Science.gov

Sample records for field portable microchip

  1. Electrochromatography in cyclic olefin copolymer microchips: a step towards field portable analysis.

    PubMed

    Ladner, Y; Crétier, G; Faure, K

    2010-12-17

    In order to develop a portable and disposable instrument for on-site analysis of neutral compounds, a lauryl methacrylate monolith has been synthesized into a cyclic olefin copolymer microdevice for reversed-phase electrochromatography purposes. This monolith was tested in capillary to evaluate electrochromatographic performances in terms of electroosmotic flow (EOF) mobility, retention and efficiency prior to its transfer into the microfluidic device. The produced monolithic bed exhibited a good run-to-run repeatability, column-to-column reproducibility and batch-to-batch reproducibility, with relative standard deviation (RSD) values below 9% for EOF mobility, retention factors and heights of theoretical plate. The electrochromatographic performances of the monolith were optimized by reducing irradiation time. Photopolymerization time of 10 min was found to be the best process in order to obtain a robust, retentive and efficient system. The on-chip performances of this monolith were evaluated in detail for the reversed-phase electrochromatographic separation of polycyclic aromatic hydrocarbons, with plate heights reaching down to 15 μm when working at optimal velocity. Aiming at the maximum simplification of instrumental fabrication and operation, a direct injection from a 2 μL droplet was compared with more conventional dynamic injection process.

  2. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    DOEpatents

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  3. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  4. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  5. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges.

  6. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  7. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  8. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  9. Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy.

    PubMed

    Chong, Kah Chun; Thang, Lee Yien; Quirino, Joselito P; See, Hong Heng

    2017-02-17

    A portable microchip electrophoresis (MCE) coupled with on-chip contactless conductivity detection (C(4)D) system was evaluated for the determination of vancomycin in human plasma. In order to enhance the detection sensitivity, a new online multi-stacking preconcentration technique based on field-enhanced sample injection (FESI) and micelle-to-solvent stacking (MSS) was developed and implemented in MCE-C(4)D system equipped with a commercially available double T-junction glass chip. The cationic analytes from the two sample reservoirs were injected under FESI conditions and subsequently focused by MSS within the sample-loading channel. The proposed multi-stacking strategy was verified under a fluorescence microscope using Rhodamine 6G as the model analyte and a sensitivity enhancement factor (SEF) of up to 217 was achieved. The developed approach was subsequently implemented in the aqueous-based MCE, coupled to C(4)D in order to monitor the targeted antibiotic (in this case, vancomycin) present in human plasma samples. The multi-stacking and analysis time for vancomycin were 50s and 250s respectively, with SEF of approximately 83 when compared to typical gated injection. The detection limit of the method for vancomycin was 1.2μg/mL, with intraday and interday repeatability RSDs of 2.6% and 4.3%, respectively. Recoveries in spiked human plasma were 99.0%-99.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evaluation of a Portable Microchip Electrophoresis Fluorescence Detection System for the Analysis of Amino Acid Neurotransmitters in Brain Dialysis Samples

    PubMed Central

    OBORNY, Nathan J.; COSTA, Elton E. Melo; SUNTORNSUK, Leena; ABREU, Fabiane C.; LUNTE, Susan M.

    2016-01-01

    A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate—arginine, citrulline, taurine, histamine, glutamate, and aspartate—were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. Limits of detection for the analytes of interest were 50nM – 250nM for the benchtop system and 250 nM – 1.3 μM for the portable system, both of which were adequate for analyte determination in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample. PMID:26753703

  11. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  12. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  13. Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients

    PubMed Central

    Moon, SangJun; Gurkan, Umut Atakan; Blander, Jeffrey; Fawzi, Wafaie W.; Aboud, Said; Mugusi, Ferdinand; Kuritzkes, Daniel R.; Demirci, Utkan

    2011-01-01

    Background CD4+ T-lymphocyte count (CD4 count) is a standard method used to monitor HIV-infected patients during anti-retroviral therapy (ART). The World Health Organization (WHO) has pointed out or recommended that a handheld, point-of-care, reliable, and affordable CD4 count platform is urgently needed in resource-scarce settings. Methods HIV-infected patient blood samples were tested at the point-of-care using a portable and label-free microchip CD4 count platform that we have developed. A total of 130 HIV-infected patient samples were collected that included 16 de-identified left over blood samples from Brigham and Women's Hospital (BWH), and 114 left over samples from Muhimbili University of Health and Allied Sciences (MUHAS) enrolled in the HIV and AIDS care and treatment centers in the City of Dar es Salaam, Tanzania. The two data groups from BWH and MUHAS were analyzed and compared to the commonly accepted CD4 count reference method (FACSCalibur system). Results The portable, battery operated and microscope-free microchip platform developed in our laboratory (BWH) showed significant correlation in CD4 counts compared with FACSCalibur system both at BWH (r = 0.94, p<0.01) and MUHAS (r = 0.49, p<0.01), which was supported by the Bland-Altman methods comparison analysis. The device rapidly produced CD4 count within 10 minutes using an in-house developed automated cell counting program. Conclusions We obtained CD4 counts of HIV-infected patients using a portable platform which is an inexpensive (<$1 material cost) and disposable microchip that uses whole blood sample (<10 µl) without any pre-processing. The system operates without the need for antibody-based fluorescent labeling and expensive fluorescent illumination and microscope setup. This portable CD4 count platform displays agreement with the FACSCalibur results and has the potential to expand access to HIV and AIDS monitoring using fingerprick volume of whole blood and helping people who suffer

  14. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  15. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer.

    PubMed

    Liu, Peng; Yeung, Stephanie H I; Crenshaw, Karin A; Crouse, Cecelia A; Scherer, James R; Mathies, Richard A

    2008-09-01

    An integrated lab-on-a-chip system has been developed and successfully utilized for real-time forensic short tandem repeat (STR) analysis. The microdevice comprises a 160-nL polymerase chain reaction reactor with an on-chip heater and a temperature sensor for thermal cycling, microvalves for fluidic manipulation, a co-injector for sizing standard injection, and a 7-cm-long separation channel for capillary electrophoretic analysis. A 9-plex autosomal STR typing system consisting of amelogenin and eight combined DNA index system (CODIS) core STR loci has been constructed and optimized for this real-time human identification study. Reproducible STR profiles of control DNA samples are obtained in 2h and 30min with portable microsystem as well as its compatibility with crime scene investigation processes, real-time STR analyses were carried out at a mock crime scene prepared by the Palm Beach County Sheriff's Office (PBSO). Blood stain sample collection, DNA extraction, and STR analyses on the portable microsystem were conducted in the field, and a successful "mock" CODIS hit was generated on the suspect's sample within 6h. This demonstration of on-site STR analysis establishes the feasibility of real-time DNA typing to identify the contributor of probative biological evidence at a crime scene and for real-time human identification.

  16. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis.

    PubMed

    Ha, Ji Won; Hahn, Jong Hoon

    2017-02-01

    Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.

  17. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  18. Using microchip electrophoresis for real-time aerosol composition measurements: Field study results from San Gorgonio Wilderness, California

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, A. R.; Hecobian, A.; Lewis, G. S.; Hering, S. V.; Henry, C. S.; Collett, J. L.

    2012-12-01

    The detrimental impacts of atmospheric aerosol on human and ecosystem health, visibility and climate change have been studied extensively. However, the role of aerosol composition in these issues still needs further investigation due to the variability of aerosol particles over both time and space. The need for better temporal and spatial resolution of aerosol composition measurements is addressed in the development of a real-time instrument using microchip capillary electrophoresis. Termed Aerosol microChip Electrophoresis (ACE), this lab-on-a-chip instrument is inexpensive to manufacture, portable and provides sensitive real-time and semi-continuous aerosol composition measurements. A water condensation growth tube is used to enlarge water soluble aerosol particles with an aerodynamic diameter less than 2.5 μm. The aqueous sample is continuously collected by impaction into a sample reservoir on a custom designed microchip. A rapid separation of select aerosol components is achieved using microchip capillary electrophoresis coupled with conductivity detection. Here we present data from a recent field campaign in the San Gorgonio Wilderness in south western California. This unique high elevation wilderness site located to the east of the heavily populated cities of San Bernardino and Los Angeles provides a contrast of both clean background and aged urban aerosol as dictated by the meteorological conditions at the site. Ambient aerosol particles were continuously collected at a flow rate of 0.7 L/min into a liquid sample with a volume of 16.7 μL and then analyzed for sulfate, nitrate, chloride and oxalate every 48 seconds. When comparing the ambient concentrations with the meteorological conditions, the most notable trend was high nitrate and sulfate concentrations in ambient aerosol during upslope wind events, with values reaching as high as 34 and 5 μg/m3, respectively. Comparison aerosol composition measurements from filter samples and a particle

  19. Development of field portable sampling and analysis systems

    SciTech Connect

    Beals, D.

    2000-06-08

    A rapid field portable sample and analysis system has been demonstrated at the Savannah River Site and the Hanford Site. The portable system can be used when rapid decisions are needed in the field during scoping or remediation activities, or when it is impractical to bring large volumes of water to the lab for analysis.

  20. Analyzing Microchips With Dark-Field Negative Photomicrography

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1985-01-01

    Inverse development process yields fine details. Photomicrographic technique produces images of integrated-circuit chips. Technique based on dark-field illumination: (chip lit with bright central spot of light and photographed by light scattered or diffracted from spot. Reveals more about microstructure patterns related to photoresist masking than more conventional bright-field method.

  1. Analyzing Microchips With Dark-Field Negative Photomicrography

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1985-01-01

    Inverse development process yields fine details. Photomicrographic technique produces images of integrated-circuit chips. Technique based on dark-field illumination: (chip lit with bright central spot of light and photographed by light scattered or diffracted from spot. Reveals more about microstructure patterns related to photoresist masking than more conventional bright-field method.

  2. On-line Sample Preconcentration Using Field-amplified Stacking Injection in Microchip Capillary Electrophoresis

    PubMed Central

    Gong, Maojun; Wehmeyer, Kenneth R.; Limbach, Patrick A.; Arias, Francisco; Heineman, William R.

    2008-01-01

    Previous reports describing sample stacking on microchip capillary electrophoresis (μCE) have regarded the microchip channels as a closed system and treated the bulk flow as in traditional capillary electrophoresis. This work demonstrates that the flows arising from the cross region should be investigated as an open system. It is shown that the pressure-driven flows into or from the branch channels due to bulk velocity mismatch in the main channel should not be neglected but can be used for liquid transportation in the channels. Based on these concepts, a sample preconcentration scheme was developed in a commercially available glass, single-cross chip for μCE. Similar to field-amplified stacking injection in traditional CE, a low conductivity sample buffer plug was introduced into the separation channel immediately before the negatively charged analyte molecules were injected. The detection sensitivity was improved by 94-, 108- and 160-fold for fluorescein-5-isothiocyanate, fluorescein disodium and 5-carboxyfluorescein, respectively, relative to a traditional pinched injection. The calibration curves for fluorescein and 5-carboxyfluorescein demonstrated good linearity in the concentration range (1 to 60 nM) investigated with acceptable reproducibility of migration time and peak height and area ratios (4 to 5% RSD). This preconcentration scheme will be of particular significance to the practical use of μCE in the emerging miniaturized analytical instrumentation. PMID:16737230

  3. Separation of DNA fragments for fast diagnosis by microchip electrophoresis using programmed field strength gradient.

    PubMed

    Kang, Seong Ho; Park, Mira; Cho, Keunchang

    2005-08-01

    We evaluated a novel strategy for fast diagnosis by microchip electrophoresis (ME), using programmed field strength gradients (PFSG) in a conventional glass double-T microfluidic chip. The ME-PFSG allows for the ultrafast separation and enhanced resolving power for target DNA fragments. These results are based on electric field strength gradients (FSG) that use an ME separation step in a sieving gel matrix poly-(ethylene oxide). The gradient can develop staircase or programmed shapes FSG over the time. The PFSG method could be easily used to increase separation efficiency and resolution in ME separation of specific size DNA fragments. Compared to ME that uses a conventional and constantly applied electric field (isoelectrostatic) method, the ME-PFSG achieved about 15-fold faster analysis time during the separation of 100 bp DNA ladder. The ME-PFSG was also applied to the fast analysis of the PCR products, 591 and 1191 bp DNA fragments from the 18S rRNA of Babesia gibsoni and Babesia caballi.

  4. Ionspray microchip.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2010-09-15

    An ionspray microchip is introduced. The chip is based on the earlier presented nebulizer microchip that consists of glass and silicon plates bonded together. A liquid inlet channel, nebulizer gas inlet, and nozzle are etched on the silicon plate and a platinum heater is integrated on the glass plate. The nebulizer microchip has been previously used in atmospheric pressure chemical ionization, atmospheric pressure photoionization, sonic spray ionization, and thermospray ionization modes. In this work we show that the microchip can be operated also in ionspray mode by introducing high voltage to the silicon plate of the microchip. The effects of operation parameters (voltage, nebulizer gas pressure, sample solution flow rate, solvent composition, and analyte concentration) on the performance of the ion spray microchip were studied. Under optimized conditions the microchip provides efficient ionization of small and large compounds and good quantitative performance. The feasibility of the ion spray microchip in liquid chromatography/mass spectrometry (LC/MS) was demonstrated by the analysis of tryptic peptides of bovine serum albumin. Copyright 2010 John Wiley & Sons, Ltd.

  5. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  6. Portable power tool machines weld joints in field

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  7. Real-World Physics: A Portable MBL for Field Measurements.

    ERIC Educational Resources Information Center

    Albergotti, Clifton

    1994-01-01

    Uses a moderately priced digital multimeter that has output and software compatible with personal computers to make a portable, computer-based data-acquisition system. The system can measure voltage, current, frequency, capacitance, transistor hFE, and temperature. Describes field measures of velocity, acceleration, and temperature as function of…

  8. Real-World Physics: A Portable MBL for Field Measurements.

    ERIC Educational Resources Information Center

    Albergotti, Clifton

    1994-01-01

    Uses a moderately priced digital multimeter that has output and software compatible with personal computers to make a portable, computer-based data-acquisition system. The system can measure voltage, current, frequency, capacitance, transistor hFE, and temperature. Describes field measures of velocity, acceleration, and temperature as function of…

  9. Portable Radiometer Identifies Minerals in the Field

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Machida, R. A.

    1982-01-01

    Hand-held optical instrument aids in identifying minerals in field. Can be used in exploration for minerals on foot or by aircraft. The radiometer is especially suitable for identifying clay and carbonate minerals. Radiometer measures reflectances of mineral at two wavelengths, computes ratio of reflectances, and displays ratio to user.

  10. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  11. A Portable Vital Signs Monitor For Field Use.

    DTIC Science & Technology

    1995-12-01

    casualty bag, to monitor the vital 0 signs of a person sealed therein. •9 9 iii 1.0 INTRODUCTION As early as 1973, as a consequence of Trial CHACE...environments, such as within casualty bags, without breaching the casualty’s protection. Since one of the early design criteria was to measure signs ...National DEfense Canad’i ’Defence nationale A PORTABLE VITAL SIGNS MONITOR FOR FIELD USE IDIBTRMUTION STATEUML A Apprire fmo publi me r m;~s

  12. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  13. Filmy channel microchip with amperometric detection.

    PubMed

    Wang, Wei; Fu, Feng F U; Xu, Xueqin; Lin, Jin-Ming; Chen, Guonan

    2009-11-01

    In this article, a new type of microchip with filmy channels and a sample-injection fracture is introduced. Unlike commercial microchip, new microchip possessed filmy channel with width 2-3 mm. The effective cooling ability made filmy channel microchip restrain the generation of Joule heat even under electric field of 588 V/cm. Moreover, wider channel could be more easily modified to prevent the absorption of samples, load more samples and result in a higher sensitivity. Sample-injection fracture was first applied to match the filmy channel in microchip. Equipped with an amperometric detector, the characteristics of the newly designed filmy channel microchip had been studied and the results showed that it had good reproducibility, higher sensitivity and excellent separation ability. The microchip was also applied to separate L-tryptophan's metabolites, namely 5-hydroxy-L-tryptophan, 5-hydroxytryptamine and 5-hydroxy-indole-3-acetic acid.

  14. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  15. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  16. A Field Portable Hyperspectral Goniometer for Coastal Characterization

    NASA Technical Reports Server (NTRS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi

    2012-01-01

    During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.

  17. A layered microchip conductance detector with through-layer access to detection fields and high sensitivity to dielectric constant

    NASA Astrophysics Data System (ADS)

    Suganuma, Y.; Dhirani, A.-A.

    2011-04-01

    The present study explores a novel apertured microchip conductance detector (AMCD) that is sensitive to dielectric constant. Fashioned on silicon oxide/silicon using optical microlithography, the detector has novel parallel-plate geometry with a top mesh electrode, a middle apertured insulator, and a bottom conducting electrode. This monolithic apertured architecture is planar and may be provided with a thin insulator layer enabling large capacitances, while the top mesh electrode and middle apertured-insulator enable access to regions of the capacitor where electric fields are strong. Hence, the detector is sensitive yet mechanically robust. To test its response, the AMCD was immersed in various solvents, namely water, methanol, acetonitrile, and hexanes. Its response was found to vary in proportion to the solvents' respective dielectric constants. The AMCD was also able to distinguish quantitatively the presence of various molecules in solution, including molecules with chromophores [such as acetylsalicylic acid (ASA)] in methanol and those without chrompohores [such as polyethylene glycol 200 Daltons (PEG200)] in methanol or water. The universal nature of dielectric constant and the microchip detector's sensitivity point to a wide range of potential applications.

  18. Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers

    PubMed Central

    Qi, Chaolong; Kulkarni, Pramod

    2016-01-01

    A low-flow miniature differential mobility analyzer (mDMA) has been developed for compact field-portable mobility spectrometers to classify the submicrometer aerosol. The mDMA was designed for an ultra-low aerosol flow rate of 0.05 L/min. At a sheath flow rate of 0.2 L/min, the mDMA’s upper size limit was estimated to be about 921 nm. The mDMA has a classification zone of 2.54 cm long, an outer diameter of 2.54 cm, and an inner diameter of 1.778 cm. The design allows low-cost fabrication and easy assembly. Tandem DMA (TDMA) measurements were carried out to evaluate the performance of the mDMA. Its transfer function was described using Stolzenburg’s model. The experimentally measured transfer function shows close agreement with the theory. The transmission efficiency was comparable to that of the Knutson-Whitby DMA for particles in the range of 10–1000 nm. The mobility resolution was comparable to that of the TSI 3085 nanoDMA at the same aerosol flow rate. The design features and performance of the mDMA make it suitable for compact field portable mobility size spectrometers for measurement of nanoparticles and submicrometer aerosol. PMID:27840546

  19. Development of a portable field monitor for PCBs. Final report

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1983-01-01

    With the advent of recent regulations and those yet pending concerning allowable concentrations of polychlorinated biphenyls (PCBs), personnel in all aspects of the electric power industry, analytical support personnel, and those in the regulatory functions themselves have realized that the PCB problem, as well as these associated regulations, has far surpassed available monitoring capability. In short, detailed, stringent regulations are being set for contamination levels where no accepted ASTM procedure or instrumentation exists. The largest PCB problems occur in the form of PCB-contaminated oil in field transformers and storage containers, and pure askarel in transformers and capacitors. The most immediate need for a portable field instrument would be for use under PCB spill conditions. Portable monitors based on the principles of photoionization detection (PID) and infrared spectroscopy (IR) have been adapted and evaluated for this purpose. The latter includes both flow cell and horizontal multiple internal reflectance (HMIR) sampling configurations. Extensive work has also been performed on solvent-solvent and solvent-soil extractions, as well as PCB adsorption on packings, for use under spill conditions.

  20. Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers.

    PubMed

    Qi, Chaolong; Kulkarni, Pramod

    2016-01-01

    A low-flow miniature differential mobility analyzer (mDMA) has been developed for compact field-portable mobility spectrometers to classify the submicrometer aerosol. The mDMA was designed for an ultra-low aerosol flow rate of 0.05 L/min. At a sheath flow rate of 0.2 L/min, the mDMA's upper size limit was estimated to be about 921 nm. The mDMA has a classification zone of 2.54 cm long, an outer diameter of 2.54 cm, and an inner diameter of 1.778 cm. The design allows low-cost fabrication and easy assembly. Tandem DMA (TDMA) measurements were carried out to evaluate the performance of the mDMA. Its transfer function was described using Stolzenburg's model. The experimentally measured transfer function shows close agreement with the theory. The transmission efficiency was comparable to that of the Knutson-Whitby DMA for particles in the range of 10-1000 nm. The mobility resolution was comparable to that of the TSI 3085 nanoDMA at the same aerosol flow rate. The design features and performance of the mDMA make it suitable for compact field portable mobility size spectrometers for measurement of nanoparticles and submicrometer aerosol.

  1. A next generation field-portable goniometer system

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  2. Microchip Lasers

    DTIC Science & Technology

    2016-10-31

    physics that underlies their performance, typical operating parameters for the devices, and several of their applications . Keywords Composite-cavity...laser, Diode -pumped laser, Laser, Microchip laser, Miniature laser, Monolithic laser, Passively Q-switched laser, Q-switched laser, Saturable...cavity mirrors are deposited directly on the gain medium and the laser is pumped with a diode laser, either directly, as shown in Fig. 1, or via an

  3. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.

    PubMed

    Guo, Dapeng; Wang, Yonghuan; Li, Lingfeng; Wang, Xiaozhi; Luo, Jikui

    2015-01-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ-FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ-FAIMS system at ultra-high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td.

  4. A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system.

    PubMed

    Lin, Xuexia; Chen, Qiushui; Liu, Wu; Li, Haifang; Lin, Jin-Ming

    2014-06-15

    In this work, a convenient and high-throughput colorimetric assay was developed on an aptamer-modified microchip for ultrasensitive detection of thrombin using rolling circle amplification and G-quadruplex DNAzyme. This system consisted of an aptamer-modified microchip and a secondary aptamer. The secondary aptamer contained a thrombin aptamer and a primer with a G-quadruplex circular template. RCA technology was used to improve the sensitivity by producing the multiple G-quadruplex units. To generate colorimetric signal, G-quadruplex DNAzyme was used to catalyze the H2O2-mediated oxidation of 2,2'-azinobis (3-ethylbenzothiozoline)-6-sulfonic acid. At the optimal conditions, the linear range for thrombin was 0.100-50.000 pg/mL, and the limit of detection was down to 0.083 pg/mL. Moreover, the developed method was successfully applied to detect thrombin from human plasma and serum, indicating that this approach has great potential in clinical diagnosis and medical investigation.

  5. Microchips in Medicine: Current and Future Applications

    PubMed Central

    Eltorai, Adam E. M.; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine. PMID:27376079

  6. Microchips in Medicine: Current and Future Applications.

    PubMed

    Eltorai, Adam E M; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine.

  7. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  8. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  9. Field Analysis of Munitions Constituents Using a Field-portable GC-MS

    DTIC Science & Technology

    2012-05-01

    MS) for the in-field analysis of munitions constituents (MCs) in groundwater. Field-portable instrumentation was used to analyze the explosives ...Chemistry Laboratory in Vicksburg for comparative analysis by HPLC using USEPA Method 8330B (U.S. Environmental Protection Agency (USEPA) 2006... HPLC - UV by Method 8330B (USEPA 2006). The two remaining 1-L aliquots were reserved for analysis in case of breakage during transport or for the

  10. Comprehensive theoretical analysis and experimental exploration of ultrafast microchip-based high-field asymmetric ion mobility spectrometry (FAIMS) technique.

    PubMed

    Li, Lingfeng; Wang, Yonghuan; Chen, Chilai; Wang, Xiaozhi; Luo, Jikui

    2015-06-01

    High-field asymmetric ion mobility spectrometry (FAIMS) has become an efficient technique for separation and characterization of gas-phase ions at ambient pressure, which utilizes the mobility differences of ions at high and low fields. Micro FAIMS devices made by micro-electromechanical system technology have small gaps of the channels, high electric field and good installation precision, as thus they have received great attentions. However, the disadvantage of relatively low resolution limits their applications in some areas. In this study, theoretical analysis and experimental exploration were carried out to overcome the disadvantage. Multiple scans, characteristic decline curves of ion transmission and pattern recognitions were proposed to improve the performance of the microchip-based FAIMS. The results showed that although micro FAIMS instruments as a standalone chemical analyzer suffer from low resolution, by using one or more of the methods proposed, they can identify chemicals precisely and provide quantitative analysis with low detection limit in some applications. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  12. Portable wide-field hand-held NIR scanner

    NASA Astrophysics Data System (ADS)

    Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha

    2013-03-01

    Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..

  13. Development of a field-portable air monitor for Lewisite

    SciTech Connect

    Aldstadt, J.H.; Martin, A.F.; Olson, D.C. |

    1996-03-01

    The focus of this research is the development of a prototype field-portable ambient-air monitor for measuring trace levels of volatile organoarsenicals. Lewisite (dichloro[2-chlorovinyl]arsine) is a chemical warfare agent developed during World War I and stockpiled on a large scale by the former Soviet Union. A continuous air monitor for Lewisite at the eight-hour time-weighted-average concentration (3 {mu}g/m{sup 3}) is necessary to protect the safety and health of arms control treaty inspectors. Flow injection is used to integrate an air sampling device based on liquid-phase extraction with a flow-through detector based on potentiometric stripping analysis. We describe a method for the sampling and preconcentration of organoarsenicals from ambient air by using a gas permeation membrane sampler. The sampler is designed to selectively preconcentrate analyte that permeates a silicone rubber membrane into a caustic carrier stream. Instrument design is described for the sampling and detection methodologies.

  14. Portable narcotics detector and the results obtained in field tests

    NASA Astrophysics Data System (ADS)

    Tumer, Tumay O.; Su, Chih-Wu; Kaplan, Christopher R.; Rigdon, Stephen W.

    1997-02-01

    A compact integrated narcotics detection instrument (CINDI) has been developed at NOVA R&D, Inc. with funding provided by the U.S. Coast Guard. CINDI is designed as a portable sensitive neutron backscatter detector which has excellent penetration for thick and high Z compartment barriers. It also has a highly sensitive detection system for backscattered neutrons and, therefore, uses a very weak californium-252 neutron source. Neutrons backscatter profusely from materials that have a large hydrogen content, such as narcotics. The rate of backscattered neutrons detected is analyzed by a microprocessor and displayed on the control panel. The operator guides the detector along a suspected area and displays in real time the backscattered neutron rate. CINDI is capable of detecting narcotics effectively behind panels made of steel, wood, fiberglass, or even lead-lined materials. This makes it useful for inspecting marine vessels, ship bulkheads, automobiles, structure walls or small sealed containers. The strong response of CINDI to hydrogen-rich materials such as narcotics makes it an effective tool for detecting concealed drugs. Its response has been field tested by NOVA, the U.S. Coast Guard and Brewt Power Systems. The results of the tests show excellent response and specificity to narcotic drugs. Several large shipments of concealed drugs have been discovered during these trials and the results are presented and discussed.

  15. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  16. Parainfluenza virus isolation enhancement utilizing a portable cell culture system in the field.

    PubMed Central

    Parkinson, A J; Muchmore, H G; Scott, L V; Miles, J A

    1980-01-01

    Using a portable minaturized cell culture system, enhanced recoveries of parainfluenza virus types 1 and 3 were made in the field from symptomatic human adult subjects working at remote Antarctic stations. PMID:6247369

  17. AN IMPROVED PORTABLE SURGICAL TABLE FOR THE FIELD AND LABORATORY

    EPA Science Inventory

    I substantially modified a portable surgical table design by Courtois (1981) to increase its durability and utility. The new design incorporated durable plastic components, a nonskid neoprene surgery surface, and surgical tool bins. The system was used to implant fish and amphibi...

  18. AN IMPROVED PORTABLE SURGICAL TABLE FOR THE FIELD AND LABORATORY

    EPA Science Inventory

    I substantially modified a portable surgical table design by Courtois (1981) to increase its durability and utility. The new design incorporated durable plastic components, a nonskid neoprene surgery surface, and surgical tool bins. The system was used to implant fish and amphibi...

  19. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  20. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  1. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge

    2007-07-12

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  2. Hyphenated techniques: The next generation of field-portable analytical instruments?

    SciTech Connect

    Meuzelaar, H.L.C.; McClennen, W.H.; Dworzanski, J.P.; Sheya, S.A.; Snyder, A.P.; Harden, C.S.; Arnold, N.S.

    1995-12-31

    The first field-portable (i.e., transportable) hyphenated analytical instruments, including commercially available MS/MS and GC/MS systems as well as a specially built GC/MS{sup n} introduced during the past seven years. Since then further miniaturization and ruggedization of hyphenated systems by several laboratories has resulted in fully man-portable (backpack and briefcase style) GC/MS systems and a hand portable GC/IMS prototype. The main pitfall to be avoided in developing hyphenated, field portable system is incompatibility between the coupled techniques. Carefully designed hyphenated techniques incorporating compatible methods such as GC and MS can provide dramatic increases in resolution and chemical specificity which may be traded for speed or sensitivity gains, if needed. Novel developments currently underway in the laboratory include roving GC/MS platforms, personalized GC/IMS devices, high speed GC/GC methods and, last but not least, Virtual Reality techniques.

  3. Microchip Analysis of Toxic Metal Ions in Support of DOE's EMSP

    SciTech Connect

    Collins, Greg E.; Lu, Qin; Deng, Gang

    2003-09-10

    The DoE currently has the daunting task of deactivating 7,000 contaminated buildings and decommissioning 900 contaminated buildings that remain from the United States' involvement in nuclear weapons development over the last 50 years. The Environmental Management team has highlighted the need for revolutionizing technologies capable of improving characterization, monitoring and certification of contaminated equipment and facilities with emphasis on real time characterization in the field. We will discuss our efforts to develop a portable, compact microchip capillary electrophoresis unit for rapid characterization and certification of ppb levels of surface and airborne toxic metal contaminants found or originating from scrap metal and building materials in real time within the field.

  4. Sensitive analysis of amino acids and vitamin B3 in functional drinks via field-amplified stacking with reversed-field stacking in microchip electrophoresis.

    PubMed

    Wu, Minglei; Gao, Fan; Zhang, Yi; Wang, Qingjiang; Li, Hui

    2015-01-01

    An on-line preconcentration strategy combining field-amplified stacking and reversed-field stacking was developed for efficient and sensitive analysis of amino acids and vitamin B3 including lysine (Lys), taurine (Tau), and niacinamide (NA) by microchip electrophoresis with LIF detection. In this technique, the addition of a reversed-polarity step termed reversed-field stacking could enhance the preconcentration effect of field-amplified stacking and push most of the sample matrix out of the separation channel, thus greatly improving the sensitivity enhancement by 1-2 orders of magnitude over the classical MCE-LIF methods. The related mechanism as well as important parameters governing preconcentration and separation have been investigated in order to obtain strongest sensitivity amplification and maximum resolution. Under optimal conditions, all analytes were successfully focused and completely separated within 4 min. The limits of detection for Lys, Tau, and NA were 0.25, 0.50, and 0.20 nM (S/N=3), respectively, and enhancement factors of 165-, 285-, and 236-fold were obtained for Lys, Tau, and NA as compared to using the no concentration step. Other validation parameters such as linearity and precision were considered as satisfactory. The proposed method also gave accurate and reliable results in the analysis of these functional ingredients in eight functional drink samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development of a Portable Wear Metal Analyzer for Field Use.

    DTIC Science & Technology

    1983-12-01

    integration method statistically averages the noise . The magnitude of the noise reduction is proportional to the square root of the number of data points. 4.4.2...absorption has been utilized to develop a portable wear metal analyzer for aircraft engine lubricating oil analysis. The wear metal analyzer can...3 4.3 Summary of Test Data 4-4 4.4 Sources of Fluctuation 4-4 4.4.1 Shot Noise 4-4 4.4.2 Sample Introduction 4-4 4.4.3 Calibration 4-5 V. CONCLUSION

  6. Microchip gel electrophoresis with programmed field strength gradients for ultra-fast detection of canine T-cell lymphoma in dogs.

    PubMed

    Suresh, Kumar K; Lee, Mi-Jin; Park, Jinho; Kang, Seong Ho

    2008-03-15

    This paper describes the applicability of microchip gel electrophoresis using a programmed field strength gradients (MGE-PFSG) method coupled with a polymerase chain reaction (PCR) for the ultra-fast diagnosis of canine T-cell lymphoma. The variable region in the T-cell receptor gamma (TCRgamma) gene from a T-cell lymphoma was used in PCR amplification. The contributions of the various parameters, including the effects of the molecular weight, concentration of the sieving matrix and field strength in MGE, were examined. 0.5% poly (ethyleneoxide) (PEO, M(r) 8000000) was used as the sieving matrix for the ultra-rapid separation of the amplified-PCR products (90 and 130-bp DNA fragments) from the PFSG at an effective length of 20mm in a glass microchip. The PCR products (90 and 130-bp DNA) of the T-cell lymphoma were analyzed within 41.7+/-0.1s, 15.5+/-0.2s and only 7.0+/-0.1s using a low-constant field strength, high-constant field strength and the PFSG, respectively. When 11 clinical samples were analyzed using the MGE-PFSG method, there was a 100% correlation with those obtained using conventional slab gel electrophoresis. The ultra-fast detection and rapid separation capabilities of MGE-PFSG make it an efficient tool for diagnosing T-cell lymphoma in clinical samples with high sensitivity.

  7. Implementation of a Portable HPGe for Field Contamination Assay.

    PubMed

    Hayes, Robert Bruce

    2016-06-01

    Using MCNP to construct a detector model based initially on x-ray images of a portable high purity germanium (HPGe) detector followed by normalizing covering material values to also agree with check source responses, a validation of the model was attained. By calibrating the detector parameters using large count spectra, rigorous reproducibility is attained for high activity measurements but does not prevent deviations from normality in error distributions at the very low count events where spectral peaks are not always identifiable. The resulting model was created to allow operational assay of contamination over large areal distributions that could not otherwise be measured, such as the exhaust shaft at the Waste Isolation Pilot Plant (WIPP). Results indicate that contamination levels of activity in the exhaust shaft can be assayed to within a factor of 2. Detection limits are evaluated to be well below the contamination levels, which would constitute a legal environmental release if unfiltered ventilation of the underground facility were used.

  8. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

    1996-12-31

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

  9. Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking.

    PubMed

    Zhang, Yan; Zhang, Yi; Wang, Guan; Chen, Wujuan; Li, Yi; Zhang, Yating; He, Pingang; Wang, Qingjiang

    2016-07-01

    Microchip electrophoresis (MCE) is particularly attractive as it provides high sensitivity and selectivity, short analysis time and low sample consumption. An on-line preconcentration strategy combining field-amplified stacking (FASS) and reversed-field stacking (RFS) was developed for efficient and sensitive analysis of neurotransmitters in real urine samples by MCE with laser induced fluorescence (LIF) detection. In this study, the multiple-preconcentration strategy greatly improves the sensitivity enhancement and surpass other conventional analytical methods for neurotransmitters detection. Under optimal conditions, the separation of three neurotransmitters (dopamine, norepinephrine and serotonin), was achieved within 3min with limits of detection (S/N=3) of 1.69, 2.35, and 2.73nM, respectively. The detection sensitivities were improved by 201-, 182-, and 292-fold enhancement, for the three neurotransmitters respectively. Other evaluation parameters such as linear correlation coefficients were considered as satisfactory. A real urine sample was analyzed with recoveries of 101.8-106.4%. The proposed FASS-RFS-MCE method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of three neurotransmitters in human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ultrasensitive detection of bacteria by microchip electrophoresis based on multiple-concentration approaches combining chitosan sweeping, field-amplified sample stacking, and reversed-field stacking.

    PubMed

    Wang, Zhi-Fang; Cheng, Shuang; Ge, Shu-Li; Wang, Huan; Wang, Qing-Jiang; He, Pin-Gang; Fang, Yu-Zhi

    2012-02-07

    In this paper we describe an on-chip multiple-concentration method combining chitosan (CS) sweeping, reversed-field stacking, and field-amplified sample stacking for highly efficient detection of bacteria. Escherichia coli was selected as a model bacterium to investigate the efficiency of this multiple-concentration method. CS was the most suitable sweeping agent for microchip electrophoresis, replacing the usually used cetyltrimethylammonium bromide for capillary electrophoresis. The additive taurine had a synergistic effect by enhancing the interaction between CS and the surface of the bacteria, thus improving the analysis sensitivity. All steps of the concentration method and related mechanisms are described and discussed in detail. A concentration enhancement factor of approximately 6000 was obtained using this concentration method under optimal conditions as compared to using no concentration step, and the detection limit of E. coli was 145 CFU/mL. The multiple-concentration methodology was also applied for the quantification of bacteria in surface water, and satisfactory results were achieved. The application of this methodology showed that the concentration enhancement of bacteria clearly conferred advantageous sensitivity, speed, and sample volume compared to established methods.

  11. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration Results

    NASA Astrophysics Data System (ADS)

    Mccubbin, I. B.; Green, R. O.; Mouroulis, P.; Van Gorp, B.; Dierssen, H. M.

    2012-12-01

    The Portable Remote Imaging Spectrometer (PRISM) is an airborne sensor tailored specifically for the challenges of coastal ocean research. PRISM has high throughput, high-uniformity and low polarization sensitivity. PRISM is an airborne imaging spectrometer sensor that has been developed by the Jet Propulsion Laboratory (JPL) with funding from NASA's Earth Science and Technology Office, Airborne Science Office, and Ocean Biology and Biogeochemistry Office. Development of PRISM started in August 2009. Laboratory measurements of the sensor characteristics as well as measurements over land and water calibration sites will be reported. The objective of the PRISM program is to provide a facility instrument for the community of coastal ocean scientists in order to address specific science questions that have been identified by NASA as critical to the understanding of terrestrial processes. PRISM is a push-broom sensor, and utilizes a Dyson spectrometer, which has 3-nm spectral resolution from 350-1000 nm. The objective of the PRISM 2012 airborne campaign was to a) provide instrument calibration data by overflying specific well-characterized ground targets, and b) perform an investigation into the health of specific seagrass types as indicative of coastal habitat health in the Elkhorn Slough region of Monterey Bay, CA. In May and July of 2012 PRISM flew engineering test flights and an initial science campaign. The initial results from the May and July 2012 flight campaigns will be presented.

  12. Particle-free microchip processing

    DOEpatents

    Geller, A.S.; Rader, D.J.

    1996-06-04

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed. 5 figs.

  13. Particle-free microchip processing

    DOEpatents

    Geller, Anthony S.; Rader, Daniel J.

    1996-01-01

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.

  14. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - HNU SYSTEMS, SEFA-P

    EPA Science Inventory

    In April 1995, the Environmental Protection Agency (EPA) conducted a demonstration of field portable X-ray fluorescence (FPXRF) Analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to a standard reference m...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - HNU SYSTEMS, SEFA-P

    EPA Science Inventory

    In April 1995, the Environmental Protection Agency (EPA) conducted a demonstration of field portable X-ray fluorescence (FPXRF) Analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to a standard reference m...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  19. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  20. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    USDA-ARS?s Scientific Manuscript database

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  1. Production, Cost and Chip Characteristics of In-Woods Microchipping

    Treesearch

    J. Thompson; W. Sprinkle

    2013-01-01

    Emerging markets for biomass have increased the interest in producing microchips in the field. As a component of a large United States Department of Energy (DOE) funded project, microchipping has been trialed on a limited scale. The goal of the research was to evaluate the production, cost and chip characteristics of a mobile disc chipper configured to produce...

  2. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Wang, Joseph

    2006-06-01

    This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or ''Lab-on-a-chip'' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world.

  3. Portable ultrasound for remote environments, Part I: Feasibility of field deployment.

    PubMed

    Nelson, Bret P; Melnick, Edward R; Li, James

    2011-02-01

    In field medical operations, rapid diagnosis and triage of seriously injured patients is critical. With significant bulk and cost constraints placed on all equipment, it is important that any medical devices deployed in the field demonstrate high utility, durability, and ease of use. When medical ultrasound was first used in patient care, machine cost, bulk, and steep learning curves prevented use outside of the radiology department. Now, lightweight portable ultrasound is widely employed at the bedside by emergency physicians. The techniques and equipment have recently been extrapolated out of the hospital setting in a wide variety of environments in an effort to increase diagnostic accuracy in the field. In this review, deployment of lightweight portable ultrasound in the field (by emergency medical services, military operations, disaster relief, medical missions, and expeditions to austere environments) is examined. The feasibility of field deployment and experiences of clinicians using ultrasound in a host of environments are detailed. In addition, special technological considerations such as telemedicine and machine characteristics are reviewed. The use of lightweight portable ultrasound shows great promise in augmenting clinical assessment for field medical operations. Although the feasibility of the technology has been demonstrated in certain medical and trauma applications, further research is needed to determine the utility of ultrasound use for medical illness in the field. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. General purpose, field-portable cell-based biosensor platform.

    PubMed

    Gilchrist, K H; Barker, V N; Fletcher, L E; DeBusschere, B D; Ghanouni, P; Giovangrandi, L; Kovacs, G T

    2001-09-01

    There are several groups of researchers developing cell-based biosensors for chemical and biological warfare agents based on electrophysiologic monitoring of cells. In order to transition such sensors from the laboratory to the field, a general-purpose hardware and software platform is required. This paper describes the design, implementation, and field-testing of such a system, consisting of cell-transport and data acquisition instruments. The cell-transport module is a self-contained, battery-powered instrument that allows various types of cell-based modules to be maintained at a preset temperature and ambient CO(2) level while in transit or in the field. The data acquisition module provides 32 channels of action potential amplification, filtering, and real-time data streaming to a laptop computer. At present, detailed analysis of the data acquired is carried out off-line, but sufficient computing power is available in the data acquisition module to enable the most useful algorithms to eventually be run real-time in the field. Both modules have sufficient internal power to permit realistic field-testing, such as the example presented in this paper.

  5. A Portable Kit for Rapid Diagnosis of Infectious Diseases under Field Conditions

    DTIC Science & Technology

    1980-08-14

    A PORTABLE KIT FOR RAPID~ DIAGNOSIS OF INFECTIOUS DISEASES UNDER FIELD CONDITIONS W. R. SANBORN REPORT NO. 80-22 ELECT o JUL 198 ~SA NAV) AL HEALTH ...DIAGNOSIS of INFECTIOUS DISEASES under FIELD CONDITIONS I / Warren R. Sanborn Head, Microbiology Branch Biological Sciences Division Naval Health ...formation. Blood and stool examinations for parasites require a microscope, I as do examinations for certain superficial mycoses . The McArthur microscope

  6. Preliminary field measurement of cotton fiber micronaire by portable NIR

    USDA-ARS?s Scientific Manuscript database

    The decline of the U.S. textile industry has led to the dramatic increase in the export of U.S. cotton. Improved quality measurement systems are needed to successfully compete in the global marketplace. One key need is the development of new breeder/producer quality tools for field and at-line mea...

  7. Field Portable Low Temperature Porous Layer Open Tubular Cryoadsorption Headspace Sampling and Analysis Part II: Applications*

    PubMed Central

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.

    2016-01-01

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934

  8. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications.

    PubMed

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J

    2016-01-15

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.

  9. Portable System for Field-Feeding Greywater Remediation and Recycling

    DTIC Science & Technology

    2006-07-01

    with greywater reuse regulations2 base their water quality standards on the secondary treatment standard. In addition, each system’s process rate...to the system and converted to greywater . Of this added water, 80% is cleaned for reuse while 20% is unusable concentrate that requires backhauling...Field- Feeding Greywater Remediation and Recycling July 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  10. Field screening of polycyclic hydrocarbons contamination in soil using a portable synchronous scanning spectrofluorometer

    SciTech Connect

    Alarie, J.P.; Watts, W.; Vo-Dinh, Tuan; Miller, D.; Hyfantis, G.; Peeler, G.; Engelmann, W.H.

    1995-08-01

    Polycyclic aromatic hydrocarbons (PAH) contamination is a considerable problem at various hazardous waste sites. Sources of PAH contamination include incomplete combustion processes, wood preservatives, and the fuel industry (1). The development of rapid, cost-effective field screening techniques to qualitate or quantitate potential PAH contamination could result in improved remediation efficiency. We have recently developed a portable spectrofluorometer (2) for screening potential PAH contaminants at field sites using the synchronous fluorescence approach. In this paper, the portable spectrofluorometer was used to field screen several contaminated soil areas located at the Morristown Industrial Site in Morristown, Tennessee using the synchronous fluorescence technique. An attempt to quantify PAH contamination was performed using the NIST 1647a Priority pollutant standard to generate a calibration curve. Representative samples were subsequently related to the results obtained from standard laboratory measurements.

  11. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  12. Portable magnetic field dosimeter with data acquisition capabilities

    NASA Astrophysics Data System (ADS)

    Fujita, T. Y.; Tenforde, T. S.

    1982-03-01

    Design concepts, engineering specifications, and performance test results are presented for a compact magnetic field dosimeter that is suitable for monitoring personnel exposures to steady-state and time-varying magnetic fields. The battery-operated dosimeter contains thin-film Hall sensors that record the magnetic induction (B) along three orthogonal axes. The Hall generators are operated in a pulsed mode, and the time rate of change of the magnetic induction (dB/dt) is determined for values of B recorded during consecutive sampling intervals (typically 75 ms). The pulsed mode operation also serves to reduce battery consumption. The dosimeter contains a programmable microprocessor-based logic circuit and 4096 12-bit words of permanent and random-access memory. Stored parameters include: (1) average values of B and dB/dt during a preset time interval (typically 5 min); (2) peak values of B and dB/dt during the preset interval; and (3) the number of times that specified threshold levels for these parameters are exceeded. An audible alarm is activated when B or dB/dt exceeds a specified threshold level. Sensitivity factors and threshold levels can be loaded into the dosimeter from a bench-mounted programmable calculator, which is also used at the end of each workday to record and process data stored in the dosimeter's random-access memory.

  13. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  14. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  15. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  16. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  17. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  18. Controlled-release microchips.

    PubMed

    Sharma, Sadhana; Nijdam, A Jasper; Sinha, Piyush M; Walczak, Robbie J; Liu, Xuewu; Cheng, Mark M-C; Ferrari, Mauro

    2006-05-01

    Efficient drug delivery remains an important challenge in medicine: continuous release of therapeutic agents over extended time periods in accordance with a predetermined temporal profile; local delivery at a constant rate to the tumour microenvironment to overcome much of the systemic toxicity and to improve antitumour efficacy; improved ease of administration, and increasing patient compliance required are some of the unmet needs of the present drug delivery technology. Microfabrication technology has enabled the development of novel controlled-release microchips with capabilities not present in the current treatment modalities. In this review, the current status and future prospects of different types of controlled-release microchips are summarised and analysed with reference to microneedle-based microchips, as well as providing an in-depth focus on microreservoir-based and nanoporous microchips.

  19. Field screening of polycyclic hydrocarbons contamination in soil using a portable synchronous scanning spectrofluorometer

    NASA Astrophysics Data System (ADS)

    Alarie, Jean P.; Watts, Wendi; Miller, Don; Hyfantis, George J., Jr.; Peeler, George; Engelmann, William H.; Vo-Dinh, Tuan

    1995-10-01

    Polycyclic aromatic hydrocarbons (PAH) contamination is a considerable problem at various hazardous waste sites. Sources of PAH contamination include incomplete combustion processes, wood preservatives, and the fuel industry. The development of rapid, cost-effective field screening techniques to qualitate or quantitate potential PAH contamination could result in improved remediation efficiency. We have recently developed a portable spectrofluorometer for screening potential PAH contaminants at field sites using the synchronous fluorescence approach. Synchronous fluorescence differs from the more conventional excitation or emission fluorescence as both monochromators are scanned simultaneously with a constant wavelength offset ((Delta) (lambda) ) between the two. The portable spectrofluorometer was developed at Oak Ridge National Laboratory (ORNL) for the U.S. Environmental Protection Agency (EPA), National Exposure Research Laboratory, and recently field tested at the American Creosote Works Superfund Site in Jackson, Tennessee. In this paper, the portable spectrofluorometer was used to field screen several contaminated soil areas located at the Morristown Industrial Site in Morristown, Tennessee using the synchronous fluorescence technique. An attempt to quantify PAH contamination was performed using the NIST 1647a priority pollutant standard to generate a calibration curve. Representative samples were subsequently related to the results obtained from standard laboratory measurements.

  20. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  1. Recent innovations in protein separation on microchips by electrophoretic methods.

    PubMed

    Peng, Youyuan; Pallandre, Antoine; Tran, N Thuy; Taverna, Myriam

    2008-01-01

    Microchips for analytical purposes have attracted great attention over the last 20 years. In the present review, we focus on the most recent development of microchips for electrophoretic separation of proteins. This review starts with a short recalling about the microchips covering the basic microchip layout for CE and the commercial chips and microchip platforms. A short paragraph is dedicated to the surface treatment of microchips, which is of paramount importance in protein analysis. One section is dedicated to on-line sample pretreatment in microchips and summarizes different strategies to pre-concentrate or to purify proteins from complex matrixes. Most of the common modes used for CE of proteins have already been adapted to the chip format, while multidimensional approaches are still in progress. The different routes to achieve detection in microchip are also presented with a special attention to derivatization or labeling of proteins. Finally, several recent applications are mentioned. They highlight the great potential of electrophoretic separations of proteins in numerous fields such as biological, pharmaceutical or agricultural and food analysis. A bibliography with 151 references is provided covering papers published from 2000 to the early 2007.

  2. Field-Portable Immunoassay Instruments and Reagents to Measure Chelators and Mobile Forms of Uranium

    SciTech Connect

    Blake, Diane A.

    2001-06-01

    Previous studies from our laboratory have demonstrated the feasibility of immunoassays for identification and quantification of specific metal ions. Our ultimate goal for this project is to (1) isolate and characterize antibodies that recognize the most mobile form of uranium, UO22+; (2) assemble, test, and validate a new field-portable immunosensor based on these antibodies; (3) prepare new monoclonal antibodies to the primary chelators (EDTA and DTPA) found in DOE wastes.

  3. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  4. Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification.

    PubMed

    Rawat, Siddharth; Komatsu, Satoru; Markman, Adam; Anand, Arun; Javidi, Bahram

    2017-03-20

    We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier. The 3D printed prototype can serve as a low-cost alternative for the developing world, where access to laboratory facilities for disease diagnosis are limited. Additionally, a cell phone sensor is used to capture the digital holograms. This enables the user to send the acquired holograms over the internet to a computational device located remotely for cellular identification and classification (analysis). The 3D printed system presented in this paper can be used as a low-cost, stable, and field-portable digital holographic microscope as well as an automated cell identification system. To the best of our knowledge, this is the first research paper presenting automatic cell identification using a low-cost 3D printed digital holographic microscopy setup based on common path shearing interferometry.

  5. Microchip electrophoresis for chiral separations.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-08-01

    Microchip electrophoresis (MCE) is a promising new technique for the separation of enantiomers. This recently introduced technique enables chiral separations to be performed in seconds on tiny micromachined devices. This review is intended to give a brief introduction into the principles of chiral separations with MCE with regard to methodology and instrumentation. Different approaches to realize chiral separations in microfluidic devices are described and discussed. This review gives an overview of original work done in this field with emphasis on approaches to improve detection and resolution in chiral MCE.

  6. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    PubMed

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal

  7. Portable, battery-operated, low-cost, bright field and fluorescence microscope.

    PubMed

    Miller, Andrew R; Davis, Gregory L; Oden, Z Maria; Razavi, Mohamad Reza; Fateh, Abolfazl; Ghazanfari, Morteza; Abdolrahimi, Farid; Poorazar, Shahin; Sakhaie, Fatemeh; Olsen, Randall J; Bahrmand, Ahmad Reza; Pierce, Mark C; Graviss, Edward A; Richards-Kortum, Rebecca

    2010-08-04

    This study describes the design and evaluation of a portable bright-field and fluorescence microscope that can be manufactured for $240 USD. The microscope uses a battery-operated LED-based flashlight as the light source and achieves a resolution of 0.8 microm at 1000x magnification in fluorescence mode. We tested the diagnostic capability of this new instrument to identify infections caused by the human pathogen, Mycobacterium tuberculosis. Sixty-four direct, decontaminated, and serially diluted smears were prepared from sputa obtained from 19 patients suspected to have M. tuberculosis infection. Slides were stained with auramine orange and evaluated as being positive or negative for M. tuberculosis with both the new portable fluorescence microscope and a laboratory grade fluorescence microscope. Concordant results were obtained in 98.4% of cases. This highly portable, low cost, fluorescence microscope may be a useful diagnostic tool to expand the availability of M. tuberculosis testing at the point-of-care in low resource settings.

  8. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  9. Microlensed microchip VECSEL.

    PubMed

    Laurand, Nicolas; Lee, C L; Gu, E; Hastie, J E; Calvez, Stephane; Dawson, Martin D

    2007-07-23

    We report a 1.055-mum microchip VECSEL array which uses a microlens-patterned diamond both as a heatspreader and as an array of concave output mirrors. This configuration, which is suitable for laser array operation, is here exploited to perform a systematic study of a set of microchip lasers with the same semiconductor structure but different cavity properties. The transverse mode selection of individual VECSELs is found to depend on the mode-matching conditions and on the microlens aperture size. Mode-matched single-device emission in the fundamental mode (M2~1.1) with pump-limited output power of 70 mW is demonstrated.

  10. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  11. [Theoretical and experimental dosimetry in evaluation of biological effects of electromagnetic field for portable radio transmitters. Report 1. Flat phantoms].

    PubMed

    Perov, S Iu; Bogacheva, E V

    2014-01-01

    Results of the theoretical (numerical) and experimental dosimetry approach for portable radio transmitters are considered. The simulation and measurement results are shown. A generic type of a portable radio transmitter operating in a very high frequency range was tested as an electromagnetic field source. The analysis of specific absorption rate distribution in the flat homogeneous phantom was carried out on the basis of a portable radio transmitter. The results have shown the admissible divergence between measurements and simulation. According to these results, the authors have come to the conclusion about using the complex dosimetry approach including experimental and numerical dosimetry.

  12. Assessment of Copper Pollution in Overbank Sediments by In-situ Measurements Using a Field Portable EDXRF Instrument

    NASA Astrophysics Data System (ADS)

    Civici, Nikolla; Tashko, Artan

    2007-04-01

    The application of a field portable EDXRF instrument for the assessment of Mati River overbank sediments pollution is presented. The portable EDXRF spectrometer is based on a Peltier-cooled Si-PIN X-ray detector and a 740 MBq Cd-109 disc radioactive source. The comparison of the laboratory results with the average results of replicate in-situ measurements showed a rather good agreement. This allowed us to assess the pollution level and localize the contaminated `hot spots'.

  13. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    PubMed

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    PubMed Central

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  15. Nanoparticle-Based Paper Sensors for Field-Portable Analysis of Antioxidants

    NASA Astrophysics Data System (ADS)

    Sharpe, Erica Marie

    Abstract & Overview: The goal of this thesis was to develop portable nanoparticle-based paper sensors for field analysis, with focus on antioxidant detection. The method introduces a novel concept in the sensing arena that relies on the use of redox active inorganic nanoparticles, primarily cerium oxide, as colorimetric probes to replace commonly used soluble dyes. The sensors have an integrated detection mechanism with all the reagents needed for analysis confined to the sensing platform. Research work in this thesis focuses on the study of the redox and surface chemistry of these particles, their reactivity with target analytes and integration into paper-based platforms. A unique feature of these particles is their ability to replace or stabilize enzymes and extend their operational lifetime providing additional opportunities for improved detection schemes for enzyme-based systems. We demonstrate the above principles for the construction of sensors for detection of analytes such as hydrogen peroxide, glucose, and polyphenolic antioxidants. The advantage of the newly designed system include, in addition to portability and stability, the low production costs, the rapid analysis time, and the ability to provide quantitative information without use of advanced instrumentation. The results of this work opened up new opportunities for designing portable easy-to- use sensors for field analysis. The developed assays are particularly appealing for remote sensing applications where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Our investigation to demonstrate applicability of the system focused primarily on the detection of antioxidants. Therefore, the thesis highlights predominantly this application.

  16. A novel Au-Ag-Pt three-electrode microchip sensing platform for chromium(VI) determination.

    PubMed

    Li, Dongyue; Li, Jing; Jia, Xiaofang; Xia, Yong; Zhang, Xiaowei; Wang, Erkang

    2013-12-04

    A simple, rapid and portable electrochemical microchip sensing platform has been successfully constructed for chromium(VI) determination. Gold-silver-platinum (Au-Ag-Pt) three-material electrodes (gold as working electrode, silver as reference electrode and platinum as counter electrode) were integrated on one poly(methyl methacrylate) (PMMA) substrate by polymer compatible photolithography process. The three-electrode microchip sensing platform was used for Cr(VI) determination for the first time, and exhibited high sensitivity and good reproducibility. A wide linear range from 2 to 200 μM with a good linear correlation (R(2)=0.998) was obtained, and the detection limit was 0.9 μM. In addition, the practical analytical application of the sensing micro-platform was assessed by determination of Cr(VI) in real water samples with satisfactory results. Armed with the remarkable advantages, such as ease of use, low analyte consumption, inexpensive cost and fast response time, the microchip sensing platform may hold great potential for the high-throughput and in-field environmental monitoring Cr(VI) pollutant. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  18. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  19. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.

  20. The Development and Field Testing of the Portable Acousto-optic Spectrometer for Astrobiology

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Uckert, Kyle; Voelz, David; Boston, Penelope

    2014-11-01

    The development of in situ instrumentation for the detection of biomarkers on planetary surfaces is critical for the search for evidence of present or past life in our solar system. In our earlier instrument development efforts we addressed this need through the development of a near-infrared point spectrometer intended for quick-look examinations of samples that could be subsequently analyzed with a laser desorption time-of-flight mass spectrometer. The point spectrometer utilized an acousto-optic tunable filter (AOTF) crystal as the wavelength selecting element. In parallel with the aforementioned development efforts we identified the need for a portable version of the AOTF spectrometer that we could test and demonstrate in a range of field locations on Earth chosen to serve as terrestrial analogs for extreme environments elsewhere in the solar system. Here we describe the development and field testing of the Portable Acousto-optic Spectrometer for Astrobiology (PASA). We demonstrated this instrument in two very different cave environments, a predominantly gypsum and calcite cave in New Mexico and an actively forming cave rich in hydrated sulfates in Tabasco, Mexico. Both of these microbially active environments contain evidence of biologic alteration of minerals, which can be detected using IR spectroscopy. We will describe the instrument operations and present some data acquired with PASA to demonstrate its efficacy as a tool for biomarker detection on planetary surfaces. This work was supported by NASA's EPSCoR program through grant number NNX12AK77A.

  1. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part I: Instrumentation.

    PubMed

    Bruno, Thomas J

    2016-01-15

    Building on the successful application in the laboratory of PLOT-cryoadsorption as a means of collecting vapor (or headspace) samples for chromatographic analysis, in this paper a field portable apparatus is introduced. This device fits inside of a briefcase (aluminum tool carrier), and can be easily transported by vehicle or by air. The portable apparatus functions entirely on compressed air, making it suitable for use in locations lacking electrical power, and for use in flammable and explosive environments. The apparatus consists of four aspects: a field capable PLOT-capillary platform, the supporting equipment platform, the service interface between the PLOT-capillary and the supporting equipment, and the necessary peripherals. Vapor sampling can be done with either a hand piece (containing the PLOT capillary) or with a custom fabricated standoff module. Both the hand piece and the standoff module can be heated and cooled to facilitate vapor collection and subsequent vapor sample removal. The service interface between the support platform and the sampling units makes use of a unique counter current approach that minimizes loss of cooling and heating due to heat transfer with the surroundings (recuperative thermostatting). Several types of PLOT-capillary elements and sampling probes are described in this report. Applications to a variety of samples relevant to forensic and environmental analysis are discussed in a companion paper. Published by Elsevier B.V.

  2. Flexible field goniometer system: the Goniometer for Outdoor Portable Hyperspectral Earth Reflectance

    NASA Astrophysics Data System (ADS)

    Bachmann, Charles M.; Abelev, Andrei; Montes, Marcos J.; Philpot, William; Gray, Deric; Doctor, Katarina Z.; Fusina, Robert A.; Mattis, Gordon; Chen, Wei; Noble, Scott D.; Coburn, Craig; Corl, Tom; Slomer, Lawrence; Nichols, C. Reid; van Roggen, Elena; Hughes, Roy J.; Carr, Stephen; Kharabash, Sergey; Brady, Andrew; Vermillion, Michael

    2016-07-01

    This paper describes a portable hyperspectral goniometer system for measurement of hemispherical conical reflectance factor (HCRF) data for terrestrial applications, especially in the coastal zone. This system, the Goniometer for Portable Hyperspectral Earth Reflectance (GOPHER), consists of a computer-controlled Spectra Vista Corporation HR-1024 full-range spectrometer mounted on a rotating arc and track assembly, allowing complete coverage in zenith and azimuth of a full hemisphere for recording HCRF. The control software allows customized scan patterns to be quickly modified in the field, providing for flexibility in recording HCRF and the opposition effect with varying grid sizes and scan ranges in both azimuth and zenith directions. The spectrometer track can be raised and lowered on a mast to accommodate variations in terrain and land cover. To minimize the effect of variations in illumination during GOPHER scan cycles, a dual-spectrometer approach has been adapted to link records of irradiance recorded by a second spectrometer during the GOPHER HCRF scan cycle. Examples of field data illustrate the utility of the instrument for coastal studies.

  3. Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis

    SciTech Connect

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M.; Namieśnik, Jacek

    2015-07-15

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry

  4. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    SciTech Connect

    Bunn, Amoret L.; Fritz, Brad G.; Wellman, Dawn M.

    2014-07-01

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist in the planning for the characterization activities in the RI/FS.

  5. Field-portable reflection and transmission microscopy based on lensless holography.

    PubMed

    Lee, Myungjun; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm(2) due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm(2), while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings.

  6. Fast high-throughput screening of angiotensin-converting enzyme insertion/deletion polymorphism by variable programmed electric field strength-based microchip electrophoresis.

    PubMed

    Sun, Yucheng; Kim, Su-Kang; Zhang, Peng; Woo, Nain; Kang, Seong Ho

    2016-08-15

    An insertion (I)/deletion (D) polymorphism in angiotensin-converting enzyme (ACE) has been associated with susceptibility to various diseases in numerous studies. Traditionally, slab gel electrophoresis (SGE) after polymerase chain reaction (PCR) has been used to genotype this ACE I/D polymorphism. In this study, single- and multi-channel microchip electrophoresis (ME) methods based on variable programmed electric field strength (PEFS) (i.e., low constant, high constant, (+)/(-) staircase, and random electric field strengths) were developed for fast high-throughput screening of this specific polymorphism. The optimum PEFS conditions were set as 470V/cm for 0-9s, 129V/cm for 9-13s, 470V/cm for 13-13.9s, 294V/cm for 13.9-16s, and 470V/cm for 16-20s for single-channel ME, and 615V/cm for 0-22.5s, 231V/cm for 22.5-28.5s, and 615V/cm for 28.5-40s for multi-channel ME, respectively. In the multi-channel PEFS-ME, target ACE I/D polymorphism DNA fragments (D=190bp and I=490bp) were identified within 25s without loss of resolving power, which was ∼300 times faster than conventional SGE. In addition, PCR products of the ACE gene from human blood samples were detected after only 10 cycles by multi-channel PEFS-ME, but not by SGE. This parallel detection multichannel-based PEFS-ME method offers a powerful tool for fast high-throughput ACE I/D polymorphism screening with high sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Medium field of view multiflat panel-based portable gamma camera

    NASA Astrophysics Data System (ADS)

    Giménez, M.; Benlloch, J. M.; Cerdá, J.; Escat, B.; Fernández, M.; Giménez, E. N.; Lerche, Ch. W.; Martínez, J. D.; Mora, F. J.; Pavón, N.; Sánchez, F.; Sebastià, A.

    2004-06-01

    A portable gamma camera based on the multianode technology has been built and tested. The camera consists in optically coupling four "Flat Panel" H8500 PSPMTs to a 100×100×4 mm 3 CsI(Na) continuous scintillation crystal. The dimensions of the camera are 17×12×12 cm 3 including the pinhole collimator and it weighs a total of 2 kg. Its average spatial resolution is 2 mm, its energy resolution is about 15%, and it shows a field of view of 95 mm. Because of its portability, its FOV and its cost, it is a convenient choice for osteological, renal, mammary, and endocrine (thyroid, parathyroid and suprarenal) scintigraphies, as well as other important applications such as intraoperatory detection of lymph nodes and surgical oncology. We describe the simulations performed which explain the crystal choice, the mechanical design of the camera and the method of calibration and algorithms used for position, energy and uniformity correction. We present images taken from phantoms. We plan to increase the camera sensitivity by using a four-holes collimator in combination with the MLEM algorithm, in order to decrease the exploration time and to reduce the dose given to the patient.

  8. Field evaluation of a portable blood lead analyzer in workers living at a high altitude: a follow-up investigation.

    PubMed

    Taylor, Lauralynn; Ashley, Kevin; Jones, Robert L; Deddens, James A

    2004-12-01

    Field-portable instruments can offer expeditious analytical results to health professionals in field settings and in areas lacking laboratory infrastructure. This study further evaluated an electroanalytical field-portable instrument, which rapidly analyzes blood lead concentrations. A portable anodic stripping voltammetry (ASV) instrument was evaluated utilizing paired samples from 243 employees working at an elevation of approximately 3,800 meters in Peru. Each worker donated two venous blood samples, one of which was analyzed by the ASV device and the other by a reference analytical method, graphite furnace atomic absorption spectrometry (GFAAS). According to the GFAAS results, the mean blood lead concentration measured was 46(+/-16) mug/dl; this was significantly greater than the mean ASV measurement of 32(+/-11) mug/dl (paired t-test; P < 0.0001). The accuracy of the ASV estimation decreased as the measured blood lead concentration increased. The results from this investigation were significantly different from the previous study, which was conducted near sea level. The exact causes for the discrepancies between the portable ASV results from the two studies are unclear, but are thought to be related to differences in blood chemistry between the Midwestern United States and Peruvian Andes worker cohorts. Portable ASV blood lead measurements from populations living at high altitudes should be viewed with caution. Am. J. Ind. Med. 46:656-662, 2004. Published 2004 Wiley-Liss, Inc.

  9. Portable thin layer chromatography for field detection of explosives and propellants

    NASA Astrophysics Data System (ADS)

    Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.

    2012-06-01

    A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.

  10. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    SciTech Connect

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying; Hering, Susanne V.; Collett, Jeffrey L.; Henry, Charles S.

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  11. Analysis of anions in ambient aerosols by microchip capillary electrophoresis.

    PubMed

    Liu, Yan; MacDonald, David A; Yu, Xiao-Ying; Hering, Susanne V; Collett, Jeffrey L; Henry, Charles S

    2006-11-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  12. A semi-automated, field-portable microscopy platform for clinical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2015-08-01

    Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.

  13. Two-wavelength, multipurpose, truly portable chlorophyll fluorometer and its application in field monitoring of phytoremediation

    NASA Astrophysics Data System (ADS)

    Barócsi, A.; Kocsányi, L.; Várkonyi, S.; Richter, P.; Csintalan, Z.; Szente, K.

    2000-06-01

    In this paper a compact, portable instrument is presented for the measurement of full chlorophyll fluorescence kinetics of plants at two different wavelengths. The instrument uses a 635 nm laser diode as a light source with variable gain driving that allows excitations at selectable actinic levels. The plant fluorescence is detected, at 690 nm and 735 nm, through a specially mixed three-branch optical fibre bundle. Large scale field monitoring of vegetation is made possible by the utilization of PC/104-form embedded electronics including a low power, IBM PC/386-compatible single board computer (SBC) with non-volatile flash memory. Application of a general purpose SBC and task oriented programming offers in situ data evaluation making process control possible. The capabilities of the instrument were demonstrated in monitoring soil phytoremediation processes.

  14. Metal oxide based multisensor array and portable database for field analysis of antioxidants

    PubMed Central

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-01-01

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993

  15. Metal oxide based multisensor array and portable database for field analysis of antioxidants.

    PubMed

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-03-31

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations.

  16. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  17. Evaluation of a portable FTIR for in-situ field measurements of surface reflectance

    NASA Astrophysics Data System (ADS)

    Newsom, Rob K.; Kaiser, Robert D.; Schutte, August O.

    2004-08-01

    Development of target detection algorithms and simulation models for present and future multispectral and hyperspectral sensor systems requires accurate characterization of the reflectance and thermal emission of natural and man-made materials. Fourier transform spectrometry is one method for obtaining relatively high spectral resolution, in-situ measurements of surface reflectance. This paper discusses the performance characteristics of the SOC-400T FTIR and its application to field measurements. The SOC-400T is a relatively small and portable FTIR reflectometer that was designed to measure the directional reflectance and calculate the directional thermal emittance of surfaces in the spectral range from 2 to 25 ημm. The SOC-400T uses a silicone carbide glowbar to illuminate samples. This permits accurate results to be obtained in the MWIR. We recently deployed this instrument to the field to perform measurements on various materials of interest to the military. Prior to the deployment, the instrument was evaluated to assess its performance under true field operating conditions. This paper specifically examines noise characteristics, warmup time, transients induced by reorientation of the sensor, spurious detector artifacts, and sensitivity to vibration. We also address the practical issue associated with positioning, stabilizing, and calibrating the instrument for field measurements of irregular or arbitrarily oriented surfaces.

  18. Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration

    NASA Astrophysics Data System (ADS)

    Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart

    2015-09-01

    The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.

  19. GOSAT field experiments with a new portable mid-IR FTS in the western US

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kikuchi, N.; Kuze, A.; Suto, H.; Kawakami, S.; Hashimoto, M.; Kataoka, F.; Kasai, K.; Arai, T.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Roehl, C. M.; Leifer, I.; Yates, E. L.; Marrero, J. E.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.

    2016-12-01

    The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using a new portable Fourier transform spectrometer (FTS), EM27/SUN mid-IR,in western US field experiments at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy farming region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. These measurements were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in the early summer of 2016. Before the campaign, measurements from the JAXA EM27/SUN mid-IR were compared with those from the Total Carbon Column Observing Network (TCCON) station at Caltech. Then, we observed a diurnal cycle at the Chino dairy site, an area of concentrated animal husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, in-situ vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX). We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with the portable FTS.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - METOREX, INC. X-MET 920-P AND 940

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - METOREX, INC. X-MET 920-P AND 940

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  2. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    NASA Astrophysics Data System (ADS)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  3. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...in the thesis manuscript entitled: Identification and Quantification of Pesticides in Environmental Waters with Solid Phase Microextraction ...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  4. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  5. Open channel electrochromatography on a microchip

    SciTech Connect

    Jacobson, S.C.; Hergenroeder, R.; Koutny, L.B.; Ramsey, J.M. )

    1994-07-15

    A glass microchip having a channel with a cross section of 5.6 [mu]m high and 66 [mu]m wide was fabricated using standard photolithographic and etching techniques. The surface of the channel was chemically modified with octadecylsilane to function as the stationary phase for open channel chromatography. Electroosmotic flow was used to [open quotes]load[close quotes] the sample into the microchip and to [open quotes]pump[close quotes] the mobile phase during the experiments. For electric field strengths in the separation column from 27 to 163 V/cm, the linear velocity for the electroosmotic flow ranged from 0.13 to 0.78 mm/s. Detection was performed using direct fluorescence for separation monitoring and indirect fluorescence for void time measurements. Plate heights as low as 4.1 and 5.0 [mu]m were generated for unretained and retained components, respectively. 28 refs., 6 figs., 2 tabs.

  6. Field-portable high-resolution EDXRF analysis with HgI[sub 2]-detector-based instrumentation

    SciTech Connect

    Berry, P.F.; Little, S.R.; Voots, G.R. )

    1992-01-01

    Energy dispersive x-ray fluorescence (EDXRF) analysis is well known for its efficient use of x-ray detector technology for simultaneous multielement determination. Low-intensity excitation, such as from a radioisotope source, can thus be employed and has enabled the design of many types of truly portable EDXRF instrumentation. Portable design, however, has not been without significant compromise in analytical performance because of the limited x-ray resolving power of prior detection methods, except by the use of a cryogenically operated detector. The developments we refer to stem from the use of a comparatively new x-ray detection device fabricated from mercuric iodide (HgI[sub 2]). For this detector, only a modest degree of cooling is required to achieve an energy resolution of > 300 eV. Two field-portable instrument designs of different hand-held measurement probe configurations are available that have applications for industrial quality assurance and environmental screening.

  7. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis.

    PubMed

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek

    2015-07-01

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Possibility of Microchip Electrophoresis for Biological Application

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Kido, Jun-Ichi; Shinohara, Yasuo

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. Nucleic acid fragments are separated by capillary electrophoresis in a chip with microfabricated channels, with automated detection as well as on-line data evaluation. Microfabricated devices are forecast to be fundamental to the postgenome era, especially in the field of genetics and medicine. However, although there are many reports of the use of these instruments to evaluate standard DNA, DNA ladders, PCR products, and commercially available plasmid digests, little information is available their use with biological material. In this report, we showed the accuracy of sizing and quantification of endonuclease-digested plasmid DNA. We also showed the feasibility of on-microchip endonuclease treatment of plasmid DNA and sequential analysis as an additional application for DNA analysis. Furthermore, to evaluate the possibility of microchip electrophoresis for biological application, the results of the examination of blood sugar in human plasma and mitochondrial membrane potential were shown.

  9. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

    PubMed

    Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz

    2017-08-01

    Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψs ) (cross-validation correlation coefficient (rcv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (rcv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    DOE PAGES

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; ...

    2012-01-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the compositionmore » of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1μg/cm2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.« less

  11. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    SciTech Connect

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; Johnson, Timothy J.

    2012-01-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the composition of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1μg/cm2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.

  12. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy†

    PubMed Central

    Mudanyali, Onur; Oztoprak, Cetin; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    Protection of human health and well-being through water quality management is an important goal for both the developed and the developing parts of the world. In the meantime, insufficient disinfection techniques still fail to eliminate pathogenic contaminants in freshwater as well as recreational water resources. Therefore, there is a significant need for screening of water quality to prevent waterborne outbreaks and incidents of water-related diseases. Toward this end, here we investigate the use of a field-portable and cost-effective lensfree holographic microscope to image and detect pathogenic protozoan parasites such as Giardia Lamblia and Cryptosporidium Parvum at low concentration levels. This compact lensless microscope (O. Mudanyali et al., Lab Chip, 2010, 10, 1417–1428), weighing ~46 grams, achieves a numerical aperture of ~0.1–0.2 over an imaging field of view that is more than an order of magnitude larger than a typical 10X objective lens, and therefore may provide an important high-throughput analysis tool for combating waterborne diseases especially in resource limited settings. PMID:20694255

  13. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  14. Evaluation of a Portable Automated Serum Chemistry Analyzer for Field Assessment of Harlequin Ducks, Histrionicus histrionicus

    PubMed Central

    Stoskopf, Michael K.; Mulcahy, Daniel M.; Esler, Daniel

    2010-01-01

    A portable analytical chemistry analyzer was used to make field assessments of wild harlequin ducks (Histrionicus histrionicus) in association with telemetry studies of winter survival in Prince William Sound, Alaska. We compared serum chemistry results obtained on-site with results from a traditional laboratory. Particular attention was paid to serum glucose and potassium concentrations as potential indicators of high-risk surgical candidates based on evaluation of the field data. The median differential for glucose values (N = 82) between methods was 0.6 mmol/L (quartiles 0.3 and 0.9 mmol/L) with the median value higher when assayed on site. Analysis of potassium on site returned a median of 2.7 mmol/L (N = 88; quartiles 2.4 and 3.0 mmol/L). Serum potassium values were too low for quantitation by the traditional laboratory. Changes in several serum chemistry values following a three-day storm during the study support the value of on site evaluation of serum potassium to identify presurgical patients with increased anesthetic risk. PMID:20445783

  15. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    NASA Astrophysics Data System (ADS)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  16. Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System

    SciTech Connect

    Hannum, David W.; Linker, Kevin L.; Parmeter, John E.; Rhykerd, Charles L.; Varley, Nathan R.

    1999-08-02

    We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.

  17. Evaluation of a Portable Automated Serum Chemistry Analyzer for Field Assessment of Harlequin Ducks, Histrionicus histrionicus.

    PubMed

    Stoskopf, Michael K; Mulcahy, Daniel M; Esler, Daniel

    2010-01-01

    A portable analytical chemistry analyzer was used to make field assessments of wild harlequin ducks (Histrionicus histrionicus) in association with telemetry studies of winter survival in Prince William Sound, Alaska. We compared serum chemistry results obtained on-site with results from a traditional laboratory. Particular attention was paid to serum glucose and potassium concentrations as potential indicators of high-risk surgical candidates based on evaluation of the field data. The median differential for glucose values (N = 82) between methods was 0.6 mmol/L (quartiles 0.3 and 0.9 mmol/L) with the median value higher when assayed on site. Analysis of potassium on site returned a median of 2.7 mmol/L (N = 88; quartiles 2.4 and 3.0 mmol/L). Serum potassium values were too low for quantitation by the traditional laboratory. Changes in several serum chemistry values following a three-day storm during the study support the value of on site evaluation of serum potassium to identify presurgical patients with increased anesthetic risk.

  18. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy.

    PubMed

    Mudanyali, Onur; Oztoprak, Cetin; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-09-21

    Protection of human health and well-being through water quality management is an important goal for both the developed and the developing parts of the world. In the meantime, insufficient disinfection techniques still fail to eliminate pathogenic contaminants in freshwater as well as recreational water resources. Therefore, there is a significant need for screening of water quality to prevent waterborne outbreaks and incidents of water-related diseases. Toward this end, here we investigate the use of a field-portable and cost-effective lensfree holographic microscope to image and detect pathogenic protozoan parasites such as Giardia Lamblia and Cryptosporidium Parvum at low concentration levels. This compact lensless microscope (O. Mudanyali et al., Lab Chip, 2010, 10, 1417-1428), weighing approximately 46 grams, achieves a numerical aperture of approximately 0.1-0.2 over an imaging field of view that is more than an order of magnitude larger than a typical 10X objective lens, and therefore may provide an important high-throughput analysis tool for combating waterborne diseases especially in resource limited settings.

  19. Preferred sound levels of portable music players and listening habits among adults: a field study.

    PubMed

    Kähäri, Kim R; Aslund, T; Olsson, J

    2011-01-01

    The main purpose of this descriptive field study was to explore music listening habits and preferred listening levels with portable music players (PMPs). We were also interested in seeing whether any exposure differences could be observed between the sexes. Data were collected during 12 hours at Stockholm Central Station, where people passing by were invited to measure their preferred PMP listening level by using a KEMAR manikin. People were also asked to answer a questionnaire about their listening habits. In all, 60 persons (41 men and 19 women) took part in the questionnaire study and 61 preferred PMP levels to be measured. Forty-one of these sound level measurements were valid to be reported after consideration was taken to acceptable measuring conditions. The women (31 years) and the men (33 years) started to use PMPs on a regular basis in their early 20s. Ear canal headphones/ear buds were the preferred headphone types. Fifty-seven percent of the whole study population used their PMP on a daily basis. The measured LAeq60 sec levels corrected for free field ranged between 73 and 102 dB, with a mean value of 83 dB. Sound levels for different types of headphones are also presented. The results of this study indicate that there are two groups of listeners: people who listen less frequently and at lower, safer sound levels, and people with excessive listening habits that may indeed damage their hearing sensory organ in time.

  20. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  1. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-12

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling demand and to

  2. Field analyses of (238)U and (226)Ra in two uranium mill tailings piles from Niger using portable HPGe detector.

    PubMed

    Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael

    2014-11-01

    The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Field portable mobile phone based fluorescence microscopy for detection of Giardia lamblia cysts in water samples

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Gorocs, Zoltan; McLeod, Euan; Tseng, Derek; Ozcan, Aydogan

    2015-03-01

    Giardia lamblia is a waterborne parasite that causes an intestinal infection, known as giardiasis, and it is found not only in countries with inadequate sanitation and unsafe water but also streams and lakes of developed countries. Simple, sensitive, and rapid detection of this pathogen is important for monitoring of drinking water. Here we present a cost-effective and field portable mobile-phone based fluorescence microscopy platform designed for automated detection of Giardia lamblia cysts in large volume water samples (i.e., 10 ml) to be used in low-resource field settings. This fluorescence microscope is integrated with a disposable water-sampling cassette, which is based on a flow-through porous polycarbonate membrane and provides a wide surface area for fluorescence imaging and enumeration of the captured Giardia cysts on the membrane. Water sample of interest, containing fluorescently labeled Giardia cysts, is introduced into the absorbent pads that are in contact with the membrane in the cassette by capillary action, which eliminates the need for electrically driven flow for sample processing. Our fluorescence microscope weighs ~170 grams in total and has all the components of a regular microscope, capable of detecting individual fluorescently labeled cysts under light-emitting-diode (LED) based excitation. Including all the sample preparation, labeling and imaging steps, the entire measurement takes less than one hour for a sample volume of 10 ml. This mobile phone based compact and cost-effective fluorescent imaging platform together with its machine learning based cyst counting interface is easy to use and can even work in resource limited and field settings for spatio-temporal monitoring of water quality.

  4. Variability of microchip capillary electrophoresis with conductivity detection.

    PubMed

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions.

  5. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    NASA Astrophysics Data System (ADS)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  6. Man-portable command, communication, and control systems for the next generation of unmanned field systems

    NASA Astrophysics Data System (ADS)

    Jacobus, Charles J.; Mitchell, Brian T.; Jacobus, Heidi N.; Watts, Russell C.; Taylor, Mark J.; Salazar, Alfonso

    1993-05-01

    New generations of military unmanned systems on the ground, at sea, and in the air will be driven by man-portable command units. In past efforts we implemented several prototypes of such units which provided display and capture of up to four video input channels, provided 4 color LCD screens and a larger status display LCD screen, provided drive input through two joysticks, and, through software, supported a flexible 'virtual' driver's interface. We have also performed additional trade analysis of prototype systems incorporating force feedback and extensive image-oriented processing facilities applied to man-controlled robotic control systems. This prior work has resulted in a database of practical design guidelines and a new generation of hardened compact robotic command center which is being designed and built to provide more advanced video capture, display, and interfacing features, supercomputer level computational performance, and ergonomic features for hard field use. In this paper we will summarize some past work and will project current performance to features likely to be common across most unmanned systems command, control, and communications subsystems of the near future.

  7. A field-expedient Ohmeda Universal Portable Anesthesia Complete draw-over vaporizer setup.

    PubMed

    Gegel, Brian T

    2008-06-01

    The Ohmeda Universal Portable Anesthesia Complete (U-PAC) draw-over anesthetic system is active in the US Army inventory. It is standard equipment for Certified Registered Nurse Anesthetists assigned to US Army Forward Surgical Teams and Joint Special Operations Command. The purpose of this article is to describe a practical and field-expedient U-PAC draw-over vaporizer setup used during Operation Iraqi Freedom I (February 2003 to July 2003). During the deployment, general anesthesia was administered to 25 patients with penetrating trauma using the Gegel-Mercado setup without system malfunction. This setup strengthens the standard U-PAC draw-over system delivery because it increases fractional inspired oxygen concentrations, promotes hands-free operation, enhances circuit cleanliness reducing cross contamination, and provides an alternate method for draw-over anesthesia administration in austere conditions when a ventilator may not be available or practical. It integrates and builds on the core concepts of draw-over anesthesia delivery in the literature. The Gegel-Mercado setup is combat proven.

  8. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  9. Advances in field-portable ion trap GC/MS instrumentation

    NASA Astrophysics Data System (ADS)

    Diken, Eric G.; Arno, Josep; Skvorc, Ed; Manning, David; Andersson, Greger; Judge, Kevin; Fredeen, Ken; Sadowski, Charles; Oliphant, Joseph L.; Lammert, Stephen A.; Jones, Jeffrey L.; Waite, Randall W.; Grant, Chad; Lee, Edgar D.

    2012-06-01

    The rapid and accurate detection and identification of chemical warfare agents and toxic industrial chemicals can be critical to the protection of military and civilian personnel. The use of gas chromatography (GC) - mass spectrometry (MS) can provide both the sensitivity and selectivity required to identify unknown chemicals in complex (i.e. real-world) environments. While most widely used as a laboratory-based technique, recent advances in GC, MS, and sampling technologies have led to the development of a hand-portable GC/MS system that is more practical for field-based analyses. The unique toroidal ion trap mass spectrometer (TMS) used in this instrument has multiple benefits related to size, weight, start-up time, ruggedness, and power consumption. Sample separation is achieved in record time (~ 3 minutes) and with high resolution using a state-of-the-art high-performance low-thermal-mass GC column. In addition to providing a system overview highlighting its most important features, the presentation will focus on the chromatographic and mass spectral performance of the system. Results from exhaustive performance testing of the new instrument will be introduced to validate its unique robustness and ability to identify targeted and unknown chemicals.

  10. Field-Portable Immunoassay Instruments and Reagents to Measure Chelators and Mobile Forms of Uranium

    SciTech Connect

    Blake, Diane A.

    2006-01-23

    Progress Report Date: 01/23/06 (report delayed due to Hurricane Katrina) Report of results to date: The goals of this 3-year project are to: (1) update and successfully deploy our present immunosensors at DOE sites; (2) devise immunosensor-based assays for Pb(II), Hg(II), chelators, and/or Cr(III) in surface and groundwater; and (3) develop new technologies in antibody engineering that will enhance this immunosensor program. Note: Work on this project was temporarily disrupted when Hurricane Katrina shut down the University on August 29, 2005. While most of the reagents stored in our refrigerators and freezers were destroyed, all of our hybridoma cell lines were saved because they had been stored in liquid nitrogen. We set up new tissue culture reactors with the hybridomas that synthesize the anti-uranium antibodies, and are purifying new monoclonal antibodies from these culture supernatants. Both the in-line and the field-portable sensor were rescued from our labs in New Orleans in early October, and we continued experiments with these sensors in the temporary laboratory we set up in Hammond, LA at Southeastern Louisiana University.

  11. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  12. Nanofocus of tenth of joules and a portable plasma focus of few joules for field applications

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Tarifeno, Ariel; Pedreros, Jose; Altamirano, Luis

    2009-01-21

    A repetitive pinch plasma focus that works with stored energy less than 1 J per shot has be developed at the Chilean Nuclear Energy Commission. The main features of this device, repetitive Nanofocus, are 5 nF of capacity, 5 nH of inductance, 5-10 kV charging voltage, 60-250 mJ stored energy, 5-10 kA current peak, per shot. The device has been operated at 20 Hz in hydrogen and deuterium. X-ray radiographs of materials of different thickness were obtained. Neutrons were detected using a system based upon {sup 3}He proportional counter in chare integrated mode. However, the reproducibility of this miniaturized device is low and several technological subjects have to be previously solved in order to produce neutrons for periods greater than minutes. Further studies in the Nanofocus are being carried out. In addition, a device with a stored energy of a few joules is being explored. A preliminary compact, low weight (3 kg), portable PF device (25 cmx5 cmx5 cm) for field applications has been designed. This device was designed to operate with few kilovolts (10 kV or less) with a stored energy of 2 J and a repetition rate of 10 Hz without cooling. A neutron flux of the order of 10{sup 4}-10{sup 5} n/s is expected.

  13. Longevity of radiofrequency identification device microchips in citrus trees

    USDA-ARS?s Scientific Manuscript database

    Long-term identification of individual plants in the field is an important part of many types of botanical and horticultural research. In a previous report, we described methods for using implanted radiofrequency (RFID) microchips to tag citrus trees for field research. This report provides an upd...

  14. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, John Michael; Jacobson, Stephen C.

    1999-01-01

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.

  15. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, J.M.; Jacobson, S.C.

    1999-01-12

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment. 22 figs.

  16. Analysis of T-Cell Receptor-γ Gene Rearrangements Using Oligonucleotide Microchip

    PubMed Central

    Gra, Olga A.; Sidorova, Julia V.; Nikitin, Eugene A.; Turygin, Alexander Y.; Surzhikov, Sergey A.; Melikyan, Anait L.; Sudarikov, Andrey B.; Zasedatelev, Alexander S.; Nasedkina, Tatyana V.

    2007-01-01

    T-cell clonality estimation is important for the differential diagnosis between malignant and nonmalignant T-cell proliferation. Routinely used methods include polymerase chain reaction (PCR) analysis of T-cell receptor-γ (TCR-γ) gene rearrangements followed by Genescan analysis, polyacrylamide gel electrophoresis, or heteroduplex analysis to visualize amplification products. Here, we present a new method for the analysis after PCR of TCR-γ rearrangements using hybridization on oligonucleotide microchip. A microchip was designed to contain specific probes for all functional variable (V) and joining (J) gene segments involved in rearrangements of the TCR-γ locus. Fluorescently labeled fragments of rearranged γ-chain from patients and donors were obtained in a multiplex nested PCR and hybridized with a microchip. The results were detected using a portable microchip analyzer. Samples from 49 patients with T-cell lymphomas or leukemias and 47 donors were analyzed for T-cell clonality by microchip and single-strand conformation polymorphism analysis, which served as a standard reference method. Comparison of two techniques showed full concordance of the results. The microchip-based approach also allowed the identification of V and J gene segments involved in the particular TCR-γ rearrangement. The sensitivity of the method is sufficient to determine 10% of clonal cells in the sample. PMID:17384218

  17. Red microchip VECSEL array.

    PubMed

    Hastie, Jennifer; Morton, Lynne; Calvez, Stephane; Dawson, Martin; Leinonen, Tomi; Pessa, Markus; Gibson, Graham; Padgett, Miles

    2005-09-05

    We report an InGaP/AlInGaP/GaAs microchip vertical-external-cavity surface emitting laser operating directly at red wavelengths and demonstrate its potential for array-format operation. Optical pumping with up to 3.3W at 532nm produced a maximum output power of 330mW at 675nm, in a single circularly-symmetric beam with M2<2. Simultaneous pumping with three separate input beams, generated using a diffractive optical element, achieved lasing from three discrete areas of the same chip. Output power of ~95mW per beam was obtained from this 3x1 array, each beam having a Gaussian intensity profile with M2<1.2. In a further development, a spatial light modulator allowed computer control over the orientation and separation of the pump beams, and hence dynamic control over the configuration of the VECSEL array.

  18. Microchips for CE: breakthroughs in real-world food analysis.

    PubMed

    Escarpa, Alberto; González, María Cristina; López Gil, Miguel Angel; Crevillén, Agustín G; Hervás, Miriam; García, Miguel

    2008-12-01

    The well-known complexity of food matrices is approached using CE microchips with different strategies to improve the selectivity and sensitivity of the analysis by avoiding and/or making the sample preparation as simple as possible: (i) enhancing the peak capacity in order to perform direct injection, (ii) using the microchip platform to measure one target analyte/group of analytes with or without separating other related interferences, (iii) integrating sample preparation steps on the microchip platform, and (iv) integrating new analytical tools from nanotechnology in the detection stage. New analyte separations of food significance involving DNA probes, biogenic amines, vanilla flavors, and dyes have been reported as successfully breaking new barriers in areas of high impact in the market, such as transgenic food analysis, as well as the detection of frauds and toxins. Simple microchip layouts are still the most common designs used, though sophisticated new ones are emerging. In contrast to other application areas, electrochemical detection continues to be the most common detection route, followed by LIF, though non-conventional detection routes are also emerging, such as chemiluminescence or UV. In terms of analytical performance, the integration of calibration and quality control on a microchip platform, and remarkable accuracy and precision are being obtained using creative analytical methodologies that enhance the analytical potency of microfluidic chips for their future commercialization. This review critically states the most important advances derived from work done in the field over the past 2-3 years.

  19. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    PubMed

    Turner, Andrew; Filella, Montserrat

    2017-02-09

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg(-1). The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb2O3) as synergistic flame retardants. Concentrations above 1000μgg(-1), and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials.

  20. In situ determination of trace elements in Fucus spp. by field-portable-XRF.

    PubMed

    Turner, Andrew; Poon, Hiu; Taylor, Alex; Brown, Murray T

    2017-03-23

    Fresh and freeze-dried sample sections of the coastal macroalgae, Fucus serratus and F. vesiculosus, and the brackish water macroalga, F. ceranoides, have been analysed for trace elements by field-portable-X-ray fluorescence (FP-XRF) spectrometry using a Niton XL3t in a low density mode with thickness correction. When analysed fresh in a laboratory accessory stand for a period of 200 seconds, As, Br, Fe and Zn were registered in the apex, mid-frond and lower stipe of all species, with detection limits of a few μg g(-1) (As) or a few tens of μg g(-1) (Br, Fe, Zn); when analysed dry under the same conditions, concentrations returned were systematically higher and Cu and Pb were detected in a number of F. ceranoides sections. Concentrations arising from both approaches on a dry weight basis were highly correlated, with deviations from unit slope attributed to the absorption of fluorescent X-rays by internal and surficial water when analysed fresh. With algorithms correcting for the effects of water on mass and X-ray absorption, sections of F. vesiculosus and F. ceranoides were analysed in situ with the XRF connected to a mobile stand and laptop. Dry weight concentrations returned for As and Zn were significantly correlated with respective concentrations subsequently determined by ICP-MS following acid digestion and with a slope close to unity; lower concentrations of Fe returned by ICP were attributed to the incomplete acid digestion of silt particles that evaded an initial cleaning step, while Br concentrations could not be verified independently because of loss of volatile forms during digestion. The in situ determination of trace elements in fucoids by FP-XRF provides a rapid and non-destructive means of monitoring environmental quality and identifying hot-spots of contamination, and enables a research strategy to be developed iteratively that is informed by immediate results.

  1. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.

    PubMed

    Nakashima, Koji; Nakajo, Takato; Kawamo, Michiari; Kato, Akihito; Ishigaki, Seiichiro; Murakami, Hidetomo; Imaizumi, Yohichi; Izumiyama, Hitoshi

    2011-01-01

    Cerebrospinal fluid (CSF) shunts are frequently used to treat hydrocephalus. The use of a programmable shunt valve allows physicians to easily change the opening pressure. Since patients with adjustable CSF shunt valves may use portable game machines, the permanent magnets in these machines may alter the shunt valve programmed settings or permanently damage the device. This study investigated the risk of unintentional valve adjustment associated with the use of game machines in patients with programmable CSF shunt valves. Four adjustable valves from 4 different manufacturers, Sophysa Polaris model SPV (Polaris valve), Miethke proGAV (proGAV), Codman Hakim programmable valve (CHPV), and Strata II small valve (Strata valve), were evaluated. Magnetic field interactions were determined using the portable game machine, Nintendo DS Lite (DS). The maximum distance between the valve and the DS that affected the valve pressure setting was measured by x-ray cinematography. The Polaris valve and proGAV were immune to unintentional reprogramming by the DS. However, the settings of the CHPV and Strata valves were randomly altered by the DS. Patients with an implanted shunt valve should be made aware of the risks posed by the magnetic fields associated with portable game machines and commonly used home electronics.

  2. Liquid phase chromatography on microchips.

    PubMed

    Kutter, Jörg P

    2012-01-20

    Over the past twenty years, the field of microfluidics has emerged providing one of the main enabling technologies to realize miniaturized chemical analysis systems, often referred to as micro-Total Analysis Systems (uTAS), or, more generally, Lab-on-a-Chip Systems (LOC) [1,2]. While microfluidics was driven forward a lot from the engineering side, especially with respect to ink jet and dispensing technology, the initial push and interest from the analytical chemistry community was through the desire to develop miniaturized sensors, detectors, and, very early on, separation systems. The initial almost explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important to keep in mind when developing or working with separations in a miniaturized format, and what challenges and pitfalls remain. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  4. Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity

    Treesearch

    Peter R. Robichaud; D. S. Gasvoda; Roger D. Hungerford; J. Bilskie; Louise E. Ashmun; J. Reardon

    2004-01-01

    Duff water content is an important consideration for fire managers when determining favourable timing for prescribed fire ignition. The duff consumption during burning depends largely on the duff water content at the time of ignition. A portable duff moisture meter was developed for real-time water content measurements of nonhomogenous material such as forest duff....

  5. Micellar electrokinetic chromatography on microchips.

    PubMed

    Kitagawa, Fumihiko; Otsuka, Koji

    2008-03-01

    This review highlights the methodological and instrumental developments in microchip micellar EKC (MCMEKC) from 1995. The combination of higher separation efficiencies in micellar EKC (MEKC) with high-speed separation in microchip electrophoresis (MCE) should provide high-throughput and high-performance analytical systems. The chip-based separation technique has received considerable attention due to its integration ability without any connector. This advantage allows the development of a multidimensional separation system. Several types of 2-D separation microchips are described in the review. Since complicated channel configurations can easily be fabricated on planar substrates, various sample manipulations can be carried out prior to MCMEKC separations. For example, mixing for on-chip reactions, on-line sample preconcentration, on-chip assay, etc., have been integrated on MEKC microchips. The application of on-line sample preconcentration to MCMEKC can provide not only sensitivity enhancement but also the elucidation of the preconcentration mechanism due to the visualization ability of MCE. The characteristics of these sample manipulations on MEKC microchips are presented in this review. The scope of applications in MCMEKC covers mainly biogenic compounds such as amino acids, peptides, proteins, biogenic amines, DNA, and oestrogens. This review provides a comprehensive table listing the applications in MCMEKC in relation to detection methods.

  6. Field portable XRF as a tool for the assessment of contaminated peat soils

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Evans, Martin; Rothwell, James; Hutchinson, Simon

    2013-04-01

    Upland blanket bogs in the UK have suffered severe erosion over the last millennium but there is evidence to show that this has increased in intensity in the last 250 years, coinciding with increased pressures on the land during the British Industrial Revolution. Upland peat soils in close proximity to urban and industrial areas can be contaminated with - and act as sinks for - high concentrations of atmospherically deposited lead. Atmospheric pollution has been shown to have had significant effects on blanket bog vegetation, the damage and removal of which makes the peat mass highly susceptible to erosion. Erosion of these soils has the potential to release lead into the fluvial system. Detailed quantification of lead concentrations across the surface of actively eroding peatlands is vital in order to understand lead storage and release in such environments. Previous attempts to quantify peatland lead pollution have been undertaken using the inventory approach. However, there can be significant within-site spatial heterogeneity in lead concentrations, highlighting the need for multiple samples to properly quantify lead storage. Lead concentrations in peat are traditionally derived through acid extraction followed by ICP-OES or AAS analyses, but these can be time consuming, expensive and destructive. By contrast, field portable x-ray fluorescence (FPXRF) analysers are relatively inexpensive, allow a large number of samples to be processed in a comparatively short time, giving a high level of detail with little disturbance to the surrounding area. FPXRF continues to gain acceptance in the study of metal contaminated soil but has not been used to conduct field surveys of contaminated peat soils due to their high moisture content. This study compares lead concentration data obtained in situ using a handheld Niton XL3t 900 XRF analyser with data derived from ex situ lab based analyses. In situ measurements were acquired across degraded and intact peatland sites in the

  7. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools

  8. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    PubMed

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  9. Use of portable ladders - field observations and self-reported safety performance in the cable TV industry.

    PubMed

    Chang, Wen-Ruey; Huang, Yueng-Hsiang; Brunette, Christopher; Lee, Jin

    2017-11-01

    Portable ladders incidents remain a major cause of falls from heights. This study reported field observations of environments, work conditions and safety behaviour involving portable ladders and their correlations with self-reported safety performance. Seventy-five professional installers of a company in the cable and other pay TV industry were observed for 320 ladder usages at their worksites. The participants also filled out a questionnaire to measure self-reported safety performance. Proper setup on slippery surfaces, correct method for ladder inclination setup and ladder secured at the bottom had the lowest compliance with best practices and training guidelines. The observation compliance score was found to have significant correlation with straight ladder inclined angle (Pearson's r = 0.23, p < 0.0002) and employees' self-reported safety participation (r = 0.29, p < 0.01). The results provide a broad perspective on employees' safety compliance and identify areas for improving safety behaviours. Practitioner Summary: A checklist was used while observing professional installers of a cable company for portable ladder usage at their worksites. Items that had the lowest compliance with best practices and training guidelines were identified. The results provide a broad perspective on employees' safety compliance and identify areas for improving safety behaviours.

  10. Microchip problems plague DOD

    NASA Astrophysics Data System (ADS)

    Smith, R. J.

    1984-10-01

    The major issues in the controversy over the discovery of millions of defective microchips sold to the DOD by the Texas Instruments (TI) corporation are outlined. Defects in the microcircuits are blamed on inadequate testing procedures performed by TI during manufacture, and on inadequate testing procedures used by a subcontractor especially contracted to test the chips. Because the problem persisted over a period of years, defects might be possible in as many as 100 million chips used in a broad range of military applications including the Trident submarine, the B-52, B-1B, F-15, F-111, F-4, A-6, and A-7 aircraft, the Harpoon and HARM missile systems, and the Space Shuttles Discovery and Challenger. It is pointed out that although TI has accepted responsibility for the defective chips, little will be done by the DOD to compel the company to replace them, or to upgrade testing procedures. It is concluded that the serious nature of the problem could renew interest in recommendations for the standardization of military microcircuits.

  11. Microchip electrophoresis for wine analysis.

    PubMed

    Gomez, Federico J V; Silva, M Fernanda

    2016-12-01

    The present critical review provides a summary of representative articles describing the analysis of wine by microchip electrophoresis. Special emphasis has been given to those compounds able to provide background information to achieve the differentiation of wines according to botanical origin, provenance, vintage and quality or assure wine authentication. This review focuses on capillary electrophoresis (CE) microchips dedicated to the analysis of wine covering all the contributions concerning this area. The most relevant compounds in wine analysis such as phenols, organic acids, inorganic species, aldehydes, sugars, alcohols, and neuroactive amines were considered. Moreover, a special section is dedicated to the potential of CE microchip for wine classification. Indeed, potential directions for the future are discussed.

  12. Microchip capillary electrophoresis/electrochemistry.

    PubMed

    Lacher, N A; Garrison, K E; Martin, R S; Lunte, S M

    2001-08-01

    Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.

  13. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  14. Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals

    DTIC Science & Technology

    2015-09-30

    Measurements of Odontocete Acoustic Signals Paul E. Nachtigall University of Hawaii 2530 Dole Street Sakamaki D-200 Honolulu, HI 96822 phone...profiles of acoustic signals of several species of odontocetes can be collected and analyzed in order to provide better verification of signals...collected via passive acoustic monitoring. Additionally, because the array is versatile and portable, other sound sources can be measured and described in

  15. Portable raman explosives detection

    SciTech Connect

    Moore, David Steven; Scharff, Robert J

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  16. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Reche, C.; Fonseca, A. S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.

    2015-12-01

    The performance of three portable monitors (micro-aethalometer AE51, DiscMini, Dusttrak DRX) was assessed for outdoor air exposure assessment in a representative Southern European urban environment. The parameters evaluated were black carbon, particle number concentration, alveolar lung-deposited surface area, mean particle diameter, PM10, PM2.5 and PM1. The performance was tested by comparison with widely used stationary instruments (MAAP, CPC, SMPS, NSAM, GRIMM aerosol spectrometer). Results evidenced a good agreement between most portable and stationary instruments, with R2 values mostly >0.80. Relative differences between portable and stationary instruments were mostly <20%, and <10% between different units of the same instrument. The only exception was found for the Dusttrak DRX measurements, for which occasional concentration jumps in the time series were detected. Our results validate the performance of the black carbon, particle number concentration, particle surface area and mean particle diameter monitors as indicative instruments (tier 2) for outdoor air exposure assessment studies.

  17. UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip

    NASA Astrophysics Data System (ADS)

    Mawatari, Kazuma; Kitamori, Takehiko

    2005-09-01

    Thermal lens microscope (TLM) is our original sensitive detector for non-fluorescent molecules in microspace. The principle is based on absorption of light followed by photothermal process. TLM has been successfully applied tosensitive detection on microchip, and TLM enabled various applications combined with microchip technologies. We are now developing HPLC microchips as one of the important separation techniques for analysis and synthesis. For HPLC microchip systems, direct and sensitive UV detection on microchip becomes key technology. Therefore, we extended applicability of TLM from visible to UV light absorbing samples by pulse UV laser excitation (UV-TLM). Quasi- continuous wave (QCW) method was applied for lock-in amplifier detection. By applying UV-TLM for biomolecules separation and detection, about two orders of higher sensitivity was achieved compared with UV spectrophotometer. For synthesis on microchip, recognition and detection of chiral samples become important in pharmaceutical field. Therefore, function of TLM was extended for selective detection of chiral samples by utilizing polarization modulation of excitation beam and resultant circular dichroism of sample (CD-TLM). The chirality of samples was detected selectively on microchip with two orders higher sensitivity than CD spectrophotometer. Finally, we explained the instrumentation using fiber optics and micro lens technology for achieving a miniaturized practical device.

  18. Preparation of a Surface-functionalized Power-free PDMS Microchip for MicroRNA Detection Utilizing Electron Beam-induced Graft Polymerization.

    PubMed

    Ishihara, Ryo; Uchino, Yoshitaka; Hosokawa, Kazuo; Maeda, Mizuo; Kikuchi, Akihiko

    2017-01-01

    We propose an easy microchannel surface functionalization method for a poly(dimethylsiloxane) (PDMS) microchip that utilizes electron beam-induced graft polymerization (EIGP) as a platform for microchip-based biomarker analysis. Unlike other grafting techniques, EIGP enables rapid surface modification of PDMS without initiator immobilization. The grafted microchip is preservable, and can be easily functionalized for versatile applications. In this study, the surface-functionalized power-free microchip (SF-PF microchip) was used for the detection of microRNA (miRNA), which is a biomarker for many serious diseases. The EIGP enables high-density three-dimensional probe DNA immobilization, resulting in rapid and sensitive miRNA detection on the portable SF-PF microchip. The limit of detection was 0.8 pM, the required sample volume was 0.5 μL, and the analysis time was 15 min. The SF-PF microchip will be a versatile platform for microchip-based point-of-care diagnosis.

  19. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    PubMed

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  20. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.

  1. Surface modification in microchip electrophoresis.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-11-01

    Different approaches and techniques for surface modification of microfluidic devices applied for microchip electrophoresis are reviewed. The main focus is on the improved electrophoretic separation by reducing analyte-wall interactions and manipulation of electroosmosis. Approaches and methods for permanent and dynamic surface modification of microfluidic devices, manufactured from glass, quartz and also different polymeric substrates, are described.

  2. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  3. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  4. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    PubMed

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  5. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    SciTech Connect

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-11-15

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields ({approx}1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  6. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    PubMed

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  7. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  8. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  9. Contactless conductivity detector for microchip capillary electrophoresis.

    PubMed

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelínek, Ivan; Feldman, Jason; Löwe, Holger; Hardt, Steffen

    2002-05-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  10. Field evaluation of a prototype man-portable GC/MS

    SciTech Connect

    Arnold, N.S.; Hall, D.L.; Du, W.H.; Sheya, S.A.; Mihamou, H.; Dworzanski, J.; McClennen, W.H.; Meuzelaar, H.L.C.

    1995-12-31

    In recent years, a man-portable gas chromatography/mass spectrometry (GC/MS) system has been developed based on a Hewlett Packard 5971 MSD and a unique automated vapor sampling (AVS) transfer-line (TL) GC system for direct sampling of ambient chemical vapors. The vacuum system and power supplies were replaced to facilitate operation on 24 Vdc batteries for up to 4 hours after startup on a transportable docking station. The gas chromatography was performed on a short (2 m) capillary column under isothermal conditions in a small oven to minimize power usage. Repetitive samples were taken at 10 to 60 s intervals using an automated vapor sampling inlet. In initial testing, the prototype system has been used for monitoring of gasoline vapors. Ambient levels of 6.0 ppm benzene, 4.1 ppm toluene, 0.22 ppm ethylbenzene, 1.1 ppm m- and p-xylene and 0.25 ppm o-xylene were measured near a busy gas station. The gradient mapping or source tracking capabilities of the backpack mounted system have also been demonstrated in tests with a simulated gasoline leak. This paper will describe recent work to further evaluate the capabilities and limitations of the prototype system. Results will be described in terms of the practical utility of portable GC/MS for identification and quantitation of unknown vapors.

  11. Possible application of carbon nanotubes to the field emission electron source for portable betatrons

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takehiro; Endo, Ichita; Hayashi, Kenji; Kohara, Akitsugu; Yoshida, Takuo; Lukyanovich Chakhlov, Gennady; Leonidovich Malikov, Evgeny; Petrovich Naydukov, Aleksey; Ekino, Toshikazu; Nishiyama, Fumitaka

    2005-02-01

    In order to study the feasibility of a carbon nanotube-based electron gun for small and portable betatrons, the characteristics of electron emission from carbon nanotubes were measured at around ≈1×10 -4 Pa, a typical pressure in the vacuum chamber of such betatrons. The sample cathodes were made from powders of single-walled nanotube (SWNT) and multi-walled nanotube (MWNT) that were fixed on the stainless steel plate with gold paste. We found that the emission was weaker at the lower vacuum for both MWNT and SWNT. However, when the vacuum level was restored to ≈1×10 -4 Pa after being kept at 4.0×10 -4 Pa for 15 minutes, the emission-current recovered to some extent but did not fully come back to the original value. The observed current densities from SWNT and MWNT are 550 and 540 μA/mm 2, respectively, at the high-voltage we tried: 2 kV for SWNT and 1.1 kV for MWNT across a 300 μm gap. It is likely that the carbon nanotube, under the pulsed operation, has advantages over the thermal cathode for the electron emitters of portable betatrons.

  12. Field dependence and verbalized strategies on the portable rod-and-frame test by depressed outpatients and normal controls.

    PubMed

    Calamari, E; Pini, M; Puleggio, A

    2000-12-01

    This study examined the relationships between scores on the cognitive style of field dependence-independence and verbalized strategies on the Portable Rod-and-Frame Test for normal and psychopathological outpatients. We attempted to verify (a) Manning's hypothesis (1991) of a correspondence between scores on field dependence and external strategies (reference to the visual field) and scores on field independence and internal strategies (reference to the body) on perceptual tasks, and (b) a tendency of depressed persons to score as field dependent, and (c) use of external verbalized strategies. A total of 50 depressed outpatients and 50 normal controls were administered the test and requested to report the strategy they had employed to solve the problem. Contrary to Manning's findings, no significant relationship was found between cognitive style and verbalized strategies in the total sample. Depressed outpatients classified as internal scored significantly higher on the Group Embedded Figures Test but appeared more field dependent on the Rod-and-Frame Test. Moreover, only for the former test did depressed outpatients score more field-dependent than controls. Finally, no significant relationship was found between the diagnosis of depression and use of external strategies; however, field dependence and the use of external strategies on the Rod-and-Frame Test were associated with more severe depressive symptoms measured by the D scale of the MMPI-2. Further research is needed to assess the role of premorbid personality structures of depression in subjective and objective aspects of Rod-and-Frame Test performance.

  13. Simulating real-world field-based petrologic research in a field course: Incorporation of portable X-ray fluorescence spectrometry in the Iceland Volcanology Field Camp

    NASA Astrophysics Data System (ADS)

    Jordan, B.

    2016-12-01

    Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.

  14. Use of field-portable XRF analyzers for rapid screening of toxic elements in FDA-regulated products.

    PubMed

    Palmer, Peter T; Jacobs, Richard; Baker, Peter E; Ferguson, Kelly; Webber, Siri

    2009-04-08

    Analytical instrumentation continues its amazing evolution, especially in regard to generating ever more sensitive, faster, and reliable measurements. Perhaps the most difficult challenges are making these instruments small enough to use in the field, equipping them with well-designed software that facilitates and simplifies their use by nonexperts while preserving enough of their analytical capabilities to render them useful for a wide variety of applications. Perhaps the most impressive and underappreciated example of instruments that meet these criteria are field-portable X-ray fluorescence (XRF) analyzers. In the past, these analyzers have been routinely used for environmental applications (lead in paint and soil, metal particulates in air samples collected onto filters), geology studies (ore and soil analysis, precious metal identification), and recycling industries (alloy identification). However, their use in the analysis of toxic elements in food, food ingredients, dietary supplements, and medicinal and herbal products, especially within the FDA and regulatory environments, has been surprisingly limited to date. Although XRF will not replace atomic spectrometry techniques such as ICP-MS for sub-parts per million level analyses, it offers a number of significant advantages including minimal sample preparation, high sample throughputs, rapid and definitive identification of many toxic elements, and accurate quantitative results. As should be obvious from many recent news reports on elevated levels of toxic elements in children's lunchboxes, toys, and supplements, field-portable XRF analyzers can fill a very important niche and are becoming increasingly popular for a wide variety of elemental analysis applications. This perspective begins with a brief review of the theory of XRF to highlight the underlying principle, instrumentation, and spectra. It includes a discussion of various analytical figures of merit of XRF to illustrate its strengths and limitations

  15. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided

  16. A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure.

    PubMed

    Jackson, Randy; Logue, Brian A

    2017-04-01

    Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Another relatively common, but consistently overlooked, mode of cyanide exposure is inhalation of fire smoke. Both civilians and fire rescue personnel risk exposure during the unfortunate event of a structure fire. Additionally, fire rescue personnel risk long-term effects of habitual exposure throughout their careers in fire rescue. The relatively rapid onset of cyanide toxicity and the fact that cyanide exposure symptoms mimic other medical conditions necessitate a rapid, sensitive, portable, and accurate method for the diagnosis of cyanide exposure. This review focuses on the important issues concerning accurate point-of-care diagnosis of cyanide exposure and cyanide detection technologies that may allow a commercial cyanide exposure diagnostic to become a reality.

  17. Portable fuel cell systems for America's army: technology transition to the field

    NASA Astrophysics Data System (ADS)

    Patil, Ashok S.; Dubois, Terry G.; Sifer, Nicholas; Bostic, Elizabeth; Gardner, Kristopher; Quah, Michael; Bolton, Christopher

    The US Army Communications, Electronics Research Development and Engineering Center (CERDEC) envisions three thrust areas for portable fuel cell systems for military applications. These areas include soldier power (<500 W), sensor power (0-100 W), and auxiliary power units or APUs (0.5-10 kW). Soldier and sensor fuel cell systems may be man-portable/backpackable while APUs could be employed as squad battery chargers or as 'Silent Watch' APUs where low signature (acoustic, thermal, etc.) operation is a requirement. The Army's research and development efforts are focusing on methods of either storing or generating hydrogen on the battlefield. Hydrogen storage technology is considered critical to small military and/or commercial fuel cell systems, and is being pursued in a host of commercial and government programs. CERDEC, in a joint effort with the Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA), is developing several promising hydrogen generating technologies. The goal of this program is a safe, reliable hydrogen source that can provide rates up to 100 W with an energy density of greater than 1000 Wh/kg. For larger fuel cell units (>500 W), it is imperative that the fuel cell power units be able to operate on fuels within the military logistics chain [DOD 4140.25-M, DOD Directive 4140.25 (1993)]. CERDEC is currently conducting research on catalysts and microchannel fuel reformers that offer great promise for the reforming of diesel and JP-8 fuels into hydrogen. In addition to research work on PEM fuel cells and enabling technologies, the Army is also conducting research on direct methanol and solid oxide fuel cells, and combined heat and power applications utilizing new high temperature fuel cells.

  18. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  19. Application of Microchip for Biomarker Analysis

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Yatsushiro, Shouki; Yamamura, Shouhei; Abe, Hiroko

    Microchip technologies have received considerable attention, due to their competitive advantages, especially in regards to reduced sample and reagent consumption, analysis time, and easy operation. This approach has been successfully used to analyze DNA, amino acids, proteins, and carbohydrates. In the present study, we showed the potential of microchip technologies for the biomarker analysis, blood carbohydrate analysis on microchip electrophoresis, quantitative analysis of protein with antigen-antibody reaction on microchip, and the detection of malaria-infected erythrocyte with a cell microarray chip.

  20. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  1. A novel CE microchip with micro pillars column & double-L injection design for Capacitance Coupled Contactless Conductivity detection technology

    NASA Astrophysics Data System (ADS)

    Wang, Yineng; Messina, Walter; Cao, Xi; Hogan, Anna; van Zalen, Ed; Moore, Eric

    2016-10-01

    This novel capillary electrophoresis microchip, or also known as μTAS (micro total analysis system) was designed to separate complex aqueous based compounds, similar to commercial CE & microchip (capillary electrophoresis) systems, but more compact. This system can be potentially used for mobile/portable chemical analysis equipment. Un-doped silicon wafer & ultra-thin borofloat glass (Pyrex) wafers have been used to fabricate the device. Double-L injection feature, micro pillars column, bypass separation channel & hybrid- referenced C4D electrodes were designed to achieve a high SNR (signal to noise ratio), easy- separation, for a durable and reusable μTAS for CE use.

  2. Portable Welder

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A low cost, low power, self-contained portable welding gun designed for joining thermoplastics which become soft when heated and harden when cooled was developed originally by NASA's Langley Research Center for repairing helicopter windshields. Welder has a broad range of applications for joining both thermoplastic materials in the aerospace, automotive, appliance, and construction industries. Welders portability and low power requirement allow its use on-site in any type of climate, with power supplied by a variety of portable sources.

  3. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  4. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  5. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy.

    PubMed

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-24

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  6. Subsecond chiral separations on a microchip.

    PubMed

    Piehl, Natalia; Ludwig, Martin; Belder, Detlev

    2004-11-01

    Fast chiral separation of DNS-amino acids could be realized using microchip electrophoresis with fluorescence detection. For this purpose, highly sulfated cyclodextrins (HS-gamma-CD) were used as chiral selectors enabling high selectivity. Even subsecond separation of DNS-tryptophan, DNS-norleucine, DNS-phenylalanine, DNS-methionine, and DNS-aspartic acid could be achieved. Baseline separation could be accomplished within 720 ms, which is the fastest separation of enantiomers reported to date. A more complex mixture consisting of three chiral DNS-amino acids could be separated within 3.3 s utilizing a separation length of only 7 mm and an electrical field strength of 2012 V/cm.

  7. Production of Microchips from Polystyrene Plates

    ERIC Educational Resources Information Center

    Pace, Sarah Lindsey

    2009-01-01

    Currently manufactured microchips are expensive to make, require specialized equipment, and leave a large environmental footprint. To counter this, an alternative procedure that is cheaper and leaves a smaller environmental footprint should be made. The goal of this research project is to develop a process that creates microchips from polystyrene…

  8. Prediction of VO2max from a new field test based on portable indirect calorimetry.

    PubMed

    Flouris, Andreas D; Metsios, Giorgos S; Famisis, Konstantinos; Geladas, Nikos; Koutedakis, Yiannis

    2010-01-01

    We assessed the validity and reliability of the new 15m square shuttle run test (SST) for predicting laboratory treadmill test (TT) maximal oxygen uptake (VO(2 max)) compared to the 20 m multistage shuttle run test (MST) in 45 adult males. Thirty participants performed a TT and a SST once to develop a VO( 2max) prediction model. The remaining 15 participants performed the TT and MST once and the SST twice for cross-validation purposes. Throughout testing V O(2max) was determined via portable indirect calorimetry while blood lactate concentration was assessed at the fifth recovery minute. Comparisons of TT V O(2 max) (51.3+/-3.1 ml kg(-1)min(-1)) with SST measured (51.2+/-3.2 ml kg(-1)min(-1)) and predicted (50.9+/-3.3 ml kg(-1)min(-1)) V O(2 max) showed no differences while TT blood lactate was higher compared to SST (10.3+/-1.7 mmol vs. 9.7+/-1.7 mmol, respectively). In contrast, MST measured (53.4+/-3.5 ml kg(-1)min(-1)) and predicted (57.0+/-4.5 ml kg(-1)min(-1)) V O(2 max) and blood lactate (11.2+/-2.0 mmol) were significantly higher compared to TT. No test-retest differences were detected for SST measured and predicted V O(2 max) and blood lactate. It is concluded that the SST is a highly valid and reliable predictive test for V O(2 max). Copyright (c) 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Experimental Evaluation of Selected Field Portable Instrumentation for the Quantitative Determination of Contaminant Levels in Soil and Water at Rocky Mountain Arsenal

    DTIC Science & Technology

    1989-10-01

    immediate determination of the contaminant concentration can be made. IV.B.7. Equivaleny Testing and Analysis of Field Samples Results of the field XRF ...field, an initial analysis would be conducted and the photopeak spectrum could be examined visually to determine the presence of either lead or ...of volatile organic constituents in water and soil, and a portable x-ray fluorescence ( XRF ) unit, for the determination of selected elemental

  10. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    PubMed

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-07

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  11. Efficient proteolysis strategies based on microchip bioreactors.

    PubMed

    Liu, Shuang; Bao, Huimin; Zhang, Luyan; Chen, Gang

    2013-04-26

    In proteome research, proteolysis is an important procedure prior to the mass spectrometric identification of proteins. The typical time of conventional in-solution proteolysis is as long as several hours to half a day. To enhance proteolysis efficiency, a variety of microchip bioreactors have been developed for the rapid digestion and identification of proteins in the past decade. This review mainly focuses on the recent advances and the key strategies of microchip bioreactors in protein digestion. The subjects covered include microchip proteolysis systems, the immobilization of proteases in microchannels, the applications of microchip bioreactors in highly efficient proteolysis, and future prospects. It is expected that microchip bioreactors will become powerful tools in protein analysis and will find a wide range of applications in high-throughput protein identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Courseware Portability.

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    Portability enables interactive courseware (ICW) and associated application programs to operate on computer-based systems other than the ones on which they are developed. Courseware portability will increase sharing of ICW across a range of instructional settings within military services and across internationally allied military services. The…

  13. Field screening of volatile and semi-volatile organic pollutants using a heated, portable micro gas chromatograph

    SciTech Connect

    Bruns, M.W.; Gonzalez, D.L.

    1995-12-31

    A heated, portable silicon micromachined gas chromatograph was designed, developed and recently utilized in the characterization of volatile and some semi-volatile organic compound distribution in soil at a site in the Midwest. The use of this system in the field allowed for the rapid, on-site characterization and field screening of gasoline range VOCs and semi-volatiles (e.g., benzene, toluene, ethylebenzene, and xylene; and naphthalene) and chlorinated hydrocarbon solvents in soil and assisted in the geological mapping of environmental hot spots. The sample inlet and introduction system of the micro GC is heatable to 110 C to further extend the application range of the micro GC to samples with high moisture content, high concentration of condensable vapors, and semi-volatile compounds. Data will be presented on the use of the heated system in the characterization of the site with details provided regarding the advantages of individual compound characterization, sampling for screening purposes, and environmental screening in the field (to locate hot spots) and in mobile laboratories (to prevent overloading of GC/MS systems).

  14. Preliminary Results from the Portable Imagery Quality Assessment Test Field (PIQuAT) of Uav Imagery for Imagery Reconnaissance Purposes

    NASA Astrophysics Data System (ADS)

    Dabrowski, R.; Orych, A.; Jenerowicz, A.; Walczykowski, P.

    2015-08-01

    The article presents a set of initial results of a quality assessment study of 2 different types of sensors mounted on an unmanned aerial vehicle, carried out over an especially designed and constructed test field. The PIQuAT (Portable Imagery Quality Assessment Test Field) field had been designed especially for the purposes of determining the quality parameters of UAV sensors, especially in terms of the spatial, spectral and radiometric resolutions and chosen geometric aspects. The sensor used include a multispectral framing camera and a high-resolution RGB sensor. The flights were conducted from a number of altitudes ranging from 10 m to 200 m above the test field. Acquiring data at a number of different altitudes allowed the authors to evaluate the obtained results and check for possible linearity of the calculated quality assessment parameters. The radiometric properties of the sensors were evaluated from images of the grayscale target section of the PIQuAT field. The spectral resolution of the imagery was determined based on a number of test samples with known spectral reflectance curves. These reference spectral reflectance curves were then compared with spectral reflectance coefficients at the wavelengths registered by the miniMCA camera. Before conducting all of these experiments in field conditions, the interior orientation parameters were calculated for the MiniMCA and RGB sensor in laboratory conditions. These parameters include: the actual pixel size on the detector, distortion parameters, calibrated focal length (CFL) and the coordinates of the principal point of autocollimation (miniMCA - for each of the six channels separately.

  15. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    PubMed

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  16. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    PubMed

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  17. Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century.

    PubMed

    Kricka, L J

    2001-05-01

    Micro miniaturization of analytical procedures is having significant impact on diagnostic testing, and will enable highly complex clinical testing to be miniaturized and permit testing to move from the central laboratory into non-laboratory settings. The diverse range of micro analytical devices includes microchips, gene chips, bioelectronic chips. They have been applied to several clinically important assays (e.g., PCR, immunoassay). The main advantages of the new devices are integration of multiple steps in complex analytical procedures, diversity of application, sub-microliter consumption of reagents and sample, and portability. These devices form the basis of new and smaller analyzers (e.g., capillary electrophoresis) and may ultimately be used in even smaller devices useful in decentralized testing (lab-on-a-chip, personal laboratories). The impact of microchips on healthcare costs could be significant via timely intervention and monitoring, combined with improved treatments (e.g., microchip-based pharmacogenomic tests). Empowerment of health consumers to perform self-testing is limited, but microchips could accelerate this process and so produce a level of self-awareness of biochemical and genetic information hitherto unimaginable. The next level of miniaturization is the nanochip (nanometer-sized features) and the technological foundation for these futuristic devices is discernable in nanotubes and self-assembling molecular structures.

  18. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis

    PubMed Central

    Creamer, Jessica S.; Oborny, Nathan J.; Lunte, Susan M.

    2014-01-01

    The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis. PMID:25126117

  19. Microchip separations of protein biotoxins using an integrated hand-held device.

    PubMed

    Fruetel, Julia A; Renzi, Ronald F; Vandernoot, Victoria A; Stamps, James; Horn, Brent A; West, Jay A A; Ferko, Scott; Crocker, Robert; Bailey, Christopher G; Arnold, Don; Wiedenman, Boyd; Choi, Wen-Yee; Yee, Daniel; Shokair, Isaac; Hasselbrink, Ernest; Paul, Philip; Rakestraw, David; Padgen, Debbie

    2005-03-01

    We report the development of a hand-held instrument capable of performing two simultaneous microchip separations (gel and zone electrophoresis), and demonstrate this instrument for the detection of protein biotoxins. Two orthogonal analysis methods are chosen over a single method in order to improve the probability of positive identification of the biotoxin in an unknown mixture. Separations are performed on a single fused-silica wafer containing two separation channels. The chip is housed in a microfluidic manifold that utilizes o-ring sealed fittings to enable facile and reproducible fluidic connection to the chip. Sample is introduced by syringe injection into a septum-sealed port on the device exterior that connects to a sample loop etched onto the chip. Detection of low nanomolar concentrations of fluorescamine-labeled proteins is achieved using a miniaturized laser-induced fluorescence detection module employing two diode lasers, one per separation channel. Independently controlled miniature high-voltage power supplies enable fully programmable electrokinetic sample injection and analysis. As a demonstration of the portability of this instrument, we evaluated its performance in a laboratory field test at the Defence Science and Technology Laboratory with a series of biotoxin variants. The two separation methods cleanly distinguish between members of a biotoxin test set. Analysis of naturally occurring variants of ricin and two closely related staphylococcal enterotoxins indicates the two methods can be used to readily identify ricin in its different forms and can discriminate between two enterotoxin isoforms.

  20. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

  1. Food analysis on microchip electrophoresis: an updated review.

    PubMed

    Martín, Aida; Vilela, Diana; Escarpa, Alberto

    2012-08-01

    From 2008 to date, basically, single-cross microchip electrophoresis (ME) design has been used for food analysis with electrochemical and laser-induced fluorescence detection being the most common principles coupled. In the last 4 years, the main outlines were: (i) the exploration of new analytes such as heavy metals, nitrite, micotoxins, microorganisms, and allergens; (ii) the development of electrokinetic microfluidic (bio-) sensors into microchip format for the detection of toxins; and interestingly (iii) although sample preparation is still performed off-chip, an important increase in works dealing with complicated food samples has been clearly noticed. Although microchip technology based on electrokinetics is emerging from important fields such as authentication of foods, detection of frauds, toxics, and allergens; the marriage between micro- and nanotechnologies and total integration approaches has not reached the expected impact in the field but it is still a great promise for the development of ME of new generations for food analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterisation of a high resolution small field of view portable gamma camera.

    PubMed

    Bugby, S L; Lees, J E; Bhatia, B S; Perkins, A C

    2014-05-01

    A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.

  3. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  4. A laboratory and field evaluation of a portable immunoassay test for triazine herbicides in environmental water samples

    USGS Publications Warehouse

    Schulze, P.A.; Capel, P.D.; Squillace, P.J.; Helsel, D.R.

    1993-01-01

    The usefulness and sensitivity, of a portable immunoassay test for the semiquantitative field screening of water samples was evaluated by means of laboratory and field studies. Laboratory results indicated that the tests were useful for the determination of atrazine concentrations of 0.1 to 1.5 μg/L. At a concentration of 1 μg/L, the relative standard deviation in the difference between the regression line and the actual result was about 40 percent. The immunoassay was less sensitive and produced similar errors for other triazine herbicides. After standardization, the test results were relatively insensitive to ionic content and variations in pH (range, 4 to 10), mildly sensitive to temperature changes, and quite sensitive to the timing of the final incubation step, variances in timing can be a significant source of error. Almost all of the immunoassays predicted a higher atrazine concentration in water samples when compared to results of gas chromatography. If these tests are used as a semiquantitative screening tool, this tendency for overprediction does not diminish the tests' usefulness. Generally, the tests seem to be a valuable method for screening water samples for triazine herbicides.

  5. Detection of hexavalent uranium with inline and field-portable immunosensors

    SciTech Connect

    Melton, Scott J.; Yu, Haini; Ali, Mehnaaz F.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Blake, Diane A.

    2008-10-02

    An antibody that recognizes a chelated form of hexavalent uranium was used in the development of two different immunosensors for uranium detection. Specifically, these sensors were utilized for the analysis of groundwater samples collected during a 2007 field study of in situ bioremediation in a aquifer located at Rifle, CO. The antibody-based sensors provided data comparable to that obtained using Kinetic Phosphorescence Analysis (KPA). Thus, these novel instruments and associated reagents should provide field researchers and resource managers with valuable new tools for on-site data acquisition.

  6. Field portable detection of VOCs using a SAW/GC system

    SciTech Connect

    Staples, E.J.

    1995-10-01

    This paper describes research on a fast gas chromatography (GC) vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center. The instrument was field tested at the Savannah River Plant.

  7. A simple, accurate, field-portable mixing ratio generator and Rayleigh distillation device

    USDA-ARS?s Scientific Manuscript database

    Routine field calibration of water vapor analyzers has always been a challenging problem for those making long-term flux measurements at remote sites. Automated sampling of standard gases from compressed tanks, the method of choice for CO2 calibration, cannot be used for H2O. Calibrations are typica...

  8. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  9. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  10. Portable Planetarium.

    ERIC Educational Resources Information Center

    Stockdale, Dennis L.

    1997-01-01

    Describes a method that students can use to build portable planetariums. After building the models, students are familiar with the names of constellations and major stars and are able to share their projects with other students. (DDR)

  11. NcRNA-microchip analysis

    PubMed Central

    Mrázek, Jan; Vorwerk, Sonja

    2010-01-01

    Epstein-Barr virus (EBV) infection of human B cells requires the presence of non-coding RNAs (ncRNAs), which regulate expression of viral and host genes. To identify differentially expressed regulatory ncRNAs involved in EBV infection, a specialized cDNA library, enriched for ncRNAs derived from EBV-infected cells, was subjected to deep-sequencing. From the deep-sequencing analysis, we generated a custom-designed ncRNA-microchip to investigate differential expression of ncRNA candidates. By this approach, we identified 25 differentially expressed novel host-encoded ncRNA candidates in EBV-infected cells, comprised of six non-repeat-derived and 19 repeat-derived ncRNAs. Upon EBV infection of B cells, we also observed increased expression levels of oncogenic miRNAs mir-221 and mir-222, which might contribute to EBV-related tumorigenesis, as well as decreased expression levels of RNase P RNA, a ribozyme involved in tRNA maturation. Thus, in this study we demonstrate that our ncRNA-microchip approach serves as a powerful tool to identify novel differentially expressed ncRNAs acting as potential regulators of gene expression during EBV infection. PMID:21037422

  12. Recent developments in optical detection methods for microchip separations.

    PubMed

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.

  13. Optical low-cost and portable arrangement for full field 3D displacement measurement using a single camera

    NASA Astrophysics Data System (ADS)

    López-Alba, E.; Felipe-Sesé, L.; Schmeer, S.; Díaz, F. A.

    2016-11-01

    In the current paper, an optical low-cost system for 3D displacement measurement based on a single camera and 3D digital image correlation is presented. The conventional 3D-DIC set-up based on a two-synchronized-cameras system is compared with a proposed pseudo-stereo portable system that employs a mirror system integrated in a device for a straightforward application achieving a novel handle and flexible device for its use in many scenarios. The proposed optical system splits the image by the camera into two stereo images of the object. In order to validate this new approach and quantify its uncertainty compared to traditional 3D-DIC systems, solid rigid in and out-of-plane displacements experiments have been performed and analyzed. The differences between both systems have been studied employing an image decomposition technique which performs a full image comparison. Therefore, results of all field of view are compared with those using a stereoscopy system and 3D-DIC, discussing the accurate results obtained with the proposed device not having influence any distortion or aberration produced by the mirrors. Finally, the adaptability of the proposed system and its accuracy has been tested performing quasi-static and dynamic experiments using a silicon specimen under high deformation. Results have been compared and validated with those obtained from a conventional stereoscopy system showing an excellent level of agreement.

  14. Analysis of beverages for Hg, As, Pb, and Cd with a field portable X-ray fluorescence analyzer.

    PubMed

    Anderson, David L

    2010-01-01

    Analytical capabilities of a handheld X-ray tube analyzer for analysis of beverages were evaluated. Sets of standard solutions for the elements Hg, As, Pb, and Cd were prepared with mass fractions up to 5000 mg/kg. A thirst quencher beverage was spiked with these elements up to mass fractions of 2500 mg/kg. Portions of these solutions were placed in standard X-ray fluorescence (XRF) cells, as well as the original container, and analyzed by using a field portable Innov-X alpha-6000s XRF tube-type analyzer. Uncorrected analyzer output usually yielded qualitative or semiquantitative results for the spiked beverages in X-ray cells. Average correction factors applied to analyzer output yielded accurate (in terms of z-scores) quantitative results for As above 20 mg/kg and qualitative or semiquantitative results for the other elements. Weighted quadratic fit calibrations provided accurate quantitative or semiquantitative results for all elements at levels above 20 mg/kg. The instrument's preset X-ray overlap correction algorithm worked well for the beverage spiked with all four elements. Spiked beverages analyzed through the wall of the original polyethylene terephthalate container produced accurate results within measurement uncertainties after application of "container wall" correction factors.

  15. Performance evaluation of currently used portable X ray fluorescence instruments for measuring the lead content of paint in field samples.

    PubMed

    Muller, Yan; Favreau, Philippe; Kohler, Marcel

    2014-01-01

    Field-portable X-ray fluorescence (FP-XRF) instruments are important for non-destructive, rapid and convenient measurements of lead in paint, in view of potential remediation. Using real-life paint samples, we compared measurements from three FP-XRF instruments currently used in Switzerland with laboratory measurements using inductively coupled plasma mass spectrometry after complete sample dissolution. Two FP-XRF devices that functioned by lead L shell excitation frequently underestimated the lead concentration of samples. Lack of accuracy correlated with lead depth and/or the presence of additional metal elements (Zn, Ba or Ti). A radioactive source emitter XRF that enabled the additional K shell excitation showed higher accuracy and precision, regardless of the depth of the lead layer in the sample or the presence of other elements. Inspection of samples by light and electron microscopy revealed the diversity of real-life samples, with multi-layered paints showing various depths of lead and other metals. We conclude that the most accurate measurements of lead in paint are currently obtained with instruments that provide at least sufficient energy for lead K shell excitation.

  16. Metals in boat paint fragments from slipways, repair facilities and abandoned vessels: an evaluation using field portable XRF.

    PubMed

    Turner, Andrew; Comber, Sean; Rees, Aldous B; Gkiokas, Dimitrios; Solman, Kevin

    2015-01-01

    Paint flaking off abandoned vessels or generated during boat repair is hazardous to human health and wildlife. In this study, a means of screening paint fragments using a field portable-X-ray fluorescence (FP-XRF) spectrometer is described. The technique is capable of delivering rapid, surficial measurements of Ba, Cu, Pb and Zn down to concentrations less than 150 μg g(-1), and Sn and Cr to concentrations of a few hundred μg g(-1). Application of the technique to fragments collected from slipways, yards, hardstandings, abandoned boats and ships undergoing maintenance throughout the EU reveal highly variable concentrations of metals among samples from the same environment or from the same region of a given boat; in many cases, variability is also evident in different areas or on different surfaces of the same fragment. Of particular concern are elevated concentrations of substances that have been restricted or banned (e.g. Sn, an indicator of organotin, and up to concentrations of 40,000 μg g(-1), and Pb up to concentrations of 200,000 μg g(-1)). Although FP-XRF can rapidly screen samples whose composition and origin are unknown and can assist in instantaneous decision making, a full risk assessment will rely on additional analyses of the precise species (including organo-forms) of the metals present.

  17. The validation of field-portable x-ray fluorescence spectrometry for the analysis of metals in marine sediments

    SciTech Connect

    Kirtay, V.J.; Apitz, S.E.; Kellum, J.H.

    1997-12-31

    The primary focus of this study has been the determination of FPXRF detection limits of metals, specifically Cu, Zn and Pb, in marine sediments in the field, and the demonstration of the capabilities of the portable instrument relative to detailed standard chemical analyses. Instrument detection limits have been determined, and these have been compared to the manufacturer-stated detection limits. The lower linear range of the instrument was examined for Cu, Zn and Pb using serial dilutions of a standard reference material, PACS-1 marine sediment (NRCC, Ottawa, Canada). Results from FPXRF analyses of sediment samples from various locations have been compared with results from standard analyses (ICP, AAS, Laboratory XRF). The data are used to draw correlations between the different methods, as well as to aid in establishing detection limits. The ability to reliably detect metals in sediments would allow for the generation of data from sediment grabs in a time-frame that could guide on site decision making for mapping strategies and detailed sampling.

  18. Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals.

    PubMed

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G M

    2013-07-01

    The nondestructive identification of both inorganic and organic compounds without the need for chemical or mechanical sample preparation is an advantage of the Raman spectroscopic analytical technique when applied in situ using miniaturized equipment for the geosciences. This is critically assessed here for several real life geoscientific scenarios in which several groups of minerals were analyzed with emphasis on evaporites, carbonates, and selected types of dark minerals and weak Raman scatterers. The role of individual analytical instrumental parameters such as focal plane precision, exposure time, and ambient light conditions that can affect the acquisition and interpretation of spectroscopic data from these specimens in field conditions was also evaluated.

  19. Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip.

    PubMed

    Xu, Yi; Liang, Jing; Liu, Haitao; Hu, Xiaoguo; Wen, Zhiyu; Wu, Yongjie; Cao, Mingxia

    2010-06-01

    A new type of capacitance-coupled contactless conductivity detection (C(4)D) system with sidewall electrodes was proposed for integration on a silicon-on-isolator-poly(dimethylsiloxane) (SOI-PDMS) hybrid low-voltage-driven electrophoresis microchip. By a microelectromechanical system process, the sidewall electrodes were fabricated precisely at either side of the separation channel. The area of the capacitor electrodes was the maximum value to improve the detection sensitivity with an enhanced capacitance effect. According to the simulation results, the structural parameters of the sidewall electrodes were determined as 550-microm length, 15-microm width, 80-microm separation distance, and 1-microm isolator thickness. The integrated microdevice with the SOI-PDMS hybrid electrophoresis microchip was very compact and the size was only 15 cm x 15 cm x 10 cm (width x length x height), which permitted miniaturization and portability. The detector performance was evaluated by K(+) testing. The detection limit of the conductivity detector was determined to be 10(-9) and 10(-6) M for K(+) in the static and electric-driven modes, respectively. Finally, the C(4)D was applied to low-voltage-driven electrophoresis on a microchip to carry out real-time measurement of the separation of amino acids. The separations of 10(-4) M lysine and phenylalanine in the low-voltage-driven electrophoresis mode were performed with an electric field of 300 V/cm and were completed in less than 15 min with a resolution of 1.3. The separation efficiency was found to be 1.3 x 10(3) and 2.8 x 10(3) plates for lysine and phenylalanine, respectively, with a migration time reproducibility of 2.7 and 3.2%. The conductivity detection limit of amino acids achieved was 10(-6) M. The proposed method for the construction of a novel C(4)D integrated on an SOI-PDMS hybrid low-voltage-driven electrophoresis microchip showed the most extensive integration and miniaturization of a microdevice, which is a further

  20. Measuring arterial oxygenation in a high altitude field environment: comparing portable pulse oximetry with blood gas analysis.

    PubMed

    Ross, Elliot M; Matteucci, Michael J; Shepherd, Matthew; Barker, Matthew; Orr, Lance

    2013-06-01

    High altitude environments present unique medical treatment challenges. Medical providers often use small portable pulse oximetry devices to help guide their clinical decision making. A significant body of high altitude research is based on the use of these devices to monitor hypoxia, yet there is a paucity of evidence that these devices are accurate in these environments. We studied whether these devices perform accurately and reliably under true mountain conditions. Healthy unacclimatized active-duty military volunteers participating in mountain warfare training at 2100 m (6900 feet) above sea level were evaluated with several different pulse oximetry devices while in a cold weather, high altitude field environment and then had arterial blood gases (ABG) drawn using an i-STAT for comparison. The pulse oximeter readings were compared with the gold standard ABG readings. A total of 49 individuals completed the study. There was no statistically significant difference between any of the devices and the gold standard of ABG. The best performing device was the PalmSAT (PS) 8000SM finger probe with a mean difference of 2.17% and SD of 2.56 (95% CI, 1.42% to 2.92%). In decreasing order of performance were the PS 8000AA finger probe (mean ± SD, 2.54% ± 2.68%; 95% CI, 1.76% to 3.32%), the PS 8000Q ear probe (2.47% ± 4.36%; 95% CI, 1.21% to 3.75%), the Nonin Onyx 9500 (3.29% ± 3.12%; 95% CI, 2.39% to 4.20%), and finally the PS 8000R forehead reflectance sensor (5.15% ± 2.97%; 95% CI, 4.28% to 6.01%). Based on the results of this study, results of the newer portable pulse oximeters appear to be closely correlated to that of the ABG measurements when tested in true mountain conditions. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  1. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0μs with 0.5μs increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  2. Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers

    NASA Technical Reports Server (NTRS)

    Julitta, Tommaso; Corp, Lawrence A.; Rossini, Micol; Burkart, Andreas; Cogliati, Sergio; Davies, Neville; Hom, Milton; Mac Arthur, Alasdair; Middleton, Elizabeth M.; Rascher, Uwe; hide

    2016-01-01

    Remote Sensing of Sun-Induced Chlorophyll Fluorescence (SIF) is a research field of growing interest because it offers the potential to quantify actual photosynthesis and to monitor plant status. New satellite missions from the European Space Agency, such as the Earth Explorer 8 FLuorescence EXplorer (FLEX) mission-scheduled to launch in 2022 and aiming at SIF mapping-and from the National Aeronautics and Space Administration (NASA) such as the Orbiting Carbon Observatory-2 (OCO-2) sampling mission launched in July 2014, provide the capability to estimate SIF from space. The detection of the SIF signal from airborne and satellite platform is difficult and reliable ground level data are needed for calibration/validation. Several commercially available spectroradiometers are currently used to retrieve SIF in the field. This study presents a comparison exercise for evaluating the capability of four spectroradiometers to retrieve SIF. The results show that an accurate far-red SIF estimation can be achieved using spectroradiometers with an ultrafine resolution (less than 1 nm), while the red SIF estimation requires even higher spectral resolution (less than 0.5 nm). Moreover, it is shown that the Signal to Noise Ratio (SNR) plays a significant role in the precision of the far-red SIF measurements.

  3. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  4. Field-Portable Immunoassay Instruments and Reagents to Measure Chelators and Mobile Forms of Uranium

    SciTech Connect

    Blake, Diane A.

    2003-06-01

    The goals for the 3-year project period are (1) to test and validate the present uranium sensor and develop protocols for its use at the NABIR Field Research Center; (2) to develop new reagents that will provide superior performance for the present hand-held immunosensor; and (3) to develop new antibodies that will permit this sensor to also measure other environmental contaminants (chromium, mercury, and/or DTPA). Sensor design modifications are underway via international collaborations. New reagents that will provide superior performance for the present hand-held immunosensor are being prepared and tested. New methods have been developed, to produce recombinant forms of metal-specific monoclonal antibodies for use with the sensor. Site-directed mutagenesis experiments are underway to determine the mechanisms of binding. Immunization experiments with sheep and rabbits to develop new recombinant forms of antibodies to metal-chelate complexes (chromium, mercury, and/or DTPA) have been initiated.

  5. Remote Sensing of Aircraft Contrails Using a Field Portable Digital Array Scanned Interferometer

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden

    1997-01-01

    With a Digital Array Scanned Interferometer (DASI), we have obtained proof-of-concept observations with which we demonstrate DASI capabilities for the determination of contrail properties. These include the measurement of the cloud and soot microphysical parameters, as well, the abundances of specific pollutant species such as SO(sub x) or NO(sub x). From high quality hyperspectral data and using radiative transfer methods and atmospheric chemistry analysis in the data reduction and interpretation, powerful inferences concerning cloud formation, evolution and dissipation can be made. Under this sub-topic, we will integrate DASI with computer controlled scanning of the field-of-view to direct the sensor towards contrails and exhaust plumes for tracking the emitting vehicles. The optimum DASI wavelength sensitivity range for sensing contrails is 0.35 - 2.5 micron. DASI deploys on the ground or from aircraft to observe contrails in the vicinity. This enables rapid, accurate measurement of the temporal, spatial, and chemical evolution of contrails (or other plumes or exhaust sources) with a low cost, efficient sensor.

  6. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents.

    PubMed

    Takekawa, John Y; Iverson, Samuel A; Schultz, Annie K; Hill, Nichola J; Cardona, Carol J; Boyce, Walter M; Dudley, Joseph P

    2010-06-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID((R)), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field- and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.

  7. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents

    USGS Publications Warehouse

    Takekawa, John Y.; Iverson, Samuel A.; Schultz, Annie K.; Hill, Nichola J.; Cardona, Carol J.; Boyce, Walter M.; Dudley, Joseph P.

    2010-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID(Registered), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.

  8. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel.

  9. Mutation detection using ligase chain reaction in passivated silicon-glass microchips and microchip capillary electrophoresis.

    PubMed

    Lou, Xing Jian; Panaro, Nicholas J; Wilding, Peter; Fortina, Paolo; Kricka, Larry J

    2004-09-01

    The ligase chain reaction (LCR) following PCR is one of the most sensitive and specific methods for detecting mutations, especially single nucleotide polymorphisms (SNPs). Performing LCR in microchips remains a challenge because of the inhibitory effect of the internal surfaces of silicon-glass microchips. We have tested a dynamic polymer-based surface passivation method for LCR conducted in oxide-coated silicon-glass microchips. The combination of polyvinylpyrrolidone 40 (PVP-40) at 0.75% (w/v) with an excess of the ligase produced successful LCR in the silicon-glass microchips, with yields of ligated primers comparable to reactions performed in conventional reaction tubes. Ligated primers were detected and quantified simply and conveniently using microchip capillary electrophoresis.

  10. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae.

    PubMed

    Bull, Annie; Brown, Murray T; Turner, Andrew

    2017-01-01

    Samples of dried marine macroalgae (Fucus serratus, Palmaria palmata and Ulva lactuca) have been analysed for trace elements by a novel, non-destructive approach involving a Niton field-portable-X-ray fluorescence (FP-XRF) spectrometer configured in a low density plastics mode with thickness correction. Detection limits for a 200-s counting time ranged from <5 μg g(-1) for As and Pb in F. serratus and As in P. palmata to several tens of μg g(-1) for Cd, Sb and Sn in all species tested. Arsenic, Cu, Pb and Zn were detected by the XRF in samples collected from a protected beach (n = 18) and in samples therefrom that had been exposed to additional aqueous elements in combination (n = 72) with concentrations returned (in μg g(-1)) ranging from 3.9 to 39.7 for As, 13.0 to 307 for Cu, 6.1 to 14.7 for Pb and 12.5 to 522 for Zn. Independent measurements of trace elements in the macroalgae by ICP-MS following nitric acid digestion revealed a direct and significant proportionality with concentrations returned by the XRF, with slopes of the XRF-ICP relationships (As = 1.0; Cu = 2.3; Pb = 2.4; Zn = 1.7) that can be used to calibrate the instrument for direct measurements. The approach shows potential for the in situ monitoring of macroalgae in coastal regions that is currently being investigated.

  11. Portable headset microphone checker

    NASA Technical Reports Server (NTRS)

    Davenport, J.; Foster, J. A.; Langley, W. R.

    1975-01-01

    Simple and reliable test system gives go/no-go indication of output level of headset microphones. Portable system has its own internal battery power supply and can be used in field or in laboratory with wide variety of headset types.

  12. Field Study of Mars Analog Materials in Spitsbergen (Norway) Using a Portable X-ray Diffraction Instrument

    NASA Astrophysics Data System (ADS)

    Sarrazin, P. C.; Brunner, W.; Blake, D. F.; Steele, A.; Midtkandal, I.; Amundsen, H.

    2007-12-01

    NASA's Mars Science Laboratory (MSL) is the next major landed Mars mission scheduled for Launch in 2009. MSL is primarily a geological mission intended to assess if past environments on Mars could have supported life. An X-ray diffraction instrument called CheMin is part of the MSL rover science payload. CheMin was developed and is managed by NASA Ames Research Center and the flight system is currently being built at JPL. A miniature portable instrument was developed for NASA ARC by inXitu, Inc. (California) to support the CheMin Science Team with a tool that can easily be deployed on terrestrial Mars analog terrains. The instrument will be used to practice with field mineralogical analysis in preparation for the operational phase of the mission. The instrument is called mini-CheMin for its reduced size (45x32x12cm) and weight (14.5kg) compared to previous CheMin prototypes. Mini-CheMin was deployed in Spitsbergen in August 2007 as part of the science payload of the Arctic Mars Analog Svalbard Expedition (AMASE). The instrument was used for a variety of field tests, including two rover operation simulations. XRD data of sufficient quality for mineral identification and semi-quantitative analysis could be obtained in as little as a few minutes. XRF data, through limited in energy range to 3 - 8 keV, was very useful in restricting the search space for mineral identification with complex samples. In one of the deployment sites, a carbonate rich hot spring, a sample collected and analyzed in situ was found to be composed of mainly calcite with a minor amount of monohydrocalcite. Samples collected from this site and later analyzed with mini-CheMin onboard the expedition ship did not show any monohydrocalcite, the phase having been dehydrated to calcite by conventional laboratory sample preparation methods. This illustrates the benefit of in situ field mineralogical analysis for which samples can be analyzed in their pristine mineralogical makeup.

  13. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  14. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events.

    PubMed

    Saylor, Rachel A; Lunte, Susan M

    2015-02-20

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods with selective detection yields a "separation-based sensor" capable of monitoring multiple analytes in near real time. For monitoring biological events, analysis of microdialysis samples often requires techniques that are fast (<1 min), have low volume requirements (nL-pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    NASA Astrophysics Data System (ADS)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  16. In situ monitoring (field screening) and assessment of lead and arsenic contaminants in the greater New Orleans area using a portable X-ray fluorescence analyser.

    PubMed

    Chou, Ju; Elbers, Don; Clement, Garrett; Bursavich, Bradley; Tian, Tian; Zhang, Wendy; Yang, Ke

    2010-09-01

    This paper reports environmental assessment and identification of environmental contaminants caused by exposure to toxic metals such as Pb and As after Hurricane Katrina using an onsite analysis method. Concentrations of lead (Pb) and arsenic (As) detected in many soil samples after Hurricane Katrina were reported to exceed EPA allowable value. Toxic metals mentioned above were measured by a portable X-ray fluorescence analyzer (XRF) in the greater New Orleans area. The portable XRF analyzer provides rapid data collection in the field. Distribution of Pb in New Orleans is displayed in a regional map using geographic information system (GIS). The map provides an updated image of environmental exposure to Pb contamination in the greater New Orleans area after Hurricane Katrina and also shows Pb contaminated areas where Pb concentrations exceed the EPA allowable level. The portable XRF provides a rapid analysis method for toxic metals and can be used for the field screening of soils at any place and for identifying contamination areas rapidly.

  17. Impact of portable air filtration units on exposure of haematology-oncology patients to airborne Aspergillus fumigatus spores under field conditions.

    PubMed

    Engelhart, S; Hanfland, J; Glasmacher, A; Krizek, L; Schmidt-Wolf, I G H; Exner, M

    2003-08-01

    We undertook a one-year study to investigate the impact of the NSA model 7100A/B portable air filtration unit on exposure of haematology-oncology patients to airborne Aspergillus fumigatus spores under field conditions. Weekly measurements for airborne A. fumigatus were conducted in indoor and outdoor air, and surveillance for invasive aspergillosis was based on a combination of ward liaison, targeted chart review and consultation with the medical staff. The mean indoor A. fumigatus counts (8.1 cfu/m3; range, <0.8 to 42 cfu/m3) reflected the fungal load of outdoor air (9.4 cfu/m3; range, <0.8 to 50 cfu/m3), and were reduced by only about one third in rooms with portable air filtration units (5.3 cfu/m3; range, <0.8 to 41 cfu/m3). During the study period, a total of five cases (incidence density, 0.8 per 1000 patient-days) of invasive aspergillosis (one proven case, four suspected cases; case fatality rate 40%) were recorded. None of these five patients was allocated to a room with portable air filtration unit, however, the difference between incidence densities in rooms with and without portable air filtration units was non-significant (Fisher's exact test, P=0.33). Due to the noise level and thermal discomfort, patient compliance with the air filtration units was poor. We conclude that under field conditions this air filtration unit cannot be recommended for prevention of invasive aspergillosis in neutropenic haematology-oncology patients.

  18. Size-dependent magnetophoresis of native single super-paramagnetic nanoparticles in a microchip.

    PubMed

    Zhang, Peng; Park, Sangyoon; Kang, Seong Ho

    2013-08-25

    Real-time dynamics of native super-paramagnetic nanoparticles (SPMNPs) with different sizes were observed in a microchip at the single-particle level. Based on the optimized magnetic field conditions obtained in the single-nanoparticle study, the SPMNPs were successfully separated and detected within ~15 s from the model polydisperse mixture.

  19. Floating resistivity detector for microchip electrophoresis.

    PubMed

    Tay, Elaine Teng Teng; Law, Wai Siang; Sim, Steven Poh Chuen; Feng, Huatao; Zhao, Jian Hong; Li, Sam Fong Yau

    2007-12-01

    A newly developed conductivity detector, the floating resistivity detector (FRD), for microchip electrophoresis was introduced in this work. The detector design permits decoupling of the detection circuit from the high separation voltage without compromising separation efficiency. This greatly simplifies the integration of microchip electrophoresis systems. Its method of detection relies on platinum electrodes being dipped in two buffer-filled branched detection probe reservoirs on the microchip device. In this way, analytes passing through the detection window will not pass through and subsequently adsorb onto the electrodes, alleviating problems of electrode fouling due to analyte contamination and surface reactions. A customized microchip design was proposed and optimized stepwise for the new FRD system. Each branched detection probe was determined to be 4.50 mm long with a 0.075 mm detection window gap between them. The distance between the detection window and buffer waste reservoir was determined to be 1.50 mm. The optimized microchip design was subsequently used in the analysis of four groups of analytes - inorganic cations, amino acids, aminoglycosides antibiotics, and biomarkers. Based on the preliminary results obtained, the detection limits were in the range of 0.4-0.7 mg/L for the inorganic cations and 1.5-15 mg/L for the amino compounds.

  20. Improving chip-to-chip precision in disposable microchip capillary electrophoresis devices with internal standards.

    PubMed

    Bidulock, Allison C E; van den Berg, Albert; Eijkel, Jan C T

    2015-03-01

    To realize portable systems for routine measurements in point-of-care settings, MCE methods are required to be robust across many single-use chips. While it is well-known internal standards (ISTDs) improve run-to-run precision, a systematic investigation is necessary to determine the significance of chip-to-chip imprecision in MCE and how ISTDs account for it. This paper addresses this question by exploring the reproducibility of Na quantification across six basic, in-house fabricated microchips. A dataset of 900 electrophoerograms was collected from analyzing five concentrations of NaCl with two ISTDs (CsCl and LiCl). While both improved the peak area reproducibility, the Na/Cs ratio was superior to the Na/Li ratio (improving the RSD by a factor of 2-4, depending on the Na concentration). We attribute this to the significant variation in microchannel surface properties, which was accounted for by cesium but not lithium. Microchip dimension and detector variations were only a few percent, and could be improved through commercial fabrication over in-house made microchips. These results demonstrate that ISTDs not only correct for intrachip imprecision, but are also a viable means to correct for chip-to-chip imprecision inherent in disposable, point-of-care MCE devices. However, as expected, the internal standard must be carefully chosen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of melamine in milk and dairy products by microchip-based high-field asymmetric ion mobility spectrometry combined with solid-phase extraction.

    PubMed

    Zhao, Wei-jun; Wang, Yonghuan; Li, Juan; Li, Ling-feng; Wang, Qi; Han, Ke; Zhang, Yuang; Li, Xin; Li, Peng; Luo, Jikui; Wang, Xiaozhi

    2015-12-01

    This article presents a method for sensitive, fast and quantitative determination of melamine in milk and dairy products using high-field asymmetric ion mobility spectrometry (FAIMS). The solid-phase extraction (SPE) technology was used for purification after the sample was extracted by organic solvents, and followed by the analysis of FAIMS. The measurement parameters and variables that affect the FAIMS detection have been investigated, and optimum conditions have been obtained as follows: the carrier gas flow rate is 1.6 L min(-1), the headspace sampler temperature is 150 °C, the pressure is 1 atm, and the humidity is 2.0 g m(-3). The results showed that the SPE-FAIMS method can detect melamine in samples with a concentration down to 0.1 mg kg(-1). The ion intensity has a linear relationship with melamine concentration in the range from 0.3 mg L(-1) to 25 mg L(-1), with a good linearity of 0.9975. The limits of detection (LOD) and limits of quantification (LOQ) are 0.1 mg kg(-1) and 0.3 mg kg(-1) in milk and dairy products, respectively, and the relative standard deviation is less than 8.0%. The results demonstrated that FAIMS has great potential as a powerful tool for food analysis and safety inspection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    SciTech Connect

    Michael, Buric; Jessica, Mullen; Steven, Woodruff; Ben, Chorpening

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented for spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise

  3. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    PubMed

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Recent advances in microchip electrophoresis for amino acid analysis.

    PubMed

    Ou, Gaozhi; Feng, Xiaojun; Du, Wei; Liu, Xin; Liu, Bi-Feng

    2013-10-01

    With the maturation of microfluidic technologies, microchip electrophoresis has been widely employed for amino acid analysis owing to its advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. In this article, we review the recent progress in amino acid analysis using microchip electrophoresis during the period from 2007 to 2012. Innovations in microchip materials, surface modification, sample introduction, microchip electrophoresis, and detection methods are documented, as well as nascent applications of amino acid analysis in single-cell analysis, microdialysis sampling, food analysis, and extraterrestrial exploration. Without doubt, more applications of microchip electrophoresis in amino acid analysis may be expected soon.

  5. Application of portable gas chromatography-photo ionization detector combined with headspace sampling for field analysis of benzene, toluene, ethylbenzene, and xylene in soils.

    PubMed

    Zhou, You-Ya; Yu, Ji-Fang; Yan, Zeng-Guang; Zhang, Chao-Yan; Xie, Ya-Bo; Ma, Li-Qiang; Gu, Qing-Bao; Li, Fa-Sheng

    2013-04-01

    A method based on headspace (HS) sampling coupling with portable gas chromatography (GC) with photo ionization detector (PID) was developed for rapid determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in soils. Optimal conditions for HS gas sampling procedure were determined, and the influence of soil organic matter on the recovery of BTEX from soil was investigated using five representative Chinese soils. The results showed that the HS-portable-GC-PID method could be effectively operated at ambient temperature, and the addition of 15 ml of saturated NaCl solution in a 40-ml sampling vial and 60 s of shaking time for sample solution were optimum for the HS gas sampling procedure. The recoveries of each BTEX in soils ranged from 87.2 to 105.1 %, with relative standard deviations varying from 5.3 to 7.8 %. Good linearity was obtained for all BTEX compounds, and the detection limits were in the 0.1 to 0.8 μg kg(-1) range. Soil organic matter was identified as one of the principal elements that affect the HS gas sampling of BTEX in soils. The HS-portable-GC-PID method was successfully applied for field determination of benzene and toluene in soils of a former chemical plant in Jilin City, northeast China. Considering its satisfactory repeatability and reproducibility and particular suitability to be operated in ambient environment, HS sampling coupling with portable GC-PID is, therefore, recommended to be a suitable screening tool for rapid on-site determination of BTEX in soils.

  6. A visual multiplex PCR microchip with easy sample loading.

    PubMed

    Chen, Jian-Wei; Shao, Ning; Zhang, Yuchen; Zhu, Yuanshou; Yang, Litao; Tao, Sheng-Ce

    2017-06-20

    There is an urgent demand for affordable, rapid and easy-to-use technology to simultaneously detect many different DNA targets within one reaction. Conventional multiplex PCR is an effective methodology to simultaneously amplify different DNA targets. However, its multiplicity is limited due to the intrinsic interference and competition among primer pairs within one tube. Here, we present an easy multiplex PCR microchip system, which can simultaneously detect 54 targets. The design of the microchip is quite simple. There is a microchannel connected with multiple underlying parallel microwells. And every microchannel has an inlet/outlet for loading PCRmix. The surface of the microchannel is hydrophobic and the inner surface of the microwell is hydrophilic, which enables us to load and separate the PCRmix into different microwells simultaneously. Different primer pairs and low melting agarose are pre-fixed in different microwells, and the microchip is assembled with top glass. The PCRmix is loaded into inlets and then mineral oil is sequentially pipetted into channels to push the PCRmix into all microwells and subsequently mineral oil fills the channels to avoid cross contaminations. After the PCRmix is loaded, it would be placed on a plat thermal cycler for PCR. During PCR, the low melting gel in the well is liquid and after PCR it would be solidified due to temperature changes. When PCR is completed, a nucleic acid dye is introduced into channels and then results are visualized by a home-made, potable UV detector. In our platform we successfully detected seven frequently used targets of genetically modified (GM) organisms. The results demonstrate that our platform has high flexibility and specificity. Due to the excellent performance of this technology, we believe that it can be applied to multiple nucleic acid detection fields including GM organisms.

  7. Development of a microchip Europium nanoparticle immunoassay for sensitive point-of-care HIV detection.

    PubMed

    Liu, Jikun; Du, Bingchen; Zhang, Panhe; Haleyurgirisetty, Mohan; Zhao, Jiangqin; Ragupathy, Viswanath; Lee, Sherwin; DeVoe, Don L; Hewlett, Indira K

    2014-11-15

    Rapid, sensitive and specific diagnostic assays play an indispensable role in determination of HIV infection stages and evaluation of efficacy of antiretroviral therapy. Recently, our laboratory developed a sensitive Europium nanoparticle-based microtiter-plate immunoassay capable of detecting target analytes at subpicogram per milliliter levels without the use of catalytic enzymes and signal amplification processes. Encouraged by its sensitivity and simplicity, we continued to miniaturize this assay to a microchip platform for the purpose of converting the benchtop assay technique to a point-of-care test. It was found that detection capability of the microchip platform could be readily improved using Europium nanoparticle probes. We were able to routinely detect 5 pg/mL (4.6 attomoles) of HIV-1 p24 antigen at a signal-to-blank ratio of 1.5, a sensitivity level reasonably close to that of microtiter-plate Europium nanoparticle assay. Meanwhile, use of the microchip platform effectively reduced sample/reagent consumption 4.5 fold and shortened total assay time 2 fold in comparison with microtiter plate assays. Complex matrix substance in plasma negatively affected the microchip assays and the effects could be minimized by diluting the samples before loading. With further improvements in sensitivity, reproducibility, usability, assay process simplification, and incorporation of portable time-resolved fluorescence reader, Europium nanoparticle immunoassay technology could be adapted to meet the challenges of point-of-care diagnosis of HIV or other health-threatening pathogens at bedside or in resource-limited settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014-2016).

    PubMed

    Breadmore, Michael C; Wuethrich, Alain; Li, Feng; Phung, Sui Ching; Kalsoom, Umme; Cabot, Joan M; Tehranirokh, Masoomeh; Shallan, Aliaa I; Abdul Keyon, Aemi S; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2017-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  9. Evaluation of microchip material and surface treatment options for IEF of allergenic milk proteins on microchips.

    PubMed

    Poitevin, Martine; Shakalisava, Yuliya; Miserere, Sandrine; Peltre, Gabriel; Viovy, Jean-Louis; Descroix, Stephanie

    2009-12-01

    The use of glass and PDMS microchips has been investigated to perform rapid and efficient separation of allergenic whey proteins by IEF. To decrease EOF and to limit protein adsorption, two coating procedures have been compared. The first one consists in immobilizing hydroxypropyl cellulose (HPC) and the second one poly(dimethylacrylamide-co-allyl glycidyl ether) (PDMA-AGE). EOF limitation has been evaluated using frontal electrophoresis of a fluorescent marker of known effective mobility. EOF velocity was decreased by a factor about 100 and 30, respectively. pH gradient formation has been evaluated for each microchip using fluorescent pI markers. It was demonstrated that as expected a coating was essential to avoid pH gradient drift. Both coatings were efficient on glass microchips, but only PDMA-AGE allowed satisfying focusing of pI markers on PDMS microchips. Fluorescent covalent and noncovalent labelings of milk proteins have been compared by IEF on slab-gels. IEF separation of three major allergenic whey proteins [beta-lactoglobulin A (pI 5.25) and B (pI 5.35) and alpha-lactalbumin (pI 4.2-4.5)] was performed in both microchips. Milk proteins were separated with better resolution and shorter analysis time than by classical CIEF. Finally, better resolutions for milk allergens separation were obtained on glass microchips.

  10. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care.

    PubMed

    Wang, Shuqi; Zhao, Xiaohu; Khimji, Imran; Akbas, Ragip; Qiu, Weiliang; Edwards, Dale; Cramer, Daniel W; Ye, Bin; Demirci, Utkan

    2011-10-21

    Ovarian cancer is asymptomatic in the early stages and most patients present with advanced levels of disease. The lack of cost-effective methods that can achieve frequent, simple and non-invasive testing hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a simple and inexpensive microchip ELISA-based detection module that employs a portable detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate processing of microchip ELISA results, which eliminated the need for a bulky, expensive spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was significantly elevated in urine samples from cancer patients (n = 19) than healthy controls (n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip ELISA coupled with a cell phone running an automated analysis mobile application had a sensitivity of 89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment monitoring.

  11. Integration of Cell Phone Imaging with Microchip ELISA to Detect Ovarian Cancer HE4 Biomarker in Urine at the Point-of-Care

    PubMed Central

    Wang, ShuQi; Zhao, Xiaohu; Khimji, Imran; Akbas, Ragip; Qiu, Weiliang; Edwards, Dale; Cramer, Daniel W.; Ye, Bin; Demirci, Utkan

    2013-01-01

    Ovarian cancer is asymptomatic at early stages and most patients present with advanced levels of disease. Lack of cost-effective methods that can achieve frequent, simple and non-invasive testing hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a simple and inexpensive microchip ELISA-based detection module that employs a portable detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate processing of microchip ELISA results, which eliminated the need for a bulky, expensive spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was significantly elevated in urine samples from cancer patients (n = 19) than normal healthy controls (n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip ELISA coupled with a cell phone running an automated analysis application had a sensitivity of 89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment monitoring. PMID:21881677

  12. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.

    PubMed

    Markey, Andrea M; Clark, C Scott; Succop, Paul A; Roda, Sandra

    2008-03-01

    Soil samples collected in housing areas with potential lead contamination generally are analyzed with flame atomic absorption spectrometry (FAAS) or other laboratory methods. Previous work indicates that field-portable X-ray fluorescence (XRF) analysis is capable of detecting soil lead levels comparable to those detected by FAAS in samples sieved to less than 125 microm in a laboratory. A considerable savings, both economical and in laboratory reporting time, would occur if a practical field method could be developed that does not require laboratory digestion and analysis. The XRF method also would provide immediate results that would facilitate the provision of information to residents and other interested parties more quickly than is possible with conventional laboratory methods. The goal of the study reported here was to determine the practicality of using the field-portable XRF analyzer for analysis of lead in soil samples that were sieved in the field. The practicality of using the XRF was determined by the amount of time it took to prepare and analyze the samples in the field and by the ease with which the procedure could be accomplished on site. Another objective of the study was to determine the effects of moisture on the process of sieving the soil. Seventy-eight samples were collected from 30 locations near 10 houses and were prepared and analyzed at the locations where they were collected. Mean soil lead concentrations by XRF were 816 ppm before drying and 817 ppm after drying, and by laboratory FAAS were 1,042 ppm. Correlation of field-portable XRF and FAAS results was excellent for samples sieved to less than 125 microm, with R2 values of .9902 and .992 before and after drying, respectively. The saturation ranged from 10 percent to 90 percent. At 65 percent saturation or higher, it was not feasible to sieve the soil in the field without a thorough drying step, since the soil would not pass through the sieve. Therefore the field method with sieving was

  13. Advances in Automation and Throughput of the Mars Organic Analyzer Microchip Capillary Electrophoresis System

    NASA Astrophysics Data System (ADS)

    Haldeman, B. J.; Skelley, A. M.; Scherer, J. R.; Jayarajah, C.; Mathies, R. A.

    2005-12-01

    We have previously demonstrated the design, construction and testing of a portable microchip capillary electrophoresis (CE) instrument called the Mars Organic Analyzer (MOA) for analysis of amino acids and amine containing organic molecules (1). This instrument is designed to accept organic compounds isolated from samples by sublimation or by subcritical water extraction, to label the amine groups with fluorescamine, and to perform high resolution electrophoretic analysis. The CE instrument has shown remarkable robustness during successful field tests last year in the Panoche Valley, CA (1) and more recently in the Atacama Desert, Chile (2). For successful operation on Mars, however, it is necessary to operate autonomously and to analyze large numbers of samples, blanks, and standards. Toward this end we present here two advances in the MOA system that test key aspects of an eventual flight prototype. First, we have developed an automated microfluidic system and method for the autonomous loading, running and cleaning of the CE chip on the single channel MOA instrument. The integration of microfabricated PDMS valves and pumps with all-glass separation channels in a multilayer design enabled creation of structures for complex fluidic routing. Twenty sequential analyses of an amino acid standard were performed with an automated cleaning procedure between runs. In addition, dilutions were performed on-chip, and blanks were run to demonstrate the elimination of carry-over from run to run. These results demonstrate an important advance of the technology readiness level of the MOA. Second, we have designed, constructed and successfully tested a lab version of the multichannel instrument we initially proposed for the MSL opportunity. The portable Multi-Channel Mars Organic Analyzer (McMOA, 25 by 30 by 15 cm), was designed to sequentially interrogate eight radially oriented CE separation channels on a single wafer. Since each channel can be used to analyze 20 or more

  14. On-Campus Projects: Inventing a Microchip.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    In response to growth of microelectronics and changes in microchip design/manufacturing technology, universities are supporting class projects for students. Approximately 50 schools now conduct such programs which have resulted from earlier National Science Foundation sponsorship. Major advantages for the students include designing experience,…

  15. On-Campus Projects: Inventing a Microchip.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    In response to growth of microelectronics and changes in microchip design/manufacturing technology, universities are supporting class projects for students. Approximately 50 schools now conduct such programs which have resulted from earlier National Science Foundation sponsorship. Major advantages for the students include designing experience,…

  16. Screening for volatile organic compounds in soil and groundwater by use of a portable gas chromatograph during field investigations at an Air Force installation in Ohio

    USGS Publications Warehouse

    Parnell, James M.

    1995-01-01

    The use of the portable gas chromatograph for screening of soil and water samples in the field was part of the drilling program for the installation of monitoring wells for a basewide ground-water monitoring program at Wright-Patterson Air Force Base, Ohio. Selected soil and ground-water samples were screened in the field for volatile organic compounds to determine if contamination was present, to define the vertical and lateral extent of contamination, and to aid in the placement of the well screens for optimal interception of contaminants. This report describes the screening methods, sample-collection, quality-assurance/quality-control methods, and data-interpretation procedures necessary for screening of soil and ground-water samples in the field during the water resources investigations.

  17. Portable Slot-Sizing Tool

    NASA Technical Reports Server (NTRS)

    Zuver, Nelson T.

    1987-01-01

    Portable milling tool consisting of air-motor-driven cutter held in adjustable moving slide made possible local removal of chromium plating in close-tolerance, onsite remachining and sizing of half-hole slots on longeron bridges. Made from commercially available parts, including air motor capable of variable speeds up to 900 rpm, ball end mill, revolving handle, two miter gears, and ball slide. Adaptation of portable sizing tool useful for field modification of such large equipment as trucks, aircraft, and ships.

  18. Field-Metered Data from Portable Unit Dehumidifiers in the U.S. Residential Sector: Initial Results of a Pilot Study

    SciTech Connect

    Willem, Henry; Beraki, Bereket; Burke, Tom; Melody, Moya; Nagaraju, Mythri; Ni, Chun Chun; Pratt, Stacy; Dominique Yang, Hung-Chia

    2013-01-29

    The work described herein is intended to enrich the body of literature regarding dehumidifiers in residential settings—in particular the hours of use and energy consumption of various types of dehumidifiers. In the United States, portable unit dehumidifiers most commonly are used in basements during humid summer days in northern climates. Dehumidifier energy consumption differs among households depending on settings selected by the user, frequency of use, and conditions of operation. Although some estimates of dehumidifier use have been developed, and a few metering studies performed, there remains a paucity of metered data collected from individual households that use dehumidifiers. For this study we obtained field data on the energy consumption of dehumidifiers to supplement currently available analyses. Our goal was to obtain data from a pilot study that we could use to develop initial distributions describing the capacities and applications of dehumidifiers used in individual homes. More precisely characterizing the use of dehumidifiers in real-world applications will enable a more accurate estimate of the range of energy use in various operational modes. Our pilot field-metering exercise was aimed at compiling real-time data on the energy consumption of portable dehumidifiers in residential households in the New England and Mid-Atlantic areas. Our analysis furthers the process of developing a more precise estimate of dehumidifier energy use, which will support the evaluation of the potential energy savings and attendant costs associated with more energy efficient dehumidifiers.

  19. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    NASA Astrophysics Data System (ADS)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  20. Faster and improved microchip electrophoresis using a capillary bundle.

    PubMed

    Sun, Yi; Kwok, Yien Chian; Nguyen, Nam Trung

    2007-12-01

    Joule heating generated in CE microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50-200 microm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a poly(methyl methacrylate) (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 microm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.

  1. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.

    SciTech Connect

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2008-05-15

    Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50–1000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

  2. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

  3. Recent applications of microchip electrophoresis to biomedical analysis.

    PubMed

    Nuchtavorn, Nantana; Suntornsuk, Worapot; Lunte, Susan M; Suntornsuk, Leena

    2015-09-10

    Many separation methods have been developed for biomedical analysis, including chromatographic (e.g. high performance liquid chromatography (HPLC) and gas chromatography (GC)) and electrophoretic methods (e.g. gel electrophoresis and capillary electrophoresis (CE)). Among these techniques, CE provides advantages in terms of high separation efficiency, simplicity, low sample and solvent volume consumption, short analysis time and applicability to a wide range of biomedically important substances. Microchip electrophoresis (ME) is a miniaturized platform of CE and is now considered as a simpler and more convenient alternative, which has demonstrated potential in analytical chemistry. High-throughput, cost-effective and portable analysis systems can be developed using ME. The current review describes different separation modes and detectors that have been employed in ME to analyze various classes of biomedical analytes (e.g. pharmaceuticals and related substances, nucleic acids, amino acids, peptides, proteins, antibodies and antigens, carbohydrates, cells, cell components and lysates). Recent applications (during 2010-2014) in these areas are presented in tables and some significant findings are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of surface and hydrogel-based protein microchips.

    PubMed

    Zubtsov, D A; Savvateeva, E N; Rubina, A Yu; Pan'kov, S V; Konovalova, E V; Moiseeva, O V; Chechetkin, V R; Zasedatelev, A S

    2007-09-15

    Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

  5. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    SciTech Connect

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  6. Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated Ormocomp microchips.

    PubMed

    Sikanen, Tiina; Aura, Susanna; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2012-01-20

    We present rapid (<5 min) and efficient intact protein analysis by mass spectrometry (MS) using fully microfabricated and monolithically integrated capillary electrophoresis-electrospray ionization (CE-ESI) microchips. The microchips are fabricated fully of commercial inorganic-organic hybrid material, Ormocomp, by UV-embossing and adhesive Ormocomp-Ormocomp bonding (CE microchannels). A sheath-flow ESI interface is monolithically integrated with the UV-embossed separation channels by cutting a rectangular emitter tip in the end with a dicing saw. As a result, electrospray was produced from the corner of chip with good reproducibility between parallel tips (stability within 3.8-9.2% RSD). Thanks to its inherent biocompatibility and stable (negative) surface charge, Ormocomp microchips enable efficient intact protein analysis with up to ∼10(4) theoretical separation plates per meter without any chemical or physical surface modification before analysis. The same microchip setup is also feasible for rapid peptide sequencing and mass fingerprinting and shows excellent migration time repeatability from run to run for both peptides (5.6-5.9% RSD, n=4) and intact proteins (1.3-7.5% RSD, n=3). Thus, the Ormocomp microchips provide a versatile new tool for MS-based proteomics. Particularly, the feasibility of the Ormocomp chips for rapid analysis of intact proteins with such a simple setup is a valuable increment to the current technology.

  7. Protein microchips : use for immunoassay and enzymatic reactions.

    SciTech Connect

    Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloschuk, S.; Chupeeva, V.; Mirzabekov, A.; Biochip Technology Center; Russian Academy of Sciences

    2000-02-15

    Different proteins such as antibodies, antigens, and enzymes were immobilized within the 100 x 100 x 20-{mu}m gel pads of protein microchips. A modified polyacrylamide gel has been developed to accommodate proteins of a size up to 400,000 daltons. Electrophoresis in the microchip reaction chamber speeded up antigen-antibody interactions within the gel. Protein microchips were used in immunoassays for detection of antigens or antibodies, as well as to carry out enzymatic reactions and to measure their kinetics in the absence or presence of an inhibitor. A protein microchip can be used several times in different immunoassays and enzymatic kinetic measurements.

  8. Air-Stable Supported Membranes for Single Cell Cytometry on PDMS Microchips

    PubMed Central

    Phillips, K. Scott; Kang, Kyung Mo; Licata, Louise

    2010-01-01

    Protein reinforced supported bilayer membranes (rSBMs) composed of phosphatidyl choline (PC), biotin-PE and Neutravidin were used to coat hybrid microchips composed of polydimethylsiloxane (PDMS) and glass. Since the coatings required a freshly oxidized, hydrophilic substrate, a novel method to rapidly connect reservoirs using plasma oxidation was first developed and found to support up to 5.2 N/cm2 (1.5 N) pull-off force. rSBMs were then assembled in the oxidized hydrophilic channels. The electroosmotic mobility (μeo) of rSBM-coated channels was measured over a 3 h time to evaluate the stability of the coatings for microchip electrophoresis. rSBM-coated microchips with a simple cross design had excellent properties for microchip separations, yielding efficiencies of up to 700,000 plates/m for fluorescent dyes and peptides. The separation performance of rSBM and PC-coated channels was evaluated after repeatedly drying and rehydrating the channels. The separation efficiency of fluorescein on PC-coated devices decreased by 40% after one dehydration cycle and nearly 75% after 3 cycles. In contrast for rSBM-coated devices there was no significant change in the fluorescein efficiency until the third cycle (10% decreased efficiency). rSBM-coated channels were also markedly more stable when placed in a dehydrated state during long-term storage compared to PC-coated channels, and showed reduced chip failure and no reduction in performance for up to one month of dehydrated storage. Finally, rSBM-coated devices were used to perform single-cell cytometry. Microchips that had been dehydrated, stored two weeks, and rehydrated prior to use demonstrated similar performance to newly coated devices for the separation of fluorescein and carboxyfluorescein from single cells. Thus rSBM-coated devices were rugged- withstanding electric fields, prolonged storage under dehydrated conditions, and biofouling by cellular constituents while maintaining excellent separation performance. PMID

  9. Air-stable supported membranes for single-cell cytometry on PDMS microchips.

    PubMed

    Phillips, K Scott; Kang, Kyung Mo; Licata, Louise; Allbritton, Nancy L

    2010-04-07

    Protein-reinforced supported bilayer membranes (rSBMs) composed of phosphatidylcholine (PC), biotin-PE and Neutravidin were used to coat hybrid microchips composed of polydimethylsiloxane (PDMS) and glass. Since the coatings required a freshly oxidized, hydrophilic substrate, a novel method to rapidly connect reservoirs using plasma oxidation was first developed and found to support up to 5.2 N cm(-2) (1.5 N) pull-off force. rSBMs were then assembled in the oxidized hydrophilic channels. The electroosmotic mobility (mu(eo)) of rSBM-coated channels was measured over a 3 h time to evaluate the stability of the coatings for microchip electrophoresis. rSBM-coated microchips with a simple cross-design had excellent properties for microchip separations, yielding efficiencies of up to 700,000 plates m(-1) for fluorescent dyes and peptides. The separation performance of rSBM and PC-coated channels was evaluated after repeatedly drying and rehydrating the channels. The separation efficiency of fluorescein on PC-coated devices decreased by 40% after one dehydration cycle and nearly 75% after 3 cycles. In contrast for rSBM-coated devices there was no significant change in the fluorescein efficiency until the third cycle (10% decreased efficiency). rSBM-coated channels were also markedly more stable when placed in a dehydrated state during long-term storage compared to PC-coated channels, and showed reduced chip failure and no reduction in performance for up to one month of dehydrated storage. Finally, rSBM-coated devices were used to perform single-cell cytometry. Microchips that had been dehydrated, stored two weeks, and rehydrated prior to use demonstrated similar performance to newly coated devices for the separation of fluorescein and carboxyfluorescein from single cells. Thus rSBM-coated devices were rugged withstanding electric fields, prolonged storage under dehydrated conditions, and biofouling by cellular constituents while maintaining excellent separation

  10. Nonlinear mode coupling in a microchip laser

    SciTech Connect

    Lacot, E.; Stoeckel, F.

    1996-09-01

    The dynamics of the total intensity and of each individual mode of a microchip laser have been studied. Because of the nonlinear mode coupling by spatial hole burning, the intensity fluctuation of each longitudinal mode can be described by {ital N} relaxation frequencies, where {ital N} is the number of lasing modes. Owing to the small cross-saturation coefficient between the longitudinal modes, the total intensity exhibits a behavior much more complex than the regular relaxation oscillations usually observed. As a result of the short photon lifetime of the microchip laser this unstable behavior of the total intensity can easily be observed even when the number of modes is small. For each longitudinal mode, we also observed beating and antiphase dynamics between two coupled states of orthogonal polarization. Numerical simulations permit a good description of the experimental results. {copyright} {ital 1996 Optical Society of America.}

  11. Adaptive nanowires for switchable microchip devices.

    PubMed

    Piccin, Evandro; Laocharoensuk, Rawiwan; Burdick, Jared; Carrilho, Emanuel; Wang, Joseph

    2007-06-15

    This paper demonstrates for the first time the use of adaptive functional nickel nanowires for switching on-demand operation of microfluidic devices. Controlled reversible magnetic positioning and orientation of these nanowires at the microchannel outlet offers modulation of the detection and separation processes, respectively. The former facilitates switching between active and passive detection states to allow the microchip to be periodically activated to perform a measurement and reset it to the passive ("off") state between measurements. Fine magnetic tuning of the separation process (postchannel broadening of the analyte zone) is achieved by reversibly modulating the nanowire orientation (i.e., detector alignment) at the channel outlet. The concept can be extended to other microchip functions and stimuli-responsive materials and holds great promise for regulating the operation of microfluidic devices in reaction to specific needs or unforeseen scenarios.

  12. Mini-electrochemical detector for microchip electrophoresis.

    PubMed

    Jiang, Lei; Lu, Yao; Dai, Zhongpeng; Xie, Minhao; Lin, Bingcheng

    2005-09-01

    This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.0 cm2, W x L) of the detector is compatible with the dimension of the microchip. The use of universal serial bus (USB) ports facilitates installation and use of the detector, miniaturizes the detector, and makes it ideal for lab-on-a-chip applications. A fixed 10 M ohm feedback resistance was chosen to convert current of the working electrode to voltage with second gain of 1, 2, 4, 8, 16, 32, 64 and 128 for small signal detection instead of adopting selectable feedback resistance. Special attention has been paid to the power support circuitry and printed circuit board (PCB) design in order to obtain good performance in such a miniature size. The working electrode potential could be varied over a range of +/-2.5 V with a resolution of 0.01 mV. The detection current ranges from -0.3 x 10(-7) A to 2.5 x 10(-7) A and the noise is lower than 1 pA. The analytical performance of the new system was demonstrated by the detection of epinephrine using an integrated PDMS/glass microchip with detection limit of 2.1 microM (S/N = 3).

  13. Nanostructured optical microchips for cancer biomarker detection.

    PubMed

    Zhang, Tianhua; He, Yuan; Wei, Jianjun; Que, Long

    2012-01-01

    Herein we report the label-free detection of a cancer biomarker using newly developed arrayed nanostructured Fabry-Perot interferometer (FPI) microchips. Specifically, the prostate cancer biomarker free prostate-specific antigen (f-PSA) has been detected with a mouse anti-human PSA monoclonal antibody (mAb) as the receptor. Experiments found that the limit-of-detection of current nanostructured FPI microchip for f-PSA is about 10 pg/mL and the upper detection range for f-PSA can be dynamically changed by varying the amount of the PSA mAb immobilized on the sensing surface. The control experiments have also demonstrated that the immunoassay protocol used in the experiments shows excellent specificity and selectivity, suggesting the great potential to detect the cancer biomarkers at trace levels in complex biofluids. In addition, given its nature of low cost, simple-to-operation and batch fabrication capability, the arrayed nanostructured FPI microchip-based platform could provide an ideal technical tool for point-of-care diagnostics application and anticancer drug screen and discovery.

  14. Evaluation of a field-portable DNA microarray platform and nucleic acid amplification strategies for the detection of arboviruses, arthropods, and bloodmeals.

    PubMed

    Grubaugh, Nathan D; Petz, Lawrence N; Melanson, Vanessa R; McMenamy, Scott S; Turell, Michael J; Long, Lewis S; Pisarcik, Sarah E; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L; Lee, John S

    2013-02-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors.

  15. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  16. Adjustable microchip ring trap for cold atoms and molecules

    SciTech Connect

    Baker, Paul M.; Stickney, James A.; Squires, Matthew B.; Scoville, James A.; Carlson, Evan J.; Buchwald, Walter R.; Miller, Steven M.

    2009-12-15

    We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using de Broglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-dependent currents of the wires and show that it is possible to form a circular waveguide with adjustable height and gradient while minimizing perturbation resulting from leads or wire crossings. This maximal area geometry is suited for rotation sensing with atom interferometry via the Sagnac effect using either cold atoms, molecules and Bose-condensed systems.

  17. Portable Electromyograph

    NASA Technical Reports Server (NTRS)

    De Luca, Gianluca; De Luca, Carlo J.; Bergman, Per

    2004-01-01

    A portable electronic apparatus records electromyographic (EMG) signals in as many as 16 channels at a sampling rate of 1,024 Hz in each channel. The apparatus (see figure) includes 16 differential EMG electrodes (each electrode corresponding to one channel) with cables and attachment hardware, reference electrodes, an input/output-and-power-adapter unit, a 16-bit analog-to-digital converter, and a hand-held computer that contains a removable 256-MB flash memory card. When all 16 EMG electrodes are in use, full-bandwidth data can be recorded in each channel for as long as 8 hours. The apparatus is powered by a battery and is small enough that it can be carried in a waist pouch. The computer is equipped with a small screen that can be used to display the incoming signals on each channel. Amplitude and time adjustments of this display can be made easily by use of touch buttons on the screen. The user can also set up a data-acquisition schedule to conform to experimental protocols or to manage battery energy and memory efficiently. Once the EMG data have been recorded, the flash memory card is removed from the EMG apparatus and placed in a flash-memory- card-reading external drive unit connected to a personal computer (PC). The PC can then read the data recorded in the 16 channels. Preferably, before further analysis, the data should be stored in the hard drive of the PC. The data files are opened and viewed on the PC by use of special- purpose software. The software for operation of the apparatus resides in a random-access memory (RAM), with backup power supplied by a small internal lithium cell. A backup copy of this software resides on the flash memory card. In the event of loss of both main and backup battery power and consequent loss of this software, the backup copy can be used to restore the RAM copy after power has been restored. Accessories for this device are also available. These include goniometers, accelerometers, foot switches, and force gauges.

  18. Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine.

    PubMed

    Kuhnline, Courtney D; Gangel, Michael G; Hulvey, Matthew K; Martin, R Scott

    2006-02-01

    This paper describes the fabrication and evaluation of a chemically modified carbon ink microelectrode to detect thiols of biological interest. The detection of thiols, such as homocysteine and cysteine, is necessary to monitor various disease states. The biological implications of these thiols generate the need for miniaturized detection systems that enable portable monitoring as well as quantitative results. In this work, we utilize a microchip device that incorporates a micromolded carbon ink electrode modified with cobalt phthalocyanine to detect thiols. Cobalt phthalocyanine (CoPC) is an electrocatalyst that lowers the potential needed for the oxidation of thiols. The CoPC/carbon ink composition was optimized for the micromolding method and the resulting microelectrode was characterized with microchip-based flow injection analysis. It was found that CoPC lowers the overpotential for thiols but, as compared to direct amperometric detection, a pulsed detection scheme was needed to constantly regenerate the electrocatalyst surface, leading to improved peak reproducibility and limits of detection. Using the pulsed method, cysteine exhibited a linear response between 10-250 microM (r(2) = 0.9991) with a limit of detection (S/N = 3) of 7.5 microM, while homocysteine exhibited a linear response between 10-500 microM (r(2) = 0.9967) with a limit of detection of 6.9 microM. Finally, to demonstrate the ability to measure thiols in a biological sample using a microchip device, the CoPC-modified microelectrode was utilized for the detection of cysteine in the presence of rabbit erythrocytes.

  19. Developments and field tests of low-frequency portable acoustic transducers for a mobile exploration and time lapse experiment of a sea-bottom reservoir

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kondo, H.

    2013-12-01

    Depth, scale and resolutions of geophysical explorations for mineral resources are controlled by transmitted seismic energy and wavelength (frequency range). Most explorations in marine have been conducted by survey ship system with arrayed acoustic sources whose dominant frequency range is about 10 to 500 Hz. On the other hand, for shallow parts of sea bottom structure survey, some sub-bottom profilers with frequency range around 3.5kHz are used. To monitor a time lapse of a sea bottom reservoir such as an oil, gas, or methane hydrate reservoir as well as to exploit a mobile survey near a sea bottom by AUVs, it is necessary to use a broadband portable acoustic transducer with a dominant frequency range of 500 Hz to 5 kHz. We have been developing several types of portable acoustic transducers and a transmitting and recording system which is accurately controlled by a GPS clock (Tsuruga et al., 2012). In this pater, we report the new broadband acoustic portable transducers which have larger power than the original cylindrical acoustic transducers in a low frequency range (<5 kHz), partly funded by JOGMEC, and show the preliminary results of field tests at the shallow sea bottom around 32 m deep by means of the transducers and hydrophone receivers array. Each transducer repeatedly transmitted Chirp signals with a unit period of 500 msec in two frequency ranges of 0.5k-4.5kHz and 4k-16kHz . We stacked 500-ms data by 28 times to obtain a transfer function of each source-receiver pair in the time and frequency domains. The preliminary results suggest as the follows: (i) it is successful to broaden the frequency bandwidth (i.e., 2k-10kHz) by extending a geometrical resonance length of a cylindrical acoustic transducers, and (ii) the observation at the sea bottom with accurately controlled timing systems of transmitter and data-logger is very useful to identify the stable and/or unstable seismic phases, that is, waves propagating in a underground and/or in a sea water as

  20. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics.

    PubMed

    Xu, Yan; Jang, Kihoon; Yamashita, Tadahiro; Tanaka, Yo; Mawatari, Kazuma; Kitamori, Takehiko

    2012-01-01

    By combining cell technology and microchip technology, innovative cellular biochemical tools can be created from the microscale to the nanoscale for both practical applications and fundamental research. On the microscale level, novel practical applications taking advantage of the unique capabilities of microfluidics have been accelerated in clinical diagnosis, food safety, environmental monitoring, and drug discovery. On the other hand, one important trend of this field is further downscaling of feature size to the 10(1)-10(3) nm scale, which we call extended-nano space. Extended-nano space technology is leading to the creation of innovative nanofluidic cellular and biochemical tools for analysis of single cells at the single-molecule level. As a pioneering group in this field, we focus not only on the development of practical applications of cellular microchip devices but also on fundamental research to initiate new possibilities in the field. In this paper, we review our recent progress on tissue reconstruction, routine cell-based assays on microchip systems, and preliminary fundamental method for single-cell analysis at the single-molecule level with integration of the burgeoning technologies of extended-nano space.

  1. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  2. IATROGENIC MICROCHIP ARTERIAL EMBOLISM IN A CHILEAN FLAMINGO (PHOENICOPTERUS CHILENSIS).

    PubMed

    Olds, June E; Ewing, Jacob; Arruda, Paulo; Kuyper, Jennifer; Riedesel, Elizabeth; Miles, Kristina M

    2016-06-01

    Aberrant microchip migration has been reported in domestic animal species, but in most cases, this migration is atraumatic to the patient. Reports of microchip-associated trauma and sarcoma development also have been reported in a variety of mammal species. This report describes accidental arterial microchip insertion causing obstruction of the iliac artery in a Chilean flamingo (Phoenicopterus chilensis). Diagnostic imaging included digital radiography and pre- and post-contrast computed tomography to determine the location of the microchip. Surgical removal of the microchip was attempted; however, the flamingo died intraoperatively. Postmortem evaluation found trauma to the epicardium, without penetration of the ventricle. The descending aorta was found traumatized and identified as the most likely insertion point leading to the embolism.

  3. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    PubMed

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  4. Exploring the Integration of Field Portable Instrumentation into Real-Time Surface Science Operations with the RIS4E SSERVI Team

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).

  5. Low viscous separation media for genomics and proteomics analysis on microchip electrophoresis system.

    PubMed

    Jabasini, Mohammad; Murakami, Yuji; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2006-04-01

    Microchip electrophoresis has widely grown during the past few years, and it has showed a significant result as a strong separation tool for genomic as well as proteomic researches. To enhance and expand the role of microchip electrophoresis, several studies have been proposed especially for the low viscous separation media, which is an important factor for the success of microchip with its narrow separation channels. In this paper we show an overview for the done researches in the field of low viscous media developed for the use in microchip electrophoresis. For genomic separation studies polyhydroxy additives have been used enhance the separation of DNA at low polymer concentration of HPMC (Hydroxypropylmethyl cellulose) which could keep the viscosity low. Mixtures of poly(ethylene oxide) as well as Hydroxyporpyl cellulose have been successfully introduced for chip separation. Furthermore high molecular mass polyacrylamides at low concentrations have been studied for DNA separation. A mixture of polymer nanoparticle with conventional polymers could show a better resolution for DNA at low concentration of the polymer. For the proteomic field isoelectric focusing on chip has been well overviewed since it is the most viscous separation media which is well used for the protein separation. The different types of isoelectric focusing such as the ampholyte-free type, the thermal type as well as the ampholyte-depended type have been introduced in this paper. Isoelectric focusing on chip with its combination with sodium dodecyl sulfate (SDS) page or free solution could give a better separation. Several application for this low viscous separation medias for either genomic or proteomic could clearly show the importance of this field.

  6. Ceeable Visual Field Analyzer (CVFA) for the portable, comprehensive, and tele-medical assessment of visual performance over time in warfighters, pilots, veterans, and civilians

    NASA Astrophysics Data System (ADS)

    Adams, Chris; Cerwin, John; Fink, Wolfgang

    2016-05-01

    We introduce a portable, easy-to-use, worldwide accessible (i.e., web-based), and comprehensive tele-medical visual performance assessment system - the Ceeable Visual Field Analyzer (CVFATM) - for warfighters, pilots, veterans, and civilians to: (1) Accurately and rapidly assess visual performance; (2) characterize visual performance and ocular conditions; and (3) detect the onset of ocular conditions to allow for timely countermeasures as well as patient follow-up over time. CVFA has been shown to be effective in multiple clinical studies. The technology is rapid (< 5 minutes per eye), easy (use of touchscreen), accurate (spatial resolution < 1 degree), non-invasive, and comprehensive. The system automatically characterizes visual field defects in real time to generate new diagnostic insight. The visual performance assessment system is readily adaptable to traditional clinical and non-clinical settings (e.g., in forward operating bases in the theatre). It is capable of rapidly assessing conditions affecting the visual performance of warfighters in the field, allowing for triage and timely application of therapeutic countermeasures. The enabling technologies are a low-cost tablet computer and Internet connection. Ceeable is deploying the technology on a global basis to patients who will benefit from monitoring changes in visual function.

  7. [Microchips based on three dimensional gel cells: history and perspective].

    PubMed

    Kolchinskiĭ, A M; Griadunov, D A; Lysov, Iu P; Mikhaĭlovich, V M; Nasedkina, T V; Turygin, A Iu; Rubina, A Iu; Barskiĭ, V E; Zasedatelev, A S

    2004-01-01

    The review describes the history of creation and development of the microchip technology and its role in the human genome project in Russia. The emphasis is placed on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous versions. The microchips are manufactured by photo-initiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical strength and stability, which allowed one to work with the DNA fragments of up to 500 nt in length, as well as with rather large protein molecules. At present, the gel-based microchips are widely applied to address different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA-protein interactions. The oligonucleotide microchips are a cheap and reliable tool of diagnostics designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; for diagnostics of orthopoxviruses, including the smallpox virus; for diagnostics of the anthrax pathogen; and for identification of chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteomics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which open a wide potential for creation biosensors on the basis of microchips.

  8. Application of microchip-CE electrophoresis to follow the degradation of phenolic acids by aquatic plants.

    PubMed

    Ding, Yongsheng; Garcia, Carlos D

    2006-12-01

    In this paper, we describe the separation and detection of six phenolic acids using an electrophoretic microchip with pulsed amperometric detection (PAD). The selected phenolic acids are particularly important because of their biological activity. The analysis of these compounds is typically performed by chromatography or standard CE coupled with a wide variety of detection modes. However, these methods are slow, labor intensive, involve a multistep solvent extraction, require skilled personnel, or use bulky and expensive instrumentation. In contrast, microchip CE offers the possibility of performing simpler, less expensive, and faster analysis. In addition, integrated devices can be custom-fabricated and incorporated with portable computers to perform on-site analysis. In the present report, the effect of the separation potential, buffer pH and composition, injection time and PAD parameters were studied in an effort to optimize both the separation and detection of these phenolic acids. Using the optimized conditions, the analysis can be performed in less than 3 min, with detection limits ranging from 0.73 microM (0.10 microg/mL) for 4-hydroxyphenylacetic acid to 2.12 microM (0.29 microg/mL) for salicylic acid. In order to demonstrate the capabilities of the device, the degradation of a mixture of these acids by two aquatic plants was followed using the optimized conditions.

  9. Low-power microwave-mediated heating for microchip-based PCR.

    PubMed

    Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P

    2013-09-07

    Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.

  10. Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection.

    PubMed

    Liu, Benyan; Zhang, Yi; Mayer, Dirk; Krause, Hans-Joachim; Jin, Qinghui; Zhao, Jianlong; Offenhäusser, Andreas; Xu, Yuansen

    2012-04-01

    An integrated detection circuitry based on a lock-in amplifier was designed for contactless conductivity determination of heavy metals. Combined with a simple-structure electrophoresis microchip, the detection system is successfully utilized for the separation and determination of various heavy metals. The influences of the running buffer and detection conditions on the response of the detector have been investigated. Six millimole 2-morpholinoethanesulfonic acid + histidine were selected as buffer for its stable baseline and high sensitivity. The best signals were recorded with a frequency of 38 kHz and 20 V(pp). The results showed that Mn(2+), Cd(2+), Co(2+), and Cu(2+) can be successfully separated and detected within 100 s by our system. The detection limits for five heavy metals (Mn(2+), Pb(2+), Cd(2+), Co(2+), and Cu(2+)) were determined to range from about 0.7 to 5.4 μM. This microchip system performs a crucial step toward the realization of a simple, inexpensive, and portable analytical device for metal analysis.

  11. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells

    PubMed Central

    Ramirez, Lisa; Herschkowitz, Jason I.; Wang, Jun

    2016-01-01

    Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don’t have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future. PMID:27581736

  12. Portable low-cost devices for videotaping, editing, and displaying field-sequential stereoscopic motion pictures and video

    NASA Astrophysics Data System (ADS)

    Starks, Michael R.

    1990-09-01

    A variety of low cost devices for capturing, editing and displaying field sequential 60 cycle stereoscopic video have recently been marketed by 3D TV Corp. and others. When properly used, they give very high quality images with most consumer and professional equipment. Our stereoscopic multiplexers for creating and editing field sequential video in NTSC or component(SVHS, Betacain, RGB) and Home 3D Theater system employing LCD eyeglasses have made 3D movies and television available to a large audience.

  13. Assessment of Preparation of Samples Under the Field Conditions and a Portable Real-Time RT-PCR Assay for the Rapid On-Site Detection of Newcastle Disease Virus.

    PubMed

    Liu, L; Benyeda, Z; Zohari, S; Yacoub, A; Isaksson, M; Leijon, M; LeBlanc, N; Benyeda, J; Belák, S

    2016-04-01

    Newcastle disease virus (NDV), also known as virulent forms of avian paramyxovirus serotype 1 (AMPV-1), is the causative agent of Newcastle disease affecting many species of birds and causing heavy losses to the poultry industry worldwide. Early, rapid and sensitive detection of the viruses or the viral nucleic acids is very important for disease diagnosis and control. This study aimed to evaluate sample preparation under field conditions and the application of a real-time RT-PCR method in the portable T-COR4 platform for the rapid, on-site detection of NDV on a farm. In the laboratory setting, the portable real-time RT-PCR assay had a similar performance compared with that obtained with a larger, stationary Rotor Gene real-time thermocycler. In the field conditions, viral nucleic acids were manually extracted just outside of animal units with minimal equipment and real-time RT-PCR detection was performed with the portable thermocycler T-COR4 placed in a nearby room. The portable assay at the farm detected viral RNA in 15 samples and reached an agreement of 83% (39/47) when the same RNA preparations were tested in the Rotor Gene thermocycler under the laboratory setting. The results demonstrated the feasibility of performing field detection but also the need to improve and further simplify sample preparation procedures. © 2014 Blackwell Verlag GmbH.

  14. Photopatterning of Hydrogel Microarrays in Closed Microchips.

    PubMed

    Gumuscu, Burcu; Bomer, Johan G; van den Berg, Albert; Eijkel, Jan C T

    2015-12-14

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip maintains a large spacing (typically 525 μm) between the photomask and hydrogel precursor, leading to diffraction of UV light at the edges of mask patterns, (2) diffusion of free radicals and monomers results in irregular polymerization near the illumination interface. In this work, we present a simple approach to enable the use of optical lithography to fabricate hydrogel arrays with a minimum feature size of 4 μm inside closed microchips. To achieve this, we combined two different techniques. First, the upper glass layer of the microchip was thinned by mechanical polishing to reduce the spacing between the photomask and hydrogel precursor, and thereby the diffraction of UV light at the edges of mask patterns. The polishing process reduces the upper layer thickness from ∼525 to ∼100 μm, and the mean surface roughness from 20 to 3 nm. Second, we developed an intermittent illumination technique consisting of short illumination periods followed by relatively longer dark periods, which decrease the diffusion of monomers. Combination of these two methods allows for fabrication of 0.4 × 10(6) sub-10 μm sized hydrogel patterns over large areas (cm(2)) with high reproducibility (∼98.5% patterning success). The patterning method is tested with two different types of photopolymerizing hydrogels: polyacrylamide and polyethylene glycol diacrylate. This method enables in situ fabrication of well-defined hydrogel patterns and presents a simple approach to fabricate 3-D hydrogel matrices for biomolecule separation, biosensing, tissue engineering, and immobilized protein microarray applications.

  15. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  16. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    PubMed

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values.

  17. Single-frequency microchip Nd lasers.

    PubMed

    Zayhowski, J J; Mooradian, A

    1989-01-01

    Optically pumped, single-frequency, Nd-doped, solid-state lasers have been constructed using flat-flat cavities, which were diced from large dielectrically coated wafers of various crystals. For example, a Nd:YAG laser with a cavity length of 730 microm has operated at room temperature in a single longitudinal mode from a threshold of less than 1 mW to greater than 40 times the threshold. Theslope efficiency was greater than 30%. Heterodyne measurements showed an instrument-limited linewidth of 5 kHz. The microchip lasers demonstrate ways to reduce greatly the cost and complexity offabricating small lasers and electro-optic devices.

  18. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  19. Readability and histological biocompatibility of microchip transponders in horses.

    PubMed

    Wulf, M; Wohlsein, P; Aurich, J E; Nees, M; Baumgärtner, W; Aurich, C

    2013-10-01

    Identification of horses by microchip transponder is mandatory within the European Union with only a few exceptions. In this study, the readability of such microchips in 428 horses with three different scanners (A, B and C) and the histological changes at the implantation site in 16 animals were assessed. Identification of microchips differed between scanners (P<0.001), and with 'side of neck' (P<0.001). Scanners A, B and C identified 93.5%, 89.7% and 100% of microchips, respectively, on the 'chip-bearing' side of the neck. From the contralateral side, scanners A, B and C identified 21.5%, 26.9% and 89.5% of transponders, respectively. Microchip readability was affected by age (P<0.001), but not by breed of horse. At necropsy, transponders were found in the subcutaneous fat (n=3), inter- or peri-muscular connective tissue (n=8), or musculature (n=5), where they were surrounded by a fibrous capsule ranging in thickness from 12.7 to 289.5 μm in 15 animals. In two animals, immature granulation tissue with attendant granulomatous inflammation, and a granulomatous myositis, surrounding the microchip were identified, respectively. Severe (n=1), moderate (n=1), and mild (n=3) lymphohistiocytic inflammation was noted within the fibrous capsule. Microchip transponders were found to be a highly reliable and biocompatible method of horse identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips.

    SciTech Connect

    Fotin, A. V.; Drobyshev, A. L.; Proudnikov, D. Y.; Perov, A. N.; Mirzabekov, A. D.; Center for Mechanistic Biology and Biotechnology; Engelhardt Inst. of Molecular Biology

    1998-03-15

    A microchip method has been developed for massive and parallel thermodynamic analyses of DNA duplexes. Fluorescently labeled oligonucleotides were hybridized with oligonucleotides immobilized in the 100 x 100 x 20 mum gel pads of the microchips. The equilibrium melting curves for all microchip duplexes were measured in real time in parallel for all microchip duplexes. Thermodynamic data for perfect and mismatched duplexes that were obtained using the microchip method directly correlated with data obtained in solution. Fluorescent labels or longer linkers between the gel and the oligonucleotides appeared to have no significant effect on duplex stability. Extending the immobilized oligonucleotides with a four-base mixture from the 3'-end or one or two universal bases (5-nitroindole) from the 3'- and/or 5'- end increased the stabilities of their duplexes. These extensions were applied to increase the stabilities of the duplexes formed with short oligonucleotides in microchips, to significantly lessen the differences in melting curves of the AT- and GC-rich duplexes, and to improve discrimination of perfect duplexes from those containing poorly recognized terminal mismatches. This study explored a way to increase the efficiency of sequencing by hybridization on oligonucleotide microchips.

  1. Portable Computer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    SPOC, a navigation monitoring computer used by NASA in a 1983 mission, was a modification of a commercial computer called GRiD Compass, produced by GRiD Systems Corporation. SPOC was chosen because of its small size, large storage capacity, and high processing speed. The principal modification required was a fan to cool the computer. SPOC automatically computes position, orbital paths, communication locations, etc. Some of the modifications were adapted for commercial applications. The computer is presently used in offices for conferences, for on-site development, and by the army as part of a field communications systems.

  2. Generating electrospray from microchip devices using electroosmotic pumping

    SciTech Connect

    Ramsey, R.S.; Ramsey, J.M.

    1997-03-15

    A method of generating electrospray from solutions emerging from small channels etched on planer substrates in described. The fluids are delivered using electroosmotically induced pressures and are sprayed electrostatically from the terminus of a channel by applying an electrical potential of sufficient amplitude to generate the electrospray between the microchip and a conductor spaced from the channel terminus. No major modification of the microchip is required other than to expose a channel opening. The principles that regulate the fluid delivery are described and demonstrated. A spectrum for a test compound, tetrabutylammonium iodide, that was continuously electrophoresed was obtained by coupling the microchip to an ion trap mass spectrometer. 35 refs., 6 figs.

  3. A graphene-modified cellulose paper microchip for HIV detection

    NASA Astrophysics Data System (ADS)

    Safavieh, Mohammadali; Khetani, Sultan; Kaul, Vivasvat; Kuritzkes, Daniel R.; Shafiee, Hadi

    2015-05-01

    Rapid and inexpensive virus detection and quantification at the point-of-care is of paramount importance for HIV management in resource-limited settings. Here, we report on an easy-to-fabricate, cellulose paper-based microchip with printed graphene-modified electrodes for rapid detection of HIV-1 through electrical sensing. We evaluated the effect of electrode material and geometry on the performance of the microchip to detect serially diluted, electrically conductive samples. We evaluated the optimized microchip with HIVspiked samples.

  4. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.

    PubMed

    Otsuka, Kenju; Chu, Shu-Chun

    2013-05-01

    We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.

  5. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.

    PubMed

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-02-09

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

  6. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

    PubMed Central

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-01-01

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207

  7. Field-portable Gas Chromatograph Mass Spectrometer (GC-MS) Unit for Semi-volatile Compound Analysis in Groundwater

    DTIC Science & Technology

    2011-09-01

    Acronyms ATV All-terrain vehicle CIT Cylindrical ion trap COC Compound of concern DoD Department of Defense ECB Environmental Chemistry...Dr. Anthony J. Bednar, Research Chemist, Environmental Chemistry Branch ( ECB ), Environmental Processes and Engineering Division (EPED), Environmental...from the Griffin instruments to EPA method 8330B conducted at the ERDC- ECB . Data required for the statistical comparisons include field and laboratory

  8. Microchip device for liquid phase analysis

    SciTech Connect

    Ramsey, j.m.

    2000-05-01

    The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and open channel electrochromatography (OCEC) with fluidic valving to introduce sample plugs into the separation channel. Other operations have quickly been integrated with the separations and fluidic valving on these microchips. For example, integrated devices with mixers/diluters for precolumn and postcolumn analyte derivatization, deoxyribonucleic acid (DNA) restriction digests, enzyme assays, and polymerase chain reaction (PCR) amplification have been added to the basic design. Integrated mixers that can perform solvent programming for both MEKC and OCEC have also been demonstrated. These examples are simple, yet powerful, demonstrations of the potential for lab-on-a-chip devices. In this report, three key areas for improved performance of these devices are described: on-chip calibration techniques, enhanced separative performance, and enhanced detection capabilities.

  9. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology

    PubMed Central

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  11. Feasibility study on a portable field pest classification system design based on DSP and 3G wireless communication technology.

    PubMed

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.

  12. Portable, Folding Tray Retainer and Stand (Multipurpose).

    DTIC Science & Technology

    The invention relates generally to the field of service tray supports and, in particular, to an improved combined portable tray support and stand especially adaptable for use with a litter-borne patient.

  13. A field-portable membrane introduction mass spectrometer for real-time quantitation and spatial mapping of atmospheric and aqueous contaminants.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T; Gill, Christopher G

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012.

  14. A Field-Portable Membrane Introduction Mass Spectrometer for Real-time Quantitation and Spatial Mapping of Atmospheric and Aqueous Contaminants

    NASA Astrophysics Data System (ADS)

    Bell, Ryan J.; Davey, Nicholas G.; Martinsen, Morten; Collin-Hansen, Christian; Krogh, Erik T.; Gill, Christopher G.

    2015-02-01

    Environmental concentrations of volatile and semivolatile organic compounds (VOC/SVOCs) can vary dramatically in time and space under the influence of environmental conditions. In an industrial setting, multiple point and diffuse sources can contribute to fugitive emissions. Assessments and monitoring programs using periodic grab sampling provide limited information, often with delay times of days or weeks. We report the development and use of a novel, portable membrane introduction mass spectrometry (MIMS) system capable of resolving and quantifying VOC and SVOCs with high spatial and temporal resolution, in the field, in real-time. An electron impact ionization cylindrical ion trap mass spectrometer modified with a capillary hollow fiber polydimethylsiloxane membrane interface was used for continuous air and water sampling. Tandem mass spectrometry and selected ion monitoring scans performed in series allowed for the quantitation of target analytes, and full scan mode was used to survey for unexpected analytes. Predeployment and in-field external calibrations were combined with a continuously infused internal standard to enable real-time quantitation and monitor instrument performance. The system was operated in a moving vehicle with internet-linked data processing and storage. Software development to integrate MIMS and relevant meta-data for visualization and geospatial presentation in Google Earth is presented. Continuous quantitation enables the capture of transient events that may be missed or under-represented by traditional grab sampling strategies. Real-time geospatial maps of chemical concentration enable adaptive sampling and in-field decision support. Sample datasets presented in this work were collected in Northern Alberta in 2010-2012.

  15. [Analysis of lead in soil with partial least square regression (PLS) method and field portable X-ray fluorescence(FPXRF) analyzer].

    PubMed

    Huang, Qi-ting; Zhou, Lian-qing; Shi, Zhou; Li, Zhen-yu; Gu, Qun

    2009-05-01

    In the present study, soil samples were scanned by NITON XLt920 field portable X-ray fluorescence (FPXRF) analyzer, and the relationship between the X-ray fluorescence spectra and the concentration of Pb in soil was studied. For predicating the Pb concentration in soil, a partial least square regression model (PLS)was established with 6 optimal factors and two closely relevant electron volt ranges: 10.40-10.70 keV and 12.41-12.80 keV. After cross-calibration, the correlation coefficient of value predicted by PLS model against that measured by ICP was 0.9666, and the root mean square error of prediction (RMSEP) was 0.8732. Meanwhile, the univariate linear regression and multivariate linear regression models were also built with the correlation coefficient of 0.6805 and 0.7302, respectively. Obviously, the PLS method was better than the other two methods for predication. Comparing to the conventional approach of atomic absorption spectroscopy (AAS), FPXRF has the advantages of rapidness, non-destruction and relatively low cost with the acceptable accuracy. It would be a powerful tool to decide which sample is needs for further analysis.

  16. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy

    PubMed Central

    Miller, Arthur L.; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B.

    2016-01-01

    Laboratory measurements of ultrafin0e titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 µg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 µg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 µg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 µg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 µg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R2) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R2 of 0.831. PMID:23632878

  17. Application and Evaluation of Portable Field Instruments for Measuring Forced Expiratory Volume of Children and Adults in Environmental Health Surveys

    PubMed Central

    Burton, Robert M.; Kozel, Walter M.; Penley, Robert L.; Ward, George H.; Chapman, Robert S.

    1974-01-01

    In support of Health Effects Research Studies, pulmonary function tests are periodically administered to a large number of children. The ventilatory performance of these children is being evaluated by measuring the 0.75-sec forced expiratory volume (FEV0.75) with a waterless mechanical volume spirometer used in conjunction with an electronic timing unit. During a 1-yr testing period, operation with the volume spirometer and the EPA designed electronic timing unit proved to be highly successful. The volume spirometer was found to be more advantageous in conducting tests at remote field stations than the water spirometer and other electronic instruments which measure flow rate with a transducer element. The volume spirometer is lightweight, easy to operate, and has the capability of easy and accurate field calibration when used in conjunction with the electronic timing unit. Presently the volume spirometer and EPA designed electronic timing package are employed in all Community Health and Surveillance System (CHESS) pulmonary function testing studies. ImagesFIGURE 1.FIGURE 2.FIGURE 3. PMID:4470917

  18. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites.

    PubMed

    Jang, Min

    2010-06-01

    To get representative soil samples, a sampling method was verified for crop fields in the vicinity of abandoned mine sites. Application of appropriate sampling or analytical methods is very important as it affects the costs, time, and accuracy of the refined investigation of soil contamination. Two-time sampling for each crop field was conducted to verify the reproducibility of a zigzag method for soil sampling. The soil analysis using a portable X-ray fluorescence (pXRF) device was conducted to measure concentrations of metal species in soils, and its results were compared to the extracted concentrations by the Korean Standard Test (KST) for soils. As a result, the determination coefficient (R (2)) of linear regression analysis for data obtained by ex situ precise measurement or in situ field screening using pXRF was closely related with the ratio of the extracted concentration by KST to interference-free detection limits (IFDL) of pXRF (designated as KST/IFDL). As the specific metal species had a higher ratio of KST/IFDL, its R (2) was even higher in the field screening tests. However, the slopes of linear regression analysis for most metal species extracted by aqua-regia were close to 1.0 so that extracted concentrations by aqua-regia were similar to the analytical values obtained by pXRF, whereas extraction using a weak acid (0.1 M HCl) had different slopes for soils contaminated with different ranges of concentrations of metal species. Especially Zn showed not only high ratios of KST/IFDL because of aqua regia extraction, but also high determination coefficients. Because of its simple, rapid, and accurate capacities for metal analysis, the pXRF analysis showed high applicability in ex situ precise measurements or in situ field screening of metal analysis. In terms of applicability for regulation, especially in situ pXRF field screening with the zigzag method could be effectively applied to achieve an economical survey by determining hot spots or non

  19. A hydrodynamic microchip for formation of continuous cell chains

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, Khashayar; Zhang, Wei; Tang, Shi-Yang; Nasabi, Mahyar; Soffe, Rebecca; Tovar-Lopez, Francisco J.; Rajadas, Jayakumar; Mitchell, Arnan

    2014-05-01

    Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.

  20. Improvement of heat dissipation for polydimethylsiloxane microchip electrophoresis.

    PubMed

    Zhang, Yuan; Bao, Ning; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2004-11-19

    Effective removing of Joule heat in polymer-based microchip system is an important factor for high efficient separation because of lower heat conductivity of polymers than silica or glass. In this paper, a new kind of polydimethylsiloxane (PDMS) microchip electrophoresis system integrated with a laser-induced fluorescence detector has been successfully constructed on the basis of a commercial heat sink for computer CPU (central processor unit). Experimental results on separation current using high concentration running buffers demonstrated that heat dissipation of PDMS/PDMS microchip system was significantly improved. Furthermore, with this integrated system, theoretical plate number of fluorescein using 100 mM phosphate-buffered saline + 1 mM sodium dodecyl sulfate as running buffer was determined to be 2750 (for 2.5-cm separation channel, corresponding to 110,000/m). This high separation efficiency demonstrated that such heat sink-based polymer microchip system could be effectively applied for high-concentration buffers.

  1. Granulomatous Inflammatory Response to a Microchip Implanted in a Dog for Eight Years.

    PubMed

    Legallet, Claire; Mankin, Kelley Thieman; Spaulding, Kathy; Mansell, Joanne

    An 8 yr old neutered male springer spaniel dog was referred to Texas A&M University, College of Veterinary Medicine for a large, firm, fixed mass, located in the dorsal cervical tissue. The dog was otherwise healthy and had undergone microchip implantation approximately 8 yr prior. Radiographs, ultrasound, and microchip scanner confirmed the presence of a microchip within the mass. The microchip and associated mass were surgically excised, and histopathologic examination revealed granulomatous inflammation surrounding a cracked microchip. This case represents the first report of a granulomatous inflammatory response to a microchip 8 yr after implantation in a dog and highlights an important differential diagnosis.

  2. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  3. Apparatus for Precise Indium-Bump Bonding of Microchips

    NASA Technical Reports Server (NTRS)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  4. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  5. GOSAT validation out standing in the field: A case study of satellite validation using the SSEC Portable Atmospheric Research Center (SPARC)

    NASA Astrophysics Data System (ADS)

    Wagner, T. J.; Borg, L. A.; Feltz, M.; Gero, P. J.; Knuteson, R. O.; Olson, E.

    2016-12-01

    The Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison has developed the SSEC Portable Atmospheric Research Center (SPARC), a mobile 11 m trailer that houses numerous in situ and ground-based remote sensing instruments. Available instrumentation includes the Atmospheric Emitted Radiance Interferometer (AERI), a hyperspectral infrared radiometer from which trace gas concentrations and profiles of temperature and water vapor can be retrieved; the High Spectral Resolution Lidar (HSRL), a multichannel lidar capable of directly retrieving profiles of optical depth and backscatter depolarization; and a Doppler lidar wind profiler. The remote instrumentation suite is complemented by surface meteorology observations and a radiosonde ground station. Collectively, these instruments enable SPARC to participate in a wide variety of field studies, including meteorological field experiments and ground-based satellite calibration and validation studies. In August 2016, SPARC traveled to the Chequamegon National Forest in northern Wisconsin for a two week long deployment alongside the WLEF-TV tower. This 447 m tower houses long-term observations of thermodynamic and atmospheric composition at multiple heights, enabling studies of phenomena like atmospheric/land surface interactions and carbon uptake. During this deployment, SPARC launched radiosondes coincident with clear-sky overpasses of the Greenhouse gases Observing SATellite (GOSAT). Thermodynamic profiles from the radiosondes and AERI combined with the trace gas observations from the tower were used to validate the GOSAT observations of carbon dioxide and methane. The on-site presence of SPARC allowed for better characterization of the environment and greater observational certainty than was possible with the tower alone. Examples from this particular validation study as well as a discussion of how SPARC can contribute to other satellite calibration and validation investigations will be

  6. Field portable detection of VOCs using a SAW/GC system. Final report, June 21, 1994--September 21, 1996

    SciTech Connect

    Chang, F.; Staples, E.J.

    1998-06-01

    This report describes research on a fast GC vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center, whose mission, in addition to other goals, is the development of tools and methods for characterization, remediation, and monitoring of underground environmental conditions. The research tasks were to demonstrate detectability and specificity of a Surface Acoustic Wave Gas Chromatograph (SAW/GC) to a representative number of VOC materials followed by field demonstrations of the new technology at a DOE site. All tasks of the project were successfully carried out and a fast vapor analysis system based upon a new type of Surface Acoustic Wave detector technology was developed. The prototype analyzer has the ability to characterize organic contamination in soil and groundwater at the part per billion level in less than 10 seconds. The detector is unique because it utilized an uncoated quartz crystal, contrary to current developments of using coated crystals.

  7. First open field measurements with a portable CO2 lidar/dial system for early forest fires detection

    NASA Astrophysics Data System (ADS)

    Gaudio, Pasquale; Gelfusa, Michela; Lupelli, Ivan; Malizia, Andrea; Moretti, Alessandro; Richetta, Maria; Serafini, Camilla; Bellecci, Carlo

    2011-11-01

    Lidar and dial are well established methods to explore the atmosphere. Different groups have already shown experimentally the possibility to measure the density variation of aerosol and particulate in the atmosphere due to plumes emitted in forest fires with this kind of systems. The aim of the present work is to demonstrate the capabilities of our mobile Lidar system, based on a CO2 laser, to detect forest fires and minimizing false alarms. For this purpose, our system can be operated in both lidar and dial configurations in sequence. The first Lidar measurement is performed to evaluate the variation of the local density into the atmosphere, using a nonabsorption water wavelength 10R18 (10.571 μm). If the returned signal reports a backscattering peak, the presence of a fire is probable. To confirm this hypothesis, a second dial measurement is carried out to reveal a second component emitted during the combustion process. The chosen second component is water vapour, which is, as it is well-known, largely produced during the first combustion stage. Measuring the water concentration peak after the detection of the aerosol density increment (referred to the standard mean atmospheric value) represents a good method to reduce false alarms with a dial system. In order to test this methodology, a first set of measurements has been performed in a field near the Engineering Faculty of the University of Rome "Tor Vergata". A quite small controlled-fire has been lighted into a box at a distance of about one kilometre from the system. The data acquired at the two wavelengths (10R18 and 10R20) have been averaged on 100 elastic backscattered Lidar signals. The first results confirm the effectiveness of the measurement strategy for reducing the number of false alarm preserving the early detection.

  8. Microchip-Embedded Capacitors for Implantable Neural Stimulators

    NASA Astrophysics Data System (ADS)

    Auciello, Orlando

    Miniaturization of microchips for implantation in the human body (e.g., microchip for the artificial retina to restore sight to people blinded by retina photoreceptors degeneration) requires the integration of high-capacitance (≥ 10 μF) energy-storage capacitors into the microchip. These capacitors would be based on high-dielectric constant layers, preferably made of materials that are bioinert (not affected by human body fluids) and are biocompatible (do not elicit adverse reactions in the human body). This chapter focuses on reviewing the work being done at Argonne National Laboratory (Materials Science Division and Center for Nanoscale Materials) to develop high-capacitance microchip-embedded capacitors based on novel high-K dielectric layers (TiAlOx or TiO2/Al2O3 superlattices). The microchip-embedded capacitor provides energy storage and electromagnetic signal coupling needed for neural stimulations. Advances in neural prostheses such as artificial retinas and cochlear implants require miniaturization of device size to minimize tissue damage and improve device/tissue interfaces in the human body. Therefore, development of microchip-embedded capacitors is critical to achieve full-implantable biomedical device miniaturization.

  9. Microchip atmospheric pressure chemical ionization source for mass spectrometry.

    PubMed

    Ostman, Pekka; Marttila, Seppo J; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2004-11-15

    A novel microchip heated nebulizer for atmospheric pressure chemical ionization mass spectrometry is presented. Anisotropic wet etching is used to fabricate the flow channels, inlet, and nozzle on a silicon wafer. An integrated heater of aluminum is sputtered on a glass wafer. The two wafers are jointed by anodic bonding, creating a two-dimensional version of an APCI source with a sample channel in the middle and gas channels symmetrically on both sides. The ionization is initiated with an external corona-discharge needle positioned 2 mm in front of the microchip heated nebulizer. The microchip APCI source provides flow rates down to 50 nL/min, stable long-term analysis with chip lifetime of weeks, good quantitative repeatability (RSD < 10%) and linearity (r(2) > 0.995) with linear dynamic rage of at least 4 orders of magnitude, and cost-efficient manufacturing. The limit of detection (LOD) for acridine measured with microchip APCI at flow rate of 6.2 muL/min was 5 nM, corresponding to a mass flow of 0.52 fmol/s. The LOD with commercial macro-APCI at a flow rate of 1 mL/min for acridine was the same, 5 nM, corresponding to a significantly worse mass flow sensitivity (83 fmol/s) than measured with microchip APCI. The advantages of microchip APCI makes it a very attractive new microfluidic detector.

  10. Generation of modulated microchip laser pulses

    NASA Astrophysics Data System (ADS)

    Almabouada, F.; Aiadi, K. E.; Louhibi, D.

    2015-01-01

    Modulated 532 nm laser pulses were generated by a Nd:YVO4 microchip laser and a KTP crystal end-pumped by a 808 nm laser diode. The interest in such works arise from the efficiency of this type of laser in several applications. To obtain the desired type of the modulated laser pulses, the electrical circuit of the laser diode was designed so as to enable varying their driving signal and current values. Different modulated signals were used, such as square wave, sine wave, and burst mode pulses. Varying the peak drive current, the duty cycle, and the number of pulses allowed us to adjust the laser energy. For the burst mode experiment, the pulse energy obtained was about 1.2 μJ.

  11. Etching of glass microchips with supercritical water.

    PubMed

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  12. Microchip separations of neutral species via micellar electrokinetic capillary chromatography

    SciTech Connect

    Moore, A.W. Jr.; Jacobson, S.C.; Ramsey, J.M.

    1995-11-15

    Micellar electrokinetic capillary chromatography (MECC) of three neutral coumarin dyes was performed on glass microchips. Manifolds of channels for analyte injection and separation were machined into one surface of the glass substrates using standard photolithographic, etching, and deposition techniques. Cover plates were then directly bonded over these channels to form capillary networks, with fluid flow in these networks controlled by varying the applied high-voltage potentials at the outlets. The separation capillary was 16.5 cm long for a serpentine channel chip and 1.3 cm long for a straight channel chip. Detection of analyte zones was accomplished by laser-induced fluorescence using the UV lines (nearly 350 nm) of an argon ion laser. At low applied electric field strengths, MECC analyses with on-chip injections gave high reproducibilities in peak areas and migration times (<1% for two of the three coumarins) and near constant separation efficiencies throughout the analysis. At high fields (>400 V/cm), analysis times were shorter, but separation efficiency decreased at later migration times. These peaks showed significant broadening, consistent with mass transfer effects. 14 refs., 6 figs., 2 tabs.

  13. Electrochemical methods in conjunction with capillary and microchip electrophoresis.

    PubMed

    Mark, Jonas J P; Scholz, Rebekka; Matysik, Frank-Michael

    2012-12-07

    Electromigrative techniques such as capillary and microchip electrophoresis (CE and MCE) are inherently associated with various electrochemical phenomena. The electrolytic processes occurring in the buffer reservoirs have to be considered for a proper design of miniaturized electrophoretic systems and a suitable selection of buffer composition. In addition, the control of the electroosmotic flow plays a crucial role for the optimization of CE/MCE separations. Electroanalytical methods have significant importance in the field of detection in conjunction with CE/MCE. At present, amperometric detection and contactless conductivity detection are the predominating electrochemical detection methods for CE/MCE. This paper reviews the most recent trends in the field of electrochemical detection coupled to CE/MCE. The emphasis is on methodical developments and new applications that have been published over the past five years. A rather new way for the implementation of electrochemical methods into CE systems is the concept of electrochemically assisted injection which involves the electrochemical conversions of analytes during the injection step. This approach is particularly attractive in hyphenation to mass spectrometry (MS) as it widens the range of CE-MS applications. An overview of recent developments of electrochemically assisted injection coupled to CE is presented.

  14. Electroosmotically induced hydraulic pumping on microchips: differential ion transport

    PubMed

    Culbertson; Ramsey; Ramsey

    2000-05-15

    The theory behind and operation of an electroosmotically induced hydraulic pump for microfluidic devices is reported. This microchip functional element consists of a tee intersection with one inlet channel and two outlet channels. The inlet channel is maintained at high voltage while one outlet channel is kept at ground and the other channel has no electric potential applied. A pressure-induced flow of buffer is created in both outlet channels of the tee by reducing electroosmosis in the ground channel relative to that of the inlet channel. Spatially selective reduction of electroosmosis is accomplished by coating the walls of the ground channel with a viscous polymer. The pump is shown to differentially transport ions down the two outlet channels. This ion discrimination ability of the pump is examined as a function of an analyte's electrophoretic velocity. In addition, we demonstrate that an anion can be rejected from the ground channel and made to flow only into the field-free channel if the electrophoretic velocity of the anion is greater than the pressure-generated flow in the ground channel. The velocity threshold at which anion rejection occurs can be selectively tuned by changing the flow resistance in the field-free channel relative to the ground channel.

  15. Architecture for portable direct liquid fuel cells

    NASA Astrophysics Data System (ADS)

    Qian, Weimin; Wilkinson, David P.; Shen, Jun; Wang, Haijiang; Zhang, Jiujun

    Direct fuel cells (DFCs) are receiving increased interest for portable power applications. Cell and stack architecture is a vital technical issue for portable DFCs. The architecture of a DFC not only has to meet particular application requirements such as a compact size and easy handling, but also has to ensure desired performance, reliability and fabrication costs. In this paper, the most recent advances related to portable DFCs and their architecture are reviewed. The current status of system architecture, stack/unit cell architecture, flow-field designs and MEA morphology strategies along with analysis are surveyed. In addition, promising methods of passive fuel delivery are also presented.

  16. Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF.

    PubMed

    Lagerström, Maria; Norling, Matz; Eklund, Britta

    2016-05-01

    The application of a field portable X-ray fluorescence spectrometer (FPXRF) to measure Cu, Zn, and Pb in soil and sediments at recreational boatyards by Lake Mälaren in Sweden was investigated. Confirmatory chemical analysis on freeze-dried samples shows that, ex situ, the FPXRF produces definitive level data for Cu and Zn and quantitative screening data for Pb, according to USEPA criteria for data quality. Good agreement was also found between the ex situ measurements and the in situ screening. At each of the two studied boatyards, >40 in situ soil measurements were carried out. Statistical differences in soil concentration based on land use were consequently found: the areas used for boat storage and maintenance were significantly higher in Cu and Zn than the areas used for car parking and transportation. The metal pollution in the boat storage areas is therefore shown to be directly linked to hull maintenance activities during which metal-containing antifouling paint particles are shed, end up on the ground, and consequently pollute the soil. In the boat storage areas, the Cu and Zn concentrations often exceeded the national guideline values for soil. In this study, they were also shown to increase with increasing age of the boatyard operation. Pb soil concentrations were only elevated at a few measurement points, reflecting the phasing out of Pb compounds from antifouling products over the past 2 decades. In the surface sediments, concentrations of Cu and Zn were 2-3 times higher compared to deeper levels. No decrease in metal concentration with time was found in the sediments, indicating that boat owners are not complying with the ban of biocide-containing paints in freshwater introduced over 20 years ago.

  17. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  18. Analysis of Twenty-Two Performance Properties of Diesel, Gasoline, and Jet Fuels Using a Field-Portable Near-Infrared (NIR) Analyzer.

    PubMed

    Brouillette, Carl; Smith, Wayne; Shende, Chetan; Gladding, Zack; Farquharson, Stuart; Morris, Robert E; Cramer, Jeffrey A; Schmitigal, Joel

    2016-05-01

    The change in custody of fuel shipments at depots, pipelines, and ports could benefit from an analyzer that could rapidly verify that properties are within specifications. To meet this need, the design requirements for a fuel analyzer based on near-infrared (NIR) spectroscopy, such as spectral region and resolution, were examined. It was found that the 1000 to 1600 nm region, containing the second CH overtone and combination vibrational modes of hydrocarbons, provided the best near-infrared to fuel property correlations when path length was taken into account, whereas 4 cm(-1) resolution provided only a modest improvement compared to 16 cm(-1) resolution when four or more latent variables were used. Based on these results, a field-portable near-infrared fuel analyzer was built that employed an incandescent light source, sample compartment optics to hold 2 mL glass sample vials with ∼1 cm path length, a transmission grating, and a 256 channel InGaAs detector that measured the above stated wavelength range with 5-6 nm (∼32 cm(-1)) resolution. The analyzer produced high signal-to-noise ratio (SNR) spectra of samples in 5 s. Twenty-two property correlation models were developed for diesel, gasoline, and jet fuels with root mean squared error of correlation - cross-validated values that compared favorably to corresponding ASTM reproducibility values. The standard deviations of predicted properties for repeat measurements at 4, 24, and 38℃ were often better than ASTM documented repeatability values. The analyzer and diesel property models were tested by measuring seven diesel samples at a local ASTM certification laboratory. The standard deviations between the analyzer determined values and the ASTM measured values for these samples were generally better than the model root mean squared error of correlation-cross-validated values for each property. © The Author(s) 2016.

  19. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis.

    PubMed

    Gertsch, Jana C; Noblitt, Scott D; Cropek, Donald M; Henry, Charles S

    2010-05-01

    A microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water. Here, we present an MCE method using contact conductivity detection for perchlorate determination. The method has several advantages, including reduced analysis times relative to IC, inherent portability, high selectivity, and minimal sample pretreatment. Resolution of perchlorate from more abundant ions was achieved using zwitterionic, sulfobetaine surfactants, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (HDAPS) and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (TDAPS). The system performance and the optimization of the separation chemistry, including the use of these surfactants to resolve perchlorate from other anions, are discussed in this work. The system is capable of detection limits of 3.4 +/- 1.8 ppb (n = 6) in standards and 5.6 +/- 1.7 ppb (n = 6) in drinking water.

  20. Microchip-based Immunomagnetic Detection of Circulating Tumor Cell

    PubMed Central

    Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W.; Frenkel, Eugene P.; Zhang, Xiaojing

    2012-01-01

    Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Comparing to the commercially available CellSearch™ system, less (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at optimal blood flow rate of 10 mL/hour) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe3O4 magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-Epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescently labelled anti-cytokeratin, DAPI and

  1. Microchip-based immunomagnetic detection of circulating tumor cells.

    PubMed

    Hoshino, Kazunori; Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W; Frenkel, Eugene P; Zhang, Xiaojing

    2011-10-21

    Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Compared to the commercially available CellSearch™ system, fewer (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at an optimal blood flow rate of 10 mL h(-1)) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe(3)O(4) magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescent labelled anti

  2. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  3. Field-Portable Reflectance Spectrometer.

    DTIC Science & Technology

    1994-12-05

    requirements for the arrays are excessive. The Reticon multiplexer employed dissipates approximately 0.5 watts which requires about 20 watts of power... Reticon ), the need for cooling and the low quantum efficiency (about 10% at 1.0 Rim dropping to 2% at 2.5 gim) make this a poor choice. Because PbS is...arrays to a low enough temperature for low-noise operation may be a problem. The difficulty in cooling stems from the fact that the Reticon multiplexer

  4. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    PubMed Central

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  5. Hydrodynamic injection on electrophoresis microchips using an electronic micropipette.

    PubMed

    Gabriel, Ellen F M; Dos Santos, Rodrigo A; Lobo-Júnior, Eulício O; Rezende, Kariolanda C A; Coltro, Wendell K T

    2017-01-01

    Here we report for the first time the use of an electronic micropipette as hydrodynamic (HD) injector for microchip electrophoresis (ME) devices. The micropipette was directly coupled to a PDMS device, which had been fabricated in a simple cross format with two auxiliary channels for sample volume splitting. Sample flow during the injection procedure was controlled in automatic dispenser mode using a volume of 0.6µL. Channel width and device configuration were optimized and the best results were achieved using a simple cross layout containing two auxiliary channels with 300µm width for sample splitting. The performance of the HD injector was evaluated using a model mixture of high-mobility cationic species. The results obtained were compared to the data obtained via electrokinetic (EK) injection. Overall, the HD provided better analytical performance in terms of resolution and injection-to-injection repeatability. The relative standard deviation (RSD) values for peak intensities were lower than 5% (n=10) when the micropipette was employed. In comparison with EK injection, the use of the proposed HD injector revealed an unbiased profile for a mixture containing K(+) and Li(+)(300 µmol L(-1) each) over various buffer concentrations. For EK injection, the peak areas decreased from 2.92 ± 0.20-0.72 ± 0.14Vs for K(+) and from 1.30 ± 0.10-0.38 ± 0.10Vs for Li(+) when the running buffer increased from 20 to 50mmolL(-1). For HD injection, the peak areas for K(+) and Li(+) exhibited average values of 2.48±0.07 and 2.10±0.06Vs, respectively. The limits of detection (LDs) for K(+), Na(+) and Li(+) ranged from 18 to 23µmolL(-1). HD injection through an electronic micropipette allows to automatically dispense a bias-free amount of sample inside microchannels with acceptable repeatability. The proposed approach also exhibited instrumental simplicity, portability and minimal microfabrication requirements.

  6. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  7. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  8. Software Engineering for Portability.

    ERIC Educational Resources Information Center

    Stanchev, Ivan

    1990-01-01

    Discussion of the portability of educational software focuses on the software design and development process. Topics discussed include levels of portability; the user-computer dialog; software engineering principles; design techniques for student performance records; techniques of courseware programing; and suggestions for further research and…

  9. Recent advances in miniaturization-the role of microchip electrophoresis in clinical analysis.

    PubMed

    Guihen, Elizabeth

    2014-01-01

    This review is a follow-up from the last review published in 2012 that covers the same topic [22]. Its aim is to cover new innovations and developments since then, involving the role of microchip capillary electrophoresis (MCE) in clinical analysis. MCE has shown great promise in separation science, as it's a state-of-the-art analytical separation technique that offers speed, portability, reduced sample, and reagent requirements, repeatability, can be used online or offline, and can be coupled with many kinds of analytical detectors. It is particularly important in clinical analysis, as it offers online continuous monitoring, can handle small volumes of highly complex biological samples due to its powerful discriminating ability, and it facilitates point-of-care testing. Also microchip separation platforms have been used for sample clean-up, filtration, derivatization, separation and detection, acting as multifunctional platforms ideal for minute sample volumes. In recent times the clinical world has witnessed a need for rapid turnaround times on analysis of very complex samples, and so there has been a shift toward point-of-care testing and other miniaturized analytical techniques as a favorable solution. Research developments in this area have been catalyzed by rapid strides in knowledge in the areas of proteomics, metabolomics, and molecular biology in the quest to understand the physiology of cells, proteins, genes, molecular interactions, and the pathophysiology of disease. Herein, we present selected examples detailing the use of MCE in some of the latest and most exciting clinical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  11. CE microchips: an opened gate to food analysis.

    PubMed

    Escarpa, Alberto; González, María Cristina; Crevillén, Agustín González; Blasco, Antonio Javier

    2007-03-01

    CE microchips are the first generation of micrototal analysis systems (-TAS) emerging in the miniaturization scene of food analysis. CE microchips for food analysis are fabricated in both glass and polymer materials, such as PDMS and poly(methyl methacrylate) (PMMA), and use simple layouts of simple and double T crosses. Nowadays, the detection route preferred is electrochemical in both, amperometry and conductivity modes, using end-channel and contactless configurations, respectively. Food applications using CE microchips are now emerging since food samples present complex matrices, the selectivity being a very important challenge because the total integration of analytical steps into microchip format is very difficult. As a consequence, the first contributions that have recently appeared in the relevant literature are based primarily on fast separations of analytes of high food significance. These protocols are combined with different strategies to achieve selectivity using a suitable nonextensive sample preparation and/or strategically choosing detection routes. Polyphenolic compounds, amino acids, preservatives, and organic and inorganic ions have been studied using CE microchips. Thus, new and exciting future expectations arise in the domain of food analysis. However, several drawbacks could easily be found and assumed within the miniaturization map.

  12. Effect of aspect ratio on chemical reactions on microchip.

    PubMed

    Shimizu, Takahiro; Masaki, Hiroyuki; Korenaga, Takashi

    2006-01-01

    Parallel two-phase laminar flow, which is formed when two solutions flow in microchannels, has been developed and has advanced unique research in the area of microchip analysis. In two-phase laminar flow, channel size has a significant effect on the efficiency of chemical reactions. However, the sizes of microchannels vary greatly in many studies. In this paper, we report on the effect of microchannel size on chemical reactions on a microchip. Aspect ratio is defined as the ratio of depth to width of a microchannel. Five microchips with different aspect ratios (from 0.50 to 2.00) were fabricated by mechanical machining. The reaction of nitrous acid and Saltzman reagent was carried out on these microchips and the absorbance was measured on-line in a capillary tube, which was attached to the outlet on the microchip. The results showed that the color reaction occurred more efficiently as the aspect ratio increased. This result is expected to be useful when determining the size of microchannels.

  13. Rapid diagnosis of avian influenza virus in wild birds: use of a portable rRT-PCR and freeze-dried reagents in the field.

    PubMed

    Takekawa, John Y; Hill, Nichola J; Schultz, Annie K; Iverson, Samuel A; Cardona, Carol J; Boyce, Walter M; Dudley, Joseph P

    2011-08-02

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey

  14. Rapid Diagnosis of Avian Influenza Virus in Wild Birds: Use of a Portable rRT-PCR and Freeze-dried Reagents in the Field

    PubMed Central

    Takekawa, John Y.; Hill, Nichola J.; Schultz, Annie K.; Iverson, Samuel A.; Cardona, Carol J.; Boyce, Walter M.; Dudley, Joseph P.

    2011-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey

  15. Rapid diagnosis of avian influenza virus in wild birds: Use of a portable rRT-PCR and freeze-dried reagents in the field

    USGS Publications Warehouse

    Takekawa, J.Y.; Hill, N.J.; Schultz, A.K.; Iverson, S.A.; Cardona, C.J.; Boyce, W.M.; Dudley, J.P.

    2011-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey

  16. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  17. Rapid bonding of Pyrex glass microchips.

    PubMed

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.

  18. Serial dilution microchip for cytotoxicity test

    NASA Astrophysics Data System (ADS)

    Bang, Hyunwoo; Lim, Sun Hee; Lee, Young Kyung; Chung, Seok; Chung, Chanil; Han, Dong-Chul; Chang, Jun Keun

    2004-08-01

    Today's pharmaceutical industry is facing challenges resulting from the vast increases in sample numbers produced by high-throughput screening (HTS). In addition, the bottlenecks created by increased demand for cytotoxicity testing (required to assess compound safety) are becoming a serious problem. We have developed a polymer PDMS (polydimethylsiloxane) based microfluidic device that can perform a cytotoxicity test in a rapid and reproducible manner. The concept that the device includes is well adjustable to automated robots in huge HTS systems, so we can think of it as a potential dilution and delivery module. Cytotoxicity testing is all about the dilution and dispensing of a drug sample. Previously, we made a PDMS based microfluidic device which automatically and precisely diluted drugs with a buffer solution with serially increasing concentrations. This time, the serially diluted drug solution was directly delivered to 96 well plates for cytotoxicity testing. Cytotoxic paclitaxel solution with 2% RPMI 1640 has been used while carrying out cancerous cell based cytotoxicity tests. We believe that this rapid and robust use of the PDMS microchip will overcome the growing problem in cytotoxicity testing for HTS.

  19. Cryogenic Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Hubka, Zbyněk.; Å ulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2016-04-01

    The spectral characteristics of laser active media, and thus those of the laser output, are temperature dependent. Specifically, in almost every crystal host, cooling to low temperatures leads to better heat removal, a higher efficiency and output power, and a reduced lasing threshold. Tm-ion doped lasers have an emission wavelength around 2 μm and are important in medicine for soft tissue cutting and hemostasis, as well as in LIDAR or atmosphere sensing technology. This paper presents the performance-temperature dependency of a 4 at. % doped Tm:YAP microchip. During the experiment the Tm:YAP crystal was placed inside an evacuated liquid nitrogen cryostat on a cooling finger. As its temperature was varied from 80 K to 340 K, changes were observed in the absorption spectrum, ranging from 750 nm to 2000 nm and in the fluorescence spectrum from 1600 nm to 2050 nm. Fluorescence lifetime was seen to rise and fall with decreasing temperature. The laser was pumped by a 792 nm laser diode and at 80 K the maximum output peak power of the laser was 4.6 W with 23 % slope efficiency and 0.6 W threshold, compared to 2.4 W output peak power, 13 % slope efficiency and 3.3 W threshold when at 340 K. The laser emission wavelength changed from 1883 nm to 1993 nm for 80 K and 300 K, respectively.

  20. A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control.

    PubMed

    Li, Shifeng; Fozdar, David Y; Ali, Mehnaaz F; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M; Vykoukal, Jody; Floriano, Pierre N; Olsen, Michael; McDevitt, John T; Gascoyne, Peter R C; Chen, Shaochen

    2006-02-01

    This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for "regional velocity control." Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 degrees C), hybridization (60 degrees C), and extension (72 degrees C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (mu-PIV) to validate the flow-field FEA's and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved.

  1. A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control

    PubMed Central

    Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen

    2009-01-01

    This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760

  2. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  3. Organically modified sols as pseudostationary phases for microchip electrophoresis.

    PubMed

    Pumera, Martin; Wang, Joseph; Grushka, Eli; Lev, Ovadia

    2007-04-30

    We demonstrate that the selectivity of microchip electrophoresis separations is greatly improved by the presence of organically modified silica (Ormosil) sols in the run buffer. A negatively-charged N-(trimethoxysilylpropyl)ethylenediamine triacetic-acid (TETT)-based sol is used for improving the selectivity between nitroaromatic explosives and a methyltrimethoxysilane (MTMOS)-based sol is employed for enhancing the microchip separation of environmental pollutants, aminophenols. These sols are added to the run buffer and act as pseudostationary phases. Their presence in the run buffer changes the apparent mobility of studied solutes, and leads to a higher resolution. The observed mobilities changes reflect the interactions between the Ormosil sols and the solutes. Relevant experimental variables have been characterized and optimized. The diverse chemistry of Ormosil sols should be extremely useful for tailoring the selectivity of a wide range of electrophoresis microchip separations.

  4. A novel capillary electrophoresis microchip with amperometric detection using a Prussian blue-modified indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Ho; Kang, C. J.; Kim, Yong-Sang

    2005-03-01

    A novel approach to construct a disposable capillary electrophoresis microchip is proposed. The electrocatalytic oxidation of dopamine at a Prussian blue (PB)-modified indium tin oxide (ITO) electrode was described and the amperometric detection of dopamine was then investigated. The PB film on ITO electrode was electrodeposited using FeCl3 and K3Fe(CN)6 mixed solution. Our results indicated that PB film was uniform, smooth, and defect-free. The CE-chip has been tested successfully by detecting dopamine and catechol within a very short time of around 80 sec using an electric field of 60 V/cm. The results also showed that dopamine and catechol mixtures were separated efficiently and rapidly. The microsystems gave a very good reproducibility for peak height and separation time. This microchip is cost effective and adequate for a disposable sensor.

  5. Lab-on-a-robot: integrated microchip CE, power supply, electrochemical detector, wireless unit, and mobile platform.

    PubMed

    Berg, Christopher; Valdez, David C; Bergeron, Phillip; Mora, Maria F; Garcia, Carlos D; Ayon, Arturo

    2008-12-01

    In this paper, the fabrication of a wireless mobile unit containing an electrochemical detection module and a 3-channel high-voltage power supply (HVPS) designed for microchip CE is described. The presented device consists of wireless global positioning system controlled robotics, an electrochemical detector utilizing signal conditioning analog circuitry and a digital feedback range controller, a HVPS, an air pump, and a CE microchip. A graphical user interface (LabVIEW) was also designed to communicate wirelessly with the device, from a distant personal computer communication port. The entire device is integrated and controlled by digital hardware implemented on a field programmable gate array development board. This lab-on-a-robot is able to navigate to a global position location, acquire an air sample, perform the analysis (injection, separation, and detection), and send the data (electropherogram) to a remote station without exposing the analyst to the testing environment.

  6. A circular ferrofluid driven microchip for rapid polymerase chain reaction.

    PubMed

    Sun, Y; Kwok, Y C; Nguyen, N T

    2007-08-01

    In the past few years, much attention has been paid to the development of miniaturized polymerase chain reaction (PCR) devices. After a continuous flow (CF) PCR chip was introduced, several CFPCR systems employing various pumping mechanisms were reported. However, the use of pumps increases cost and imposes a high requirement on microchip bonding integrity due to the application of high pressure. Other significant limitations of CFPCR devices include the large footprint of the microchip and the fixed cycle number which is dictated by the channel layout. In this paper, we present a novel circular close-loop ferrofluid driven microchip for rapid PCR. A small ferrofluid plug, containing sub-domain magnetic particles in a liquid carrier, is driven by an external magnet along the circular microchannel, which in turn propels the PCR mixture through three temperature zones. Amplification of a 500 bp lambda DNA fragment has been demonstrated on the polymethyl methacrylate (PMMA) PCR microchip fabricated by CO(2) laser ablation and bonded by a low pressure, high temperature technique. Successful PCR was achieved in less than 4 min. Effects of cycle number and cycle time on PCR products were investigated. Using a magnet as the actuator eliminates the need for expensive pumps and provides advantages of low cost, small power consumption, low requirement on bonding strength and flexible number of PCR cycles. Furthermore, the microchip has a much simpler design and smaller footprint compared to the rectangular serpentine CFPCR devices. To demonstrate its application in forensics, a 16-loci short tandem repeat (STR) sample was successfully amplified using the PCR microchip.

  7. Field-testing of a new portable HPGe detector system using the enrichment meter principle for the inspection of uranium oxide and hexafluoride in containers

    SciTech Connect

    Luke, S.J.; Leich, D.A.; Knapp, D.A.; Rowland, M.; Klem, D.; Kefgen, B.; Meyer, D.; Royce, R.

    1996-12-31

    The purpose of this study was to develop a new portable detector system for the measurement of uranium enrichment of Uranium oxide and Uranium hexafluoride samples in containers. In this paper the authors describe such an apparatus that consisted of high purity germanium detector, a collimator, Canberra InSpector{trademark} and a laptop computer. In addition, the portable enrichment measurement system used Canberra Genie-PC{trademark} software for data acquisition and specialized software written for this application for the data analysis. In this paper they briefly discuss the unique features of this system. They also give the results of measurements made on both Highly Enriched Uranium (HEU) and Low Enriched Uranium (LEU) samples at the Portsmouth Gaseous Diffusion Plant.

  8. Inexpensive portable drug detector

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Heimbuch, A. H.; Parker, J. A.

    1977-01-01

    Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.

  9. Inexpensive portable drug detector

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Heimbuch, A. H.; Parker, J. A.

    1977-01-01

    Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.

  10. Portable Microfiche Readers.

    ERIC Educational Resources Information Center

    Zybura, Edward L.

    1980-01-01

    Provides an introduction to use of three types of portable microfiche readers: hand-held readers, briefcase readers, and self-contained mobile readers. Features described include image quality, method of operation, product history, and optimal environments for utilization. (SW)

  11. MicroChip Imager Module for Recognition of Microorganisms

    SciTech Connect

    Alferov, Oleg

    2001-01-01

    The MicroChip Reader for Cereus Group takes the table of intensities of hybridization signals produced by the MicroChip Imager software and evokes a series of steps designed to recognize the pattern of intensities specific to a particular Cereus subgroup. Seven subgroups of the Cereus group can be identified by particular features of their RNA sequence. The Reader also provides statistics documenting how well its conclusion is confirmed by the hybridization signals. At the user’s request, the Reader can list every recognition step utilized so that the user can verify the recognition process manually if desired.

  12. Protein self-interaction chromatography on a microchip.

    PubMed

    Deshpande, Kedar; Ahamed, Tangir; van der Wielen, Luuk A M; Horst, Joop H Ter; Jansens, Peter J; Ottens, Marcel

    2009-02-21

    This paper presents the development of a novel miniaturized experimental procedure for the measurement of protein-protein interactions through Self-Interaction Chromatography (SIC) on a microchip, without the use of chromatographic resins. SIC was recently demonstrated to be a relatively easy method to obtain quantitative thermodynamic information about protein-protein interactions, like the osmotic second virial coefficient B(22), which relates to protein phase behavior including protein crystallization. This successful miniaturization to microchip level of a measurement device for protein self-interaction data is a first key step to a complete microfluidic screening platform for the rational design of protein crystallizations, using substantially less expensive protein and experimentation time.

  13. Measurement of electroosmotic flow in capillary and microchip electrophoresis.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2007-11-02

    Microfluidics is the science and technology of systems that process or manipulate small amounts of fluids, using channels with dimensions of tens of micrometers. Electroosmotic flow (EOF) is an important characteristic of fluids in microchannels. In this paper, EOF generation, effects on separation and definition of EOF are introduced. And EOF measurement methods on capillary electrophoresis (CE) and microchip CE are systematically reviewed based on detection principle, hallmarks of EOF measurement methods are presented, the devices and signals are also schematically described. This paper offers researchers a guidance to obtain an estimate of EOF mobility in capillary and microchip electrophoresis.

  14. Analysis of proteins and peptides by electromigration methods in microchips.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2017-01-01

    This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.

  15. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  16. Portable treatment systems study

    SciTech Connect

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  17. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    PubMed

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  18. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  19. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014).

    PubMed

    Breadmore, Michael C; Tubaon, Ria Marni; Shallan, Aliaa I; Phung, Sui Ching; Abdul Keyon, Aemi S; Gstoettenmayr, Daniel; Prapatpong, Pornpan; Alhusban, Ala A; Ranjbar, Leila; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2015-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods, covering the period July 2012-July 2014. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to ITP, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  20. Implantable microchip: the futuristic controlled drug delivery system.

    PubMed

    Sutradhar, Kumar Bishwajit; Sumi, Chandra Datta

    2016-01-01

    There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized.

  1. A microchip laser with intracavity second-harmonic generation

    SciTech Connect

    Derzhavin, S I; Mashkovskii, D A; Timoshkin, V N

    2008-12-31

    A short-pulse 'green' 532-nm Nd{sup 3+}:YVO{sub 4} and KTiOPO{sub 4} microchip laser with intracavity second-harmonic generation, which is pumped by a 809-nm semiconductor laser diode, is developed. (lasers. amplifiers)

  2. Integrated Micro-Chip Amino Acid Chirality Detector for MOD

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Botta, O.; Kminek, G.; Grunthaner, F.; Mathies, R.

    2001-01-01

    Integration of a micro-chip capillary electrophoresis analyzer with a sublimation-based extraction technique, as used in the Mars Organic Detector (MOD), for the in-situ detection of amino acids and their enantiomers on solar system bodies. Additional information is contained in the original extended abstract.

  3. Fabrication of PMMA CE microchips by infrared-assisted polymerization.

    PubMed

    Chen, Yun; Duan, Haotian; Zhang, Luyan; Chen, Gang

    2008-12-01

    In this report, a method based on the infrared-assisted polymerization of methyl methacrylate has been developed for the rapid fabrication of PMMA CE microchips. Methyl methacrylate containing AIBN was allowed to prepolymerize in a water bath to form a fast-curing molding solution that was subsequently sandwiched between a silicon template and a piece of 1 mm-thick PMMA plate. The images of microchannels on the silicon template were precisely replicated into the synthesized PMMA substrates during the infrared-assisted polymerization of the molding solution. The polymerization could be completed within 50 min at 50 degrees C. The obtained channel plate was subsequently bonded to a piece of PMMA cover sheet to form a microchip with the aid of heat and pressure. The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating PMMA microchips. The attractive performance of the obtained PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  4. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection.

    PubMed

    Avila, Mónica; González, María Cristina; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2007-11-01

    Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.

  5. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection.

    PubMed

    Xu, Zhongqi; Okabe, Noboru; Arai, Akihiro; Hirokawa, Takeshi

    2010-10-01

    This paper reports the protein analysis by using microchip IEF carried on an automated chip system. We herein focused on two important topics of microchip IEF, the pH gradient and cathodic drift. The computer simulation clarified that the EOF could delay the establishment of pH gradient and move the carrier ampholytes (CAs) to cathode, which probably caused a cathodic drift to happen. After focusing, the peak positions of components in a calibration kit with broad pI were plotted against their pI values to know the actual pH gradient in a microchannel varying time. It was found that the formed pH gradient was stable, not decayed after readily steady state, and migrated to cathode at a rate of 10.0 μm/s that determined by the experimental conditions such as chip material, internal surface coating and field strength. The theoretical pH gradient was parallel with the actual pH gradient, which was demonstrated in two types of microchip with different channel lengths. No compression of pH gradient was observed when 2% w/v hydroxypropyl methyl cellulose was added in sample and electrolytes. The effect of CAs concentration on current and cathodic drift was also explored. With the current automatic chip system, the calculated peak capacity was 23-48, and the minimal pI difference was 0.20-0.42 for the used single channel microchip with the effective length of 40.5 mm. The LOD for the analysis of CA-I and CA-II was around 0.32 μg/mL by using normal imaged UV detection, the detected amount is ca. 0.07 ng.

  6. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.

    PubMed

    Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2008-02-15

    This paper describes a novel on-line sample preconcentration and separation technique named transient trapping (tr-trapping), which improves the efficiencies of separation and concentration by using a partially injected short micellar plug in microchip electrophoresis. Although a longer separation length often provides a better resolution of complexed or closely migrating analytes, our proposed theoretical model indicated that a trap-and-release mechanism enables a short micellar zone, which was partially injected into the separation channel, to work as an effective concentration and separation field. Application of the tr-trapping technique to microchip micellar electrokinetic chromatography (MCMEKC) was performed on a newly fabricated 5-way-cross microchip by using sodium dodecyl sulfate and rhodamine dyes as test micelle and analytes, respectively. When the injection times of micelle (t(inj),M) and sample solution (t(inj),S) were 1.0 and 2.0 s, respectively, both the preconcentration and separation of the dyes were completely finished within only 3.0 s. At t(inj),S of 8.0 s, a 393-fold improvement of the detectability was achieved in comparison with conventional MCMEKC. The resolution obtained with tr-trapping-MCMEKC was also better than that with conventional MCMEKC in spite of the 160-fold shorter length of the injected micellar zone at t(inj),M of 1.0 s. These results clearly demonstrated that the tr-trapping technique in MCMEKC provides a rapid, high-resolution and detectability analysis even in the short separation channel on the microchips.

  7. Elimination of suction effect in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry using porous monolithic plugs.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Yin, Xuefeng; Shen, Hong; Xu, Zigang

    2012-07-07

    A suction-free interfacing method was developed for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS). The hyphenated system was composed of a microchip, a demountable capillary microflow nebulizer (d-CMN) combined with a heated single pass spray chamber, a negative pressure sampling device, a high voltage power supply, a syringe pump and an ICP-MS. To eliminate the nebulizer suction generated by the pneumatic nebulizer and to ensure that the makeup solution flowed into the nebulizer, two porous polymer plugs were fabricated in the microchip. As a result, reasonably true electropherograms were obtained when compared to the CE separation performed in the traditional MCE-ICP-MS mode without porous polymer plugs. Electrophoretic separation of I(-) and IO(3)(-) was achieved within 25 s in a microchip with an effective separation length of only 15 mm at an electric field of 857 V cm(-1) using 10 mmol L(-1) borate (pH 9.2) as the running buffer. A resolution of 1.3 was obtained and the absolute detection limits for I(-) and IO(3)(-) were 0.12 and 0.13 fg, respectively. The precisions (RSD, n = 10) of the migration time and peak height for I(-) and IO(3)(-) were in the range of 1.1-1.6% and 2.5-2.8%, respectively. Two table salt samples were analyzed by an external calibration method. The iodate contents were in accordance with their labeled values. The recoveries of I(-) and IO(3)(-) in the table salt samples were in the range of 92-105%.

  8. Comparing polyelectrolyte multilayer - coated poly(methylmethacrylate) microfluidic devices and glass microchips for electrophoretic separations

    PubMed Central

    Currie, Christa A.; Shim, Joon Sub; Ahn, Chong; Limbach, Patrick A.; Halsall, H. Brian

    2010-01-01

    There is a continuing drive in microfluidics to transfer microchip systems from the more expensive glass microchips to cheaper polymer microchips. Here, we investigate using polyelectrolyte multilayers (PEM) as a coating system for poly (methylmethacrylate) (PMMA) microchips to improve their functionality. The multilayer system was prepared by layer-on-layer depositon of poly (diallydimethylammonium) chloride (PDAD) and polystyrene sulfonate (PSS). Practical aspects of coating PMMA microchips were explored. The multilayer buildup process was monitored using EOF measurements, and the stability of the PEM was investigated. The performance of the PEM-PMMA microchip was compared to those of a standard glass microchip and a PEM-glass microchip in terms of electroosmotic flow and separating two fluorescent dyes. Several key findings in the development of the multilayer coating procedure for PMMA chips are also presented. It was found that, with careful preparation, a PEM-PMMA microchip can be prepared that has properties comparable - and in some cases superior - to those of a standard glass microchip. PMID:20013912

  9. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters.

    PubMed

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-05-13

    A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals-87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of microchip data to facilitate the reclaiming of stray dogs and cats.

  10. Comparing polyelectrolyte multilayer-coated PMMA microfluidic devices and glass microchips for electrophoretic separations.

    PubMed

    Currie, Christa A; Shim, Joon Sub; Lee, Se Hwan; Ahn, Chong; Limbach, Patrick A; Halsall, H Brian; Heineman, William R

    2009-12-01

    There is a continuing drive in microfluidics to transfer microchip systems from the more expensive glass microchips to cheaper polymer microchips. Here, we investigate using polyelectrolyte multilayers (PEM) as a coating system for PMMA microchips to improve their functionality. The multilayer system was prepared by layer-to-layer deposition of poly(diallyldimethylammonium) chloride and polystyrene sulfonate. Practical aspects of coating PMMA microchips were explored. The multilayer buildup process was monitored using EOF measurements, and the stability of the PEM was investigated. The performance of the PEM-PMMA microchip was compared with those of a standard glass microchip and a PEM-glass microchip in terms of EOF and separating two fluorescent dyes. Several key findings in the development of the multilayer coating procedure for PMMA chips are also presented. It was found that, with careful preparation, a PEM-PMMA microchip can be prepared that has properties comparable--and in some cases superior--to those of a standard glass microchip.

  11. Experimental Evaluation of Selected Field Portable Instrumenation for the Qualitative Determination of Contaminant Levels in Soil and Water at Rocky Mountain Arsenal

    DTIC Science & Technology

    1989-10-01

    3430 0 2 4 6 a 10 12 14 T~ keE , Ie mIf~rte Figure 2 Detector Trace from Scentograph Portable GC. (TRCLE: trichloroethylene; TCLEE... Laus Syinpboy Maum Con=-a&d for Operating the CSI X-Met 840 57 OPERATING INSUCTONS FOR X-MET 840 AS OPERATED WITH TOSHIBA T1000 LAPTOP COMPUTER The...couventiosual senry. The reumaking 640 Kb of the cards memory wa used as a RAM dak . Tk RAM disk as designated drive D., and i 1orintcJ as if it wer a

  12. Portable Applications in Mobile Education. Technical Evaluation Report 57

    ERIC Educational Resources Information Center

    Baggaley, Jon

    2006-01-01

    Portable software applications can be carried on a convenient storage medium such as a USB drive, and offer numerous benefits to mobile teachers and learner. The article illustrates the growing field of "portable apps" in reviews of seven contrasting products. These represent the major categories of document editing, email maintenance,…

  13. Implantable micro-chip for controlled delivery of diclofenac sodium.

    PubMed

    Lee, Seung Ho; Park, Min; Park, Chun Gwon; Kim, Byung-Hwi; Lee, Jieun; Choi, SungYoon; Nam, So-rae; Park, Sung-Hye; Choy, Young Bin

    2014-12-28

    We prepared an implantable micro-chip enabled for controlled delivery of diclofenac sodium (DS). The micro-chip was made of poly(methyl methacrylate), where a pair of micro-channels and micro-wells was embedded to serve as a drug diffusion barrier and a reservoir, respectively. For this purpose, the micro-channel and micro-well were filled with a water-soluble polymer, polyethylene glycol and a fine powder of DS, respectively. To modulate the drug release profile, we varied both the cross-sectional area and length of the micro-channels. Thus, the average rate and onset time of drug release could be varied from 0.32%/day to 3.68%/day and from day 0.5 to day 8, respectively, as the cross-sectional area to length ratio (i.e., A/L) of the micro-channels increased from 0.0026 mm to 0.0280 mm. To achieve both almost immediate onset and zero-order release of DS, we also prepared a micro-chip embedded with multiple pairs of the micro-wells and the micro-channels of different dimensions. In this work, a single micro-chip equipped with the micro-channels with A/Ls of 0.0280 mm, 0.0217 mm and 0.0108 mm exhibited almost zero-order drug release for 31 days (R2>0.996) after the release onset on day 0.5. When the resulting micro-chip was implanted in living rats, the drug concentration in the blood could be maintained at 148 ng/ml-225 ng/ml for the first 23 days while showing good biocompatibility.

  14. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection.

    PubMed

    Piccin, Evandro; Dossi, Nicolò; Cagan, Avi; Carrilho, Emanuel; Wang, Joseph

    2009-03-01

    This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.

  15. Characterisation of protein composition and detection of IgA in cervicovaginal fluid by microchip technology.

    PubMed

    Werling, József; Kocsis, Béla; Dean, Diane; Kustos, Ildikó

    2008-06-15

    In this paper the application of microchip electrophoresis to examine the protein profile of cervicovaginal fluid and the detection of IgA heavy and light chains is presented. This method is a fast growing field of technology and ensures high-speed analysis requiring only microliters of sample. Proteins with wide range of molecular masses could be separated within 1 min. Cervicovaginal specimens of healthy women showed a complex protein pattern-containing several peaks in the 15-70 kDa region. sIgA is considered to be an important protein constituent of all mucosal surfaces. Detection of sIgA in cervicovaginal samples was achievable by microchip technology. Under reduced circumstances (induced by mercaptoethanol, a component of the denaturating solution) the disulfide bonds connecting IgA heavy and light chains are broken up and chains can be detected as separate peaks during electrophoresis. In 82.5% of the cases only the light chain of IgA could be detected in the clinical samples. The intact IgA heavy chain could be demonstrated in only 12.5% of the cases. Based on our data some conclusions were provided about the correlation of these patterns with the age of patients, pH of the cervicovaginal fluid, operations performed before sample collection and usage of oral contraceptives.

  16. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.

    PubMed

    Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa

    2012-11-07

    The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.

  17. Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector.

    PubMed

    Siangproh, Weena; Chailapakul, Orawon; Laocharoensuk, Rawiwan; Wang, Joseph

    2005-10-31

    This article reports on the use of cobalt(II) phthalocyanine (CoPc)-modified carbon paste amperometric detector for monitoring hydrazine compounds following their microchip separation. The marked catalytic electrochemical properties of CoPc-modified electrode display enhanced sensitivity compared with unmodified carbon pastes at a relatively low detection potential (+0.5V versus Ag/AgCl). Factors influencing the on-chip separation and detection processes have been optimized. Three hydrazines (hydrazine, 1,1 dimethylhydrazine, and phenylhydrazine) have been separated within 130s at a separation voltage of 1kV using a 10mM phosphate run buffer (pH 6.5). The detection limits obtained from using the CoPc-modified carbon paste electrodes for hydrazine and phenylhydrazine are 0.5 and 0.7muM, respectively, with linearity over the 20-200muM range examined. Such miniaturization and speed advantages of microchip CE are coupled to the highly sensitivity and convenient preparation of CoPc-modified carbon paste electrode. The resulting microsystem should be attractive for field monitoring of toxic hydrazine compounds in environmental applications.

  18. Deflectometry using portable devices

    NASA Astrophysics Data System (ADS)

    Butel, Guillaume P.; Smith, Greg A.; Burge, James H.

    2015-02-01

    Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.

  19. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  20. Portable reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Graham, R. A.; Ozawa, T. (Inventor)

    1977-01-01

    A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 to 2.5 micrometers without requiring coventional substitution of filter elements. The electronic recording unit includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to be manually portable.

  1. [Portable peristaltic perfusion pumps].

    PubMed

    Magallón Pedrera, I; Soto Torres, I

    1999-11-01

    Portable peristaltic perfusion pumps allow one to administer pharmaceuticals in hospitals as well as in primary health care centers and furthermore these pumps present multiple advantages for patients and their families since they make it possible to carry out treatment in a patient's home while at the same time lowering the costs involved. The authors analyze the most out standing aspects of portable peristaltic perfusion pumps along with their characteristics, installation, programming, and how to turn them on; in addition, the authors list the maintenance care which these pumps require.

  2. Portable Data Logger for Photovoltaic Panels

    NASA Technical Reports Server (NTRS)

    Cole, S. W.

    1983-01-01

    Instrument measures rapidly changing knee of V-I curve with extra care. Portable data logger runs on own batteries. Includes microcomputer, which controls voltage-, current-measurement increment, and solid state memory, which stores data until transferred to EPROM module. Data logger is light, compact and easily caried to remote field locations.

  3. Very Portable Remote Automatic Weather Stations

    Treesearch

    John R. Warren

    1987-01-01

    Remote Automatic Weather Stations (RAWS) were introduced to Forest Service and Bureau of Land Management field units in 1978 following development, test, and evaluation activities conducted jointly by the two agencies. The original configuration was designed for semi-permanent installation. Subsequently, a need for a more portable RAWS was expressed, and one was...

  4. Portable Data Logger for Photovoltaic Panels

    NASA Technical Reports Server (NTRS)

    Cole, S. W.

    1983-01-01

    Instrument measures rapidly changing knee of V-I curve with extra care. Portable data logger runs on own batteries. Includes microcomputer, which controls voltage-, current-measurement increment, and solid state memory, which stores data until transferred to EPROM module. Data logger is light, compact and easily caried to remote field locations.

  5. Fixed Facts about Portable Classrooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1998-01-01

    Discusses the easing of overcrowded schools through the use of portable classrooms and provides an example from Elk Grove Unified School District (California) which has opened entire elementary schools using only portables. Fifteen tips for installing relocatables are highlighted. (GR)

  6. Fixed Facts about Portable Classrooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1998-01-01

    Discusses the easing of overcrowded schools through the use of portable classrooms and provides an example from Elk Grove Unified School District (California) which has opened entire elementary schools using only portables. Fifteen tips for installing relocatables are highlighted. (GR)

  7. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  8. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  9. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  10. Portable Suction Lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-07-13

    A portable lysimeter including a collection vessel having an inflatable bladder and a semi-permeable member assembly at least partially movable in response to inflation of the bladder, a sample conduit in fluid communication with the semi-permeable member and a reservoir in fluid communication with the sample conduit.

  11. Portable COHB Analyzer.

    DTIC Science & Technology

    A portable spectrophotometric apparatus and method therefore for measuring the percentage of carboxyhemoglobin ( COHb ) in blood. The apparatus...comprises a spectrophotometer and wavelength selection filters for testing a reference sample having a hemolizing agent and sodium hyposulfite and a treated...blood sample with the hemolizing agent and sodium hyposulfite and providing a two component COHb -Hb system for determining relative absorbance values

  12. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  13. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  14. Portable Breathing Assembly

    NASA Image and Video Library

    2017-06-12

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technicians fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.

  15. Portable Chamfering Tool

    NASA Technical Reports Server (NTRS)

    Berson, Leo A.

    1987-01-01

    Portable machine tool precisely cuts chamfer on valve seat. With tool, delicate machining operation done without removing part to machine shop. Taken to part and used wherever pressurized air and electric power available. Plug and bushing nest in bore chamfered. They guide steady cutter rod as it cuts 15 degrees chamfer on top edge of bore.

  16. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  17. PORTABLE SOURCE OF RADIOACTIVITY

    DOEpatents

    Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

    1959-06-16

    A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

  18. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  19. Portable Breathing Assembly

    NASA Image and Video Library

    2017-06-12

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technician Rod Ostgrard helps fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.

  20. Portable Breathing Assembly

    NASA Image and Video Library

    2017-06-12

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technician John Thompson helps fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.

  1. Portable Chamfering Tool

    NASA Technical Reports Server (NTRS)

    Berson, Leo A.

    1987-01-01

    Portable machine tool precisely cuts chamfer on valve seat. With tool, delicate machining operation done without removing part to machine shop. Taken to part and used wherever pressurized air and electric power available. Plug and bushing nest in bore chamfered. They guide steady cutter rod as it cuts 15 degrees chamfer on top edge of bore.

  2. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  3. 300 WATT PORTABLE THERMOELECTRIC GENERATOR.

    DTIC Science & Technology

    THERMOELECTRICITY, POWER SUPPLIES), (* GENERATORS , THERMOELECTRICITY), (*ELECTRIC POWER PRODUCTION, THERMOELECTRICITY), PORTABLE EQUIPMENT, THERMOCOUPLES, ENERGY CONVERSION, HEAT EXCHANGERS, WIRING DIAGRAMS

  4. A portable neutron coincidence counter

    SciTech Connect

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  5. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    PubMed

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott

    2017-06-14

    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  6. Design and Fabrication of a PDMS Microchip Based Immunoassay

    SciTech Connect

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  7. Microchip-based electrochemical detection for monitoring cellular systems

    PubMed Central

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2013-01-01

    The use of microchip devices to study cellular systems is a rapidly growing research area. There are numerous advantages of using on-chip integrated electrodes to monitor various cellular processes. The purpose of this review article is to give examples of advancements in microchip-based cellular analysis, specifically where electrochemistry is used for the detection scheme. These examples include on-chip detection of single cell quantal exocytosis, electrochemical analysis of intracellular contents, the ability to integrate cell culture/immobilization with electrochemistry, and the use of integrated electrodes to ensure cell confluency in longer term cell culture experiments. A perspective on future trends in this area is also given. PMID:23340999

  8. Microchip-based detection of magnetically labeled cancer biomarkers.

    PubMed

    Muluneh, Melaku; Issadore, David

    2014-02-01

    Micro-magnetic sensing and actuation have emerged as powerful tools for the diagnosis and monitoring of cancer. These technologies can be miniaturized and integrated onto compact, microfluidic platforms, enabling molecular diagnostics to be performed in practical clinical settings. Molecular targets tagged with magnetic nanoparticles can be detected with high sensitivity directly in unprocessed clinical samples (e.g. blood, sputum) due to the inherently negligible magnetic susceptibility of biological material. As a result, magnetic microchip-based diagnostics have been applied with great success to the isolation and detection of rare cells and the measurement of sparse soluble proteins. In this paper, we review recent advances in microchip-based detection of magnetically labeled biomarkers and their translation to clinical applications in cancer.

  9. High-efficiency microchip laser with self-injection seeding.

    PubMed

    Wang, Sha; Wang, Yan-biao; Yang, Xian-heng; Feng, Guo-ying; Zhou, Shou-huan

    2015-12-10

    In this paper, we use a small bandwidth 808 nm cw Ti:sapphire laser as a pump source to pump a picosecond microchip laser. Different focal length pump focus lenses have been tested to improve laser efficiency. A maximum slope efficiency of around 20% is obtained by a 30 mm focal length lens. The pump threshold is only 13 mW. In order to reduce the timing jitter, we explored the self-injection seeding method by adding a seeding cavity to the microchip laser. A reduction factor in the timing jitter of up to a factor of 23 relative to the unseeded laser is obtained. From the experiments, we also found that higher seeding pulse energy will help to reduce the jitter more.

  10. Diode edge-pumped passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Kong, Weipeng; Tsunekane, Masaki; Taira, Takunori

    2015-09-01

    There is an increasing demand for high-intensity subnanosecond lasers for emerging industrial applications. While femtosecond and picosecond laser sources are considered promising, they suffer from the significant drawbacks of increased complexity and cost. In this regard, we demonstrate a unique edge-pumped passively Q-switched Nd∶YAG/Cr4+∶YAG microchip laser. The microchip is made of a Nd∶YAG/Sm∶YAG composite ceramic, and a Sm∶YAG cladding is utilized as both the pump beam waveguide and amplified spontaneous emission absorber. With the use of a flat-concave laser cavity, we obtain single-pulse energy of 1.66 mJ for an absorbed pump energy of 24 mJ. Further, the resulting pulse width is 683 ps, and the repetition rate is 10 Hz.

  11. Microchip-based detection of magnetically labeled cancer biomarkers☆

    PubMed Central

    Muluneh, Melaku; Issadore, David

    2015-01-01

    Micro-magnetic sensing and actuation have emerged as powerful tools for the diagnosis and monitoring of cancer. These technologies can be miniaturized and integrated onto compact, microfluidic platforms, enabling molecular diagnostics to be performed in practical clinical settings. Molecular targets tagged with magnetic nanoparticles can be detected with high sensitivity directly in unprocessed clinical samples (e.g. blood, sputum) due to the inherently negligible magnetic susceptibility of biological material. As a result, magnetic microchip-based diagnostics have been applied with great success to the isolation and detection of rare cells and the measurement of sparse soluble proteins. In this paper, we review recent advances in microchip-based detection of magnetically labeled biomarkers and their translation to clinical applications in cancer. PMID:24099664

  12. On-column electrochemical detection for microchip capillary electrophoresis.

    PubMed

    Osbourn, Damon M; Lunte, Craig E

    2003-06-01

    The development of a cellulose acetate decoupler for on-column electrochemical detection in microchip capillary electrophoresis is presented. The capillary based laser-etched decoupler is translated to the planar format to isolate the detector circuit from the separation circuit. The decoupler is constructed by aligning a series of 20 30-microm holes through the coverplate of the microchip with the separation channel and casting a thin film of cellulose acetate within the holes. The decoupler shows excellent isolation of the detection circuit for separation currents up to 60 microA, with noise levels at or below 1 pA at a carbon fiber electrode. Detection limits of 25 nM were achieved for dopamine. This decoupler design combines excellent mechanical stability, effective shunting of high separation currents, and ease of manufacture.

  13. 1.6 μm microchip laser

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Ryba-Romanowski, W.; Lukasiewicz, T.

    2009-03-01

    Properties of new pulsed-diode-pumped Er:YVO4 and Er:YVO4+CaO microchip lasers working in an ``eye-safe'' spectral region were investigated. As a pumping source, a fiber coupled (core diameter-200 μm) laser diode emitting radiation at wavelength 976 nm was used. The laser diode was operating in pulsed regime with 3 ms pulse width, and 20 Hz repetition rate. The result obtained was 175 mW and 152 mW output peak power for the Er:YVO4 and Er:YVO4+CaO lasers, respectively. The maximal efficiency with respect to the absorbed power was ~ 5%. The laser emission for Er:YVO4 microchip was observed in detail in the range 1593 nm to 1604 nm with respect to pumping. However, for Er:YVO4+CaO crystal only 1604 nm was generated.

  14. Maskless Electron-Beam Lithography for Trusted Microchip Production

    DTIC Science & Technology

    2016-03-31

    lithography has soared and continues to rise unabated. Multibeam has developed maskless electron-beam lithography ( EBL ) for producing advanced Rad-Hard...and other DoD microchips at lower cost. In addition to significant cost savings in mask and lithography equipment, Multibeam’s maskless EBL technology...maskless electron-beam lithography ( EBL ); e-beam direct write (EBDW); complementary e-beam lithography (CEBL); multiple patterning; cycle time

  15. Solid-state detector and optical system for microchip analyzers

    DOEpatents

    Mathies, Richard A.; Kamei, Toshihiro; Scherer, James R.; Street, Robert A.

    2005-03-15

    A miniaturized optical excitation and detector system is described for detecting fluorescently labeled analytes in electrophoretic microchips and microarrays. The system uses miniature integrated components, light collection, optical fluorescence filtering, and an amorphous a-Si:H detector for detection. The collection of light is accomplished with proximity gathering and/or a micro-lens system. Optical filtering is accomplished by integrated optical filters. Detection is accomplished utilizing a-Si:H detectors.

  16. Large linewidth-enhancement factor in a microchip laser

    SciTech Connect

    Szwaj, Christophe; Lacot, Eric; Hugon, Olivier

    2004-09-01

    We evidence experimentally that the linewidth-enhancement factor {alpha} can take a rather large value ({alpha}{approx_equal}1) for a nonsemiconductor laser, here a Nd{sup 3+}: YAG microchip laser. This measure is performed using an original and simple method adapted to this kind of laser and based on the variations of the laser relaxation frequency when the laser is subjected to an optical feedback.

  17. Continuous two-wave lasing in microchip Nd : YAG lasers

    SciTech Connect

    Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S; Khandokhin, Pavel A

    2011-08-31

    Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

  18. Microchip-based human serum atherogenic lipoprotein profile analysis.

    PubMed

    Wang, Hua; Zhang, Wei; Wan, Jun; Liu, Weiwei; Yu, Bo; Jin, Qinghui; Guan, Ming

    2014-12-15

    Owing to the mounting evidence of serum lipid changes in atherosclerosis, there has been increasing interest in developing new methods for analyzing atherogenic lipoprotein profiles. The separation of lipoprotein and lipoprotein subclasses has been demonstrated using a microchip capillary electrophoresis (CE) system [Chromatographia 74 (2011) 799-805]. In contrast to this previous study, the current report demonstrates that sdLDL peak efficiencies can be improved dramatically by adding gold nanoparticles (AuNPs) to the sample. Moreover, NBD C6-ceramide was identified as a satisfactory dye for specific labeling and quantitation of individual serum lipoproteins. The accuracy of the method was evaluated by comparison with ultracentrifuge separated small, dense, low-density lipoprotein (sdLDL). A high correlation was observed between these two methods for sdLDL cholesterol. Lipid levels were investigated between atherosclerotic patients and healthy controls. The variation of serum atherogenic lipoprotein profiles for atherosclerotic patients pre- and post-treatment was assessed by microchip CE. This method has potential for the rapid and sensitive detection of different lipoprotein classes as well as their subclasses and, therefore, is suitable for routine clinical applications. Microchip-based atherogenic lipoprotein profile assays will greatly improve the analysis of risk factors in atherosclerosis and will provide useful information for monitoring the effect of therapies on atherosclerotic disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Precolumn reactions with electrophoretic analysis integrated on a microchip

    SciTech Connect

    Jacobson, S.C.; Hergenroeder, R.; Moore, A.W. Jr.; Ramsey, J.M. )

    1994-12-01

    A glass microchip was constructed to perform chemical reactions and capillary electrophoresis sequentially. The channel manifold on the glass substrate was fabricated using standard photolithographic, etching, and deposition techniques. The microchip has a reaction chamber with a 1 nL reaction volume and a separation column with a 15.4 mm separation length. Electrical control of the buffer, analyte, and reagent streams made possible the precise manipulation of the fluids within the channel manifold. The microchip was operated under a continuous reaction mode with gated injections to introduce the reaction product onto the separation column with high reproducibility (<1.8% rsd in peak area). The reaction and separation performances were evaluated by reacting amino acids with o-phthaldialdehyde to generate a fluorescent product which was detected by laser-induced fluorescence. Control of the reaction and separation conditions was sufficient to measure reaction kinetics and variation of detection limits with reaction time. Half-times of reaction of 5.1 and 6.2 s and detection limits of 0.55 and 0.83 fmol were measured for arginine and glycine, respectively. 18 refs., 10 figs.

  20. Microchip system for monitoring microbial physiological behaviour under drug influences.

    PubMed

    Arora, S; Lim, C S; Foo, J Y; Sakharkar, M K; Dixit, P; Liu, A Q; Miao, J M

    2009-08-01

    Single-step real-time high-throughput monitoring of drug influences on bacterial cell behaviour has become important with growing interests in personalized therapy and medication. Conventional microchip assemblies to perform similar work do exist. However, most of these devices have complex set-ups incorporating micromixers, separators, pumps, or valves. These microcomponents can sometimes damage the entities being monitored because of the creation of unfavourable biological environments. This paper presents a microchip-based system that enables single-step mixing of two solutions in various ratios, without the need for additional microcomponents such as mixers and pumps, in order to screen effectively their combinatory effects on cell outcomes. In this work, in-vitro experiments were carried out using ampicillin at various concentrations to investigate their effects on Escherichia coli (E. coli). Results showed that the microchip provided effective screening, which yielded useful results such as effective dosages, ineffective dosages, and other possible outcomes; for instance, in this case, the occurrence of adaptive mutation of the bacteria at certain drug concentrations. Comparative microbiological laboratory tests were carried out as standard for confirmation of the results.

  1. Nucleic Acid Isolation and Enrichment on a Microchip.

    PubMed

    Kim, Jinho; Hilton, John P; Yang, Kyung A; Pei, Renjun; Stojanovic, Milan; Lin, Qiao

    2013-06-01

    This paper presents a microchip that isolates and enriches target-binding single-stranded DNA (ssDNA) from a randomized DNA mixture using a combination of solid-phase extraction and electrophoresis. Strands of ssDNA in a randomized mixture are captured via specific binding onto target-functionalized microbeads in a microchamber. The strands are further separated from impurities and enriched on-chip via electrophoresis. The microchip consists of two microchambers that are connected by a channel filled with agarose gel. In the isolation chamber, beads functionalized with human immunoglobulin E (IgE) are retained by a weir structure. An integrated heater elevates the temperature in the chamber to elute desired ssDNA from the beads, and electrophoretic transport of the DNA through the gel to the second chamber is accomplished by applying an electric potential difference between the two chambers. Experimental results show that ssDNA expressing binding affinity to IgE was captured and enriched from a sample of ssDNA with random sequences, demonstrating the potential of the microchip to enhance the sensitivity of ssDNA detection methods in dilute and complex biological samples.

  2. [Development of microchips for the analysis of biomarkers in blood].

    PubMed

    Kataoka, Masatoshi; Abe, Kaori; Hashimoto, Yoshiko; Yamamura, Shohei; Yatsushiro, Shouki

    2012-11-01

    Several types of microchips have been developed for application in clinical diagnosis. A microchip made of cyclic olefin copolymer with straight microchannels (300 microm width and 100 microm depth) was employed for sandwich ELISA for the determination of serum type I C-peptide (PICP), a biomarker of osteoporosis. This assay enabled us to determine PICP with accuracy and high sensitivity, reducing the time for the immunoassay to 1/6, and the consumption of samples and reagents to 1/50 compared with the conventional method. Furthermore, cell microarray chips with 20,944 microchambers (105 microm width and 50 microm depth), made of polystyrene, were employed for malaria diagnosis and the detection of carcinoma cells among the leukocytes. Around 100 erythrocytes or leukocytes were accommodated in each microchamber with the formation of a monolayer. For malaria diagnosis, it offered 10-100 times higher sensitivity in the detection of malaria infected erythrocytes than conventional light microscopy, and easy operation within 15 min. By double staining for epithelial cells on the cell microarray chip, one carcinoma cell could be detected among 1,800,000 leukocytes. These results indicate the potential of microchips for clinic diagnosis.

  3. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Portable neon purification system

    SciTech Connect

    Richardson, R.A.; Schmitt, R.L.

    1995-08-01

    This paper describes the principle design features of a portable neon purification system and the results of the system performance testing. Neon gas replaces air in the Ring Imaging Cherenkov detector without using vacuum, in experiment E781(SELEX) at Fermilab. The portable neon purification system purifies neon gas by, first purging air with CO{sub 2}, freezing the CO{sub 2}, then cryoadsorbing the remaining contaminants. The freezer removes carbon dioxide from a neon gas mixture down to a maximum concentration of 500 parts-per-million (ppm). The charcoal bed adsorber removes nitrogen from neon gas down to a maximum concentration of 100 ppm. The original RICH vessel was designed to hold vacuum but its photomultiplier tube plates were not.

  5. Portable outgas detection apparatus

    DOEpatents

    Haney, Steven Julian; Malinowski, Michael E.

    2004-05-11

    A portable device for detecting surface outgas contaminants of an article includes: (i) a portable housing that has a chamber which is in communication with a port that is adapted to be sealably attached to a surface of the article; (ii) a mass spectrometer that is coupled to the chamber for analyzing gaseous materials in the chamber; and (iii) means for generating a vacuum within the chamber thereby drawing outgas contaminants from the surface of the article into the chamber for analysis by the mass spectrometer. By performing a mass spectrometric analysis of the surface of interest and comparing the data with mass spectrometric data ascertained with the device from a clean surface, the type and amount of outgas contaminants, if any, can be determined.

  6. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  7. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  8. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  9. Portable laser laboratory

    NASA Astrophysics Data System (ADS)

    Weir, J. T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  10. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  11. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-01-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  12. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-04-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  13. Portable Planetariums Teach Science

    NASA Technical Reports Server (NTRS)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  14. Military display market segment: wearable and portable

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2003-09-01

    The military display market (MDM) is analyzed in terms of one of its segments, wearable and portable displays. Wearable and portable displays are those embedded in gear worn or carried by warfighters. Categories include hand-mobile (direct-view and monocular/binocular), palm-held, head/helmet-mounted, body-strapped, knee-attached, lap-born, neck-lanyard, and pocket/backpack-stowed. Some 62 fielded and developmental display sizes are identified in this wearable/portable MDM segment. Parameters requiring special consideration, such as weight, luminance ranges, light emission, viewing angles, and chromaticity coordinates, are summarized and compared. Ruggedized commercial versus commercial off-the-shelf designs are contrasted; and a number of custom displays are also found in this MDM category. Display sizes having aggregate quantities of 5,000 units or greater or having 2 or more program applications are identified. Wearable and portable displays are also analyzed by technology (LCD, LED, CRT, OLED and plasma). The technical specifications and program history of several high-profile military programs are discussed to provide a systems context for some representative displays and their function. As of August 2002 our defense-wide military display market study has documented 438,882 total display units distributed across 1,163 display sizes and 438 weapon systems. Wearable and portable displays account for 202,593 displays (46% of total DoD) yet comprise just 62 sizes (5% of total DoD) in 120 weapons systems (27% of total DoD). Some 66% of these wearable and portable applications involve low information content displays comprising just a few characters in one color; however, there is an accelerating trend towards higher information content units capable of showing changeable graphics, color and video.

  15. Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barreira, Luís Miguel Feijó; Parshintsev, Jevgeni; Kärkkäinen, Niina; Hartonen, Kari; Jussila, Matti; Kajos, Maija; Kulmala, Markku; Riekkola, Marja-Liisa

    2015-08-01

    Biogenic volatile organic compounds (BVOCs) participate in many physicochemical processes in the atmosphere. Studies indicate that some of these volatile compounds can be photo-oxidized to non-volatile species that contribute to atmospheric formation and growth of secondary organic aerosols (SOA). In this study, the applicability of dynamic solid-phase microextraction (SPME) for the sampling of atmospheric BVOCs and their oxidation products was tested. These compounds were then analysed via portable gas chromatography-mass spectrometry (GC-MS). The measurements were performed in mid-summer 2013 at the Station for Measuring Ecosystem-Atmosphere Relations, SMEAR II in Hyytiälä, Finland. Numerous classes of compounds were efficiently sampled on PDMS/DVB coated SPME, thermally desorbed and analysed by GC-MS, including monoterpenes, their oxidation products, and amines. Results were analysed against meteorological conditions observed during the sampling campaign and the total amount of monoterpenes obtained by proton-transfer-reaction mass spectrometry (PTR-MS). The comparison of the referred data with obtained results demonstrated the capability of the dynamic SPME method for fast in-situ sampling and analysis of organic gaseous compounds in the atmosphere with minimal analytical steps.

  16. Reduced-size microchips for identification of horses: response to implantation and readability during a six-month period.

    PubMed

    Wulf, M; Aurich, C; von Lewinski, M; Möstl, E; Aurich, J E

    2013-11-09

    In this study, readability of reduced-size microchips in horses and the response to implantation were analysed. It was hypothesised that small microchips can be implanted stress-free but are less readable than larger microchips. Adult mares (n=40) were implanted with a reduced-size microchip (10.9×1.6 mm) at the left side of the neck (size of conventional microchips 11.4×2.2 mm). Microchips were identified with three different scanners (A, B, C) immediately, and at 6, 12 and 28 weeks after implantation. Twelve out of the 40 mares were submitted to microchip implantation and control treatments and cortisol, heart rate and heart rate variability (HRV) were determined. From the chip-bearing side of the neck, microchips were identified with all scanners in all horses at all times. From the contralateral side, correct readings were always 100 per cent with scanner C and with scanners A and B ranged between 60 and 100 per cent. Heart rate and HRV variable sd of beat-to-beat interval increased slightly (P<0.01) at microchip implantation and control treatment, but cortisol concentration did not increase. In conclusion, reduced-size microchips are highly reliable for identification of horses. Compared with conventional microchips, the reduction in size did not impair readability. Microchip implantation is no pronounced stressor for horses.

  17. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017.

    PubMed

    Phillips, Terry M

    2017-08-29

    CE and microchip CE (ME) are powerful tools for the analysis of a number of different analytes and have been applied to a variety of clinical fields and human samples. This review will present an overview of the most recent applications of these techniques to different areas of clinical medicine during the period of 2014 to mid-2017. CE and ME have been applied to clinical chemistry, drug detection and monitoring, hematology, infectious diseases, oncology, endocrinology, neonatology, nephrology, and genetic screening. Samples examined range from serum, plasma, and urine to lest utilized materials such as tears, cerebral spinal fluid, sweat, saliva, condensed breath, single cells, and biopsy tissue. Examples of clinical applications will be given along with the various detection systems employed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy.

    PubMed

    Kudlinski, A; Lelek, M; Barviau, B; Audry, L; Mussot, A

    2010-08-02

    Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350-600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.

  19. Microchip separations-based sensors for cellular analysis

    NASA Astrophysics Data System (ADS)

    Manica, Drew Prentice

    The objective of this thesis has been to introduce and develop novel methods for microchip separations for bioanalytical applications. A novel detection scheme is introduced, involving simultaneous dual amperometric and fluorescence detection on a microchip. Dual detection is shown to increase selectivity and throughput, resolve co-migrating species that may be selectively detected, and provide a convenient means to normalize for the irreproducibility of migration times often encountered in CE applications. Such normalization is expected to facilitate the use of microchip CE to monitor biological samples, which are inclined to exacerbate the irreproducibility of migration times. The use of electrochemical detection presents a unique and fundamental challenge. An effective method for reproducibly regenerating a clean surface is demonstrated. The method is optimized and utilized to achieve high sensitivity even for highly adsorptive compounds, such as those released from mast cells. The development of an in-situ electrode-cleaning protocol is an essential step toward reliably monitoring cellular release on a microchip CEEC device. Two novel techniques are presented which are capable of producing disposable microanalytical systems on glass. Electrodes and channels produced with these methods exhibit performance characteristics that are comparable to examples in current literature. These techniques demonstrate the feasibility of manufacturing a disposable glass lab-on-a-chip, which may be used for cellular analysis or as a point-of-use sensor. Increased interest in analyzing biological samples has led to the development of a wide range of derivatizing agents for biological compounds such as amino acids and peptides. A common tag that is both fluorescent and electroactive is naphthalene-2,3-dicarboxaldehyde (NDA). While there has been much discussion regarding the stability of a similar compound, o-phthalaldehyde, there has been no discussion regarding the stability of

  20. Smart portable rehabilitation devices.

    PubMed

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design