OMW) is generated seasonally in large amounts during the olive oil production in Palestine, and it is often disposal of in uncontrolled manner into the open environment. OMW has a high amount of phototoxic compounds, high salinity and acidity and therefore is challenging when disposed on soil. The objective of this study was to study the persistence and degree of water repellency during different season of OMW application in soil samples (0-5 cm deep), and to elucidate how extent this phenomenon is associated with soil acidity, to analyze the relationships between soil water repellency and environmental factors including, temperature and moisture and to describe the seasonal variation in the phenol concentration of the soil. In order to understand how climatic conditions at the time of OMW disposal affect the development of soil water repelleny in field, soil acidity and phenol content in soil, we conducted a field study in Bait Reema village in the West Bank - Palestine. The study site is characterized by 1.5 m thick brown rendzina and has an annual average rainfall of 550 mm. On an extensively used olive orchard field, we implemented 16 plots (2.5 x 3.5 m). OMW application (14 L / m2) was conducted either in winter, spring or summer on two replicate plots distributed randomly among the 16 plots. To test the effect of soil moisture on the persistence of OMW effects, we implemented an OMW application in summer on two additional plots, but kept those plots moist before and after OMW application until start of the rain season. For each of the treatment variants, we implemented two control plots which were treated in the same way as their counterparts, but with tap water. Soil samples (0-5 cm) were collected after 2 days, 3 weeks, 6 weeks, 3 months, 6 months , 9 months, 12 months , and 18 months. pH was determined and analyzed in aqueous soil extracts (1:5), the total phenol content was determined by using Folin-Ciocalteu's reagent, soil water repellency was measured in the field by using the water drop penetration time (WDPT) for control and treated plots. Persistence and intensity of water repellency varied between different times of OMW application. While all control plots remained wettable during the whole year, OMW induced water repellency in all treatments. A high initial WDPT on the (wet) field following OMW winter application rather indicates limitation in hydraulic conductivity than water repellency, but repellency developed gradually during the hot summer time following OMW application (spring and summer plots) and the extent of hydrophobization was strongest in the dry summer application plots, intermediate in the spring application plots and weakest in the moist summer application. Water repellency in all treatements disappeared during the first rain season following OMW. pH was s reduced by OMW application and resulted in significant soil acidification. Soil pH was initially reduced by up to 0.5 pH units. In addition, we found the high initial phenol concentration on the (wet) field following OMW winter application indicates limitation in infiltration rate, while it was higher in summer OMW application when compared to spring OMW application. Keywords: Olive mill wastewater, Tap water, Water drop penetration time, Acidity, Total phenol.
Detection of variations in aspen forest habitat from LANDSAT digital data: Bear River Range, Utah
NASA Technical Reports Server (NTRS)
Merola, J. A.; Jaynes, R. A. (Principal Investigator)
1982-01-01
The aspen forests of the Bear River Range were analyzed and mapped using data recorded on July 2, 1979 by the LANDSAT III satellite; study efforts yielded sixty-seven light signatures for the study area, of which three groups were identified as aspen and mapped at a scale of 1:24,000. Analysis and verification of the three groups were accomplished by random location of twenty-six field study plots within the LANDSAT-defined aspen areas. All study plots are included within the Cache portion of the Wasatch-Cache National Forest. The following selected site characteristics were recorded for each study plot: a list of understory species present; average percent cover density for understory species; aspen canopy cover estimates and stem measurements; and general site topographic characteristics. The study plot data were then analyzed with respect to corresponding Landsat spectral signatures. Field studies show that all twenty-six study plots are associated with one of the three aspen groups. Further study efforts concentration on characterizing the differences between the site characteristics of plots falling into each of the three aspen groups.
NASA Astrophysics Data System (ADS)
Tóth, Adrienn; Jakab, Gergely; Sipos, Péter; Karlik, Máté; Madarász, Balázs; Zacháry, Dóra; Szabó, Judit; Szalai, Zoltán
2017-04-01
Rare earth elements (REE) have very favourable characteristics for being ideal sediment tracers as they are characterised by strong binding to soil particles, low mobility, low background concentration in soils, environmental benignity, high analytical sensitivity and they can be detected relatively easily and inexpensively in soils. The group of REEs consist of 16 elements with similar chemical properties, but at the same time, they are clearly distinguishable enabling multiple tracking of sediment deriving from different parts of the studied area, as well as mapping redistribution processes by appropriate designing of subareas marked by different REEs. In this study, rainfall simulation experiments were carried out to compare the loss and redistribution of soil sediments in two plots under conventional and conservation agricultural practices. Five different rainfall intensities (up to 80 mm/h) were applied to both plots. Sources and pathways of sediments within the two plots were studied using REE-oxides as tracers. Approximately 1,000 mg/kg of Er2O3, Ho2O3 and Sm2O3 (calculated to the upper 1 cm of the soil) were dispersed to the soil surface with banded distribution; each transversal band covered the third of the surface are of the plots. Concentration of the REE-oxides in the sediment leaving the plots, and that of the surface soil before and after the experiment were analysed by X-Ray fluorescence spectrometry. Significant sediment losses were found for both plots after the experiments, with slightly different characteristics between the conventional and conservation ones. Highest difference in loss of added REEs was found in the upper third of the plots with 81 ± 19% in the conventional and 71 ± 21% in the conservation ones. These values have been equalized downwards with almost complete losses in the lower third of the plots (99 ± 2% and 97 ± 4%, respectively). Only very small part of the removed sediment has been accumulated in the lower parts of the plots, they rather mostly leaved the study area. These accumulation zones showed patchy distribution and could be characterized by slightly higher REE concentrations in the conservation plot. Also, large variances in the REE amounts removed from the study plots were found during the experiment with slight differences between the two plots. Thanks to the use of the REE tracers, information was received not only on the sediment amounts leaving the area due to the individual rainfall events but also on the source of them within the plot. Our data also suggest that differences between the conventional and conservation plots can be observed even in the short term. The authors are grateful to the support of the National Research, Development and Innovation Office (OTKA PD 112729). A. Tóth also thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
NASA Astrophysics Data System (ADS)
Moharana, S.; Dutta, S.
2015-12-01
Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.
Banko, Paul C.; Peck, Robert W.; Donmoyer, Kevin; Kropidlowski, Stephan; Pollock, Amanda
2015-01-01
The ecologically destructive yellow crazy ant (YCA; Anoplolepis gracilipes) was first detected on Johnston Atoll in January 2010. Within eight months, the U.S. Fish and Wildlife Service had mobilized its first crazy ant strike team (CAST), a group of biologists dedicated to testing and identifying insecticidal baits to be used to eradicate the ant on the atoll. During December 2014‒May 2015 CAST IX focused on testing hydrogel crystals saturated with sucrose solution (25%) carrying the insecticides thiamethoxam and dinotefuran against YCA. A series of experiments, including artificial nest box trials, and field-based palatability trials and eradication tests on small (500 m2 or 0.05 ha) and large plots (2500 m2 or 0.25 ha), were conducted to test concentrations of thiamethoxam ranging from 0.0005% to 0.01%, and dinotefuran at 0.05%. Additionally, the cat food-based matrix containing dinotefuran (0.05%), the standard bait used to suppress YCA on Johnston since 2011, and textured vegetable protein (TVP) carrying dinotefuran at 0.1% and 0.05% were included in large plot tests. Nest box trials were inconclusive due to a consistent loss of queen and worker ants in control boxes, so they were discontinued. Palatability trials suggested higher dosages of thiamethoxam (0.005 and 0.01%) were less attractive than lower dosages (0.0005 and 0.001%) and controls (sucrose only), but small and large plot experiments failed to identify a thiamethoxam concentration that was consistently effective at killing YCA. In contrast, hydrogel containing dinotefuran was consistently effective, killing >95% of YCA on small and large plots. As expected, the cat food bait effectively reduced YCA abundances, but was slightly less effective than hydrogel containing dinotefuran over time. Three successive, approximately weekly treatments of large plots with hydrogel bait, or other baits followed by hydrogel bait, suggest an increasing overall effectiveness, with no aversion of YCA to the bait. This finding is important in that it indicates that hydrogel bait can be applied at short time intervals, potentially resulting in relatively constant exposure of YCA to highly attractive, yet toxic, sucrose-based bait. TVP performed similar to hydrogel, reducing YCA abundance >92% at both concentrations tested. Finally, dosages of hydrogel containing dinotefuran at 6, 12 and 24 l/0.25 ha were all effective at reducing YCA on large plots. Overall, results from these experiments suggest that hydrogel containing dinotefuran (0.05%) is a promising tool for eradicating YCA on Johnston Atoll.
Microbiome succession during ammonification in eelgrass bed sediments.
Ettinger, Cassandra L; Williams, Susan L; Abbott, Jessica M; Stachowicz, John J; Eisen, Jonathan A
2017-01-01
Eelgrass ( Zostera marina ) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples ( n = 4 per plot) under a N 2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers ( Desulfobacterales ) and corresponding increases in predicted sulfide oxidizers ( Thiotrichales ). None of these changes in composition or richness were associated with variation in ammonification rates. Our results showed that the microbiome of sediment from different plots followed similar successional patterns, which we infer to be due to changes related to sulfur metabolism. These large changes likely overwhelmed any potential changes in sediment microbiome related to ammonification rate. We found no relationship between eelgrass presence or genetic composition and the microbiome. This was likely due to our sampling of bulk sediments to measure ammonification rates rather than sampling microbes in sediment directly in contact with the plants and suggests that eelgrass influence on the sediment microbiome may be limited in spatial extent. More in-depth functional studies associated with eelgrass microbiome will be required in order to fully understand the implications of these microbial communities in broader host-plant and ecosystem functions (e.g., elemental cycling and eelgrass-microbe interactions).
Liu, Linda; Cloutier, Michel; Craiovan, Emilia; Edwards, Mark; Frey, Steven K; Gottschall, Natalie; Lapen, David R; Sunohara, Mark; Topp, Edward; Khan, Izhar U H
2018-05-15
This study compared the impact of controlled tile drainage (CD) and freely draining (FD) systems on the prevalence and quantitative real-time PCR-based enumeration of four major pathogens including Arcobacter butzleri, Campylobacter jejuni, Campylobacter coli, and Helicobacter pylori in tile- and groundwater following a fall liquid swine manure (LSM) application on clay loam field plots. Although the prevalence of all target pathogens were detected in CD and FD systems, the loads of A. butzleri, C. jejuni, and C. coli were significantly lower in CD tile-water (p<0.05), in relation to FD tile-water. However, concentrations of A. butzleri were significantly greater in CD than FD tile-water (p<0.05). In shallow groundwater (1.2m depth), concentrations of A. butzleri, C. coli, and H. pylori showed no significant difference between CD and FD plots, while C. jejuni concentrations were significantly higher in FD plots (p<0.05). No impact of CD on the H. pylori was observed since quantitative detection in tile- and groundwater was scarce. Although speculative, H. pylori occurrence may have been related to the application of municipal biosolids four years prior to the LSM experiment. Overall, CD can be used to help minimize off-field export of pathogens into surface waters following manure applications to land, thereby reducing waterborne pathogen exposure risks to humans. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
A theoretical study of interaction effects on the remanence curves of particulate dispersions
NASA Astrophysics Data System (ADS)
Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.
1990-05-01
The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.
Should Promotion to Captain within the United States Army Become Decentralized?
1983-06-01
dimen- corder obtained during the SNOW-ONE-B sion) plot in Fig. 1. The time-consuming field experiment are presented. Some labor required for the...into two separate ’.As a means of reducing the scatter, sets; the first spanning 1610 to 2010 _ we applied a five-point-running mean to ESTr and the...the consistancies of the Fv - I relation- ships throughout the period. Because of Because of the time-consuming labor the lesser amount of snow
Ice Accretion and Performance Degradation Calculations with LEWICE/NS
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Al-Khalil, Kamel M.; Velazquez, Matthew T.
1993-01-01
The LEWICE ice accretion computer code has been extended to include the solution of the two-dimensional Navier-Stokes equations. The code is modular and contains separate stand-alone program elements that create a grid, calculate the flow field parameters, calculate the droplet trajectory paths, determine the amount of ice growth, calculate aeroperformance changes, and plot results. The new elements of the code are described. Calculated results are compared to experiment for several cases, including both ice shape and drag rise.
NASA Astrophysics Data System (ADS)
Tanaka, Hidefumi; Yamamoto, Yuhji
2016-05-01
Palaeointensity experiments were carried out to a sample collection from two sections of basalt lava flow sequences of Pliocene age in north central Iceland (Chron C2An) to further refine the knowledge of the behaviour of the palaeomagnetic field. Selection of samples was mainly based on their stability of remanence to thermal demagnetization as well as good reversibility in variations of magnetic susceptibility and saturation magnetization with temperature, which would indicate the presence of magnetite as a product of deuteric oxidation of titanomagnetite. Among 167 lava flows from two sections, 44 flows were selected for the Königsberger-Thellier-Thellier experiment in vacuum. In spite of careful pre-selection of samples, an Arai plot with two linear segments, or a concave-up appearance, was often encountered during the experiments. This non-ideal behaviour was probably caused by an irreversible change in the domain state of the magnetic grains of the pseudo-single-domain (PSD) range. This is assumed because an ideal linear plot was obtained in the second run of the palaeointensity experiment in which a laboratory thermoremanence acquired after the final step of the first run was used as a natural remanence. This experiment was conducted on six selected samples, and no clear difference between the magnetic grains of the experimented and pristine sister samples was found by scanning electron microscope and hysteresis measurements, that is, no occurrence of notable chemical/mineralogical alteration, suggesting that no change in the grain size distribution had occurred. Hence, the two-segment Arai plot was not caused by the reversible multidomain/PSD effect in which the curvature of the Arai plot is dependent on the grain size. Considering that the irreversible change in domain state must have affected data points at not only high temperatures but also low temperatures, fv ≥ 0.5 was adopted as one of the acceptance criteria where fv is a vectorially defined fraction of the linear segment. A measure of curvature k' was also used to check the linearity of the selected linear segment. It was avoided, however, to reject the result out of hand by the large curvature k of the entire data points because it might still include a linear segment with a large fraction. Combining with the results of Shaw's experiments, 52 palaeointensities were obtained out of 192 specimens, or 11 flow means were obtained out of the 44 lava flows. Most of the palaeointensities were from the upper part of the lava section (Chron C2An.1n) and ranged between 30 and 66 μT. Including two results from the bottom part of the lava section, the mean virtual dipole moment for 2.5-3.5 Ma is 6.3 ± 1.4 × 1022 Am2 (N = 11), which is ˜19 per cent smaller than the present-day dipole moment.
Stocking rate and fuels reduction effects on beef cattle diet composition and quality
Abe Clark; Tim DelCurto; Martin Vavra; Brian L. Dick
2013-01-01
An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots...
NASA Astrophysics Data System (ADS)
Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan
2015-04-01
Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1.29 times and 1.13 times those of the control, respectively; and the content of available P and alkali-hydrolyzable N in the soils treated with ducks, 23.35 mg kg-1 and 107.33 mg kg-1, on average, respectively, are significantly higher than those of the control, 15.70 mg kg-1 and 84.00 mg kg-1 on average, respectively. (4) The grain yield of the plots treated with ducks, 6456.25 kg hm-2 on average, is significantly higher than that of the control, 3403.81 kg hm-2. In short, raising ducks in the paddy fields not only shows a potential of controlling weed hazards and reducing rice pests and diseases, but also effectively improves soil fertility and rice grain yield. Such rice-duck integrated farming will highly contribute to establishing an organic or low-input farming system in southern China in the future.
The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone
NASA Astrophysics Data System (ADS)
Liu, J.; Jiang, C.; Shi, Z.
2017-09-01
Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.
Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory
Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo
2013-01-01
Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.
Sound absorption coefficient in situ: an alternative for estimating soil loss factors.
Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina
2015-01-01
The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.
Wickham, Hadley; Hofmann, Heike
2011-12-01
We propose a new framework for visualising tables of counts, proportions and probabilities. We call our framework product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass over 20 visualisations previously described in fields of statistical graphics and infovis, including bar charts, mosaic plots, treemaps, equal area plots and fluctuation diagrams. © 2011 IEEE
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-08-01
The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-01-01
Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. PMID:26430387
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas
2017-04-01
In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf litter layer was influenced by the presence (or absence) of soil meso- and macrofauna. Fauna presence increased soil erosion rates significantly by 58 %. It was assumed that this faunal effect arose from arthropods loosening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Thus, effects of this fauna group on sediment discharge have to be considered in soil erosion experiments.
Compensating for missing plot observations inforest inventory estimation
Ronald E. McRoberts
2003-01-01
The Enhanced Forest Inventory and Analysis program of the U.S. Forest Service has established a nationwide array of permanent field plots, each representing approximately 2400 ha. Each plot has been assigned to one of five interpenetrating, nonoverlapping panels, with one panel selected for measurement on a rotating basis each year. As with most large surveys,...
Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P
2011-08-01
Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
NASA Astrophysics Data System (ADS)
Reich, Marvin; Mikolaj, Michal; Blume, Theresa; Güntner, Andreas
2017-04-01
Hydrological process research at the plot to catchment scale commonly involves invasive field methods, leading to a large amount of point data. A promising alternative, which gained increasing interest in the hydrological community over the last years, is gravimetry. The combination of its non-invasive and integrative nature opens up new possibilities to approach hydrological process research. In this study we combine a field-scale sprinkling experiment with continuous superconducting gravity (SG) measurements. The experimental design consists of 8 sprinkler units, arranged symmetrically within a radius of about ten meters around an iGrav (SG) in a field enclosure. The gravity signal of the infiltrating sprinkling water is analyzed using a simple 3D water mass distribution model. We first conducted a number of virtual sprinkling experiments resulting in different idealized infiltration patterns and determined the pattern specific gravity response. In a next step we determined which combination of idealized infiltration patterns was able to reproduce the gravity response of our real-world experiment at the Wettzell Observatory (Germany). This process hypothesis is then evaluated with measured point-scale soil moisture responses and the results of the time-lapse electric resistivity survey which was carried out during the sprinkling experiment. This study demonstrates that a controlled sprinkling experiment around a gravimeter in combination with a simple infiltration model is sufficient to identify subsurface flow patterns and thus the dominant infiltration processes. As gravimeters become more portable and can actually be deployed in the field, their combination with sprinkling experiments as shown here constitutes a promising possibility to investigate hydrological processes in a non-invasive way.
Validating and Improving Interrill Erosion Equations
Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi
2014-01-01
Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624
Niu, Mingfen; Wei, Shuhe; Bai, Jiayi; Wang, Siqi; Ji, Dandan
2015-01-01
Multiple crop experiment of hyperaccumulator Solanum nigrum L. with low accumulation Chinese cabbage Fenyuanxin 3 were conducted in a cadmium (Cd) contaminated vegetable field. In the first round, the average removal rate of S. nigrum to Cd was about 10% without assisted phytoextraction reagent addition for the top soil (0-20 cm) with Cd concentration at 0.53-0.97 mg kg(-1) after its grew 90 days. As for assisted phytoextraction reagent added plots, efficiency of Cd remediation might reach at 20%. However, in the second round, Cd concentration in Chinese cabbage was edible, even in the plots with assisted phytoextraction reagent added. Thus, multiple cropping hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit) in one year, which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.
NASA Astrophysics Data System (ADS)
Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.
2016-12-01
Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.
Designing hybrid grass genomes to control runoff generation
NASA Astrophysics Data System (ADS)
MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.
2010-12-01
Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.
The critical period of weed control in soybean (Glycine max (L.) Merr.) in north of Iran conditions.
Keramati, Sara; Pirdashti, Hemmatollah; Esmaili, Mohammad Ali; Abbasian, Arastoo; Habibi, Marjaneh
2008-02-01
A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control.
Vourlitis, George L
2017-05-01
Anthropogenic nitrogen (N) deposition has caused a decline in native plant species and an increase in exotic plant species in many terrestrial ecosystems; however, vegetation change depends on the rate and/or duration of N input, individual species responses, interactions with other resources, and ecosystem properties such as species richness and canopy cover, soil texture, pH, and/or disturbance regime. Native shrub and exotic forb responses to N enrichment were evaluated over a 13-year field experiment in a mature coastal sage scrub (CSS) shrubland of southern California to test the hypothesis that dry-season N input will cause a decline in native shrubs and an increase in exotic annuals. Nitrogen enrichment caused the dominant native shrubs, Artemisia californica and Salvia mellifera, to respond differently, with A. californica initially increasing with N input but declining thereafter and S. mellifera declining consistently over the 13-year-period. Both species exhibited higher canopy dieback during drought conditions, especially in N plots. Brassica nigra, an exotic annual, invaded N plots significantly more than control plots, but only after 10 years of N addition and a prolonged drought, which increased native shrub canopy dieback. These results indicate a possible synergism between N enrichment and drought on native shrub and exotic forb abundance, which would have important implications for plant diversity in semi-arid shrublands of southwest US that are anticipated to experience an increase in anthropogenic N enrichment and the frequency and duration of drought.
Box Plots in the Australian Curriculum
ERIC Educational Resources Information Center
Watson, Jane M.
2012-01-01
This article compares the definition of "box plot" as used in the "Australian Curriculum: Mathematics" with other definitions used in the education community; describes the difficulties students experience when dealing with box plots; and discusses the elaboration that is necessary to enable teachers to develop the knowledge…
Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony
2013-07-01
Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.
NASA Astrophysics Data System (ADS)
Han, S.; Yoon, S. J.; Yoon, T. K.; Han, S. H.; Lee, J.; Lee, D.; Kim, S.; Hwang, J.; Cho, M.; Son, Y.
2014-12-01
Temperature increase under climate change is expected to affect photosynthesis of tree species. Biochemical models generally suggest that the elevated temperature increases the photosynthetic carbon fixation, however, many opposing results were reported as well. We aimed to examine the photosynthetic responses of four coniferous seedlings to projected future temperature increase, by conducting an open-field warming experiment. Experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to be consistently 3oC higher than that of control plots. The seeds of Abies holophylla (AH), A. koreana (AK), Pinus densiflora (PD), and P. koraiensis (PK) were planted in each 1 m × 1 m plot (n=3) in April, 2012. Monthly net photosynthetic rates (Pn; μmol CO2 m-2 s-1) of 1-year-old seedlings (n=9) from June to November, 2013 were measured using CIRAS-2 (PP-Systems, UK) and photosynthetic parameters (the apparent quantum yield; ф; µmol CO2 mol-1, the dark respiration rate; Rd; µmol CO2 mol-1, and the light compensation point; LCP; µmol mol-1 s-1) were also calculated from the light-response curve of photosynthesis in August, 2013. Chlorophyll contents were measured using DMSO extraction method. Monthly Pn was generally higher for PD and decreased for AK in warmed plots than in control plots (Fig. 1). Pn of AK and PK did not show any significant difference, however, Pn of PK in October and November increased by experimental warming. Pn of PD also showed the highest increase in November and this distinct increase of Pn in autumn might be caused by delayed cessation of photosynthesis by temperature elevation. ф and Rd in warmed plots were higher for PD and lower for AK, while LCP did not significantly differ by treatments for all species. Because ф is considered to be related to the efficiency of harvesting and using light, the change in ф might have caused the response of Pn to warming in this study. Decreases in chlorophyll contents resulted from heat stress were observed for PD and PK. We found the species-specific responses of Pn related to the change in photosynthetic parameters following experimental warming of four 1-year-old coniferous seedlings.
Enrichment scale determines herbivore control of primary producers.
Gil, Michael A; Jiao, Jing; Osenberg, Craig W
2016-03-01
Anthropogenic nutrient enrichment stimulates primary production and threatens natural communities worldwide. Herbivores may counteract deleterious effects of enrichment by increasing their consumption of primary producers. However, field tests of herbivore control are often done by adding nutrients at small (e.g., sub-meter) scales, while enrichment in real systems often occurs at much larger scales (e.g., kilometers). Therefore, experimental results may be driven by processes that are not relevant at larger scales. Using a mathematical model, we show that herbivores can control primary producer biomass in experiments by concentrating their foraging in small enriched plots; however, at larger, realistic scales, the same mechanism may not lead to herbivore control of primary producers. Instead, other demographic mechanisms are required, but these are not examined in most field studies (and may not operate in many systems). This mismatch between experiments and natural processes suggests that many ecosystems may be less resilient to degradation via enrichment than previously believed.
Gold, L S; Slone, T H; Backman, G M; Eisenberg, S; Da Costa, M; Wong, M; Manley, N B; Rohrbach, L; Ames, B N
1990-01-01
This paper is the third chronological supplement to the Carcinogenic Potency Database that first appeared in this journal in 1984. We report here results of carcinogenesis bioassays published in the general literature between January 1985 and December 1986, and in Technical Reports of the National Toxicology Program between June 1986 and June 1987. This supplement includes results of 337 long-term, chronic experiments of 121 compounds, and reports the same information about each experiment in the same plot format as the earlier papers, e.g., the species and strain of animal, the route and duration of compound administration, dose level, and other aspects of experimental protocol, histopathology, and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, opinion of the author about carcinogenicity, and literature citation. The reader needs to refer to the 1984 publication for a guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The four plots of the database are to be used together as results published earlier are not repeated. In all, the four plots include results for approximately 4000 experiments on 1050 chemicals. Appendix 14 of this paper is an alphabetical index to all chemicals in the database and indicates which plot(s) each chemical appears in. A combined plot of all results from the four separate papers, that is ordered alphabetically by chemical, is available from the first author, in printed form or on computer tape or diskette. PMID:2351123
Efficacy of Bordeaux mixture to control pecan scab in large-plot experiments
USDA-ARS?s Scientific Manuscript database
Venturia effusa causes scab, the most important disease on pecan in the southeastern USA. Organic fungicides have not been widely tested for efficacy against scab on susceptible cultivars. A large-plot experiment was used to test the efficacy of the traditionally-used fungicide against scab, Bordeau...
Multitracer Study of Flow to Tile Drains in Irrigated Macroporous Soil
NASA Astrophysics Data System (ADS)
Bishop, J. M.; Callaghan, M. V.; Cey, E.; Bentley, L. R.
2010-12-01
Multiple tracer experiments have been conducted to test the effectiveness of using irrigation along with a tile drain system for salt remediation in west central Alberta, Canada. The experiments were designed to characterize the shallow flow system as part of a salt flushing pilot study and to determine the role of macroporosity in groundwater flow and transport. Soils at the site are primarily silty glaciolacustrine material underlain by a relatively impermeable till layer at approximately 2.5 m below ground surface. A 20 m by 20 m infiltration test plot is underlain by two tile drains at 2 m depth that are separated by 10 m. The test plot contains a drip irrigation system and has been irrigated regularly in the summer months over the past three seasons (2008-2010). Two reportedly conservative tracers, 2,6-difluorobenzoic acid [2,6-DFBA] and pentafluorobenzoic acid [PFBA], have been used on the plot and the pre-existing soil salinity was also used as a tracer. In August of 2009 a 2,6-DFBA solution (865g/L) was applied to the surface of the plot. Irrigation of the study plot continued after tracer application on a schedule that averaged roughly 12mm/day, applied 3 days a week. During the 2010 field season, a PFBA solution (at 4.2 g/L) was injected into two separate monitoring wells. One monitoring well is situated 0.5 m directly above the north tile drain (in which samples were collected regularly). The other well is situated at 2 m depth in the center of the study plot and samples were collected from a down gradient well. Tracer concentrations in the subsurface were monitored through sampling of tile drain effluent and monitoring wells in and around the plot, in addition to soil core extractions taken at several locations within the test plot at the end of the 2009 field season. Initial breakthrough of the DFBA in the tile drains occurred 24 hours after application and remained in all subsequent water samples at concentrations of 2 to 6 mg/L. Results from the DFBA analysis showed that the tiles are highly affected by the lateral and vertical contributions to the drains. Distribution of the DFBA in the soil showed that 82% of the tracer remained in the top 75 cm of the soil profile at the end of the 2009 season. This indicates that macropore flow is occurring, but has a minor influence on the movement of the salt mass. This result is important because it illustrates that although the salt mass has migrated slowly, macroporosity can transport contaminants quickly enough to exceeded drinking water quality guidelines. Breakthrough of the PFBA occurred in the north tile drain 13 hrs after application and peaked at a concentration of 10 mg/L, followed by a sharp decrease and stabilization to concentrations of 1.0 mg/L. This shows that macropore flow is occurring at depth in addition to the surface and that contaminant transport can occur rapidly in soils with lower hydraulic conductivity. Salt concentrations in the effluent were measured at high concentrations, showing that effective salt flushing of the matrix is still occurring.
Not a load of rubbish: simulated field trials in large-scale containers.
Hohmann, M; Stahl, A; Rudloff, J; Wittkop, B; Snowdon, R J
2016-09-01
Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled-environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L 'wheelie bins') that allow detailed phenotyping of small field-crop populations under semi-controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi-environment field trials. We found that we were able to predict yields in the field with high accuracy from container-grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre-breeding populations. Investment in automated large-container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre-breeding materials for abiotic stress response traits with a positive influence on yield. © 2016 John Wiley & Sons Ltd.
Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M
2010-01-04
The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.
Mini rainfall simulation for assessing soil erodibility
NASA Astrophysics Data System (ADS)
Peters, Piet; Palese, Dina; Baartman, Jantiene
2016-04-01
The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.
Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S
2015-11-01
This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Colin D. MacLean
1980-01-01
Identification of opportunities for silvicultural treatment from inventory data is an important objective of Renewable Resources Evaluation in the Pacific Northwest. This paper describes the field plot design and data analysis procedure used by what used to be known as Forest Survey to determine the treatment opportunity associated with each inventory plot in western...
Michael Hoppus; Andrew Lister
2007-01-01
Historically, field crews used Global Positioning System (GPS) coordinates to establish and relocate plots, as well as document their general location. During the past 5 years, the increase in Geographic Information System (GIS) capabilities and in customer requests to use the spatial relationships between Forest Inventory and Analysis (FIA) plot data and other GIS...
Field methods and data processing techniques associated with mapped inventory plots
William A. Bechtold; Stanley J. Zarnoch
1999-01-01
The U.S. Forest Inventory and Analysis (FIA) and Forest Health Monitoring (FHM) programs utilize a fixed-area mapped-plot design as the national standard for extensive forest inventories. The mapped-plot design is explained, as well as the rationale for its selection as the national standard. Ratio-of-means estimators am presented as a method to process data from...
Forest Plots in Excel: Moving beyond a Clump of Trees to a Forest of Visual Information
ERIC Educational Resources Information Center
Derzon, James H.; Alford, Aaron A.
2013-01-01
Forest plots provide an effective means of presenting a wealth of information in a single graphic. Whether used to illustrate multiple results in a single study or the cumulative knowledge of an entire field, forest plots have become an accepted and generally understood way of presenting many estimates simultaneously. This article explores…
NASA Technical Reports Server (NTRS)
Filer, Elizabeth D.; Morrison, Clyde A.; Turner, Gregory A.; Barnes, Norman P.
1991-01-01
Results are reported from an experimental study investigating triply ionized holmium in 10 garnets using the point-change model to predict theoretical energy levels and temperature-dependent branching ratios for the 5I7 to 5I8 manifolds for temperatures between 50 and 400 K. Plots were made for the largest lines at 300 K. YScAG was plotted twice, once for each set of X-ray data available. Energy levels are predicted based on theoretical crystal-field parameters, and good agreement to experiment is found. It is suggested that the present set of theoretical crystal-field parameters provides good estimates of the energy levels for the other hosts on which there are no experimental optical data. X-ray and index-of-refraction data are used to evaluate the performance of 10 lasers via a quantum mechanical model to predict the position of the energy levels and the temperature-dependent branching rations of the 5I7 to 5I8 levels of holmium. The fractional population inversion required for threshold is also evaluated.
Guo, Xiaomeng; Li, Tianyang; He, Binghui; He, Xiaorong; Yao, Yun
2017-04-01
Severe soil erosion occurs in southwestern China owing to the large expanses of urbanization and sloping land. This field monitoring study was conducted to record the rainfall events, runoff, and sediment yield in 20-, 40-, and 60-m plots under conditions of artificial disturbance or natural restoration in the purple soil area of southwestern China. The study took place during the rainy season, and the plots were situated on a 15° slope. The results showed that rainstorms and heavy rainstorms generated runoff and sediment yield. Rainfall intensity had a significantly positive power relationship with runoff rate and sediment yield rate in artificially disturbed plots but not in naturally restored plots. Plot length had a significant effect on runoff rate under artificial disturbance but not natural restoration. Within the same land disturbance category, there was no significant effect of plot length on sediment yield rate but there was a significant effect on sediment concentration. Overall, runoff rate, sediment yield rate, and sediment concentration showed remarkable effects of land disturbance across all plot lengths: naturally restored plots had 62.8-77.5% less runoff, 95.1-96.3% less sediment yield, and 63.1-73.5% lower sediment concentration than artificially disturbed plots. The relationship between runoff rate and sediment rate under the different land disturbances could be described by an exponential function. The results not only demonstrate the effectiveness of natural restoration for controlling runoff and sediment yield but also provide useful information for the design of field studies, taking into consideration the complexity of terrestrial systems.
NASA Astrophysics Data System (ADS)
Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun
2017-04-01
Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)
2009-01-01
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population. PMID:22736828
Timper, Patricia
2009-12-01
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population.
Rhodes, Elena M; Liburd, Oscar E
2006-08-01
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2014-11-15
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Carbon balance of a subarctic meadow under 3 r{ C warming - unravelling respiration}
NASA Astrophysics Data System (ADS)
Silvennoinen, Hanna; Bárcena, Téresa G.; Moni, Christophe; Szychowski, Marcin; Rajewicz, Paulina; Höglind, Mats; Rasse, Daniel P.
2016-04-01
Boreal and arctic terrestrial ecosystems are central to the climate change debate, as the warming is expected to be disproportionate as compared to world averages. Northern areas contain large terrestrial carbon (C) stocks further increasing the interest in the C cycle's fate in changing climate. In 2013, we started an ecosystem warming experiment at a meadow in Eastern Finnmark, NE Norway. The meadow was on a clay soil and its vegetation was common meadow grasses and clover. Typical local agronomy was applied. The study site featured ten 4m-wide hexagonal plots, five control and five actively warmed plots in randomized complete block design. Each of the warmed plots was continuously maintained 3 ° C above its associated control plot with infrared heaters controlled by canopy thermal sensors. In 2014-2015, we measured net ecosystem exchange (NEE) and respiration twice per week during growth seasons from preinstalled collars of each site with dynamic, temperature-controlled chambers combined to an infrared analyzer. Despite warming-induced differences in yield, species composition and root biomass, neither the NEE nor the respiration responded to the warming, all sites remaining equal sinks for C. Following this observation, we carried out an additional experiment in 2015 where we aimed at partitioning the total CO2 flux to microbial and plant respiration as well as at recording the growth season variation of those parameters in situ. Here, we used an approach based on natural abundances of 13C. The δ13C signature of both autotrophic plant respiration and heterotrophic microbial respiration were obtained in targeted incubations (Snell et al. 2014). Then, the δ13C -signature of the total soil respiration was determined in the field by Keeling approach with dynamic dark chambers combined to CRDS. Proportions of autotrophic and heterotrophic components in total soil respiration were then derived based on 13C mixing model. Incubations were repeated at early, mid and late growth season and field measurements conducted once per week throughout the growth season. We observed differences in the partitioning of the total soil respiration over the three periods: plant respiration consistently dominated in the control plots (60-100 %), whereas the warmed plots exhibited a considerably higher share of microbial respiration in the autumn (70 %; p= 0.03). The share of microbial respiration was also elevated in spring as compared to the control sites. These results indicate that 1)Partitioning exhibits seasonal variation 2) Warmer climate may induce a larger proportion of δ13C-enriched C being decomposed. At our site, warming had little effect on total respiration but enhanced microbial respiration at the expense of plant respiration at early and late growth season. Therefore, even if the local CO2 budgets remained unaffected by the warming climate it may be important to pay attention to the resilience of soil C on a longer run. References: Snell HSK et al. 2014. Rapid Commun. Mass Spectrom. 28: 2341-2351.
Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.
Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico
2018-06-01
Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.
Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle
NASA Astrophysics Data System (ADS)
Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico
2018-06-01
Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.
NASA Technical Reports Server (NTRS)
Arya, L. M.; Phinney, D. E. (Principal Investigator)
1980-01-01
Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.
NASA Technical Reports Server (NTRS)
Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III
1983-01-01
Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.
Crop residue decomposition in Minnesota biochar amended plots
NASA Astrophysics Data System (ADS)
Weyers, S. L.; Spokas, K. A.
2014-02-01
Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.
The structure, function and value of urban forests in California communities
E. Gregory McPherson; Qingfu Xiao; Natalie S. van Doorn; John de Goede; Jacquelyn Bjorkman; Allan Hollander; Ryan M. Boynton; James F. Quinn; James H. Thorne
2017-01-01
This study used tree data from field plots in urban areas to describe forest structure in urban areas throughout California. The plot data were used with numerical models to calculate several ecosystem services produced by trees. A series of transfer functions were calculated to scale-up results from the plots to the landscape using urban tree canopy (UTC) mapped at 1-...
Pilot Inventory of FIA plots traditionally called `nonforest'
Rachel Riemann
2003-01-01
Forest-inventory data were collected on plots defined as ?nonforest? by the USDA Forest Service?s Forest Inventory and Analysis (FIA) unit. Nonforest plots may have trees on them, but they do not fit FIA?s definition of forest because the area covered by trees is too small, too sparsely populated by trees, too narrow (e.g., trees between fields or in the middle of a...
Zabaloy, María C; Carné, Ignacio; Viassolo, Rodrigo; Gómez, Marisa A; Gomez, Elena
2016-04-01
A plot-scale experiment was conducted to assess the impact of field application rates of glyphosate on soil microbial communities by taking measurements of microbial activity (in terms of substrate-induced respiration and enzyme activity) in parallel with culture-independent approaches to assessing both bacterial abundance and diversity. Two rates of glyphosate, alone or in a mixture with 2,4-dichlorophenoxyacetic acid, were applied directly onto the soil surface, simulating normal use in chemical fallow in no-till systems. No consistent rate-dependent responses were observed in the microbial activity parameters investigated in the field plots that were exposed to glyphosate. Denaturant gradient gel electrophoresis (DGGE) of the overall bacterial community (Eubacteria) and ammonia-oxidising bacteria (AOB) revealed no effects of the high rate of glyphosate on the structure of the communities in comparison with the control. No treatment effects were observed on the abundance of Eubacteria shortly after treatment in 2010, while a small but significant difference between the high rate and the control was detected in the first sampling in 2011. The abundance of AOB was relatively low during the study, and treatment effects were undetectable. The absence of negative effects on soil microbial communities in this study suggests that glyphosate use at recommended rates poses low risk to the microbiota. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Ventura, Maurizio; Alberti, Giorgio; Panzacchi, Pietro; Delle Vedove, Gemini; Miglietta, Franco; Tonon, Giustino
2016-04-01
Biochar application to soil has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation, helping at the same time to maintain soil fertility. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. The present study aimed to assess the stability of biochar, its effect on original soil organic matter (SOM) decomposition, and the effect of plant roots on biochar stability in field conditions in Northern Italy, for a three-year monitoring period within the EuroChar project. The experiment was conducted in a poplar short rotation coppice (SRC). Biochar produced from maize (δ13C = -13.8‰) silage pellets in a gasification plant was applied in a poplar short rotation coppice (SRC) plantation in Northern Italy. Root exclusion subplots were established using the trenching method to measure heterotrophic respiration. Total (Rtot) and heterotrophic (Rh) respiration were measured every 2 hours in control and biochar-treated soil, with a closed dynamic soil respiration system. δ13C of the soil-emited CO2 was periodically measured using the Keeling plot method. The percentage of biochar-derived soil respiration (fB), was calculated using an isotopic mass balance. Results showed that fB varied between 7% and 37% according to the sampling date, and was generally higher in the presence of roots than in trenched plots where the root growth was excluded. Without roots, only the 14% of the carbon originally added with biochar was decomposed. In the presence of roots, this percentage increased to 21%, suggesting a positive priming effect of roots on biochar decomposition. On the other hand, biochar decreased the decomposition of original SOM by about 17%, suggesting a protective effect of biochar on SOM.
NASA Astrophysics Data System (ADS)
Schiavone, K.; Barbieri, L.; Adair, C.
2015-12-01
Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in agricultural management.
At what age do biomedical scientists do their best work?
Falagas, Matthew E; Ierodiakonou, Vrettos; Alexiou, Vangelis G
2008-12-01
Several human characteristics that influence scientific research performance, including set goals, mental and physical abilities, education, and experience, may vary considerably during the life cycle of scientists. We sought to answer the question of whether high-quality research productivity is associated with investigator's age. We randomly selected 300 highly cited scientists (50 from each of 6 different biomedical fields, specifically immunology, microbiology, neuroscience, psychology-psychiatry, clinical medicine, and biology-biochemistry). Then, we identified the top 5 highly cited articles (within 10 yr after publication adjusted for the expansion of the literature) as first author of each of them. Subsequently, we plotted the distribution of the 1500 analyzed articles of the 300 studied scientists in the eight 5-year intervals of investigator's age during the year of article publication (21-25 to 55-60 yr of age), adjusted for person-years of contribution of each scientist in the various age groups. Highly cited research productivity plotted a curve that peaked at the age group of 31-35 yr of age and then gradually decreased with advancing age. However, a considerable proportion of this highly cited research was produced by older scientists (in almost 20% of the analyzed articles, researchers were older than 50 yr). The results were similar in another analysis of the single most cited article of each studied scientist. In conclusion, high-quality scientific productivity in the biomedical fields as a function of investigator's age plots an inverted U-shaped curve, in which significant decreases take place from around 40 yr of age and beyond.
Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition
Elias, Ani A.; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-01-01
Plants competing for available resources is an unavoidable phenomenon in a field. We conducted studies in cassava (Manihot esculenta Crantz) in order to understand the pattern of this competition. Taking into account the competitive ability of genotypes while selecting parents for breeding advancement or commercialization can be very useful. We assumed that competition could occur at two levels: (i) the genotypic level, which we call interclonal, and (ii) the plot level irrespective of the type of genotype, which we call interplot competition or competition error. Modification in incidence matrices was applied in order to relate neighboring genotype/plot to the performance of a target genotype/plot with respect to its competitive ability. This was added into a genomic selection (GS) model to simultaneously predict the direct and competitive ability of a genotype. Predictability of the models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error (pRMSE) compared to that of the base model having no competitive component. Results from our real data studies indicated that <10% increase in accuracy was achieved with GS-interclonal competition model, but this value reached up to 25% with a GS-competition error model. We also found that the competitive influence of a cassava clone is not just limited to the adjacent neighbors but spreads beyond them. Through simulations, we found that a 26% increase of accuracy in estimating trait genotypic effect can be achieved even in the presence of high competitive variance. PMID:29358232
Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition.
Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-03-02
Plants competing for available resources is an unavoidable phenomenon in a field. We conducted studies in cassava ( Manihot esculenta Crantz) in order to understand the pattern of this competition. Taking into account the competitive ability of genotypes while selecting parents for breeding advancement or commercialization can be very useful. We assumed that competition could occur at two levels: (i) the genotypic level, which we call interclonal, and (ii) the plot level irrespective of the type of genotype, which we call interplot competition or competition error. Modification in incidence matrices was applied in order to relate neighboring genotype/plot to the performance of a target genotype/plot with respect to its competitive ability. This was added into a genomic selection (GS) model to simultaneously predict the direct and competitive ability of a genotype. Predictability of the models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error (pRMSE) compared to that of the base model having no competitive component. Results from our real data studies indicated that <10% increase in accuracy was achieved with GS-interclonal competition model, but this value reached up to 25% with a GS-competition error model. We also found that the competitive influence of a cassava clone is not just limited to the adjacent neighbors but spreads beyond them. Through simulations, we found that a 26% increase of accuracy in estimating trait genotypic effect can be achieved even in the presence of high competitive variance. Copyright © 2018 Elias et al.
Exploring Beginning Inference with Novice Grade 7 Students
ERIC Educational Resources Information Center
Watson, Jane M.
2008-01-01
This study documented efforts to facilitate ideas of beginning inference in novice grade 7 students. A design experiment allowed modified teaching opportunities in light of observation of components of a framework adapted from that developed by Pfannkuch for teaching informal inference with box plots. Box plots were replaced by hat plots, a…
Avionics electromagnetic interference immunity and environment
NASA Technical Reports Server (NTRS)
Clarke, C. A.
1986-01-01
Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.
A graphics package for meteorological data, version 1.5
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried
1989-01-01
A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.
Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?
Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma
2017-12-01
Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.
Mina, Odette; Gall, Heather E; Saporito, Louis S; Kleinman, Peter J A
2016-11-01
This study compares two methods of dairy manure application-surface broadcast and shallow disk injection-on the fate and transport of natural estrogens in surface runoff from 12 field plots in central Pennsylvania. Ten natural surface runoff events were sampled over a 9-mo period after fall manure application. Results show that the range of estrogen concentrations observed in surface runoff from the broadcast plots was several orders of magnitude higher (>5000 ng L) than the concentrations in runoff from the shallow disk injection plots (<10 ng L). Additionally, the transport dynamics differed, with the majority of the estrogen loads from the surface broadcast plots occurring during the first rainfall event after application, whereas the majority of the loads from the shallow disk injection plots occurred more than 6 mo later during a hail storm event. Total estrogen loads were, on average, two orders of magnitude lower for shallow disk injection compared with surface broadcast. Independent of the method of manure application, 17α-estradiol and estrone were preserved in the field for as long as 9 mo after application. Overall, injection of manure shows promise in reducing the potential for off-site losses of hormones from manure-amended soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Sokol, N.; Bradford, M.
2016-12-01
Plant inputs are the primary sources of carbon (C) to soil organic carbon (SOC) pools. Historically, detrital plant sources were thought to dominate C supply to SOC pools. An emerging body of research highlights the previously underestimated role of root exudates and other rhizodeposits. However, few experimental field studies have directly tracked the relative contributions of rhizodeposits versus detritial C inputs into different SOC pools, due to how methodologically challenging they are to measure in a field setting. Here, I present the first 3 years of data from an experimental field study of the prolific, C4 invasive grass species Microstegium vimineum. I use its unique isotopic signature in plots manipulated to contain detrital-only and rhizodeposit-only inputs, to track their relative contributions into microbial biomass C, particulate organic C (POC; >53 um) and mineral-associated organic C (MIN C; <53 um) soil pools. After 3 years, the presence of M. vimineum significantly affected both total SOC and the proportion of M. vimineum-derived C in POC pools. Both detrital inputs and rhizodeposit inputs from M. vimineum caused an increase in total SOC. Total SOC was 38% greater in detrital-only plots compared to control plots, and 39% greater in rhizodeposit-only plots compared to control plots. The proportion of M. vimineum-derived C in the POC was pool was 32% greater in rhizodeposit-only plots compared to detrital-only plots. The proportion of M.vimineum-derived C in the MIN C pool was not significantly different between treatments (at p<0.05). Microbial biomass was highest in rhizodeposit-only plots (p=0.03). Overall, plots containing rhizodeposit-only inputs contributed more Microstegium-derived C than did plots containing detrital-only inputs. While this observation is consistent with emerging theory on the primacy of the belowground, root-associated pathway in supplying C to soil C pools, this increase is generally assumed to be through the MIN C pool due to 1) the lower molecular weight of rhizodeposit compounds, and 2) the close physical association between rhizodeposits and soil mineral surfaces. Our results point to an underappreciated, central role of the POM C pool as a passageway for both detrital and rhizodeposit C inputs to the soil.
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
Ram Kumar Deo; Robert E. Froese; Michael J. Falkowski; Andrew T. Hudak
2016-01-01
The conventional approach to LiDAR-based forest inventory modeling depends on field sample data from fixed-radius plots (FRP). Because FRP sampling is cost intensive, combining variable-radius plot (VRP) sampling and LiDAR data has the potential to improve inventory efficiency. The overarching goal of this study was to evaluate the integration of LiDAR and VRP data....
Predictability of bee community composition after floral removals differs by floral trait group.
Urban-Mead, Katherine R
2017-11-01
Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).
Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra
2016-01-01
Nitrogen is one of the most important factor affecting maize ( Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha -1 ) on umber of rows ear -1 (NOR ear -1 ), number of seeds row -1 (NOS row -1 ), number of seeds ear -1 (NOS ear -1 ), number of ears per 100 plants (NOEP 100 plants -1 ), grain yield plant -1 , stover yield (kg ha -1 ), and shelling percentage (%) of maize genotypes "Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025)." The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha -1 ). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha -1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha -1 was found more beneficial over 120 kg N ha -1 (recommended N rate) in terms of greater productivity and growers income.
Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra
2016-01-01
Nitrogen is one of the most important factor affecting maize (Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha−1) on umber of rows ear−1 (NOR ear−1), number of seeds row−1 (NOS row−1), number of seeds ear−1 (NOS ear−1), number of ears per 100 plants (NOEP 100 plants−1), grain yield plant−1, stover yield (kg ha−1), and shelling percentage (%) of maize genotypes “Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025).” The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha−1). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha−1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha−1 was found more beneficial over 120 kg N ha−1 (recommended N rate) in terms of greater productivity and growers income. PMID:27965685
Microbiome succession during ammonification in eelgrass bed sediments
Ettinger, Cassandra L.; Williams, Susan L.; Abbott, Jessica M.; Stachowicz, John J.
2017-01-01
Background Eelgrass (Zostera marina) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Methods Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples (n = 4 per plot) under a N2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Results Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers (Desulfobacterales) and corresponding increases in predicted sulfide oxidizers (Thiotrichales). None of these changes in composition or richness were associated with variation in ammonification rates. Discussion Our results showed that the microbiome of sediment from different plots followed similar successional patterns, which we infer to be due to changes related to sulfur metabolism. These large changes likely overwhelmed any potential changes in sediment microbiome related to ammonification rate. We found no relationship between eelgrass presence or genetic composition and the microbiome. This was likely due to our sampling of bulk sediments to measure ammonification rates rather than sampling microbes in sediment directly in contact with the plants and suggests that eelgrass influence on the sediment microbiome may be limited in spatial extent. More in-depth functional studies associated with eelgrass microbiome will be required in order to fully understand the implications of these microbial communities in broader host-plant and ecosystem functions (e.g., elemental cycling and eelgrass-microbe interactions). PMID:28828269
An overview of Brazilian experience on measuring runoff and soil loss rates
USDA-ARS?s Scientific Manuscript database
Efforts have been made to determine soil erosion rates using runoff plots, mainly in the last century. In Brazil, the first experimental studies in plot-scale monitoring sites started in the 1940s. Thus, we aim to show an overview of plot-scale studies under natural rainfall over the country. We rev...
An Intuitive Graphical Approach to Understanding the Split-Plot Experiment
ERIC Educational Resources Information Center
Robinson, Timothy J.; Brenneman, William A.; Myers, William R.
2009-01-01
While split-plot designs have received considerable attention in the literature over the past decade, there seems to be a general lack of intuitive understanding of the error structure of these designs and the resulting statistical analysis. Typically, students learn the proper error terms for testing factors of a split-plot design via "expected…
NASA Astrophysics Data System (ADS)
Millar, N.; O'Donnell, J. A.; Turetsky, M. R.
2005-12-01
High latitudes are expected to experience some of the most dramatic effects of climate change in the near future. This is already evident from existing permafrost and air temperature records in Alaska. Peatlands are a major component of boreal landscapes and store massive reservoirs of soil organic carbon (C) and nitrogen (N), yet the vulnerability of these organic matter stocks to climate change is poorly understood. While some field studies have focused on N cycling in bogs, little is known about N inputs and transformations within boreal fens. We recently initiated a large scale manipulation of soil temperature and water table in a moderately rich fen situated near the Bonanza Creek LTER site, outside Fairbanks, Alaska (the Alaska Peatland Experiment or APEX; www.apex.msu.edu). As part of this experiment, we hypothesized that water table height regulates microbial reduction - oxidation (redox) reactions in organic soils. This may alter the potential for nitrification and denitrification, and therefore, concentrations of ammonium (NH4+), and nitrate (NO3-), and fluxes of nitrous oxide (N2O) in fen ecosystems. Denitrification however, may be limited by low NO3- concentrations in this fen, which is dominated by a mix of herbaceous species, brown mosses, and Sphagnum. We also hypothesized that warming would increase N transformation rates by stimulating heterotrophic microbial activity, leading to variation in N mineralization rates and N availability. We established three water table plots (control, raised, lowered), each about 120 m2 in area. Water table levels at the lowered and raised plots were manipulated using drainage ditches and solar powered pumping techniques, respectively, and were kept at between 5-10 cm below and at 5 cm above the control plot. At 3 of the 6 sub plots within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. In the first season of measurements at the APEX, our initial results suggest that higher water table levels increase atmospheric N2O concentrations above the soil surface (400 ± 3 and 380 ± 7 ppbv, at raised and lowered water table level, respectively). We also measured lower dissolved N2O concentrations in soil water (37 and 4 ppbv at raised and lowered water table level, respectively at 100 cm depth). Here, we will present interactions between thermal and moisture regimes in the experimental fen in relation to N balance, by quantifying concentrations of various N species (e.g., NH4+, NO3-, N2O, TDN, DON, DIN) in the soil, water and atmosphere. This work will help define the role of N availability and N transformations in boreal peatland ecosystems in feedbacks to global climate change.
Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments
NASA Astrophysics Data System (ADS)
Hanna, Steven; Chang, Joseph; Huq, Pablo
2016-01-01
As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Murphy, G.
1983-01-01
The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.
Early thinning experiments established by the Fort Valley Experimental Forest (P-53)
Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sánchez Meador; Margaret M. Moore
2008-01-01
Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...
Early thinning experiments established by the Fort Valley Experimental Forest
Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sanchez Meador; Margaret M. Moore
2008-01-01
Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...
De Stoppelaire, G. H.; Gillespie, T.W.; Brock, J.C.; Tobin, G.A.
2004-01-01
The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing. ?? 2004 Springer Science+Business Media, Inc.
Santhanam, Satyan Ramachandran; Egigu, Meseret C
2014-09-01
To evaluate a formulation from the milky mangrove tree Excoecaria agallocha L. (E. agallocha) against Helicoverpa armigera Hubner (H. armigera). About 3% aqueous ethanolic spray formulation derived from the lipophilic extract of E. agallocha (dry leaf) was evaluated against H. armigera in Abelmoschus esculentus (lady's finger) and Cajanus cajan (C. cajan) (pigeon pea), under field conditions. On the 9th day of the 4th spray the larval count in the plot treated with 3% E. agallocha formulation drastically came down to 0.23 larva/plant, compared to 1.63 in the ethanol control plot and 1.60 in the unsprayed plot. Blocks sprayed with 3% E. agallocha formulation yielded 35.8 quintals/hectare (q/ha) of healthy pods compared to Ekalux® (pod yield: 60.7 q/ha), 3% Vijay Neem® (60.22 q/ha), yield plot (6 q/ha) and ethanol control (7 q/ha). In C. cajan, 1% E. agallocha, 3% Nimbecidine® and 0.07% indoxacarb were equally potent in reducing the larval population of H. armigera and the non-target pest Spilosoma obliqua to 0%, from the 9th day (3rd spray). Indoxacarb plot recorded the maximum yield of 16.1 q/ha with 2.4% pod damage. Plots sprayed with 1% E. agallocha yielded 14.7 q/ha with 2.32% pod damage. The effect of 3% Nimbecidine® spray (14.35 q/ha) was comparable to E. agallocha formulation. Unsprayed and ethanol control plots yielded 12.41 and 11.2 q/ha of pods with an average pod damage of 4.7%. E. agallocha formulation was found to be promising for the control of H. armigera, under field conditions. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Impacts of spinosad and λ-cyhalothrin on spider communities in cabbage fields in south Texas.
Liu, T-X; Irungu, R W; Dean, D A; Harris, M K
2013-04-01
Spiders are a principal arthropod group that preys on numerous pests of vegetables and other crops. In this study, we determined the effects of the two most commonly used insecticides, spinosad and λ-cyhalothrin, on diversity of spiders on cabbage in south Texas. In two seasons (fall 2008 and spring 2009), we collected a total of 588 spiders belonging to 53 species in 11 families from spinosad and λ-cyhalothrin-treated cabbages and the untreated control plants. A great majority of spiders were collected from the pitfall traps (554) where only a few (34) were collected from the blower/vacuum sampling. In the insecticide-treated plots, there were significantly fewer spider individuals, species and families than in untreated fields. Spinosad had significantly less effect on spiders in total individuals, number of species and families than λ-cyhalothrin. The effects of the two insecticides were further demonstrated by the Shannon-Weiner index (H') and the hierarchical richness index (HRI). Spider diversity in the spinosad-treated plots were not significantly different from that in the untreated fields but were greater than those in λ-cyhalothrin-treated plots in both seasons when measured by H' values. In contrast, the H' values of spider's diversity in the λ-cyhalothrin-treated plots were significantly lower than spinosad-treated and untreated plots. High values of HRI for spider richness in the spinosad-treated plots suggested that spinosad had less effect on spiders than λ-cyhalothrin. We concluded that spinosad was more compatible with spiders on cabbage compared to λ-cyhalothrin and that this information should be used when developing insecticide resistance management strategies.
US army land condition-trend analysis (LCTA) program
NASA Astrophysics Data System (ADS)
Diersing, Victor E.; Shaw, Robert B.; Tazik, David J.
1992-05-01
The US Army Land Condition-Trend Analysis (LCTA) program is a standardized method of data collection, analysis, and reporting designed to meet multiple goals and objectives. The method utilizes vascular plant inventories, permanent field plot data, and wildlife inventories. Vascular plant inventories are used for environmental documentation, training of personnel, species identification during LCTA implementation, and as a survey for state and federal endangered or threatened species. The permanent field plot data documents the vegetational, edaphic, topographic, and disturbance characteristics of the installation. Inventory plots are allocated in a stratified random fashion across the installation utilizing a geographic information system that integrates satellite imagery and soil survey information. Ground cover, canopy cover, woody plant density, slope length, slope gradient, soil information, and disturbance data are collected at each plot. Plot data are used to: (1) describe plant communities, (2) characterize wildlife and threatened and endangered species habitat, (3) document amount and kind of military and nonmilitary disturbance, (4) determine the impact of military training on vegetation and soil resources, (5) estimate soil erosion potential, (6) classify land as to the kind and amount of use it can support, (7) determine allowable use estimates for tracked vehicle training, (8) document concealment resources, (9) identify lands that require restoration and evaluate the effectiveness of restorative techniques, and (10) evaluate potential acquisition property. Wildlife inventories survey small and midsize mammals, birds, bats, amphibians, and reptiles. Data from these surveys can be used for environmental documentation, to identify state and federal endangered and threatened species, and to evaluate the impact of military activities on wildlife populations. Short- and long-term monitoring of permanent field plots is used to evaluate and adjust land management decisions.
Preliminary Findings of the Photovoltaic Cell Calibration Experiment on Pathfinder Flight 95-3
NASA Technical Reports Server (NTRS)
Vargas-Aburto, Carlos
1997-01-01
The objective of the photovoltaic (PV) cell calibration experiment for Pathfinder was to develop an experiment compatible with an ultralight UAV to predict the performance of PV cells at AM0, the solar spectrum in space, using the Langley plot technique. The Langley plot is a valuable technique for this purpose and requires accurate measurements of air mass (pressure), cell temperature, solar irradiance, and current-voltage(IV) characteristics with the cells directed normal to the direct ray of the sun. Pathfinder's mission objective (95-3) of 65,000 ft. maximum altitude, is ideal for performing the Langley plot measurements. Miniaturization of electronic data acquisition equipment enabled the design and construction of an accurate and light weight measurement system that meets Pathfinder's low payload weight requirements.
A statistical data analysis and plotting program for cloud microphysics experiments
NASA Technical Reports Server (NTRS)
Jordan, A. J.
1981-01-01
The analysis software developed for atmospheric cloud microphysics experiments conducted in the laboratory as well as aboard a KC-135 aircraft is described. A group of four programs was developed and implemented on a Hewlett Packard 1000 series F minicomputer running under HP's RTE-IVB operating system. The programs control and read data from a MEMODYNE Model 3765-8BV cassette recorder, format the data on the Hewlett Packard disk subsystem, and generate statistical data (mean, variance, standard deviation) and voltage and engineering unit plots on a user selected plotting device. The programs are written in HP FORTRAN IV and HP ASSEMBLY Language with the graphics software using the HP 1000 Graphics. The supported plotting devices are the HP 2647A graphics terminal, the HP 9872B four color pen plotter, and the HP 2608A matrix line printer.
Jenner, W H; Mason, P G; Cappuccino, N; Kuhlmann, U
2010-08-01
Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae) is a pupal parasitoid under consideration for introduction into Canada for the control of the invasive leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae). Since study of the parasitoid outside of quarantine was not permitted in Canada at the time of this project, we assessed its efficacy via field trials in its native range in central Europe. This was done by simulating introductory releases that would eventually take place in Canada when a permit for release is obtained. In 2007 and 2008, experimental leek plots were artificially infested with pest larvae to mimic the higher pest densities common in Canada. Based on a preliminary experiment showing that leek moth pupae were suitable for parasitism up to 5-6 days after pupation, D. pulchellus adults were mass-released into the field plots when the first host cocoons were observed. The laboratory-reared agents reproduced successfully in all trials and radically reduced leek moth survival. Taking into account background parasitism caused by naturally occurring D. pulchellus, the released agents parasitized at least 15.8%, 43.9%, 48.1% and 58.8% of the available hosts in the four release trials. When this significant contribution to leek moth mortality is added to previously published life tables, in which pupal parasitism was absent, the total pupal mortality increases from 60.1% to 76.7%. This study demonstrates how field trials involving environmental manipulation in an agent's native range can yield predictions of the agent's field efficacy once introduced into a novel area.
Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).
Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R
2016-03-01
Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).
NASA Astrophysics Data System (ADS)
Jayanti, L. D.; Yunus, A.; Pujiasmanto, B.; Widyastuti, Y.
2018-03-01
This study aims to examine the intensity of shade and proper dosage of fertilizer to maximize the content of ursolic acid and pearl grass yield. The field-run study was carried out at the Medicinal Plant Garden of the Research and Development of Medicinal Plants and Traditional Medicines (B2P2TOOT) and the laboratory research was conducted at the B2P2TOOT Phytochemistry Laboratory. The experiment design was Randomized Complete Block Design with Split Plot pattern with the intensity (three levels) as main plot and fertilizer dosage (four levels) as sub plot. The data obtained were analyzed using the variance analysis, if there were significant differences tested further by using Duncan’s Multiple Range Test (DMRT) with 95% confidence level. The results showed that shade treatment gave significant effects on plant height, number of branches, root length, fresh weight and dry weight. The treatment of a fertilizer dosage 15 tons/ha gave the best results on fresh weight and dry weight. The combination of N0K0 treatment (without shade, without cow manure) resulted in the highest quality of ursolic acid as it featured a light blue color when detected under UV366 light.
Selection of Plot Remeasurement in an Annual Inventory
Mark H. Hansen; Hans T. Schreuder; Dave Heinzen
2000-01-01
A plot selection approach is proposed based on experience from the Annual Forest Inventory System (AFIS) in the Aspen-Birch Unit of northestern Minnesota. The emphasisis on a mixture of strategies. Although the Agricultural Act of 1998 requires that a fixed 20 percent of plots be measured each year in each state, sooner or later we will need to vary the scheme to...
Schoenly, Kenneth G; Cohen, Michael B; Barrion, Alberto T; Zhang, Wenjun; Gaolach, Bradley; Viajante, Vicente D
2003-01-01
Endotoxins from Bacillus thuringiensis (Bt) produced in transgenic pest-resistant Bt crops are generally not toxic to predatory and parasitic arthropods. However, elimination of Bt-susceptible prey and hosts in Bt crops could reduce predator and parasitoid abundance and thereby disrupt biological control of other herbivorous pests. Here we report results of a field study evaluating the effects of Bt sprays on non-target terrestrial herbivore and natural enemy assemblages from three rice (Oryza sativa L.) fields on Luzon Island, Philippines. Because of restrictions on field-testing of transgenic rice, Bt sprays were used to remove foliage-feeding lepidopteran larvae that would be targeted by Bt rice. Data from a 546-taxa Philippines-wide food web, matched abundance plots, species accumulation curves, time-series analysis, and ecostatistical tests for species richness and ranked abundance were used to compare different subsets of non-target herbivores, predators, and parasitoids in Bt sprayed and water-sprayed (control) plots. For whole communities of terrestrial predators and parasitoids, Bt sprays altered parasitoid richness in 3 of 3 sites and predator richness in 1 of 3 sites, as measured by rarefaction (in half of these cases, richness was greater in Bt plots), while Spearman tests on ranked abundances showed that correlations, although significantly positive between all treatment pairs, were stronger for predators than for parasitoids, suggesting that parasitoid complexes may have been more sensitive than predators to the effects of Bt sprays. Species accumulation curves and time-series analyses of population trends revealed no evidence that Bt sprays altered the overall buildup of predator or parasitoid communities or population trajectories of non-target herbivores (planthoppers and leafhoppers) nor was evidence found for bottom-up effects in total abundances of non-target species identified in the food web from the addition of spores in the Bt spray formulation. When the same methods were applied to natural enemies (predators and parasitoids) of foliage-feeding lepidopteran and non-lepidopteran (homopteran, hemipteran and dipteran) herbivores, significant differences between treatments were detected in 7 of 12 cases. However, no treatment differences were found in mean abundances of these natural enemies, either in time-series plots or in total (seasonal) abundance. Analysis of guild-level trajectories revealed population behavior and treatment differences that could not be predicted in whole-community studies of predators and parasitoids. A more conclusive test of the impact of Bt rice will require field experiments with transgenic plants, conducted in a range of Asian environments, and over multiple cropping seasons.
NASA Astrophysics Data System (ADS)
Ni, W.; Zhang, Z.; Sun, G.
2017-12-01
Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in this study and forest AGB map was shown in Figure 2. The technique details and further analysis will be given in the final report. AcknowledgmentThis work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733401, 2013CB733404), and in part by the National Natural Science Foundation of China (Grant Nos. 41471311, 41371357, 41301395).
Trevisan, D; Vansteelant, J Y; Dorioz, J M
2002-01-01
The aim of this work is to achieve a better understanding of the behavior of fecal coliform populations on the vegetation and in the soil after slurry spreading in environmental conditions, typical of vegetative growth period in mountain hay meadows. Changes in fecal coliform populations on the vegetation and in the soil were monitored in situ for 3 months after slurry spreading on 9 plots. The variations found in populations are related to the agricultural, soil. and climatic characteristics of plots and to the moisture regime of soils. These observations are compared with laboratory experiments on undisturbed soil microcosms. In absence of water flux, survival durations recorded in the laboratory and in the field are of the same order of magnitude. The data enable us to pinpoint the influence of various factors affecting the decline and transfer of fecal bacteria in the plant-soil system and consequently to discuss the risk management of water contamination by agriculture.
NITRATES IN GROUNDWATER RESULTING FROM MANURE APPLICATIONS TO IRRIGATED CROPLANDS
Field data were collected from experimental plots located near Grand Junction Colorado. Data collections were designed to provide a sufficiently broad range of conditions such that a simulation model could be verified. The experimental plots were planted to corn and were furrow i...
CONTAMINANT REDISTRIBUTION CAN CONFOUND INTERPRETATION OF OIL-SPILL BIOREMEDIATION STUDIES
The physical redistribution of oil between the inside and outside of experimental plots can affect the results of bioremediation field studies that are conducted on shorelines contaminated by real oil spills. Because untreated oil from the surrounding beach will enter the plot, ...
A field evaluation of subsurface and surface runoff. II. Runoff processes
Pilgrim, D.H.; Huff, D.D.; Steele, T.D.
1978-01-01
Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.
Nitrogen transformations following tropical forest felling and burning on a volcanic soil
NASA Technical Reports Server (NTRS)
Matson, Pamela A.; Vitousek, Peter M.; Ewel, John J.; Mazzarino, Maria Julia; Robertson, G. Philip
1987-01-01
Nitrogen transformations and loss were measured following forest clearing in a relatively fertile tropical forest site. Nitrogen mineralization, nitrification, and amounts of ammonium and nitrate increased substantially in surface soils during the 6 mo following burning, then returned to background levels. The nitrogen content of microbial biomass declined to half its original value 6 mo after clearing and remained low in the cleared sites. Plant uptake of nitrogen was substantial on cleared plots (50 g/sq m), but it accounted for only 18 percent of N-15 label added to field plots. MIcrobial immobilization of N-15 was small relative to that in a cleared temperate site, and measurements of denitrification potentials suggested that relatively little mineralized nitrogen was lost to the atmosphere. Substantial amounts of nitrogen (40-70 g/sq m) were retained as exchangeably bound nitrate deep in the soils of a cleared plot on which revegetation was prevented; this process accounted for 12 percent of the N-15 label added to field plots.
NASA Astrophysics Data System (ADS)
Diamantis, V.; Ziogas, A.; Giougis, J.; Pliakas, F.; Diamantis, I.
2009-04-01
Soil water repellency has received significant attention due to water scarcity and increasing demand of irrigation water worldwide. The objective of this study was to examine the effects of treated wastewater application on soil water repellency of a repellent sandy soil with olive trees and grass cover. Secondary effluent from a municipal wastewater treatment plant was applied directly on the field on a 4×2 m plot. Freshwater and a mixture of freshwater:wastewater (1:1) were used in subsequent plots for comparison. A total of 62 water applications were performed between March 2006 and July 2008. The soil receiving the mixture of freshwater:wastewater exhibited the highest wettability. The soil water repellency after the first year of wastewater application decreased in the respective plot compared with the soil under natural conditions. The higher values of the WDPT were determined on the freshwater irrigated plot. The field-moist samples on all plots revealed high wettability because the moisture content of the soil was maintained above the critical soil water content. The results of this study reveal that short-term application of treated municipal wastewater does not induce soil water repellency.
Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan.
Landis, Douglas A; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N; Maredia, Karim
2016-01-01
Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers-40% women-were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television.
Volcano plots in analyzing differential expressions with mRNA microarrays.
Li, Wentian
2012-12-01
A volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log(10)(p-value) from the t-test). We review the basic and interactive use of the volcano plot and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide a unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility of applying volcano plots to other fields beyond microarray.
Remediation of Cd-contaminated soil around metal sulfide mines
NASA Astrophysics Data System (ADS)
Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan
2017-04-01
The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is the key to the remediation of Cd-contaminated soils, and apply the composite material of zeolite combining apatite is the best choice for the remediation of Cd-contaminated soils.
Transport of atrazine and dicamba through silt and loam soils
Tindall, James A.; Friedel, Michael J.
2016-01-01
The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flow paths. Concentrations of atrazine and dicamba exceeding 0.30 and 0.05µg m1-1 were observed at depths of 10-30cm and 50-70cm after two months following heavy rainfall events. It appears from the laboratory experiment that preferential flow paths were a significant factor in transport of atrazine and dicamba.
Rhodes, Elena M; Liburd, Oscar E; Kelts, Crystal; Rondon, Silvia I; Francis, Roger R
2006-01-01
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of combining releases of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite (bifenazate), for control of twospotted spider mite (TSSM) (Tetranychus urticae Koch) in strawberries. In the greenhouse experiment, a combination treatment of P. persimilis and N. californicus was compared with single treatments of each species, Acramite application, and untreated control. All treatments significantly reduced TSSM numbers compared with the control. Field studies employed two approaches: one investigating the same five treatments as the greenhouse experiment and a second, comparing combination treatments of P. persimilis/N. californicus, Acramite/N. californicus, and Acramite/P. persimilis to single treatments of each and to control plots. Among the combination treatments, the P. persimilis/N. californicus treatment significantly reduced TSSM numbers compared with the control, but was not as effective as N. californicus alone during the 2003-2004 field season. Also, combination treatments of Acramite/N. californicus, and Acramite/P. persimilis significantly reduced TSSM populations compared with the control. These findings indicate that all three combination treatments are promising options for TSSM control in strawberries for growers in northern Florida and other strawberry producing areas of the world.
Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data
NASA Astrophysics Data System (ADS)
Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip
2016-05-01
One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.
Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil.
Dores, Eliana F G C; Spadotto, Claudio A; Weber, Oscarlina L S; Dalla Villa, Ricardo; Vecchiato, Antonio B; Pinto, Alicio A
2016-05-25
The environmental behavior of chlorpyrifos and endosulfan in soil was studied in the central-western region of Brazil by means of a field experiment. Sorption was evaluated in laboratory batch experiments. Chlorpyrifos and endosulfan were applied to experimental plots on uncultivated soil and the following processes were studied: leaching, runoff, and dissipation in top soil. Field dissipation of chlorpyrifos and endosulfan was more rapid than reported in temperate climates. Despite the high Koc of the studied pesticides, the two endosulfan isomers and endosulfan sulfate as well as chlorpyrifos were detected in percolated water. In runoff water and sediment, both endosulfan isomers and endosulfan sulfate were detected throughout the period of study. Observed losses of endosulfan by leaching (below a depth of 50 cm) and runoff were 0.0013 and 1.04% of the applied amount, whereas chlorpyrifos losses were 0.003 and 0.032%, respectively. Leaching of these highly adsorbed pesticides was attributed to preferential flow.
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them
NASA Astrophysics Data System (ADS)
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-06-01
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-01-01
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica. PMID:26047489
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them.
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-06-05
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.
Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster
2011-12-01
30 Figure 13. Equipotential plot, Ez as a function of z and r, Jreq=300 kA/m2, space charge off... Equipotential plots, Ez as a function of z and r, Jreq=300 kA/m2, space charge on. Plots are taken at time intervals of 0.05 ns...on the accelerating grids; under-perveance results in crossover, overlap of neighboring beamlets, and impingement on downstream surfaces . Optimum
Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, D. B.; Nelson, H. G.
1977-01-01
The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.
NASA Astrophysics Data System (ADS)
Jeffery, Simon; Meinders, Marcel B. J.; Stoof, Cathelijne; Bezemer, T. Martijn; vande Voorde, Tess F. J.; Mommer, Liesje; Willem van Groenigen, Jan
2015-04-01
Biochar application to soil is currently being widely touted as a means to improve soil quality and to enhance the provision of numerous ecosystem services, including water storage, in soils. However, evidence for hydrological effects in the primary literature remain inconclusive with contradictory effects reported. The mechanisms behind such contradictory results are not yet elucidated. As such we aimed to investigate the effects of biochar on soil water retention and infiltration, as well as the underlying mechanisms. To do so we set up two field experiments with biochar produced from herbaceous feedstock through slow pyrolysis at two temperatures (400°C and 600°C). In the first experiment both biochars were applied at a rate of 10 t ha-1 to separate plots in a sandy soil in a North European grassland. In a separate experiment, the biochar produced at 400°C was applied to a different set of plots in the same grassland at rates equivalent to 1, 5, 20 and 50 t ha-1. Soils from these experiments were analysed for soil water retention and infiltration rate as well as aggregate stability and other soil physical parameters. The pore structure of the biochar was fully characterised using X-ray computed micro-tomography (XRT) and hydrophobicity determined using contact angle measurements. There were no significant effects of biochar application on soil water retention, field saturated conductivity or aggregate stability in either experiment. XRT analysis of the biochars confirmed that the biochars were highly porous, with 48% and 57% porosity for the 400°C and 600°C biochars, respectively. More than 99% of internal pores of the biochar particles were connected to the surface, suggesting a potential role for biochars in improving soil water retention. However, the biochars were highly hydrophobic as demonstrated by the high contact angles when water was applied. We suggest that this hydrophobicity greatly diminished water infiltration into the biochar particles, prohibiting an effect on soil water retention. Our results indicate that, in addition to characterizing pore space, biochars should be analysed for hydrophobicity when assessing their capacity for improving soil physical properties.
NASA Astrophysics Data System (ADS)
Dickinson, M.; Kremens, R.; Bova, A. S.
2012-12-01
Closing the wildland fire heat budget involves characterizing the heat source and energy dissipation across the range of variability in fuels and fire behavior. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. Here, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption, and the behavior of spreading flame fronts. Experiments were conducted in 8 m x 8 m outdoor plots using pre-conditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of about 18.5 m^2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density (FRED) over a range of fuel consumption between 0.15 kg m^-2 to 3.25 kg m^-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection, and soil heating across a range of fuels. We introduce the Rx-CADRE project through which such measurements are being made.
Visual field changes after cataract extraction: the AGIS experience.
Koucheki, Behrooz; Nouri-Mahdavi, Kouros; Patel, Gitane; Gaasterland, Douglas; Caprioli, Joseph
2004-12-01
To test the hypothesis that cataract extraction in glaucomatous eyes improves overall sensitivity of visual function without affecting the size or depth of glaucomatous scotomas. Experimental study with no control group. One hundred fifty-eight eyes (of 140 patients) from the Advanced Glaucoma Intervention Study with at least two reliable visual fields within a year both before and after cataract surgery were included. Average mean deviation (MD), pattern standard deviation (PSD), and corrected pattern standard deviation (CPSD) were compared before and after cataract extraction. To evaluate changes in scotoma size, the number of abnormal points (P < .05) on the pattern deviation plot was compared before and after surgery. We described an index ("scotoma depth index") to investigate changes of scotoma depth after surgery. Mean values for MD, PSD, and CPSD were -13.2, 6.4, and 5.9 dB before and -11.9, 6.8, and 6.2 dB after cataract surgery (P < or = .001 for all comparisons). Mean (+/- SD) number of abnormal points on pattern deviation plot was 26.7 +/- 9.4 and 27.5 +/- 9.0 before and after cataract surgery, respectively (P = .02). Scotoma depth index did not change after cataract extraction (-19.3 vs -19.2 dB, P = .90). Cataract extraction caused generalized improvement of the visual field, which was most marked in eyes with less advanced glaucomatous damage. Although the enlargement of scotomas was statistically significant, it was not clinically meaningful. No improvement of sensitivity was observed in the deepest part of the scotomas.
Naftz, D.L.; Yahnke, J.; Miller, J.; Noyes, S.
2005-01-01
Constructed and natural wetlands can accumulate elevated levels of Se; however, few data are available on cost-effective methods for remobilization and removal of Se from these areas. A field experiment was conducted to assess the effectiveness of flooding on the removal of Se from dry surface sediments. The 83-m2 flood-experiment plot contained 10 monitoring wells, a water-quality minimonitor (continuous measurement of pH, specific conductance, water temperature, and dissolved O2), a down-hole Br electrode, and 2 pressure transducers. Flooding was initiated on August 27, 2002, and a Br tracer was added to water delivered through a pipeline to the flood plot during the first 1.2 h. Standing water depth in the flood plot was maintained at 0.3 m through September 1, 2002. The Br tracer data indicate a dual porosity system that includes fracture (mud cracks) and matrix flow components. Mean vertical water velocities for the matrix flow component were estimated to range from 0.002 to 0.012 m/h. Dissolved (less than 0.45 ??m) Se increased from pre-flood concentrations of less than 10 ??g/L to greater than 800 ??g/L during flooding in samples from deep (2.0 m below land surface) ground water. Selenium concentrations exceeded 5500 ??g/L in samples from shallow (0.8 m below land surface) ground water. Ratios of Se to Br in water samples indicate that Se moved conservatively during the experiment and was derived from leaching of near-surface sediments. Cumulative Se flux to the deep ground water during the experiment ranged from 9.0 to 170 mg/m2. Pre- and post-flood surface soil sampling indicated a mean Se flux of 720 mg/m2 through the top 15 cm of soil. Ground-water samples collected 8 months after termination of the flood experiment contained Se concentrations of less than 20 ??g/L. The minimonitor data indicate a rapid return to chemically reducing conditions in the deep ground water, limiting the mobility of the Se dissolved in the water pulse introduced during the flood experiment. Ratios of Se to Br in deep ground-water samples collected 8 months after the experiment confirmed the removal of Se from the aqueous phase. Based on the median Se flux rate estimated during the experiment of 0.65 mg/h/m2 (n = 52), 7 flooding cycles would be required to meet the 4 ??g/g remediation goal in surface soils from the SLWMA wetland.
Conspecific attraction in a grassland bird, the Baird's Sparrow
Ahlering, M.A.; Johnson, D.H.; Faaborg, John
2006-01-01
Territorial songbirds generally use song to defend territories and attract mates, but conspecific song may also serve as a cue to attract other male songbirds to a breeding site. Although known to occur in some colonial and forest-associated species, only recently have investigators examined conspecific attraction in grassland species. We used a playback experiment to examine the possible role of conspecific attraction for males searching for potentially suitable breeding habitat in a grassland specialist, the Baird's Sparrow (Ammodramus bairdii). Experimental playback plots and control plots with similar landscape and vegetation characteristics were established at two sites in North Dakota. Baird's Sparrows colonized three of six experimental plots and none of six control plots. Males on experimental plots established territories adjacent to the playback stations and were sometimes observed counter-singing with the playback of conspecific songs. Vegetation characteristics were similar on all study plots, and did not explain differences in bird density on our treatment plots. Although we found that playback of conspecific songs attracted male Baird's Sparrows to previously unoccupied, potentially suitable habitat, further experiments are needed to examine the importance of conspecific attraction relative to other cues that birds may use, such as vegetation features. The conservation and management implications of conspecific attraction are not completely understood, but the presence of conspecifics should be considered as a potential cue in habitat selection by all species of birds.
Selection of plot remeasurement in an annual inventory
Mark H. Hansen; Hans T. Schreuder; Dave Heinzen
2000-01-01
A plot selection approach is proposed based on experience from the Annual Forest Inventory System (AFIS) in the Aspen-Birch Unit of northeastern Minnesota. The emphasis is on a mixture of strategies. Although the Agricultural Act of 1998 requires that a fixed 20 percent of plots be measured each year in each state, sooner or later we will need to vary the scheme to...
Tailoring the Statistical Experimental Design Process for LVC Experiments
2011-03-01
incredibly large test space, it is important to point out that Gray is presenting a simple case to demonstrate the application of an experimental...weapon’s effectiveness. Gray defines k1 = 4 factors in the whole plot and k2 = 3 factors in the sub plot with f1 and f2 as the number of factors...aliased with interaction terms in the whole plot and sub plot respectively. Gray uses the notation 2k1−f1 × 2k2−f2 [?] to represent the fractional
Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.
Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F
2012-02-01
The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.
NASA Astrophysics Data System (ADS)
Lu, Shin-Ming; Chan, Wen-Yuan; Su, Wei-Bin; Pai, Woei Wu; Liu, Hsiang-Lin; Chang, Chia-Seng
2018-04-01
The form of the external potential (FEP) for generating field emission resonance (FER) in a scanning tunneling microscopy (STM) junction is usually assumed to be triangular. We demonstrate that this assumption can be examined using a plot that can characterize FEP. The plot is FER energies versus the corresponding distances between the tip and sample. Through this energy–distance relationship, we discover that the FEP is nearly triangular for a blunt STM tip. However, the assumption of a triangular potential form is invalid for a sharp tip. The disparity becomes more severe as the tip is sharper. We demonstrate that the energy–distance plot can be exploited to determine the barrier width in field emission and estimate the effective sharpness of an STM tip. Because FERs were observed on Pb islands grown on the Cu(111) surface in this study, determination of the tip sharpness enabled the derivation of the subtle expansion deformation of Pb islands due to electrostatic force in the STM junction.
Jacques, Marie-Hélène; Lapointe, Line; Rice, Karen; Montgomery, Rebecca A; Stefanski, Artur; Reich, Peter B
2015-10-01
Understory herbs might be the most sensitive plant form to global warming in deciduous forests, yet they have been little studied in the context of climate change. A field experiment set up in Minnesota, United States simulated global warming in a forest setting and provided the opportunity to study the responses of Maianthemum canadense and Eurybia macrophylla in their natural environment in interaction with other components of the ecosystem. Effects of +1.7° and +3.4°C treatments on growth, reproduction, phenology, and gas exchange were evaluated along with treatment effects on light, water, and nutrient availability, potential drivers of herb responses. Overall, growth and gas exchanges of these two species were modestly affected by warming. They emerged up to 16 (E. macrophylla) to 17 d (M. canadense) earlier in the heated plots than in control plots, supporting early-season carbon gain under high light conditions before canopy closure. This additional carbon gain in spring likely supported reproduction. Eurybia macrophylla only flowered in the heated plots, and both species had some aspect of reproduction that was highest in the +1.7°C treatment. The reduced reproductive effort in the +3.4°C plots was likely due to reduced soil water availability, counteracting positive effects of warming. Global warming might improve fitness of herbaceous species in deciduous forests, mainly by advancing their spring emergence. However, other impacts of global warming such as drier soils in the summer might partly reduce the carbon gain associated with early emergence. © 2015 Botanical Society of America.
Dalitz plot analysis of the D+→K-ÃÂ+ÃÂ+ decay in the FOCUS experiment
NASA Astrophysics Data System (ADS)
Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.; Pennington, M. R.; Focus Collaboration
2007-09-01
Using data collected by the high-energy photoproduction experiment FOCUS at Fermilab we performed a Dalitz plot analysis of the Cabibbo favored decay D+ →K-π+π+. This study uses 53653 Dalitz-plot events with a signal fraction of ∼ 97%, and represents the highest statistics, most complete Dalitz plot analysis for this channel. Results are presented and discussed using two different formalisms. The first is a simple sum of Breit-Wigner functions with freely fitted masses and widths. It is the model traditionally adopted and serves as comparison with the already published analyses. The second uses a K-matrix approach for the dominant S-wave, in which the parameters are fixed by first fitting Kπ scattering data and continued to threshold by Chiral Perturbation Theory. We show that the Dalitz plot distribution for this decay is consistent with the assumption of two-body dominance of the final state interactions and the description of these interactions is in agreement with other data on the Kπ final state.
NASA Technical Reports Server (NTRS)
Deloach, R.; Morris, A. L.; Mcbeth, R. B.
1976-01-01
A portable boundary-layer meteorological data-acquisition and analysis system is described which employs a small tethered balloon and a programmable calculator. The system is capable of measuring pressure, wet- and dry-bulb temperature, wind speed, and temperature fluctuations as a function of height and time. Other quantities, which can be calculated in terms of these, can also be made available in real time. All quantities, measured and calculated, can be printed, plotted, and stored on magnetic tape in the field during the data-acquisition phase of an experiment.
Gardening promotes neuroendocrine and affective restoration from stress.
Van Den Berg, Agnes E; Custers, Mariëtte H G
2011-01-01
Stress-relieving effects of gardening were hypothesized and tested in a field experiment. Thirty allotment gardeners performed a stressful Stroop task and were then randomly assigned to 30 minutes of outdoor gardening or indoor reading on their own allotment plot. Salivary cortisol levels and self-reported mood were repeatedly measured. Gardening and reading each led to decreases in cortisol during the recovery period, but decreases were significantly stronger in the gardening group. Positive mood was fully restored after gardening, but further deteriorated during reading. These findings provide the first experimental evidence that gardening can promote relief from acute stress.
REPORT OF THE 1995 WORKSHOP ON GEOSYNTHETIC CLAY LINERS
A workshop was held at the EPA's National Risk Management Research Laboratory in Cincinnati, Ohio, on August 9 and 10, 1995. On August 9, attendees were shown field plots of GCLs that have been constructed at a site in Cincinnati, and given a detailed account of the test plot la...
Erodibility from natural rainfall events on soils of the Pacific Northwest
USDA-ARS?s Scientific Manuscript database
Erosion event data from long-term USLE-size continuous fallow plots (Palouse silt loam) at the Palouse Conservation Field Station (PCFS) at Pullman, WA and similar plots (Thatuna silt loam) near the Columbia Plateau Conservation Research Center (CPCRC) at Pendleton, OR provided an opportunity to cal...
Triangular Plots and Spreadsheet Software.
ERIC Educational Resources Information Center
Holm, Paul Eric
1988-01-01
Describes how the limitations of the built-in graphics capabilities of spreadsheet software can be overcome by making full use of the flexibility of the grahics options. Uses triangular plots with labeled field boundaries produced using Lotus 1-2-3 to demonstrate these techniques and their use in teaching geology. (CW)
THE RESPONSES OF PRAIRIE DEER MICE TO A FIELD SO2 GRADIENT
A capture-mark-release study of deer mice (Peromyscus) was conducted on two 10-acre grassland areas (Zonal Air Pollution Systems or ZAPS) at monthly intervals from April to September 1976. Both areas were subdivided into four in-line experimental plots, with three smaller plots a...
Success and challenges met during the calibration of APEX on large plots
USDA-ARS?s Scientific Manuscript database
As the APEX model is increasingly considered for the evaluation of agricultural systems, satisfactory performance of APEX on fields is critical. APEX was applied to 16 replicated large plots established in 1991 in Northeast Missouri. Until 2009, each phase of each rotation was represented every year...
Cooperative Alaska Forest Inventory
Thomas Malone; Jingjing Liang; Edmond C. Packee
2009-01-01
The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...
Brains striving for coherence: Long-term cumulative plot formation in the default mode network.
Tylén, K; Christensen, P; Roepstorff, A; Lund, T; Østergaard, S; Donald, M
2015-11-01
Many everyday activities, such as engaging in conversation or listening to a story, require us to sustain attention over a prolonged period of time while integrating and synthesizing complex episodic content into a coherent mental model. Humans are remarkably capable of navigating and keeping track of all the parallel social activities of everyday life even when confronted with interruptions or changes in the environment. However, the underlying cognitive and neurocognitive mechanisms of such long-term integration and profiling of information remain a challenge to neuroscience. While brain activity is generally traceable within the short time frame of working memory (milliseconds to seconds), these integrative processes last for minutes, hours or even days. Here we report two experiments on story comprehension. Experiment I establishes a cognitive dissociation between our comprehension of plot and incidental facts in narratives: when episodic material allows for long-term integration in a coherent plot, we recall fewer factual details. However, when plot formation is challenged, we pay more attention to incidental facts. Experiment II investigates the neural underpinnings of plot formation. Results suggest a central role for the brain's default mode network related to comprehension of coherent narratives while incoherent episodes rather activate the frontoparietal control network. Moreover, an analysis of cortical activity as a function of the cumulative integration of narrative material into a coherent story reveals to linear modulations of right hemisphere posterior temporal and parietal regions. Together these findings point to key neural mechanisms involved in the fundamental human capacity for cumulative plot formation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.
2010-12-01
Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.
MacTavish, Rachel M.; Cohen, Risa A.
2014-01-01
• Premise of the study: A microcosm unit with tidal simulation was developed to address the challenge of maintaining ecologically relevant tidal regimes while performing controlled greenhouse experiments on smooth cordgrass, Spartina alterniflora. • Methods and Results: We designed a simple, inexpensive, easily replicated microcosm unit with tidal simulation and tested whether S. alterniflora growth in microcosms with tidal simulation was similar to that of tidally influenced plants in the field on Sapelo Island, Georgia. After three months of exposure to either natural or simulated tidal treatment, plants in microcosms receiving tidal simulation had similar stem density, height, and above- and belowground biomass to plants in field plots. • Conclusions: The tidal simulator developed may provide an inexpensive, effective method for conducting studies on S. alterniflora and other tidally influenced plants in controlled settings to be used not only to complement field studies, but also in locations without coastal access. PMID:25383265
NASA Astrophysics Data System (ADS)
Prabakaran, R.; Subramanian, P.
2018-04-01
Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.
Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong
2003-11-01
Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.
Simulation of underwater explosion benchmark experiments with ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, R.; Faux, D.
1997-05-19
Some code improvements have been made during the course of this study. One immediately obvious need was for more flexibility in the constitutive representation for materials in shell elements. To remedy this situation, a model with a tabular representation of stress versus strain and rate dependent effects was implemented. This was required in order to obtain reasonable results in the IED cylinder simulation. Another deficiency was in the ability to extract and plot variables associated with shell elements. The pipe whip analysis required the development of a scheme to tally and plot time dependent shell quantities such as stresses andmore » strains. This capability had previously existed only for solid elements. Work was initiated to provide the same range of plotting capability for structural elements that exist with the DYNA3D/TAURUS tools. One of the characteristics of these problems is the disparity in zoning required in the vicinity of the charge and bubble compared to that needed in the far field. This disparity can cause the equipotential relaxation logic to provide a less than optimal solution. Various approaches were utilized to bias the relaxation to obtain more optimal meshing during relaxation. Extensions of these techniques have been developed to provide more powerful options, but more work still needs to be done. The results presented here are representative of what can be produced with an ALE code structured like ALE3D. They are not necessarily the best results that could have been obtained. More experience in assessing sensitivities to meshing and boundary conditions would be very useful. A number of code deficiencies discovered in the course of this work have been corrected and are available for any future investigations.« less
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
NASA Astrophysics Data System (ADS)
Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.
2016-11-01
The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.
Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm
NASA Astrophysics Data System (ADS)
Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.
2017-12-01
Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.
Wakahara, Taeko; Onda, Yuich; Kato, Hiroaki; Sakaguchi, Aya; Yoshimura, Kazuya
2014-11-01
To explore the behavior of radionuclides released after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011, and the distribution of radiocesium in paddy fields, we monitored radiocesium (Cs) and suspended sediment (SS) discharge from paddy fields. We proposed a rating scale for measuring the effectiveness of surface soil removal. Our experimental plots in paddy fields were located ∼40 km from the FDNPP. Two plots were established: one in a paddy field where surface soil was not removed (the "normally cultivated paddy field") and the second in a paddy field where the top 5-10 cm of soil was removed before cultivation (the "surface-removed paddy field"). The amounts of Cs and SS discharge from the paddy fields were continuously measured from June to August 2011. The Cs soil inventory measured 3 months after the FDNPP accident was approximately 200 kBq m(-2). However, after removing the surface soil, the concentration of Cs-137 decreased to 5 kBq m(-2). SS discharged from the normally cultivated and surface-removed paddy fields after puddling (mixing of soil and water before planting rice) was 11.0 kg and 3.1 kg, respectively, and Cs-137 discharge was 630,000 Bq (1240 Bq m(-2)) and 24,800 Bq (47.8 Bq m(-2)), respectively. The total amount of SS discharge after irrigation (natural rainfall-runoff) was 5.5 kg for the normally cultivated field and 70 kg for the surface-removed field, and the total amounts of Cs-137 discharge were 51,900 Bq (102 Bq m(-2)) and 165,000 Bq (317 Bq m(-2)), respectively. During the irrigation period, discharge from the surface-removed plot showed a twofold greater inflow than that from the normally cultivated plot. Thus, Cs inflow may originate from the upper canal. The topsoil removal process eliminated at least approximately 95% of the Cs-137, but upstream water contaminated with Cs-137 flowed into the paddy field. Therefore, to accurately determine the Cs discharge, it is important to examine Cs inflow from the upper channel. Furthermore, puddling and irrigation processes inhibit the discharge of radiocesium downstream. This indicates that water control in paddy fields is an important process in the prevention of river pollution and radionuclide transfer.
NASA Astrophysics Data System (ADS)
Crabtree, Stephen M.; Waters, Laura E.
2017-04-01
To evaluate if intermediate magmas erupting from Volcán Sanganguey (Mexico) and the surrounding volcanic field are formed by mixing of basalts and rhyolites or if they initially exist as intermediate liquids, a detailed petrological study is presented for eight andesite and dacite magmas. Six of the samples erupted from the central edifice (four andesites and two dacites) are crystal-rich (≤ 50 vol%), whereas the remaining two samples (one andesite and one dacite) erupted from monogenetic vents in the peripheral volcanic field and are crystal poor (≤ 5 vol%). Despite the variation in crystallinity, all samples are multiply saturated in five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± clinopyroxene ± hornblende). In all samples, plagioclase spans a 30-40 mol% An range in composition and orthopyroxene spans a range in Mg# of 5-10. Pre-eruptive temperatures and oxygen fugacites (relative to the NNO buffer) range from 853 (± 24) to 1085 (± 16) °C and - 0.1 (± 0.1) to 0.9 (± 0.1) Δ NNO, on the basis of Fe-Ti two oxide thermometry. Application of the plagioclase-liquid hygrometer to the samples reveals maximum H2O contents that range from 1.7-6.2 wt%. Comparison with phase equilibrium experiments demonstrates that all plagioclase and orthopyroxene compositions in the crystal-poor samples could have grown from their respective whole rock compositions. Comparison of crystal rich samples with phase equilibrium experiments reveals the presence of sodic xenocrysts which reflect resorption textures and an estimated excess plagioclase crystal cargo of > 6 vol%. The excess plagioclase crystal cargo is not distinguishable from phenocrystic plagioclase based on composition or texture, suggesting that they were also grown in intermediate melts, and are therefore described as antecrystic. No calcic plagioclase xenocrysts (> An79) typical of hydrous arc basalts are observed, thus it is likely that the excess plagioclase in the crystal-rich samples were originally formed in intermediate magmas. For the crystal-poor samples, we propose that the mechanism producing the complex phenocryst assemblages is degassing (± cooling), as it may shift equilibrium plagioclase compositions, kinetically inhibit crystal-growth, and increase melt viscosity, leading to complex textures. Notably, the hypothesis of degassing (± cooling) induced crystallization requires that the intermediate melts initially exist as liquids, prior to crystallization, supporting the hypothesis that intermediate melts are generated in the deep crust and arrive in the upper crust as liquids. For the crystal-rich samples, degassing (± cooling) may also be the mechanism generating a portion of the compositional and textural variation in the mineral assemblages and some incorporation of antecrysts or xenocrysts must occur as evidenced by an excess plagioclase crystal cargo; however, we find no definitive evidence supporting the incorporation of crystals initially grown in basalts or rhyolites. Given the similarities in phase assemblage, mineral compositions, mineral textures, and intensive variables between the crystal-poor and -rich samples, we conclude that the melts arriving into the upper crust beneath Volcán Sanganguey and the surrounding peripheral volcanic field are intermediate in composition and are initially formed (as liquids) in the deep crust. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-103. Appendix Fig. B.2.3. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-117. Appendix Fig. B.2.4. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-109. Appendix Fig. B.2.5. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-132. Appendix Fig. B.2.6. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-115. Appendix Fig. B.2.7. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-106. Appendix Fig. B.2.8. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-129. Appendix Fig. B.3.2. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-103. Appendix Fig. B.3.3. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-117 Appendix Fig. B.3.4. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-109. Appendix Fig. B.3.5. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-132. Appendix Fig. B.3.6. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-115. Appendix Fig. B.3.7. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-106. Appendix Fig. B.3.8. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-129. Appendix Fig. B.4.2. BSE images of plagioclase grains, with traversal path indicated, XAL-103. Appendix Fig. B.4.3. BSE images of plagioclase grains, with traversal path indicated, XAL-117. Appendix Fig. B.4.4. BSE images of plagioclase grains, with traversal path indicated, XAL-109. Appendix Fig. B.4.5. BSE images of plagioclase grains, with traversal path indicated, XAL-132. Appendix Fig. B.4.6. BSE images of plagioclase grains, with traversal path indicated, XAL-115. Appendix Fig. B.4.7. BSE images of plagioclase grains, with traversal path indicated, XAL-106. Appendix Fig. B.4.8. BSE images of plagioclase grains, with traversal path indicated, XAL-129. Appendix Fig. B.5.2. BSE images of pyroxene grains, with traversal path indicated, XAL-103. Appendix Fig. B.5.3. BSE images of pyroxene grains, with traversal path indicated, XAL-117. Appendix Fig. B.5.4. BSE images of pyroxene grains, with traversal path indicated, XAL-109. Appendix Fig. B.5.5. BSE images of pyroxene grains, with traversal path indicated, XAL-132. Appendix Fig. B.5.6. BSE images of pyroxene grains, with traversal path indicated, XAL-115. Appendix Fig. B.5.7. BSE images of pyroxene grains, with traversal path indicated, XAL-106. Appendix Fig. B.5.8. BSE images of pyroxene grains, with traversal path indicated, XAL-129.
NASA Technical Reports Server (NTRS)
Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.
1989-01-01
The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.
NASA Astrophysics Data System (ADS)
Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.
2018-05-01
Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.
Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain.
Loureiro, Iñigo; Escorial, María-Concepción; González, Águeda; Chueca, María-Cristina
2012-12-01
Transgenic wheat (Triticum aestivum L.) varieties are being developed and field-tested in various countries. Concerns regarding gene flow from genetically modified (GM) crops to non-GM crops have stimulated research to estimate outcrossing in wheat prior to the release and commercialization of any transgenic cultivars. The aim is to ensure that coexistence of all types of wheat with GM wheat is feasible in accordance with current regulations. The present study describes the result of a field experiment under the semi-arid climate conditions of Madrid, Spain, at two locations ("La Canaleja" and "El Encin" experimental stations) in Madrid over a 3-year period, from 2005 to 2007. The experimental design consisted of a 50 × 50 m wheat pollen source sown with wheat cultivars resistant to the herbicide chlortoluron ('Deganit' and 'Castan' respectively) and three susceptible receptor cultivars ('Abental', 'Altria' and 'Recital') sown in replicated 1 × 1 m plots at different distances (0, 1, 3, 5, 10, 20, 40, 80 and 100 m) and four directions. Outcrossing rates were measured as a percentage of herbicide-resistant hybrids using an herbicide-screening assay. Outcrossing was greatest near the pollen source, averaging 0.029% at 0 m distance at "La Canaleja" and 0.337% at "El Encin", both below the 0.9% European Union regulated threshold, although a maximum outcrossing rate of 3.5% was detected in one recipient plot. These percentages declined rapidly as the distance increased, but hybrids were detected at different rates at distances of up to 100 m, the maximum distance of the experiment. Environmental conditions, as drought in 2004-2005 and 2005-2006, may have influenced the extent of outcrossing. These assays carried out in wheat under semi-arid conditions in Europe provide a more complete assessment of pollen-mediated gene flow in this crop.
Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?
NASA Astrophysics Data System (ADS)
Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.
2012-04-01
Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.
Remnant trees affect species composition but not structure of tropical second-growth forest.
Sandor, Manette E; Chazdon, Robin L
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.
Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan
Landis, Douglas A.; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N.; Maredia, Karim
2016-01-01
Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers—40% women—were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television. PMID:28446990
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
Shaped superconductor cylinder retains intense magnetic field
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface
NASA Astrophysics Data System (ADS)
Brocks, S.; Bareth, G.
2016-06-01
Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.
Simulated Rainfall experiments on burned areas
NASA Astrophysics Data System (ADS)
Rulli, Maria Cristina
2010-05-01
Simulated Rainfall experiments were carried out in a Mediterranean area located in Italy, immediately after a forest fire occurrence, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. The selected study area was frequently affected by fire in the last years. Two adjacent 30 mq plots were set up with common physiographic features, and the same fire history, except for the last fire, which burned only one of them. Since both plots were previously subject to the passage of fire 6 years before the last one, one compares the hydrologic response and erosion of an area recently burned (B00) with that of an area burnt 6 years before (B06). Several rainfall simulations were carried out considering different pre-event soil moisture conditions where each rainfall simulation consisted of a single 60 minute application of rainfall with constant intensity of about 76 mm/h. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0 to 2% for B06 plot, and from 21 to 41% for B00. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B00 plot, as compared with that in B06 plot. Suspended sediment yield from B00 plot was more than two orders of magnitude higher than that from B06 plot in all the simulated events. The high runoff and soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce flood risk and soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post fire modification.
Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.
2005-01-01
Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.
Development and Simulation Studies of a Novel Electromagnetics Code
2011-10-20
121 Bibliography 123 LIST OF TABLES xii List of Tables 3.1 The rf photoinjector beam parameters of the BNL 2.856 GHz and the ANL AWA 1.3 GHz guns...examples of field plots. The space-charge fields are numerically computed with the parameters of BNL 2.856 GHz gun. Figure 3.2 shows a 3D plot of Er vs...the BNL 2.856 GHz and the ANL AWA 1.3 GHz guns. The main gun parameters are given in the Table 3.1. The distribution of the bunched beam can be
Critical behavior near the ferromagnetic phase transition in double perovskite Nd2NiMnO6
NASA Astrophysics Data System (ADS)
Ali, Anzar; Sharma, G.; Singh, Yogesh
2018-05-01
The knowledge of critical exponents plays a crucial role in trying to understand the interaction mechanism near a phase transition. In this report, we present a detailed study of the critical behaviour near the ferromagnetic (FM) transition (TC ˜ 193 K) in Nd2NiMnO6 using the temperature and magnetic field dependent isothermal magnetisation measurements. We used various analysis methods such as Arrott plot, modified Arrott plot, and Kouvel-Fisher plot to estimate the critical parameters. The magnetic critical parameters β = 0.49±0.02, γ = 1.05±0.04 and critical isothermal parameter δ = 3.05±0.02 are in excellent agreement with Widom scaling. The critical parameters analysis emphasizes that mean field interaction is the mechanism driving the FM transition in Nd2NiMnO6.
On estimation in k-tree sampling
Christoph Kleinn; Frantisek Vilcko
2007-01-01
The plot design known as k-tree sampling involves taking the k nearest trees from a selected sample point as sample trees. While this plot design is very practical and easily applied in the field for moderate values of k, unbiased estimation remains a problem. In this article, we give a brief introduction to the...
Forest health monitoring in New England: 1990 annual report
Robert T. Brooks; David R. Dickson; William B. Burkman; Imants Millers; Margaret Miller-Weeks; Ellen Cooter; Luther Smith; Luther Smith
1992-01-01
The USDA Forest Service, in cooperation with the U.S. Environmental Protection Agency and the New England State Forestry Agencies initiated field sampling for the Forest Health Monitoring program in 1990. Two hundred and sixty-three permanent sample plots were established. Measurements were taken to characterize the physical conditions of the plots. This publication...
1987-03-01
7 by William Green and J. Joseph Alford ARCHAEOLOGICAL AND HISTORICAL CONTEXT ................................................... 9 by...14 7 . Test trenching with paddlewbeel scraper ............................................................. 18 8. Feature...line); archaeological site boundaries (dotted lines) Numbers ore piece plot locations See figure 10 for Piece plots in enclosed ores 7 The field then
Impacts of Oak Decline on Forest Structure in Arkansas and Oklahoma: Preliminary Results
Eric Heitzman; James M. Guldin
2004-01-01
We established field plots in the Ouachita and Ozark Mountains of Arkansas and Oklahoma to quantify the impacts of oak decline on forest structure. Plots were identified as either high risk (red oak basal area > 20 square feet per acre) or low risk (red oak basal area
Unbalanced and Minimal Point Equivalent Estimation Second-Order Split-Plot Designs
NASA Technical Reports Server (NTRS)
Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey
2007-01-01
Restricting the randomization of hard-to-change factors in industrial experiments is often performed by employing a split-plot design structure. From an economic perspective, these designs minimize the experimental cost by reducing the number of resets of the hard-to- change factors. In this paper, unbalanced designs are considered for cases where the subplots are relatively expensive and the experimental apparatus accommodates an unequal number of runs per whole-plot. We provide construction methods for unbalanced second-order split- plot designs that possess the equivalence estimation optimality property, providing best linear unbiased estimates of the parameters; independent of the variance components. Unbalanced versions of the central composite and Box-Behnken designs are developed. For cases where the subplot cost approaches the whole-plot cost, minimal point designs are proposed and illustrated with a split-plot Notz design.
Agriculture in an area impacted by past uranium mining activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, F. P.; Oliveira, J. M.; Neves, O.
2007-07-01
The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated withmore » water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)« less
NASA Astrophysics Data System (ADS)
Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.
2014-03-01
Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.
Burks, Charles S
2017-04-01
Aerosol mating disruption is used for management of navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), in an increasing portion of California almonds and pistachios. This formulation suppresses pheromone monitoring traps far beyond the treatment block, potentially complicating monitoring and management of this key pest. Phenyl propionate is an attractant used to capture adults in the presence of mating disruption, completely suppressing pheromone traps, and lures combining phenyl propionate with a pheromone lure (PPO-combo lure) synergize trap capture in the presence of mating disruption. In this study, laboratory and field trials of different phenyl propionate dispensers indicate a useful life of six weeks. Controlled experiments found similar numbers of adults captured in phenyl propionate and PPO-combo lures in the presence of varying levels of mating disruption intensity. A subsequent trial compared monitoring of field plots at various distances from fields under commercial mating disruption for much of the growing season with pheromone and PPO-combo lures. Although there was some evidence of partial suppression of capture in PPO-combo traps closer to mating disruption compared with lures farther away, there was no failure of detection as occurred with pheromone lures. The ratio of adults in pheromone and PPO-combo traps varied with proximity from treated fields. These results indicate that, in addition to monitoring in mating disruption plots, phenyl propionate lures can be useful for insuring against failure of detection of navel orangeworm pressure in areas where mating disruption is widely used. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by a US Government employee and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Sullivan, F.; Palace, M. W.; Ducey, M. J.; David, O.; Cook, B. D.; Lepine, L. C.
2014-12-01
Harvard Forest in Petersham, MA, USA is the location of one of the temperate forest plots established by the Center for Tropical Forest Science (CTFS) as a joint effort with Harvard Forest and the Smithsonian Institute's Forest Global Earth Observatory (ForestGEO) to characterize ecosystem processes and forest dynamics. Census of a 35 ha plot on Prospect Hill was completed during the winter of 2014 by researchers at Harvard Forest. Census data were collected according to CTFS protocol; measured variables included species, stem diameter, and relative X-Y locations. Airborne lidar data were collected over the censused plot using the high spatial resolution Goddard LiDAR, Hyperspectral, and Thermal sensor package (G-LiHT) during June 2012. As part of a separate study, 39 variable radius plots (VRPs) were randomly located and sampled within and throughout the Prospect Hill CTFS/ForestGEO plot during September and October 2013. On VRPs, biometric properties of trees were sampled, including species, stem diameter, total height, crown base height, crown radii, and relative location to plot centers using a 20 Basal Area Factor prism. In addition, a terrestrial-based lidar scanner was used to collect one lidar scan at plot center for 38 of the 39 VRPs. Leveraging allometric equations of crown geometry and tree height developed from 374 trees and 16 different species sampled on 39 VRPs, a 3-dimensional stem map will be created using the Harvard Forest ForestGEO Prospect Hill census. Vertical and horizontal structure of 3d field-based stem maps will be compared to terrestrial and airborne lidar scan data. Furthermore, to assess the quality of allometric equations, a 2d canopy height raster of the field-based stem map will be compared to a G-LiHT derived canopy height model for the 35 ha census plot. Our automated crown delineation methods will be applied to the 2d representation of the census stem map and the G-LiHT canopy height model. For future work related to this study, high quality field-based stem maps with species and crown geometry information will allow for better comparisons and interpretations of individual tree spectra from the G-LiHT hyperspectral sensor as estimated by automated crown delineation of the G-LiHT lidar canopy height model.
Data documentation for the bare soil experiment at the University of Arkansas
NASA Technical Reports Server (NTRS)
Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.
1980-01-01
The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.
Alhmedi, A; Haubruge, E; Bodson, B; Francis, F
2006-01-01
A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to integrated pest management approach.
NASA Astrophysics Data System (ADS)
Brannon, E.; Moseman-Valtierra, S.; Tang, J.; Chen, X.; Martin, R.; Garate, M.
2014-12-01
Greenhouse gas emissions from salt marshes, especially of nitrous oxide (N2O), are a central interest because anthropogenic nutrient loads may substantially alter net climatic forcing of these globally significant ecosystems. In a series of lab and field experiments, a new cavity ring down spectrometer (CRDS, Picarro G2508) that uses mid-infrared (mid-IR) frequencies to measure N2O was compared to a near-IR gas analyzer (LGR N2O/CO analyzer). The Picarro G2508 reports N2O as well as CO2 and CH4 concentrations roughly every second at the parts per billion level. Responses of N2O fluxes to experimental ammonium nitrate additions in marsh mesocosms and marsh plots in situ were compared among these analyzers, along with minimum detectable N2O fluxes. At fluxes above 150 μmol N2O m-2 d-1, the Picarro G2508 and LGR analyzers performed similarly in both mesocosm and field plots that had been enriched with ammonium nitrate, however there were significantly lower minimum detectable N2O fluxes (about 1 order of magnitude) for the LGR than for the Picarro. A gas chromatograph (Shimadzu GC 2014) was also used to test calibration of the G2508. These experiments suggest that mid-IR CRDS technology offers a new tool for simultaneous analyses of N2O along with CO2 and CH4, which fills an important need for quantifying the net climatic forcing of ecosystems. However based on relatively high minimum N2O detection levels of the CRDS, it may work best in highly eutrophic environments.
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Henriques, João; Cragnell, Carolina; Skepö, Marie
2015-07-14
An increasing number of studies using molecular dynamics (MD) simulations of unfolded and intrinsically disordered proteins (IDPs) suggest that current force fields sample conformations that are overly collapsed. Here, we study the applicability of several state-of-the-art MD force fields, of the AMBER and GROMOS variety, for the simulation of Histatin 5, a short (24 residues) cationic salivary IDP with antimicrobial and antifungal properties. The quality of the simulations is assessed in three complementary analyses: (i) protein shape and size comparison with recent experimental small-angle X-ray scattering data; (ii) secondary structure prediction; (iii) energy landscape exploration and conformational class analysis. Our results show that, indeed, standard force fields sample conformations that are too compact, being systematically unable to reproduce experimental evidence such as the scattering function, the shape of the protein as compared with the Kratky plot, and intrapeptide distances obtained through the pair distance distribution function, p(r). The consistency of this deviation suggests that the problem is not mainly due to protein-protein or water-water interactions, whose parametrization varies the most between force fields and water models. In fact, as originally proposed in [ Best et al. J. Chem. Theory Comput. 2014, 10, 5113 - 5124.], balanced protein-water interactions may be the key to solving this problem. Our simulations using this approach produce results in very good agreement with experiment.
Davis, Richard F.; Kemerait, Robert C.
2010-01-01
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year. PMID:22736845
Camargo-Sanabria, Angela A.; Mendoza, Eduardo; Guevara, Roger; Martínez-Ramos, Miguel; Dirzo, Rodolfo
2015-01-01
It has been suggested that tropical defaunation may unleash community-wide cascading effects, leading to reductions in plant diversity. However, experimental evidence establishing cause–effect relationships thereof is poor. Through a 5 year exclosure experiment, we tested the hypothesis that mammalian defaunation affects tree seedling/sapling community dynamics leading to reductions in understorey plant diversity. We established plot triplets (n = 25) representing three defaunation contexts: terrestrial-mammal exclosure (TE), medium/large mammal exclosure (PE) and open access controls (C). Seedlings/saplings 30–100 cm tall were marked and identified within each of these plots and re-censused three times to record survival and recruitment. In the periods 2010–2011 and 2011–2013, survival was greater in PE than in C plots and recruitment was higher in TE plots than in C plots. Overall, seedling density increased by 61% in TE plots and 23% in PE plots, whereas it decreased by 5% in C plots. Common species highly consumed by mammals (e.g. Brosimum alicastrum and Ampelocera hottlei) increased in their abundance in TE plots. Rarefaction curves showed that species diversity decreased in TE plots from 2008 to 2013, whereas it remained similar for C plots. Given the prevalence of tropical defaunation, we posit this is an anthropogenic effect threatening the maintenance of tropical forest diversity. PMID:25540281
LaHue, Gabriel T; van Kessel, Chris; Linquist, Bruce A; Adviento-Borbe, Maria Arlene; Fonte, Steven J
2016-09-01
Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (NO) concentrations over the past half-century, yet there is considerable uncertainty in estimates of NO emissions from agriculture. Such estimates are typically based on the amount of N applied and a fertilizer-induced emission factor (EF), which is calculated as the difference in emissions between a fertilized plot and a zero-N control plot divided by the amount of N applied. A fertilizer-induced EF of 1% is currently recognized by the Intergovernmental Panel on Climate Change (IPCC) based on several studies analyzing published field measurements of NO emissions. Although many zero-N control plots used in these measurements received historical N applications, the potential for a residual impact of these inputs on NO emissions has been largely ignored and remains poorly understood. To address this issue, we compared NO emissions under laboratory conditions from soils sampled within zero-N control plots that had historically received N inputs versus soils from plots that had no N inputs for 20 yr. Historical N fertilization of zero-N control plots increased initial NO emissions by roughly one order of magnitude on average relative to historically unfertilized control plots. Higher NO emissions were positively correlated with extractable N and potentially mineralizable N. This finding suggests that accounting for fertilization history may help reduce the uncertainty associated with the IPCC fertilizer-induced EF and more accurately estimate the contribution of fertilizer N to agricultural NO emissions, although further research to demonstrate this relationship in the field is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Experiential Learning: High School Student Response to Learning Oceanography at Sea
NASA Astrophysics Data System (ADS)
Fiedler, J. W.; Tamsitt, V. M.; Crosby, S. C.; Ludka, B. C.
2016-12-01
The GOTO-SEE (Graduate students Onboard Teaching Oceanography - Scripps Educational Experience) cruises were conducted with two days of ship time off of Point Loma, CA, on the R/V Robert Gordon Sproul in July 2016. The cruises, funded through UC Ship Funds program, provided a unique training opportunity for graduate students to design, coordinate and conduct ship-based field experiments as well as teaching and mentoring students. The cruises allowed for instruction at sea for high school students in the UCSD Academic Connections program in two small classes: a two-week long Global Environmental Leadership and Sustainability Program and a 3-week long class entitled Wind, Waves and Currents: Physics of the Ocean World. Students in both classes assisted with the collection of data, including two repeat cross-shore vertical CTD sections with nutrient sampling, and the deployment and recovery of a 10-day moored vertical thermistor array. Additional activities included plankton net tows, sediment sampling, depth soundings, and simple experiments regarding light absorption in the ocean. The students later plotted the data collected as a class assignment and presented a scientific poster to their peers. Here, we present the lessons learned from the cruises as well as student responses to the unique in-the-field experience, and how those responses differed by curriculum.
Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola
2014-01-01
Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants. PMID:24714367
Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola
2014-01-01
Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.
Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
2014-01-01
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
Experimentally reducing species abundance indirectly affects food web structure and robustness.
Barbosa, Milton; Fernandes, G Wilson; Lewis, Owen T; Morris, Rebecca J
2017-03-01
Studies on the robustness of ecological communities suggest that the loss or reduction in abundance of individual species can lead to secondary and cascading extinctions. However, most such studies have been simulation-based analyses of the effect of primary extinction on food web structure. In a field experiment we tested the direct and indirect effects of reducing the abundance of a common species, focusing on the diverse and self-contained assemblage of arthropods associated with an abundant Brazilian shrub, Baccharis dracunculifolia D.C. (Asteraceae). Over a 5-month period we experimentally reduced the abundance of Baccharopelma dracunculifoliae (Sternorrhyncha: Psyllidae), the commonest galling species associated with B. dracunculifolia, in 15 replicate plots paired with 15 control plots. We investigated direct effects of the manipulation on parasitoids attacking B. dracunculifoliae, as well as indirect effects (mediated via a third species or through the environment) on 10 other galler species and 50 associated parasitoid species. The experimental manipulation significantly increased parasitism on B. dracunculifoliae in the treatment plots, but did not significantly alter either the species richness or abundance of other galler species. Compared to control plots, food webs in manipulated plots had significantly lower values of weighted connectance, interaction evenness and robustness (measured as simulated tolerance to secondary extinction), even when B. dracunculifoliae was excluded from calculations. Parasitoid species were almost entirely specialized to individual galler species, so the observed effects of the manipulation on food web structure could not have propagated via the documented trophic links. Instead, they must have spread either through trophic links not included in the webs (e.g. shared predators) or non-trophically (e.g. through changes in habitat availability). Our results highlight that the inclusion of both trophic and non-trophic direct and indirect interactions is essential to understand the structure and dynamics of even apparently discrete ecological communities. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Song, Minghua; Guo, Yu; Yu, Feihai; Zhang, Xianzhou; Cao, Guangmin; Cornelissen, Johannes H C
2018-05-10
Input of labile organic carbon can enhance decomposition of extant soil organic carbon (SOC) through priming. We hypothesized that long-term nitrogen (N) input in different chemical forms alters SOC pools by altering priming effects associated with N-mediated changes in plants and soil microbes. The hypothesis was tested by integrating field experimental data of plants, soil microbes and two incubation experiments with soils that had experienced 10 years of N enrichment with three chemical forms (ammonium, nitrate and both ammonium and nitrate) in an alpine meadow on the Tibetan Plateau. Incubations with glucose- 13 C addition at three rates were used to quantify effects of exogenous organic carbon input on the priming of SOC. Incubations with microbial inocula extracted from soils that had experienced different long-term N treatments were conducted to detect effects of N-mediated changes in soil microbes on priming effects. We found strong evidence and a mechanistic explanation for alteration of SOC pools following 10 years of N enrichment with different chemical forms. We detected significant negative priming effects both in soils collected from ammonium-addition plots and in sterilized soils inoculated with soil microbes extracted from ammonium-addition plots. In contrast, significant positive priming effects were found both in soils collected from nitrate-addition plots and in sterilized soils inoculated with soil microbes extracted from nitrate-addition plots. Meanwhile, the abundance and richness of graminoids were higher and the abundance of soil microbes was lower in ammonium-addition than in nitrate-addition plots. Our findings provide evidence that shifts toward higher graminoid abundance and changes in soil microbial abundance mediated by N chemical forms are key drivers for priming effects and SOC pool changes, thereby linking human interference with the N cycle to climate change. © 2018 John Wiley & Sons Ltd.
Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine
2016-02-01
Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.
Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory
2013-01-01
Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795
CFD Extraction Tool for TecPlot From DPLR Solutions
NASA Technical Reports Server (NTRS)
Norman, David
2013-01-01
This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.
A field like today's? The strength of the geomagnetic field 1.1 billion years ago
NASA Astrophysics Data System (ADS)
Sprain, Courtney J.; Swanson-Hysell, Nicholas L.; Fairchild, Luke M.; Gaastra, Kevin
2018-06-01
Palaeomagnetic data from ancient rocks are one of the few types of observational data that can be brought to bear on the long-term evolution of Earth's core. A recent compilation of palaeointensity estimates from throughout Earth history has been interpreted to indicate that Earth's magnetic field strength increased in the Mesoproterozoic (between 1.5 and 1.0 billion years ago), with this increase taken to mark the onset of inner core nucleation. However, much of the data within the Precambrian palaeointensity database are from Thellier-style experiments with non-ideal behaviour that manifests in results such as double-slope Arai plots. Choices made when interpreting these data may significantly change conclusions about long-term trends in the intensity of Earth's geomagnetic field. In this study, we present new palaeointensity results from volcanics of the ˜1.1-billion-year-old North American Midcontinent Rift. While most of the results exhibit non-ideal double-slope or sagging behaviour in Arai plots, some flows have more ideal single-slope behaviour leading to palaeointensity estimates that may be some of the best constraints on the strength of Earth's field for this time. Taken together, new and previously published palaeointensity data from the Midcontinent Rift yield a median field strength estimate of 56.0 ZAm2—very similar to the median for the past 300 Myr. These field strength estimates are distinctly higher than those for the preceding billion years (Ga) after excluding ca. 1.3 Ga data that may be biased by non-ideal behaviour—consistent with an increase in field strength in the late Mesoproterozoic. However, given that ˜90 per cent of palaeointensity estimates from 1.1 to 0.5 Ga come from the Midcontinent Rift, it is difficult to evaluate whether these high values relative to those estimated for the preceding billion years are the result of a stepwise, sustained increase in dipole moment. Regardless, palaeointensity estimates from the Midcontinent Rift indicate that the surface expression of Earth's geomagnetic field at ˜1.1 Ga may have been similar to that on the present-day Earth.
A field like today's? The strength of the geomagnetic field 1.1 billion years ago
NASA Astrophysics Data System (ADS)
Sprain, Courtney J.; Swanson-Hysell, Nicholas L.; Fairchild, Luke M.; Gaastra, Kevin
2018-02-01
Paleomagnetic data from ancient rocks are one of the few types of observational data that can be brought to be bear on the long-term evolution of Earth's core. A recent compilation of paleointensity estimates from throughout Earth history has been interpreted to indicate that Earth's magnetic field strength increased in the Mesoproterozoic (between 1.5 and 1.0 billion years ago), with this increase taken to mark the onset of inner core nucleation. However, much of the data within the Precambrian paleointensity database are from Thellier-style experiments with non-ideal behavior that manifests in results such as double-slope Arai plots. Choices made when interpreting these data may significantly change conclusions about long-term trends in the intensity of Earth's geomagnetic field. In this study, we present new paleointensity results from volcanics of the ˜1.1 billion-year-old North American Midcontinent Rift. While most of the results exhibit non-ideal double-slope or sagging behavior in Arai plots, some flows have more ideal single-slope behavior leading to paleointensity estimates that may be some of the best constraints on the strength of Earth's field for this time. Taken together, new and previously published paleointensity data from the Midcontinent Rift yield a median field strength estimate of 56.0 ZAm2—very similar to the median for the past 300 million years. These field strength estimates are distinctly higher than those for the preceding billion years after excluding ca. 1.3 Ga data that may be biased by non-ideal behavior—consistent with an increase in field strength in the late Mesoproterozoic. However, given that ˜90 per cent of paleointensity estimates from 1.1 to 0.5 Ga come from the Midcontinent Rift, it is difficult to evaluate whether these high values relative to those estimated for the preceding billion years are the result of a stepwise, sustained increase in dipole moment. Regardless, paleointensity estimates from the Midcontinent Rift indicate that the surface expression of Earth's geomagnetic field at ˜1.1 Ga may have been similar to that on the present-day Earth.
NASA Astrophysics Data System (ADS)
Dolan, K. A.; Huang, W.; Johnson, K. D.; Birdsey, R.; Finley, A. O.; Dubayah, R.; Hurtt, G. C.
2016-12-01
In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to quantify and map aboveground forest biomass at high spatial resolutions. Crucial to this framework has been the collection of field-based estimates of aboveground tree biomass, combined with remotely detected canopy and structural attributes, for calibration and validation. Here we evaluate the field- based calibration and validation strategies within this carbon monitoring framework and discuss the implications on local to national monitoring systems. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state of MD (32,133 km2), and most recently the tri-state region of MD, PA, and DE (157,868 km2) and covers forests in four major USDA ecological providences. While there are approximately 1000 Forest Inventory and Analysis (FIA) plots distributed across the state of MD, 60% fell in areas considered non-forest or had conditions that precluded them from being measured in the last forest inventory. Across the two pilot counties, where population and landuse competition is high, that proportion rose to 70% Thus, during the initial phases of this project 850 independent field plots were established for model calibration following a random stratified design to insure the adequate representation of height and vegetation classes found across the state, while FIA data were used as an independent data source for validation. As the project expanded to cover the larger spatial tri-state domain, the strategy was flipped to base calibration on more than 3,300 measured FIA plots, as they provide a standardized, consistent and available data source across the nation. An additional 350 stratified random plots were deployed in the Northern Mixed forests of PA and the Coastal Plains forests of DE for validation.
Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application
NASA Astrophysics Data System (ADS)
Lentz, R. D.; Lehrsch, G. A.
2014-12-01
Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.
Recurrence plot statistics and the effect of embedding
NASA Astrophysics Data System (ADS)
March, T. K.; Chapman, S. C.; Dendy, R. O.
2005-01-01
Recurrence plots provide a graphical representation of the recurrent patterns in a timeseries, the quantification of which is a relatively new field. Here we derive analytical expressions which relate the values of key statistics, notably determinism and entropy of line length distribution, to the correlation sum as a function of embedding dimension. These expressions are obtained by deriving the transformation which generates an embedded recurrence plot from an unembedded plot. A single unembedded recurrence plot thus provides the statistics of all possible embedded recurrence plots. If the correlation sum scales exponentially with embedding dimension, we show that these statistics are determined entirely by the exponent of the exponential. This explains the results of Iwanski and Bradley [J.S. Iwanski, E. Bradley, Recurrence plots of experimental data: to embed or not to embed? Chaos 8 (1998) 861-871] who found that certain recurrence plot statistics are apparently invariant to embedding dimension for certain low-dimensional systems. We also examine the relationship between the mutual information content of two timeseries and the common recurrent structure seen in their recurrence plots. This allows time-localized contributions to mutual information to be visualized. This technique is demonstrated using geomagnetic index data; we show that the AU and AL geomagnetic indices share half their information, and find the timescale on which mutual features appear.
NASA Astrophysics Data System (ADS)
Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.
2009-12-01
Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in the control plots with the highest rate being 17.2 μmol/m2/s in OTCs and 16.8 μmol/m2/s in control. Similarly, AMAX of E. vaginatum was also higher in OTCs with the highest rate being 10.4 μmol/m2/s in the control and 11 μmol/m2/s in the OTCs. Leaf area (LAI) was higher in the warming plots (mean = .39(0.095)) than LAI in the control plots (mean =.3 (.067)) in the control plots. This difference was significant as p<0.05. The higher photosynthetic rate and temperature optimum of photosynthesis in B. nana may indicate shrubs ability to cope with rising temperatures more efficiently than E. vagination which may lead to shifts in total leaf area and species composition.
NASA Astrophysics Data System (ADS)
Wang, Jinhua; Zhang, Ronggang; Sun, Juan
2018-02-01
Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.
NASA Astrophysics Data System (ADS)
Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz
2013-04-01
N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J
2016-01-15
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.
2016-01-01
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934
Crop residue decomposition in Minnesota biochar-amended plots
NASA Astrophysics Data System (ADS)
Weyers, S. L.; Spokas, K. A.
2014-06-01
Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.
Potential effects of vinasse as a soil amendment to control runoff and soil loss
NASA Astrophysics Data System (ADS)
Hazbavi, Z.; Sadeghi, S. H. R.
2016-02-01
Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.
NASA Astrophysics Data System (ADS)
Juen, M.; Mayer, C.; Lambrecht, A.; Wirbel, A.; Kueppers, U.
2012-04-01
Currently many glaciers all over the world show negative mass balances. Because of the retreating ice masses, there is an increase of deglaciated slopes. In combination with increased melting of permafrost these areas can become unstable and account for an additional supply of weathered bedrock and sediments onto the glacier surface. Furthermore increasing ablation rates advance the melting out and accumulation of englacial till on the glacier surface. The experiment was performed during summer season 2010 at the middle tongue of Vernagtferner, a temperate glacier in the Oetztal Alps, Austria. The experimental setup was designed in a way to monitor the parameters which are most crucial for controlling sub-debris ice melt with regards to lithology, grain size and moisture content. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of sieved natural material. The local metamorphic mica schist and volcanic debris were used for the experiment. Ablation was measured at stakes. Bare ice melt was observed continuously with a sonic ranger. Three automatic weather stations were installed to record meteorological data. To obtain information concerning the internal temperature distribution of the debris cover, thermistors were installed at various depths. For each individual plot thermal conductivity and thermal diffusivity have been estimated. The observations during the season revealed a clear dependence of the sub-debris ice melt on the layer thickness and the grain size. For the fine sand fraction the moisture content plays an important role, as these test fields were always water saturated. Highly porous volcanic material protects the ice much more effectively from melting than similar layer thicknesses of the local mica schist. Also the albedo plays an important role, where melt rates under dark debris are about 1.75 times higher than underneath brighter material. The analysis of thermal diffusivities indicates that lower values can be found in proximity to the debris/ice interface. Based on our experiences it can be concluded that test sites need intensive care in order to obtain representative data.
1987-03-25
by Lloyd (1952) using generalized least squares instead of ordinary least squares, and by Wilk, % 20 Gnanadesikan , and Freeny (1963) using a maximum...plot. The half-normal distribution is a special case of the gamma distribution proposed by Wilk, Gnanadesikan , and Huyett (1962). VARIATIONS ON THE... Gnanadesikan , R. Probability plotting methods for the analysis of data. Biometrika, 1968, 55, 1-17. This paper describes and discusses graphical techniques
Piqué, Josep
2018-01-01
Resolving human–wildlife conflicts requires the assessment and implementation of appropriate technical measures that minimize negative impacts on socio-economic uses, including agriculture, and ensure the adequate protection of biological diversity. Rice paddies are widely distributed in the western Mediterranean region. Because of their high productivity, they can be a good habitat for waterbirds, including the purple swamphen Porphyrio porphyrio, particularly in areas where natural wetlands have been removed or reduced. As a result of its population growth, there have been increasing levels of damage caused by this species in rice fields due to stem-cutting and opening of bald patches in rice fields. With the aim of reducing damage, we evaluated the effectiveness of passive and active measures that would limit access to rice fields and deter/scare away purple swamphens in affected areas of the Ebro Delta (NE Spain). We selected the techniques according to the growth phase of rice and the activity of birds in the rice fields (perimeter fences and clearing vegetation around the rice plots during sprouting and growing phases, and falconry at maturation). There were positive results during the sprouting and growing phases thanks to fences and clearing vegetation, reducing the affected area by 37.8% between treatment and control plots. This would mean an economic savings of 18,550 €/year in compensation payments by regional administrations including the investment in implementing and maintaining passive protection measures. Active deterrence through falconry did not reduce the level of damage. The analysis of purple swamphen home range, activity centers (centroids), and the proportion of locations in and outside of rice fields showed no differences before and after dissuasive practices. These results were influenced by multiple concurrent factors including weather, the structural configuration of the rice plots and their location. In summary, we recommend the establishment of protection measures (perimeter fences + clearing vegetation around the rice plots) to reduce the level of damage. PMID:29707429
NASA Astrophysics Data System (ADS)
Zhang, Peng; Fairchild, S. B.; Back, T. C.; Luo, Yi
2017-12-01
This paper studies field emission (FE) from a single carbon nanotube (CNT) fiber with different anode-cathode (AK) gap distances. It is found that the field enhancement factor depends strongly on the finite AK gap distance, due to the combination of geometrical effects and possible fiber morphology change. The geometrical effects of AK gap distance on the field enhancement factor are confirmed using COMSOL simulations. The slope drop in the Fowler-Northeim (FN) plot of the FE data in the high voltage is related to the electrical contact resistance between the CNT fiber and the substrate. It is found that even a small series resistance to the field emitter (<30% of the emission gap impedance) can strongly modify the FE characteristics in the high voltage regime, inducing a strong deviation from the linear FN plot.
Cocco, Arturo; Muscas, Enrico; Mura, Alessandra; Iodice, Andrea; Savino, Francesco; Lentini, Andrea
2018-05-08
Although mating disruption is increasingly being used to control the worldwide grapevine pest vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), its mode of action remains unclear. A three-year field experiment was carried out to investigate the effects of mating disruption on the development and reproduction of the vine mealybug. The influence of mating disruption applied over consecutive years on the pest population density was also evaluated. The percentage of ovipositing females was significantly reduced in disrupted plots by 18.8-66.2%, depending on the year. The absence of ovipositing females in disrupted plots in the autumn of the second and third year indicates the effectiveness of mating disruption throughout the whole growing season. Mating disruption consistently prolonged the pre-oviposition period in all years by up to 12.5 days. Our findings provide new insights into the mechanisms underlying the pheromone-based control of the vine mealybug and indicate that the reduction of the pest population density is due to both a decrease and delay in female mating. In addition, the population density of vine mealybugs under mating disruption decreased over years, indicating that consecutive applications of this control strategy would significantly increase the effectiveness of controlling the vine mealybug by mating disruption. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash
2017-10-01
Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.
Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash
2017-10-01
Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.
Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; David E. Hall; Michael J. Falkowski
2008-01-01
Meaningful relationships between forest structure attributes measured in representative field plots on the ground and remotely sensed data measured comprehensively across the same forested landscape facilitate the production of maps of forest attributes such as basal area (BA) and tree density (TD). Because imputation methods can efficiently predict multiple response...
Plotting the Self: Repurposing Our Stories as the Mythos of Second Phase Individuation
ERIC Educational Resources Information Center
Myrow, Neora
2009-01-01
Individuation is both the crowning idea of C. G. Jung's analytic psychology and directs how we read stories in the nascent field of mythological studies from a depth psychological perspective. This project considers individuation from a unique angle: its narrative form. It seeks the "plot" or "mythos" of individuation in an Aristotelian sense.…
Ash Leachate Can Reduce Surface Erosion
George J. Holcomb; Philip B. Durgin
1979-01-01
In laboratory analyses of the Larabee soil from north-western California, ash leachate flocculated the clay fractions. As a result, the soil quickly settled out of suspension. To test the hypothesis that field plots on disturbed areas treated with ash leachate would be more resistant to erosion than nontreated plots, a study was done in July and August 1978, on two...
Aerial field tests of five insecticides on western spruce budworm in Idaho and Montana, 1978-1980
George P. Markin; David R. Johnson
1986-01-01
Each of five insecticides was applied at two or three application rates by helicopter to 20-ha plots. Effectiveness of each application rateagainst eastern spruce budworm (Choristoneura occidentalis) was judged by comparing larval population reduction at 15 or 20 days aftertreatment against populations in untreated check plots. Performance of each...
The new Brazilian national forest inventory
Joberto V. de Freitas; Yeda M. M. de Oliveira; Doadi A. Brena; Guilherme L.A. Gomide; Jose Arimatea Silva; < i> et al< /i>
2009-01-01
The new Brazilian national forest inventory (NFI) is being planned to be carried out through five components: (1) general coordination, led by the Brazilian Forest Service; (2) vegetation mapping, which will serve as the basis for sample plot location; (3) field data collection; (4) landscape data collection of 10 x 10-km sample plots, based on high-resolution...
Forest habitat types of northern Idaho: A second approximation
Stephen V. Cooper; Kenneth E. Neiman; David W. Roberts
1991-01-01
The addition of more than 900 plots to the Daubenmire's original 181-plot database has resulted in a refinement of their potential natural vegetation-based land classification for northern Idaho. A diagnostic, indicator species-based key is provided for field identification of the eight climax series, 46 habitat types, and 60 phases. Recognized syntaxa are...
Field guide for forested plant associations of the Wenatchee National Forest.
T.R. Lillybridge; B.L. Kovalchik; C.K. Williams; B.G. Smith
1995-01-01
A classification of forest vegetation is presented for the Wenatchee National Forest (NF). It is based on potential vegetation, with the plant association as the basic unit. The sample includes about 570 intensive plots and 840 reconnaissance plots distributed across the Wenatchee National Forest and the southwest portion of the Okanogan National Forest from 1975...
USDA-ARS?s Scientific Manuscript database
Strawberry (Fragaria ×ananassa Duchesne ex Rozier) fruit were harvested from two field plots of five day-neutral cultivars: Albion, Monterey, Portola, San Andreas and Seacape. Marketable (salable) berries were harvested from each plot on 22 and 25 August, and unblemished fully ripe fruit were selec...
Imputatoin and Model-Based Updating Technique for Annual Forest Inventories
Ronald E. McRoberts
2001-01-01
The USDA Forest Service is developing an annual inventory system to establish the capability of producing annual estimates of timber volume and related variables. The inventory system features measurement of an annual sample of field plots with options for updating data for plots measured in previous years. One imputation and two model-based updating techniques are...
Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement
Michael Kohl; Charles T Scott; Andrew J Lister; Inez Demon; Daniel Plugge
2015-01-01
Implementing REDD+ renders the development of a measurement, reporting and verification (MRV) system necessary to monitor carbon stock changes. MRV systems generally apply a combination of remote sensing techniques and in-situ field assessments. In-situ assessments can be based on 1) permanent plots, which are assessed on all successive occasions, 2) temporary plots,...
Realized gains from block-plot coastal Douglas-fir trials in the northern Oregon Cascades
Terrence Z. Ye; Keith J.S. Jayawickrama; J. Bradley St. Clair
2010-01-01
Realized gains for coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) were evaluated using data collected from 15-year-old trees from five field trials planted in large block plots in the northern Oregon Cascades. Three populations with different genetic levels (elite--high predicted gain; intermediate--moderate predicted gain; and an...
Eger, J E; Hamm, R L; Demark, J J; Chin-Heady, E; Tolley, M P; Benson, E P; Zungoli, P A; Smith, M S; Spomer, N A
2014-06-01
A durable termite bait containing 0.5% noviflumuron was evaluated for physical durability, retention of active ingredient, consumption by termites, and toxicity to termites over 5 yr in field studies at locations in Indiana, Mississippi, and South Carolina. Plots in Indiana and Mississippi included both natural rainfall and irrigated plots, while plots in South Carolina received only natural rainfall. Samples collected every 3 mo for the first 4 yr were evaluated for consumption with a 7 d no-choice bioassay using Reticulitermes flavipes (Kollar). Consumption and toxicity of 5 yr samples were evaluated in similar bioassays conducted for 42 d. Durable baits received from field sites had some cracking, and a small amount of external flaking, but no major deterioration based on visual observation. There were no significant differences in noviflumuron concentration over the 5-yr period and no trend toward reduced concentrations of noviflumuron over time. Consumption of aged durable baits over 4 yr was variable, but termites usually consumed more aged durable bait than fresh durable bait and the differences were frequently significant. There were some exceptions, but termites consumed significantly more fresh durable bait than aged durable bait in only 4% of observations. When 5 yr samples were evaluated, consumption was lowest for fresh durable bait and termites consumed significantly more aged durable bait from irrigated plots in Indiana and from both natural and irrigated plots in Mississippi than fresh durable bait. Survival of termites fed blank durable bait was significantly higher than that for termites fed any of the baits containing noviflumuron and there were no significant differences in survival among the noviflumuron durable baits. Our results suggest that the bait would be durable for at least 5 yr and possibly longer under most environmental conditions.
NASA Astrophysics Data System (ADS)
Vourlitis, G. L.; Hentz, C. S.
2015-12-01
Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed to high N inputs lost substantially more N from leaching than control plots. These results indicate that post-fire chaparral shrublands tend to be "leaky" even though they are not yet "N-saturated." Recovering stands in high-N deposition areas will likely be large sources of N to groundwater and/or streams regardless of whether NPP is stimulated by N input.
NASA Astrophysics Data System (ADS)
Mertens, Kewan; Jacobs, Lies; Maes, Jan; Kervyn, Matthieu; Vranken, Liesbet
2016-04-01
In the mountainous area of the Rwenzori region, western Uganda, landslides frequently destroy houses and plots of farmers living and cultivating on unstable slopes. The impact of these landslides on the local livelihoods depends on the exposure and the resilience of the households. Both the exposure and the resilience can be modified to a certain extent with specific measures, e.g. planting slope stabilizing trees of paying for (informal) insurance. The adoption of such measures and the willingness to accept measures imposed by local governments crucially depends on the local awareness of landslide risk. The aim of this research is to estimate awareness on landslide susceptibility, as a proxy for landslide risk, among household heads in a landslide prone area in the Rwenzori region, Western Uganda. The objective is to compare household and plot characteristics between aware and unaware households. This will allow us to identify those households which are less aware of landslide susceptibility and therefore most likely to be less resilient when exposed to landslide risk. We use data from a susceptibility map constructed in 2016 and a structured household survey conducted in the Rwenzori region in 2015. The susceptibility map is based on a SRTM 30m DEM and validated with field observations, while the household survey includes the answers of more than 450 households that have been asked to evaluate the landslide susceptibility on their plots. Simple probit models at plot level are used to compare the estimated landslide susceptibility with the modelled susceptibility. We use this comparison to identify the household characteristics of those households that do not correctly estimate the landslide susceptibility on their plots. We will exploit the fact that landslide susceptibility is very space specific and that households can therefore have plots in both susceptible and unsusceptible areas. The research is currently ongoing, but we hypothesize that younger farmers with a lower education level, lower trust, social capital and networks and with a recent migration history are less able to estimate landslide susceptibility on their plots. Literature on other disasters has demonstrated that human capital, social networks and past experience are crucial factors in determining risk perception. To our knowledge this is the first study to specifically investigate landslide risk awareness in a developing country, integrating both detailed socio-economic and geographical data. While estimating the awareness of landslide susceptibility is not sufficient to come to an estimation of a household's coping capacity, we consider it to be a first and necessary step towards a full estimation of household resilience.
Pheromone disruption of Argentine ant trail integrity.
Suckling, D M; Peck, R W; Manning, L M; Stringer, L D; Cappadonna, J; El-Sayed, A M
2008-12-01
Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m(2)) to 1- and 4-m(2) plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected.
The effect of leaf litter cover on surface runoff and soil erosion in Northern China.
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.
Pheromone disruption of Argentine ant trail integrity
Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.
2008-01-01
Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858
Souza, Evann; Follett, Peter A; Price, Don K; Stacy, Elizabeth A
2008-08-01
The little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), is an invasive ant that forms supercolonies when it successfully invades new areas. W. auropunctata was first reported in Hawaii in 1999, and it has since invaded a variety of agricultural sites, including nurseries, orchards, and pastures. Amdro (hydramethylnon; in bait stations), Esteem (pyriproxyfen; broadcast bait), and Conserve (spinosad; ground spray) were tested for their efficacy against W. auropunctata in a rambutan, Nephelium lappaceum L. and mangosteen, Garcinia mangostana L., orchard by making treatments every 2 wk for 16 wk. Relative estimates of ant numbers in plots was determined by transect sampling using peanut butter-baited sticks. Significant treatment effects were observed on weeks 13-17, with reductions in ant counts occurring in the Amdro and Esteem treatments. During this period, the reduction in ant numbers from pretreatment counts averaged 47.1 and 92.5% in the Amdro and Esteem plots, respectively, whereas ant numbers in the untreated control plots increased by 185.9% compared with pretreatment counts. Conserve did not cause a reduction in ant counts as applied in our experiment. No plots for any of the treatments achieved 100% reduction. Pseudococcidae were counted on branch terminals at 4-wk intervals. The two predominant species, Nipaecoccus nipae (Maskell) and Nipaecoccus viridis (Newstead) were significantly lower in the Amdro and Esteem treatments on week 16 compared with controls. Many W. auropunctata were found nesting in protected sites in the orchard trees, which may have compromised the ground-based control methods. Absolute density estimates from shallow core samples taken from the orchard floor indicated the W. auropunctata supercolony exceeded 244 million ants and 22.7 kg wet weight per ha.
Kumar, Manoj; Bauddh, Kuldeep; Kumar, Sanjeev; Sainger, Manish; Sainger, Poonam A; Singh, Rana P
2013-01-01
Field experiments were conducted during two consequent years in semi-arid, subtropical climate of Rohtak district situated in North-West Indian state Haryana to evaluate the effects of eco-friendly organic matrix entrapped urea (OMEU) on wheat (Triticum aestivum L. cv. WH-711). The OMEU prepared in granular form contained cow dung, rice bran (grain cover of Oryza sativa), neem (Azadirachta indica) leaves and clay soil (diameter of particles < 0.002 mm) in 1:1:1:1 ratios and saresh (plant gum of Acacia sp.) as binder entrapping half of the recommended dose of urea. A basal application of organic matrix entrapped urea showed increase in plant growth in terms of fresh and dry weights, root length, root number, leaf number, tillers, plant height earlet number, earlet length and productivity in terms of grain yield and straw yield over free form of urea (FU) and no fertilizer (NF) application. The OMEU increased total soluble proteins, organic N and free ammonium content in the leaves at 45 and 60 days. The nutritional status of wheat grains in OMEU applied plants was almost similar to that observed for FU applied plants. An increase in organic carbon and available phosphorus (P) was observed in OMEU applied plots on harvest whereas pH was slightly decreased over FU applied plots. The microbial population and activity in terms of fungal and bacterial colony count and activities soil dehydrogenase and alkaline phosphatase were significantly higher in OMEU applied plots as compared to the FU applied plots. Our data indicate that OMEU which are low cost, biodegradable and non-toxic can be used to replace the expensive chemical fertilizers for wheat cultivation in semi-arid, subtropical climate.
Yang, Li-Xia; Yang, Gui-Shan; Yuan, Shao-Feng; Wu, Ye
2007-08-01
Experiments of field runoff plots, which were conducted at vegetable plots in Hongsheng town of Wuxi city--the typical region of Taihu Basin, were designed to assess the effects of different rainfall intensities on soil phosphorus runoff loss from vegetable plots by artificial rainfall simulations. Results showed that there was a relationship of power function between initial runoff-generation time and rainfall intensity. Runoff amount slowly increased under small rainfall intensity, but rapidly increased with rainfall intensity increase. The concentrations of total phosphorus (TP) and particulate phosphorus (PP) were higher at the early stage, then gradually decreased with time and finally reached a comparative steady stage under 0.83, 1.17 and 1.67 mm x min(-1). However they indicated no obvious trend except wavy undulation under 2.50 mm x min(-1). In the course of rainfall-runoff, dissolved phosphorus (DP) gently varied and accounted for 20% - 32% of TP. PP was 68% - 80% of TP and its change trend was consistent with TP. Therefore, PP was main loss form of soil phosphorus runoff. Comparison of different phosphorous loss rate under different rainfall intensities suggested that loss rate of TP and DP under 2.50 mm x min(-1) was 20 times and 33 times higher than that under 0.83 mm x min(-1), which showed that loss rate of PP and DP increased with the increase of rainfall intensities. Results indicated that lots of inorganic dissolved phosphorus (DIP) of phosphorous fertilizer was discharged into water environment by using fertilizer in soil surface before rainfall, which increased loss of DP and greatly aggravated degree of water eutrophication.
Post-fire soil nutrient redistribution in northern Chihuahuan Desert
NASA Astrophysics Data System (ADS)
Wang, G.; Li, J. J.; Ravi, S.; Sankey, J. B.; Duke, D.; Gonzales, H. B.; Van Pelt, S.
2016-12-01
The desert grassland in the southwestern US has undergone dramatic land degradation with woody shrub encroachment over the last 150 years. Wind erosion and periodic fires are major drivers of vegetation dynamics in these ecosystems. Due to climate change and anthropogenic disturbances, many drylands are undergoing changes in fire regimes, which can largely alter the nutrient loss rate as well as the soil resource heterogeneity. In this study, we used manipulative field experiments, laboratory and geostatistical analyses to investigate the distribution of fertile islands, nutrient loss rate and spatial variation. Replicated burned and control experimental plots were set up in a desert grassland in northern Chihuahuan Desert in March 2016. Windblown sediments were monitored by multiple MWAC sediment collectors on each plot. Surface soil samples, with their locations accurately recorded (i.e., under shrub, under grass, and bare interspace) were collected twice per year in spring and again in summer after the experimental setup. Our preliminary results show that the spatial heterogeneity of soil C and N in the burned plots has changed notably compared to the control plots. Our results further demonstrated that areas with burned shrubs is most vulnerable to wind erosion, therefore the soil nutrient loss is most significant, almost five times of the nutrient loss rate of bare areas. Interspace bare areas is in the lowest micro-land and some of the surface has caliche, which makes the surface resistant to wind erosion. And areas with burned grass receive the lightest wind erosion and nutrient loss, around one third of the erosion on bare areas, because burned grasses still cover the surface and the dead bodies can eliminate wind erosion to a large extent. Hence, periodic fire in desert grassland favors the evenness distribution of soil nutrients and can retard the shrub encroachment process.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas
2015-04-01
Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been distributed randomly within the treatments. Linear mixed effect modelling was used to examine the effects of the treatments on sediment discharge and surface runoff. Results were compared with recent findings from erosion models and laboratory studies. Results show that sediment discharge is significantly higher (59 %, p=0.018) on conventional treatments (31.8 g/m2/h) than on organic treatments (20.0 g/m2/h). This finding supports results from several studies, which found soil erosion rates from 18 % to 184 % higher on conventional than on organic treatments. Under both farming systems, ploughed treatments show higher sediment discharge (conventional farming: 104 %, organic farming: 133 %, p=0.004) than treatments with reduced or no tillage. Runoff volume did not show significant effects in our treatments. An interaction between the farming practice and the tillage system could not be found, which strengthens the importance of both. With the help of a well-replicated micro-scale runoff plot design and a portable rainfall simulator we were able to gather reliable soil erosion data in situ in short term and without external parameterization. Our field assessment shows that organic farming and reduced tillage practices protect agricultural land best against soil erosion.
Banks, M K; Schwab, P; Liu, B; Kulakow, P A; Smith, J S; Kim, R
2003-01-01
A field project located at the US Naval Base at Port Hueneme, California was designed to evaluate changes in contaminant concentrations and toxicity during phytoremediation. Vegetated plots were established in petroleum (diesel and heavy oil) contaminated soil and were evaluated over a two-year period. Plant species were chosen based on initial germination studies and included native California grasses. The toxicity of the impacted soil in vegetated and unvegetated plots was evaluated using Microtox, earthworm, and seed germination assays. The reduction of toxicity was affected more by contaminant aging than the establishment of plants. However, total petroleum hydrocarbon concentrations were lower by the end of the study in the vegetated plots when compared to the unvegetated soil. Although phytoremediation is an effective approach for cleaning-up of petroleum contaminated soil, a long-term management plan is required for significant reductions in contaminant concentrations.
Dragicevic, Ivan; Eich-Greatorex, Susanne; Sogn, Trine A; Horn, Svein J; Krogstad, Tore
2018-07-01
Biogas digestate use as organic fertilizer has been widely promoted in recent years as a part of the global agenda on recycling waste and new sustainable energy production. Although many studies have confirmed positive effects of digestates on soil fertility, there is still lack of information on the potential adverse effects of digestates on natural soil heavy metal content, metal leaching and leaching of other pollutants. We have investigated the release of aluminium (Al) and chromium (Cr) from different soils treated with commercial digestates high in mentioned potentially problematic metals in a field experiment, while a greenhouse and a laboratory column experiment were used to address mobility of these metals in two other scenarios. Results obtained from the field experiment showed an increase in total concentrations for both investigated metals on plots treated with digestates as well as a significant increase of water-soluble Al concentrations. Factors that were found to be mostly affecting the metal mobility were dissolved organic carbon (DOC), pH and type of soil. Metal binding and free metal concentrations were modelled using the WHAM 7.0 software. Results indicated that the use of digestates with high metal content are comparable to use of animal manure with respect to metal leaching. Data obtained through chemical modelling for the samples from the field experiment suggested that an environmental risk from higher metal mobility has to be considered for Al. In the greenhouse experiment, measured concentrations of leached Cr at the end of the growing season were low for all treatments, while the concentration of leached Al from digestates was higher. The high irrigation column leaching experiment showed an increased leaching rate of Cr with addition of digestates. Copyright © 2018 Elsevier Ltd. All rights reserved.