Sample records for field portable microchip

  1. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  2. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  3. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    DOEpatents

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  4. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  5. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  6. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creationmore » of truly portable devices.« less

  7. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of a Portable Microchip Electrophoresis Fluorescence Detection System for the Analysis of Amino Acid Neurotransmitters in Brain Dialysis Samples

    PubMed Central

    OBORNY, Nathan J.; COSTA, Elton E. Melo; SUNTORNSUK, Leena; ABREU, Fabiane C.; LUNTE, Susan M.

    2016-01-01

    A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate—arginine, citrulline, taurine, histamine, glutamate, and aspartate—were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. Limits of detection for the analytes of interest were 50nM – 250nM for the benchtop system and 250 nM – 1.3 μM for the portable system, both of which were adequate for analyte determination in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample. PMID:26753703

  9. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  10. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  11. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  12. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  13. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis.

    PubMed

    Ha, Ji Won; Hahn, Jong Hoon

    2017-02-01

    Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  15. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  16. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  17. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the mostmore » abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.« less

  18. Variability of microchip capillary electrophoresis with conductivity detection.

    PubMed

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  20. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  1. Production, Cost and Chip Characteristics of In-Woods Microchipping

    Treesearch

    J. Thompson; W. Sprinkle

    2013-01-01

    Emerging markets for biomass have increased the interest in producing microchips in the field. As a component of a large United States Department of Energy (DOE) funded project, microchipping has been trialed on a limited scale. The goal of the research was to evaluate the production, cost and chip characteristics of a mobile disc chipper configured to produce...

  2. Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip

    PubMed Central

    Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei

    2002-01-01

    A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388

  3. Microchip Lasers

    DTIC Science & Technology

    2016-10-31

    microchip laser : (top) schematic and (bottom) photograph of working device mounted on 12.7-mm- dia. post. switch 17 (355-nm UV ), 1.5 µJ of fourth......USA E-mail: zayhowski@ll.mit.edu Abstract Microchip lasers are a rich family of solid-state lasers defined by their small size, robust integration

  4. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    PubMed

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal

  5. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    PubMed

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  6. Low-power microwave-mediated heating for microchip-based PCR.

    PubMed

    Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P

    2013-09-07

    Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.

  7. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    PubMed

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  8. Particle-free microchip processing

    DOEpatents

    Geller, Anthony S.; Rader, Daniel J.

    1996-01-01

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.

  9. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  10. Application of Microchip for Biomarker Analysis

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Yatsushiro, Shouki; Yamamura, Shouhei; Abe, Hiroko

    Microchip technologies have received considerable attention, due to their competitive advantages, especially in regards to reduced sample and reagent consumption, analysis time, and easy operation. This approach has been successfully used to analyze DNA, amino acids, proteins, and carbohydrates. In the present study, we showed the potential of microchip technologies for the biomarker analysis, blood carbohydrate analysis on microchip electrophoresis, quantitative analysis of protein with antigen-antibody reaction on microchip, and the detection of malaria-infected erythrocyte with a cell microarray chip.

  11. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M 2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  12. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  13. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  14. Particle-free microchip processing

    DOEpatents

    Geller, A.S.; Rader, D.J.

    1996-06-04

    Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed. 5 figs.

  15. InSight's Second Microchip

    NASA Image and Video Library

    2018-01-23

    Technicians at Lockheed Martin Space in Littleton, Colorado installed a microchip with 1.6 million names submitted by the public to ride along with NASA's InSight mission to Mars. The chip was installed on Jan. 23, 2018. This joins another microchip that was previously installed that included 800,000 names for a grand total of 2.4 million names going to Mars as early as May 5, 2018. The microchip including names from the NASA InSight mission's "Send Your Name to Mars" campaign was affixed to the spacecraft with a special glue. https://photojournal.jpl.nasa.gov/catalog/PIA22206

  16. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  17. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  18. Integration of Cell Phone Imaging with Microchip ELISA to Detect Ovarian Cancer HE4 Biomarker in Urine at the Point-of-Care

    PubMed Central

    Wang, ShuQi; Zhao, Xiaohu; Khimji, Imran; Akbas, Ragip; Qiu, Weiliang; Edwards, Dale; Cramer, Daniel W.; Ye, Bin; Demirci, Utkan

    2013-01-01

    Ovarian cancer is asymptomatic at early stages and most patients present with advanced levels of disease. Lack of cost-effective methods that can achieve frequent, simple and non-invasive testing hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a simple and inexpensive microchip ELISA-based detection module that employs a portable detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate processing of microchip ELISA results, which eliminated the need for a bulky, expensive spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was significantly elevated in urine samples from cancer patients (n = 19) than normal healthy controls (n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip ELISA coupled with a cell phone running an automated analysis application had a sensitivity of 89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment monitoring. PMID:21881677

  19. A compactly integrated laser-induced fluorescence detector for microchip electrophoresis.

    PubMed

    Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Uchiyama, Katsumi; Hobo, Toshiyuki

    2004-06-01

    A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.

  20. Second Microchip Gets Ready for Launch

    NASA Image and Video Library

    2018-01-24

    Second dime-size microchip carrying 1.6 million names gets processed for installation onto the InSight lander. Technicians at Lockheed Martin Space in Littleton, Colorado installed a microchip with 1.6 million names submitted by the public to ride along with NASA's InSight mission to Mars. The chip was installed on Jan. 23, 2018. This joins another microchip that was previously installed that included 800,000 names for a grand total of 2.4 million names going to Mars as early as May 5, 2018. The microchip including names from the NASA InSight mission's "Send Your Name to Mars" campaign was affixed to the spacecraft with a special glue. https://photojournal.jpl.nasa.gov/catalog/PIA22237

  1. Field-portable pixel super-resolution colour microscope.

    PubMed

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.

  2. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, John Michael; Jacobson, Stephen C.

    1999-01-01

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.

  3. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, J.M.; Jacobson, S.C.

    1999-01-12

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment. 22 figs.

  4. Integrated circuit-based instrumentation for microchip capillary electrophoresis.

    PubMed

    Behnam, M; Kaigala, G V; Khorasani, M; Martel, S; Elliott, D G; Backhouse, C J

    2010-09-01

    Although electrophoresis with laser-induced fluorescence (LIF) detection has tremendous potential in lab on chip-based point-of-care disease diagnostics, the wider use of microchip electrophoresis has been limited by the size and cost of the instrumentation. To address this challenge, the authors designed an integrated circuit (IC, i.e. a microelectronic chip, with total silicon area of <0.25 cm2, less than 5 mmx5 mm, and power consumption of 28 mW), which, with a minimal additional infrastructure, can perform microchip electrophoresis with LIF detection. The present work enables extremely compact and inexpensive portable systems consisting of one or more complementary metal-oxide-semiconductor (CMOS) chips and several other low-cost components. There are, to the authors' knowledge, no other reports of a CMOS-based LIF capillary electrophoresis instrument (i.e. high voltage generation, switching, control and interface circuit combined with LIF detection). This instrument is powered and controlled using a universal serial bus (USB) interface to a laptop computer. The authors demonstrate this IC in various configurations and can readily analyse the DNA produced by a standard medical diagnostic protocol (end-labelled polymerase chain reaction (PCR) product) with a limit of detection of approximately 1 ng/microl (approximately 1 ng of total DNA). The authors believe that this approach may ultimately enable lab-on-a-chip-based electrophoretic instruments that cost on the order of several dollars.

  5. Pr:YAlO(3) microchip laser.

    PubMed

    Fibrich, Martin; Jelínková, Helena; Sulc, Jan; Nejezchleb, Karel; Skoda, Václav

    2010-08-01

    A cw Pr:YAlO(3) microchip-laser operation in the near-IR spectral region is reported. A microchip resonator was formed by dielectric mirrors directly deposited on the Pr:YAlO(3) crystal surfaces. For active medium pumping, a GaN laser diode providing up to 1W of output power at approximately 448 nm was used. 139mW of laser radiation at 747nm wavelength has been extracted from the microchip-laser system. Slope efficiency related to the incident pumping power was approximately 25%.

  6. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  7. Microchip electrophoresis for wine analysis.

    PubMed

    Gomez, Federico J V; Silva, M Fernanda

    2016-12-01

    The present critical review provides a summary of representative articles describing the analysis of wine by microchip electrophoresis. Special emphasis has been given to those compounds able to provide background information to achieve the differentiation of wines according to botanical origin, provenance, vintage and quality or assure wine authentication. This review focuses on capillary electrophoresis (CE) microchips dedicated to the analysis of wine covering all the contributions concerning this area. The most relevant compounds in wine analysis such as phenols, organic acids, inorganic species, aldehydes, sugars, alcohols, and neuroactive amines were considered. Moreover, a special section is dedicated to the potential of CE microchip for wine classification. Indeed, potential directions for the future are discussed.

  8. Field-Portable Pixel Super-Resolution Colour Microscope

    PubMed Central

    Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan

    2013-01-01

    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742

  9. Recent developments in optical detection methods for microchip separations.

    PubMed

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.

  10. Portable field kit for determining uranium in water

    USGS Publications Warehouse

    McHugh, John B.

    1979-01-01

    The pressing need for on-site field analyses of the uranium content of surface and ground waters has promoted the development of a simple, light-weight, relatively cheap, portable kit to make such determinations in the field. Forty to sixty water samples per day can be analyzed for uranium to less than 0.2 parts per billion. The kit was tested in the field with excellent results.

  11. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells.

    PubMed

    Ramirez, Lisa; Herschkowitz, Jason I; Wang, Jun

    2016-09-01

    Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don't have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future.

  12. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  13. Production of Microchips from Polystyrene Plates

    ERIC Educational Resources Information Center

    Pace, Sarah Lindsey

    2009-01-01

    Currently manufactured microchips are expensive to make, require specialized equipment, and leave a large environmental footprint. To counter this, an alternative procedure that is cheaper and leaves a smaller environmental footprint should be made. The goal of this research project is to develop a process that creates microchips from polystyrene…

  14. Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gałuszka, Agnieszka, E-mail: Agnieszka.Galuszka@ujk.edu.pl; Migaszewski, Zdzisław M.; Namieśnik, Jacek

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector),more » ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical

  15. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  16. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  17. Portable Imagery Quality Assessment Test Field for Uav Sensors

    NASA Astrophysics Data System (ADS)

    Dąbrowski, R.; Jenerowicz, A.

    2015-08-01

    Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.

  18. Apparatus for Precise Indium-Bump Bonding of Microchips

    NASA Technical Reports Server (NTRS)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  19. A layered microchip conductance detector with through-layer access to detection fields and high sensitivity to dielectric constant.

    PubMed

    Suganuma, Y; Dhirani, A-A

    2011-04-01

    The present study explores a novel apertured microchip conductance detector (AMCD) that is sensitive to dielectric constant. Fashioned on silicon oxide/silicon using optical microlithography, the detector has novel parallel-plate geometry with a top mesh electrode, a middle apertured insulator, and a bottom conducting electrode. This monolithic apertured architecture is planar and may be provided with a thin insulator layer enabling large capacitances, while the top mesh electrode and middle apertured-insulator enable access to regions of the capacitor where electric fields are strong. Hence, the detector is sensitive yet mechanically robust. To test its response, the AMCD was immersed in various solvents, namely water, methanol, acetonitrile, and hexanes. Its response was found to vary in proportion to the solvents' respective dielectric constants. The AMCD was also able to distinguish quantitatively the presence of various molecules in solution, including molecules with chromophores [such as acetylsalicylic acid (ASA)] in methanol and those without chrompohores [such as polyethylene glycol 200 Daltons (PEG200)] in methanol or water. The universal nature of dielectric constant and the microchip detector's sensitivity point to a wide range of potential applications. © 2011 American Institute of Physics

  20. CE microchips: an opened gate to food analysis.

    PubMed

    Escarpa, Alberto; González, María Cristina; Crevillén, Agustín González; Blasco, Antonio Javier

    2007-03-01

    CE microchips are the first generation of micrototal analysis systems (-TAS) emerging in the miniaturization scene of food analysis. CE microchips for food analysis are fabricated in both glass and polymer materials, such as PDMS and poly(methyl methacrylate) (PMMA), and use simple layouts of simple and double T crosses. Nowadays, the detection route preferred is electrochemical in both, amperometry and conductivity modes, using end-channel and contactless configurations, respectively. Food applications using CE microchips are now emerging since food samples present complex matrices, the selectivity being a very important challenge because the total integration of analytical steps into microchip format is very difficult. As a consequence, the first contributions that have recently appeared in the relevant literature are based primarily on fast separations of analytes of high food significance. These protocols are combined with different strategies to achieve selectivity using a suitable nonextensive sample preparation and/or strategically choosing detection routes. Polyphenolic compounds, amino acids, preservatives, and organic and inorganic ions have been studied using CE microchips. Thus, new and exciting future expectations arise in the domain of food analysis. However, several drawbacks could easily be found and assumed within the miniaturization map.

  1. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  2. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014-2016).

    PubMed

    Breadmore, Michael C; Wuethrich, Alain; Li, Feng; Phung, Sui Ching; Kalsoom, Umme; Cabot, Joan M; Tehranirokh, Masoomeh; Shallan, Aliaa I; Abdul Keyon, Aemi S; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2017-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microchip-associated fibrosarcoma in a cat.

    PubMed

    Carminato, Antonio; Vascellari, Marta; Marchioro, Wendy; Melchiotti, Erica; Mutinelli, Franco

    2011-12-01

    A 9-year-old, neutered male cat was presented for a subcutaneous mass on the neck. After surgical removal of the mass, a pet identification microchip was found within the tumour. Histological examination of the mass revealed typical features of the feline postinjection sarcoma. The cat had never received injections at the tumour site; all routine vaccinations were administered in the hindlimbs. Few cases of sarcomas developing at the site of microchip application have been reported in animals, although the contributory role of vaccine administrations has not been ruled out. This is the first report of a microchip-associated fibrosarcoma in a cat. Adherence to American Association of Feline Practitioners vaccination guidelines, avoiding the interscapular area, enabled confirmation of the definitive aetiology of the neoplasia. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  4. Environmental and forensic applications of field-portable GC-MS: an overview.

    PubMed

    Eckenrode, B A

    2001-06-01

    GC-MS can provide analytical information that is most reliable for many types of organic analyses. As field-portable GC-MS analytical systems evolve, the application scenarios have diversified as well. With the development of rugged fieldable systems, these instruments were demonstrated to be usable in the harsh environment of the jungle and in chemical demilitarization or military reconnaissance situations. Continuous unattended operations of a GC-MS for 12- or 24-hour monitoring applications in the field have been shown to be possible. A real-time algorithm strategy is proposed, which can be developed to aid in the advancement of field-portable mass spectrometry applied to chemical warfare agent analysis in military vehicles and can be used to raise the standard for field data quality. Each of these capabilities is discussed with the intent on reviewing analysis situations that can be expanded because of developments in field GC-MS instrumentation.

  5. ENVIRONMENTAL TECHNOLOGY VERFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - TN SPECTRACE, TN 9000 AND TN PB FIELD PORTABLE X-RAY FLOURESCENCE ANALYZERS

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were to evaluate these analyzers for: (1) their analytical performance relative to standar...

  6. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  7. Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip

    PubMed Central

    Man, Yan; Liang, Gang; Li, An; Pan, Ligang

    2017-01-01

    Mycotoxins are one of the main factors impacting food safety. Mycotoxin contamination has threatened the health of humans and animals. Conventional methods for the detection of mycotoxins are gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), or enzyme-linked immunosorbent assay (ELISA). However, all these methods are time-consuming, require large-scale instruments and skilled technicians, and consume large amounts of hazardous regents and solvents. Interestingly, a microchip requires less sample consumption and short analysis time, and can realize the integration, miniaturization, and high-throughput detection of the samples. Hence, the application of a microchip for the detection of mycotoxins can make up for the deficiency of the conventional detection methods. This review focuses on the application of a microchip to detect mycotoxins in foods. The toxicities of mycotoxins and the materials of the microchip are firstly summarized in turn. Then the application of a microchip that integrates various kinds of detection methods (optical, electrochemical, photo-electrochemical, and label-free detection) to detect mycotoxins is reviewed in detail. Finally, challenges and future research directions in the development of a microchip to detect mycotoxins are previewed. PMID:29036884

  8. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  9. Microchip assays for screening monoclonal antibody product quality.

    PubMed

    Chen, Xiaoyu; Tang, Kaiyan; Lee, Maximilian; Flynn, Gregory C

    2008-12-01

    Microchip CE-SDS was evaluated as a high-throughput alternative to conventional CE-SDS for monitoring monoclonal antibody protein quality. A commercial instrument (LabChip) 90) was used to separate dodecyl sulfate coated proteins through a sieving polymer based on the proteins' sizes. Under reducing conditions, the microchip CE-SDS separation was similar to that of conventional CE-SDS, providing reasonable resolution of the non-glycosylated and the glycosylated heavy chains. The fluorescence detection on LabChip 90 using non-covalent fluorescent labeling method was about as sensitive as the 220 nm UV detection used in a conventional CE instrument. A simple glycan typing assay was developed for the reducing microchip CE-SDS format. Antibodies, either pure or in crude cell culture media are treated with Endoglycosidase H, which specifically cleaves the hybrid and high mannose type glycans. A heavy chain migration shift on reducing CE-SDS resulting from the loss of glycan is used to measure the level of high mannose/hybrid type glycans as a percentage of the total glycans. Microchip CE-SDS, under both non-reducing and reducing conditions, can be used in a variety of antibody product screening assays. The microchip analyses provide sufficient resolution and sensitivity for this purpose but on a time scale approximately 70 times faster (41 s versus 50 min per sample) than conventional CE separation under typical operational conditions.

  10. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nano-Flow Regime

    PubMed Central

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2009-01-01

    Despite widespread interest in combining lab-on-a-chip technologies with mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact for the stable cone-jet electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of a small Taylor cone at the channel exit ensures sub-nL post-column dead volumes. Cone-jet mode electrospray was demonstrated for up to 90% aqueous solutions and for extended durations. Comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, but stable cone-jet mode electrosprays could be established over a far broader range of flow rates (from 50-1000 nL/min) and applied potentials using the microchip emitters. This attribute of the microchip emitter should simplify electrospray optimization and make the stable electrospray more resistant to external perturbations. PMID:18419138

  11. Real-World Physics: A Portable MBL for Field Measurements.

    ERIC Educational Resources Information Center

    Albergotti, Clifton

    1994-01-01

    Uses a moderately priced digital multimeter that has output and software compatible with personal computers to make a portable, computer-based data-acquisition system. The system can measure voltage, current, frequency, capacitance, transistor hFE, and temperature. Describes field measures of velocity, acceleration, and temperature as function of…

  12. A field portable mass spectrometer for monitoring organic vapors.

    PubMed

    Meier, R W

    1978-03-01

    A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.

  13. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis.

    PubMed

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek

    2015-07-01

    The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Generating electrospray from microchip devices using electroosmotic pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, R.S.; Ramsey, J.M.

    1997-03-15

    A method of generating electrospray from solutions emerging from small channels etched on planer substrates in described. The fluids are delivered using electroosmotically induced pressures and are sprayed electrostatically from the terminus of a channel by applying an electrical potential of sufficient amplitude to generate the electrospray between the microchip and a conductor spaced from the channel terminus. No major modification of the microchip is required other than to expose a channel opening. The principles that regulate the fluid delivery are described and demonstrated. A spectrum for a test compound, tetrabutylammonium iodide, that was continuously electrophoresed was obtained by couplingmore » the microchip to an ion trap mass spectrometer. 35 refs., 6 figs.« less

  15. A Field Portable Hyperspectral Goniometer for Coastal Characterization

    NASA Technical Reports Server (NTRS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi

    2012-01-01

    During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.

  16. Problems Associated with the Microchip Data of Stray Dogs and Cats Entering RSPCA Queensland Shelters

    PubMed Central

    Lancaster, Emily; Rand, Jacquie; Collecott, Sheila; Paterson, Mandy

    2015-01-01

    Simple Summary Microchip identification has become an important tool to reunite stray dogs and cats with their owners, and is now compulsory in most states of Australia. Improvement of the microchipping system in Australia is limited by a lack of published Australian data documenting the problems experienced by shelter staff when using microchip data to contact the owner of a stray animal. In this study we determine the character and frequency of inaccurate microchip data to identify weaknesses in the current microchipping system. This information could be used to develop strategies that increase the accuracy of microchip data that will increase the reclaiming of stray animals. Abstract A lack of published information documenting problems with the microchip data for the reclaiming of stray animals entering Australian shelters limits improvement of the current microchipping system. A retrospective study analysing admission data for stray, adult dogs (n = 7258) and cats (n = 6950) entering the Royal Society for the Prevention of Cruelty to Animals (RSPCA) Queensland between January 2012 and December 2013 was undertaken to determine the character and frequency of microchip data problems and their impact on outcome for the animal. Only 28% of dogs and 9% of cats were microchipped, and a substantial proportion (37%) had problems with their data, including being registered to a previous owner or organisation (47%), all phone numbers incorrect/disconnected (29%), and the microchip not registered (14%). A higher proportion of owners could be contacted when the microchip had no problems, compared to those with problems (dogs, 93% vs. 70%; cats, 75% vs. 41%). The proportion of animals reclaimed declined significantly between microchipped animals with no data problems, microchipped animals with data problems and non-microchipped animals—87%, 69%, and 37%, respectively, for dogs and 61%, 33%, and 5%, respectively, for cats. Strategies are needed to increase the accuracy of

  17. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  18. A hydrodynamic microchip for formation of continuous cell chains

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, Khashayar; Zhang, Wei; Tang, Shi-Yang; Nasabi, Mahyar; Soffe, Rebecca; Tovar-Lopez, Francisco J.; Rajadas, Jayakumar; Mitchell, Arnan

    2014-05-01

    Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.

  19. Recent progress in microchip electrophoresis-mass spectrometry.

    PubMed

    Kitagawa, Fumihiko; Otsuka, Koji

    2011-06-25

    This review highlights the methodological and instrumental developments in microchip electrophoresis (MCE)-mass spectrometry (MS) from 1997. In MCE-MS, the development of ionization interface is one of the most important issues to realize highly sensitive detection and high separation efficiency. Among several interfaces, electrospray ionization (ESI) has been mainly employed to MCE-MS since a simple structure of the ESI interface is suitable for coupling with the microchips. Although the number of publications is still limited, laser desorption ionization (LDI) interface has also been developed for MCE-MS. The characteristics of the ESI and LDI interfaces applied to the electrophoresis microchips are presented in this review. The scope of applications in MCE-MS covers mainly biogenic compounds such as bioactive amines, peptides, tryptic digests and proteins. This review provides a comprehensive table listing the applications in MCE-MS. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    PubMed

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  1. Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.

    PubMed

    Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru

    2006-12-01

    We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.

  2. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.

  3. A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control

    PubMed Central

    Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen

    2009-01-01

    This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760

  4. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  5. Fibrosarcoma adjacent to the site of microchip implantation in a cat.

    PubMed

    Daly, Meighan K; Saba, Corey F; Crochik, Sonia S; Howerth, Elizabeth W; Kosarek, Carrie E; Cornell, Karen K; Roberts, Royce E; Northrup, Nicole C

    2008-04-01

    A 14-year-old spayed female domestic shorthair cat presented with an interscapular mass. A computed tomography scan, biopsy, and histological examination revealed a fibrosarcoma adjacent to a pet identification microchip. Because the cat was previously vaccinated at this site, it is not possible to establish definitive causation of the fibrosarcoma, but this is the first report of a tumor in the vicinity of a microchip in a cat. Microchip-associated tumors have been reported in rodents and dogs. Veterinarians should be aware that because inflammation may predispose felines to tumor formation, separation and observation of vaccination and implantation sites are indicated. Adherence to American Association of Feline Practitioners (AAFP) vaccination guidelines and monitoring of microchip implantation sites are recommended.

  6. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  7. Amperometric detector designs for capillary electrophoresis microchips.

    PubMed

    Castaño-Alvarez, Mario; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2006-03-24

    Electrochemical (EC) detection is a sensitive and miniaturisable detection mode for capillary electrophoresis (CE) microchips. Detection cell design is very important in order to ensure electrical isolation from the high separation voltage. Amperometric detectors with different designs have been developed for coupling EC detection to CE-microchips. Different working electrode alignment: in-channel or end-channel has been tested in conjunction with several materials: gold, platinum or carbon. The end-channel detector was based on a platinum or gold wire manually aligned at the exit of the separation channel. Thick- (screen-printed carbon electrode) and thin-film (sputtered gold film) electrodes have also been employed with this configuration, but with a different design that allowed the rapid replacement of the electrode. The in-channel detector was based on a gold film within the separation channel. A gold-based dual electrode detector, which combined for the first time in- and end-channel detection, has been also tested. These amperometric detectors have been evaluated in combination to poly(methylmethacrylate) (PMMA) and Topas (thermoplastic olefin polymer of amorphous structure) CE-microchips. Topas is a new and promising cyclic olefin copolymer with high chemical resistance. Relevant parameters of the polymer microchip separation such as precision, efficiency or resolution and amperometric detection were studied with the different detector designs using p-aminophenol and L-ascorbic acid as model analytes in Tris-based buffer pH 9.0.

  8. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  9. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis.

    PubMed

    Gertsch, Jana C; Noblitt, Scott D; Cropek, Donald M; Henry, Charles S

    2010-05-01

    A microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water. Here, we present an MCE method using contact conductivity detection for perchlorate determination. The method has several advantages, including reduced analysis times relative to IC, inherent portability, high selectivity, and minimal sample pretreatment. Resolution of perchlorate from more abundant ions was achieved using zwitterionic, sulfobetaine surfactants, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (HDAPS) and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (TDAPS). The system performance and the optimization of the separation chemistry, including the use of these surfactants to resolve perchlorate from other anions, are discussed in this work. The system is capable of detection limits of 3.4 +/- 1.8 ppb (n = 6) in standards and 5.6 +/- 1.7 ppb (n = 6) in drinking water.

  10. A review of the development of portable laser induced breakdown spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.

  11. Coupling Microdialysis Sampling to Microchip Electrophoresis in a Reversibly Sealed Device

    PubMed Central

    Mecker, Laura C.; Martin, R. Scott

    2007-01-01

    In this paper, we describe the fabrication and characterization of a reversibly sealed microchip device that is used to couple microdialysis sampling to microchip electrophoresis. The ability to interface microdialysis sampling and microchip electrophoresis in a device that is amenable to reversible sealing is advantageous from a repeated use standpoint. Commercially available tubing coming from the microdialysis probe is directly inserted into the chip and flow from the probe is interfaced to the electrophoresis portion of the device through integrated pneumatic valves. Fluorescence detection was used to characterize the poly(dimethylsiloxane)-based device in terms of injection reproducibility. It was found that the entire system (microdialysis probe and microchip device) has a concentration response lag time of 170 sec. Microdialysis sampling followed by an electrophoretic separation of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide was also demonstrated. PMID:18836517

  12. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  13. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    PubMed

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo)

    PubMed Central

    Maxwell, Branden M; Brunell, Marla K; Olsen, Cara H; Bentzel, David E

    2016-01-01

    Body temperature is a common physiologic parameter measured in both clinical and research settings, with rectal thermometry being implied as the ‘gold standard.’ However, rectal thermometry usually requires physical or chemical restraint, potentially causing falsely elevated readings due to animal stress. A less stressful method may eliminate this confounding variable. The current study compared 2 types of digital rectal thermometers—a calibrated digital thermometer and a common digital thermometer—with an implantable subcutaneous transponder microchip. Microchips were implanted subcutaneously between the shoulder blades of 16 ferrets (8 male, 8 female), and temperatures were measured twice from the microchip reader and once from each of the rectal thermometers. Results demonstrated the microchip temperature readings had very good to good correlation and agreement to those from both of the rectal thermometers. This study indicates that implantable temperature-sensing microchips are a reliable alternative to rectal thermometry for monitoring body temperature in ferrets. PMID:27177569

  15. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  16. A low timing jitter picosecond microchip laser pumped by pulsed LD

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  17. TESTING, PERFORMANCE VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL OF FIELD-PORTABLE INSTRUMENTATION

    EPA Science Inventory

    New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...

  18. 12 mJ Yb:YAG/Cr:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser

  19. Characteristics of High-Resolution Hemoglobin Measurement Microchip Integrated with Signal Processing Circuit

    NASA Astrophysics Data System (ADS)

    Noda, Toshihiko; Takao, Hidekuni; Ashiki, Mitsuaki; Ebi, Hiroyuki; Sawada, Kazuaki; Ishida, Makoto

    2004-04-01

    In this study, a microchip for measurement of hemoglobin in human blood has been proposed, fabricated and evaluated. The measurement principle of hemoglobin is based on the “cyanmethemoglobin method” that calculates the cyanmethemoglobin concentration by absorption photometry. A glass/silicon/silicon structure was used for the microchip. The middle silicon layer includes flow channels, and 45° mirrors formed at each end of the flow channels. Photodiodes and metal oxide semiconductor (MOS) integrated circuits were fabricated on the bottom silicon layer. The performance of the microchip for hemoglobin measurement was evaluated using a solution of red food color instead of a real blood sample. The fabricated microchip exhibited a similar performance to a nonminiaturized absorption cell which has the same optical path length. Signal processing output varied with solution concentration from 5.32 V to 5.55 V with very high stability due to differential signal processing.

  20. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  1. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection.

    PubMed

    Avila, Mónica; González, María Cristina; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2007-11-01

    Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.

  2. Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong

    2017-10-01

    Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.

  3. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    PubMed

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  4. Multiphoton lithography using a high-repetition rate microchip laser.

    PubMed

    Ritschdorff, Eric T; Shear, Jason B

    2010-10-15

    Multiphoton lithography (MPL) provides a means to create prototype, three-dimensional (3D) materials for numerous applications in analysis and cell biology. A major impediment to the broad adoption of MPL in research laboratories is its reliance on high peak-power light sources, a requirement that typically has been met using expensive femtosecond titanium:sapphire lasers. Development of affordable microchip laser sources has the potential to substantially extend the reach of MPL, but previous lasers have provided relatively low pulse repetition rates (low kilohertz range), thereby limiting the rate at which microforms could be produced using this direct-write approach. In this report, we examine the MPL capabilities of a new, high-repetition-rate (36.6 kHz) microchip Nd:YAG laser. We show that this laser enables an approximate 4-fold decrease in fabrication times for protein-based microforms relative to the existing state-of-the-art microchip source and demonstrate its utility for creating complex 3D microarchitectures.

  5. 1.6 μm microchip laser

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Ryba-Romanowski, W.; Lukasiewicz, T.

    2009-03-01

    Properties of new pulsed-diode-pumped Er:YVO4 and Er:YVO4+CaO microchip lasers working in an ``eye-safe'' spectral region were investigated. As a pumping source, a fiber coupled (core diameter-200 μm) laser diode emitting radiation at wavelength 976 nm was used. The laser diode was operating in pulsed regime with 3 ms pulse width, and 20 Hz repetition rate. The result obtained was 175 mW and 152 mW output peak power for the Er:YVO4 and Er:YVO4+CaO lasers, respectively. The maximal efficiency with respect to the absorbed power was ~ 5%. The laser emission for Er:YVO4 microchip was observed in detail in the range 1593 nm to 1604 nm with respect to pumping. However, for Er:YVO4+CaO crystal only 1604 nm was generated.

  6. A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs.

    PubMed

    Taudte, Regina Verena; Beavis, Alison; Wilson-Wilde, Linzi; Roux, Claude; Doble, Philip; Blanes, Lucas

    2013-11-07

    A new technique for the detection of explosives has been developed based on fluorescence quenching of pyrene on paper-based analytical devices (μPADs). Wax barriers were generated (150 °C, 5 min) using ten different colours. Magenta was found as the most suitable wax colour for the generation of the hydrophobic barriers with a nominal width of 120 μm resulting in fully functioning hydrophobic barriers. One microliter of 0.5 mg mL(-1) pyrene dissolved in an 80:20 methanol-water solution was deposited on the hydrophobic circle (5 mm diameter) to produce the active microchip device. Under ultra-violet (UV) illumination, ten different organic explosives were detected using the μPAD, with limits of detection ranging from 100-600 ppm. A prototype of a portable battery operated instrument using a 3 W power UV light-emitting-diode (LED) (365 nm) and a photodiode sensor was also built and evaluated for the successful automatic detection of explosives and potential application for field-based screening.

  7. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.

    PubMed

    Otsuka, Kenju; Chu, Shu-Chun

    2013-05-01

    We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.

  9. A next generation field-portable goniometer system

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  10. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

  11. DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.

    PubMed

    Le Roux, Delphine; Root, Brian E; Reedy, Carmen R; Hickey, Jeffrey A; Scott, Orion N; Bienvenue, Joan M; Landers, James P; Chassagne, Luc; de Mazancourt, Philippe

    2014-08-19

    A system that automatically performs the PCR amplification and microchip electrophoretic (ME) separation for rapid forensic short tandem repeat (STR) forensic profiling in a single disposable plastic chip is demonstrated. The microchip subassays were optimized to deliver results comparable to conventional benchtop methods. The microchip process was accomplished in sub-90 min compared with >2.5 h for the conventional approach. An infrared laser with a noncontact temperature sensing system was optimized for a 45 min PCR compared with the conventional 90 min amplification time. The separation conditions were optimized using LPA-co-dihexylacrylamide block copolymers specifically designed for microchip separations to achieve accurate DNA size calling in an effective length of 7 cm in a plastic microchip. This effective separation length is less than half of other reports for integrated STR analysis and allows a compact, inexpensive microchip design. This separation quality was maintained when integrated with microchip PCR. Thirty samples were analyzed conventionally and then compared with data generated by the microfluidic chip system. The microfluidic system allele calling was 100% concordant with the conventional process. This study also investigated allelic ladder consistency over time. The PCR-ME genetic profiles were analyzed using binning palettes generated from two sets of allelic ladders run three and six months apart. Using these binning palettes, no allele calling errors were detected in the 30 samples demonstrating that a microfluidic platform can be highly consistent over long periods of time.

  12. A linearly-polarized Nd:YVO4/KTP microchip green laser.

    PubMed

    Jung, C; Yu, B-A; Kim, I-S; Lee, Y L; Yu, N E; Ko, D-K

    2009-10-26

    We described the principle and the fabrication of a Nd:YVO(4)/KTP microchip for the linearly-polarized green laser and verified its availability by manufacturing and characterizing the green laser using the microchip. Under the driving condition having the modulation frequency of 60 Hz and the duty ratio of 25%, the laser showed the stable linear polarization, the maximum average power of 37 mW, yielding the high electrical-to-optical efficiency of 10.9%.

  13. 12  mJ Yb:YAG/Cr:YAG microchip laser.

    PubMed

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    We have developed a quasi-continuous wave diode end-pumped cryogenically cooled Yb:YAG/Cr:YAG passively Q-switched microchip laser. A maximum energy of 12.1 mJ with 3.7 MW of peak power was obtained. To the best of our knowledge, this is the highest energy and peak power obtained by an Yb:YAG/Cr:YAG microchip laser so far.

  14. On-Campus Projects: Inventing a Microchip.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    In response to growth of microelectronics and changes in microchip design/manufacturing technology, universities are supporting class projects for students. Approximately 50 schools now conduct such programs which have resulted from earlier National Science Foundation sponsorship. Major advantages for the students include designing experience,…

  15. Detection of enteropathogenic Escherichia coli by microchip capillary electrophoresis.

    PubMed

    Law, Wai S; Li, Sam F Y; Kricka, Larry J

    2009-01-01

    There is always a need to detect the presence of microorganisms, either as contaminants in food and pharmaceutical industries or bioindicators for disease diagnosis. Hence, it is important to develop efficient, rapid, and simple methods to detect microorganisms. Traditional culturing method is unsatisfactory due to its long incubation time. Molecular methods, although capable of providing a high degree of specificity, are not always useful in providing quick tests of presence or absence of microorganisms. Microchip elec-trophoresis has been recently employed to address problems associated with the detection of microorganisms due to its high versatility, selectivity, sensitivity, and short analysis times. In this work, the potential of PDMS-based microchip electrophoresis in the identification and characterization of microorganism was evaluated. Enteropathogenic E. coli (EPEC) was selected as the model microorganism. To obtain repeat-able separations, sample pretreatment was found to be essential. Microchip electrophoresis with laser-induced fluorescence detection could potentially revolutionize certain aspects of microbiology involving diagnosis, profiling of pathogens, environmental analysis, and many others areas of study.

  16. Field Tests of a Portable MEMS Gravimeter

    PubMed Central

    Bramsiepe, Steven G.; Douglas, Rebecca; Hough, James; Hammond, Giles D.

    2017-01-01

    Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58×10−6 ms−2. It is then demonstrated that a change in gravitational acceleration of 4.5×10−5 ms−2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5×10−4 ms−2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity sensor. PMID:29117099

  17. Field Tests of a Portable MEMS Gravimeter.

    PubMed

    Middlemiss, Richard P; Bramsiepe, Steven G; Douglas, Rebecca; Hough, James; Paul, Douglas J; Rowan, Sheila; Hammond, Giles D

    2017-11-08

    Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10 - 6 ms - 2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10 - 6 ms - 2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10 - 4 ms - 2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity sensor.

  18. Megawatt level UV output from [110] Cr⁴⁺:YAG passively Q-switched microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-11-07

    Recent development of megawatt peak power, giant pulse microchip lasers has opened new opportunities for efficient wavelength conversion, provided the output of the microchip laser is linearly polarized. We obtain > 2 MW peak power, 260 ps, 100 Hz pulses at 266 nm by fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser that is passively Q-switched with [110] cut Cr⁴⁺:YAG. The SHG and FHG conversion efficiencies are 85% and 51%, respectively.

  19. A Power-Frequency Electric Field Sensor for Portable Measurement

    PubMed Central

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi

    2018-01-01

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested. PMID:29614753

  20. A Power-Frequency Electric Field Sensor for Portable Measurement.

    PubMed

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  1. Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan

    2017-02-01

    We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.

  2. Microchip integrating magnetic nanoparticles for allergy diagnosis.

    PubMed

    Teste, Bruno; Malloggi, Florent; Siaugue, Jean-Michel; Varenne, Anne; Kanoufi, Frederic; Descroix, Stéphanie

    2011-12-21

    We report on the development of a simple and easy to use microchip dedicated to allergy diagnosis. This microchip combines both the advantages of homogeneous immunoassays i.e. species diffusion and heterogeneous immunoassays i.e. easy separation and preconcentration steps. In vitro allergy diagnosis is based on specific Immunoglobulin E (IgE) quantitation, in that way we have developed and integrated magnetic core-shell nanoparticles (MCSNPs) as an IgE capture nanoplatform in a microdevice taking benefit from both their magnetic and colloidal properties. Integrating such immunosupport allows to perform the target analyte (IgE) capture in the colloidal phase thus increasing the analyte capture kinetics since both immunological partners are diffusing during the immune reaction. This colloidal approach improves 1000 times the analyte capture kinetics compared to conventional methods. Moreover, based on the MCSNPs' magnetic properties and on the magnetic chamber we have previously developed the MCSNPs and therefore the target can be confined and preconcentrated within the microdevice prior to the detection step. The MCSNPs preconcentration factor achieved was about 35,000 and allows to reach high sensitivity thus avoiding catalytic amplification during the detection step. The developed microchip offers many advantages: the analytical procedure was fully integrated on-chip, analyses were performed in short assay time (20 min), the sample and reagents consumption was reduced to few microlitres (5 μL) while a low limit of detection can be achieved (about 1 ng mL(-1)).

  3. High-efficiency microchip laser with self-injection seeding.

    PubMed

    Wang, Sha; Wang, Yan-biao; Yang, Xian-heng; Feng, Guo-ying; Zhou, Shou-huan

    2015-12-10

    In this paper, we use a small bandwidth 808 nm cw Ti:sapphire laser as a pump source to pump a picosecond microchip laser. Different focal length pump focus lenses have been tested to improve laser efficiency. A maximum slope efficiency of around 20% is obtained by a 30 mm focal length lens. The pump threshold is only 13 mW. In order to reduce the timing jitter, we explored the self-injection seeding method by adding a seeding cavity to the microchip laser. A reduction factor in the timing jitter of up to a factor of 23 relative to the unseeded laser is obtained. From the experiments, we also found that higher seeding pulse energy will help to reduce the jitter more.

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - HNU SYSTEMS, SEFA-P

    EPA Science Inventory

    In April 1995, the Environmental Protection Agency (EPA) conducted a demonstration of field portable X-ray fluorescence (FPXRF) Analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to a standard reference m...

  6. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip.

    PubMed

    Liu, Jikun; Zhao, Jiangqin; Petrochenko, Peter; Zheng, Jiwen; Hewlett, Indira

    2016-12-15

    In an effort to develop new tools for diagnosing influenza in resource-limited settings, we fabricated a polycarbonate (PC)-polydimethylsiloxane (PDMS) hybrid microchip using a simple epoxy silica sol-gel coating/bonding method and employed it in sensitive detection of influenza virus with Europium nanoparticles (EuNPs). The incorporation of sol-gel material in device fabrication provided functionalized channel surfaces ready for covalent immobilization of primary antibodies and a strong bonding between PDMS substrates and PC supports without increasing background fluorescence. In microchip EuNP immunoassay (µENIA) of inactivated influenza viruses, replacing native PDMS microchips with hybrid microchips allowed the achievement of a 6-fold increase in signal-to-background ratio, a 12-fold and a 6-fold decreases in limit-of-detection (LOD) in influenza A and B tests respectively. Using influenza A samples with known titers, the LOD of influenza µENIA on hybrid microchips was determined to be ~10(4) TCID50 titer/mL and 10(3)-10(4) EID50 titer/mL. A comparison test indicated that the sensitivity of influenza µENIA enhanced using the hybrid microchips even surpassed that of a commercial laboratory influenza ELISA test. In addition to the sensitivity improvement, assay variation was clearly reduced when hybrid microchips instead of native PDMS microchips were used in the µENIA tests. Finally, infectious reference viruses and nasopharyngeal swab patient specimens were successfully tested using μENIA on hybrid microchip platforms, demonstrating the potential of this unique microchip nanoparticle assay in clinical diagnosis of influenza. Meanwhile, the tests showed the necessity of using nucleic acid confirmatory tests to clarify ambiguous test results obtained from prototype or developed point-of-care testing devices for influenza diagnosis. Published by Elsevier B.V.

  7. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  8. Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis.

    PubMed

    Rudašová, Marína; Masár, Marián

    2016-01-01

    A novel microchip electrophoresis method for the rapid and high-precision determination of N-acetylcysteine, a pharmaceutically active ingredient, in mucolytics has been developed. Isotachophoresis separations were carried out at pH 6.0 on a microchip with conductivity detection. The methods of external calibration and internal standard were used to evaluate the results. The internal standard method effectively eliminated variations in various working parameters, mainly run-to-run fluctuations of an injected volume. The repeatability and accuracy of N-acetylcysteine determination in all mucolytic preparations tested (Solmucol 90 and 200, and ACC Long 600) were more than satisfactory with the relative standard deviation and relative error values <0.7 and <1.9%, respectively. A recovery range of 99-101% of N-acetylcysteine in the analyzed pharmaceuticals predetermines the proposed method for accurate analysis as well. This work, in general, indicates analytical possibilities of microchip isotachophoresis for the quantitative analysis of simplified samples such as pharmaceuticals that contain the analyte(s) at relatively high concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Practical application of pulsed "eye-safe" microchip laser to laser rangefinders

    NASA Astrophysics Data System (ADS)

    Młyńczak, J.; Kopczyński, K.; Mierczyk, Z.; Zygmunt, M.; Natkański, S.; Muzal, M.; Wojtanowski, J.; Kirwil, P.; Jakubaszek, M.; Knysak, P.; Piotrowski, W.; Zarzycka, A.; Gawlikowski, A.

    2013-09-01

    The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.

  10. Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications.

    PubMed

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J

    2016-01-15

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.

  11. Field Portable Low Temperature Porous Layer Open Tubular Cryoadsorption Headspace Sampling and Analysis Part II: Applications*

    PubMed Central

    Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.

    2016-01-01

    This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934

  12. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  13. Solvent-programmed microchip open-channel electrochromatography.

    PubMed

    Kutter, J P; Jacobson, S C; Matsubara, N; Ramsey, J M

    1998-08-01

    Open-channel electrochromatography in combination with solvent programming is demonstrated using a microchip device. Channel walls were coated with octadecylsilanes at ambient temperatures, yielding stationary phases for chromatographic separations of neutral dyes. The electroosmotic flow after coating was sufficient to ensure transport of all species and on-chip mixing of isocratic and gradient elution conditions with acetonitrile-buffer mixtures. Chips having different channel depths between 10.2 and 2.9 μm were evaluated for performance, and van Deemter plots were established. Channel depths of about 5 μm were found to be a good compromise between efficiency and ease of operation. Isocratic and gradient elution conditions were easily established and manipulated by computer-controlled application of voltages to the terminals of the microchip. Linear gradients with different slopes, start times, duration times, and start percentages of organic modifier proved to be powerful tools to tune selectivity and analysis time for the separation of a test mixture. Even very steep gradients still produced excellent efficiencies. Together with fast reconditioning times, complete runs could be finished in under 60 s.

  14. Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady

    2017-02-01

    Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.

  15. Monitoring Cellular Events in Living Mast Cells Stimulated with an Extremely Small Amount of Fluid on a Microchip

    NASA Astrophysics Data System (ADS)

    Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira

    2006-07-01

    We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.

  16. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmoticmore » flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.« less

  17. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  18. Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser-induced fluorescence detection.

    PubMed

    Nikcevic, Irena; Piruska, Aigars; Wehmeyer, Kenneth R; Seliskar, Carl J; Limbach, Patrick A; Heineman, William R

    2010-08-01

    Parallel separations using CE on a multilane microchip with multiplexed LIF detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be determined in parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pK(a) determination of small molecule analytes is demonstrated with the multilane microchip.

  19. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    USDA-ARS?s Scientific Manuscript database

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  20. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  1. Portable FAIMS: Applications and Future Perspectives.

    PubMed

    Costanzo, Michael T; Boock, Jared J; Kemperman, Robin H J; Wei, Michael S; Beekman, Christopher R; Yost, Richard A

    2017-11-01

    Miniaturized mass spectrometry (MMS) is optimal for a wide variety of applications that benefit from field-portable instrumentation. Like MMS, field asymmetric ion mobility spectrometry (FAIMS) has proven capable of providing in situ analysis, allowing researchers to bring the lab to the sample. FAIMS compliments MMS very well, but has the added benefit of operating at atmospheric pressure, unlike MS. This distinct advantage makes FAIMS uniquely suited for portability. Since its inception, FAIMS has been envisioned as a field-portable device, as it affords less expense and greater simplicity than many similar methods. Ideally, these are simple, robust devices that may be operated by non-professional personnel, yet still provide adequate data when in the field. While reducing the size and complexity tends to bring with it a loss of performance and accuracy, this is made up for by the incredibly high throughput and overall convenience of the instrument. Moreover, the FAIMS device used in the field can be brought back to the lab, and coupled to a conventional mass spectrometer to provide any necessary method development and compound validation. This work discusses the various considerations, uses, and applications for portable FAIMS instrumentation, and how the future of each applicable field may benefit from the development and acceptance of such a device.

  2. Design and Fabrication of a PDMS Microchip Based Immunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less

  3. Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser induced fluorescence detection

    PubMed Central

    Nikcevic, Irena; Piruska, Aigars; Wehmeyer, Kenneth R.; Seliskar, Carl J.; Limbach, Patrick A.; Heineman, William R.

    2010-01-01

    Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser induced fluorescence detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be analyzed on parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pKa determination of small molecule analytes is demonstrated with the multilane microchip. PMID:20737446

  4. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Scherer, James R; Mathies, Richard A

    2009-01-15

    The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.

  5. Comparison of body temperature readings between an implantable microchip and a cloacal probe in lorikeets (Trichoglossus haematodus sp.).

    PubMed

    Hoskinson, Christine; McCain, Stephanie; Allender, Matthew C

    2014-01-01

    Body temperature readings can be a useful diagnostic tool for identifying the presence of subclinical disease. Traditionally, rectal or cloacal thermometry has been used to obtain body temperatures. The use of implantable microchips to obtain these temperatures has been studied in a variety of animals, but not yet in avian species. Initially, timepoint one (T₁), nine lorikeets were anesthetized via facemask induction with 5% isoflurane and maintained at 2-3% for microchip placement and body temperature data collection. Body temperature was measured at 0 and 2 min post-anesthetic induction both cloacally, using a Cardell veterinary monitor and also via implantable microchip, utilizing a universal scanner. On two more occasions, timepoints two and three (T₂, T₃), the same nine lorikeets were manually restrained to obtain body temperature readings both cloacally and via microchip, again at minutes 0 and 2. There was no statistical difference between body temperatures, for both methods, at T₁. Microchip temperatures were statistically different than cloacal temperatures at T₂ and T₃. Body temperatures at T₁, were statistically different from those obtained at T₂ and T₃ for both methods. Additional studies are warranted to verify the accuracy of microchip core body temperature readings in avian species. © 2014 Wiley Periodicals, Inc.

  6. Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones: Toward on-chip multiplex detection platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Jun; Li, Zhaohui

    2011-09-20

    In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstratemore » the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.« less

  7. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  8. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2008-02-01

    A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.

  9. Portable thin layer chromatography for field detection of explosives and propellants

    NASA Astrophysics Data System (ADS)

    Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.

    2012-06-01

    A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.

  10. Integration of Microdialysis Sampling and Microchip Electrophoresis with Electrochemical Detection

    PubMed Central

    Mecker, Laura C.; Martin, R. Scott

    2009-01-01

    Here we describe the fabrication, optimization, and application of a microfluidic device that integrates microdialysis (MD) sampling, microchip electrophoresis (ME), and electrochemical detection (EC). The manner in which the chip is produced is reproducible and enables the fixed alignment of the MD/ME and ME/EC interfaces. Poly(dimethylsiloxane) (PDMS) -based valves were used for the discrete injection of sample from the hydrodynamic MD dialysate stream into a separation channel for analysis with ME. To enable the integration of ME with EC detection, a palladium decoupler was used to isolate the high voltages associated with electrophoresis from micron-sized carbon ink detection electrodes. Optimization of the ME/EC interface was needed to allow the use of biologically appropriate perfusate buffers containing high salt content. This optimization included changes in the fabrication procedure, increases in the decoupler surface area, and a programmed voltage shutoff. The ability of the MD/ME/EC system to sample a biological system was demonstrated by using a linear probe to monitor the stimulated release of dopamine from a confluent layer of PC 12 cells. To our knowledge, this is the first report of a microchip-based system that couples microdialysis sampling with microchip electrophoresis and electrochemical detection. PMID:19551945

  11. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  12. A portable extruder for in situ wide angle x-ray scattering study on multi-dimensional flow field induced crystallization of polymer

    NASA Astrophysics Data System (ADS)

    Chang, Jiarui; Wang, Zhen; Tang, Xiaoliang; Tian, Fucheng; Ye, Ke; Li, Liangbin

    2018-02-01

    We have designed and constructed a portable extruder with a rotatable mandrel, which can be employed to study the multi-dimensional flow field (MDFF) induced crystallization of polymer combined with in situ wide angle x-ray scattering (WAXS). With the piston driving the melt sample to flow along the channel, a direct axial shear field is achieved. At the same time, the central mandrel keeps rotating under a stable speed, providing the sample with an additional circumferential shear field. By presetting different proportions of the two shear fields, namely, axial and circumferential, various flow states of the sample can be obtained, which makes it capable of investigating the effects of MDFF on polymer crystallization. We have performed an in situ WAXS experiment of MDFF induced crystallization of isotactic polypropylene based on the portable extruder at the beam line BL16B in Shanghai Synchrotron Radiation Facility. The rheological and structural information is collected simultaneously, which manifests the viability of the portable extruder on regulating MDFF and can provide guidance for polymer processing.

  13. Spectroscopy and microchip laser operation of Tm, Ho:KYW crystals with different Ho concentrations

    NASA Astrophysics Data System (ADS)

    Gusakova, N. V.; Kurilchik, S. V.; Yasukevich, A. S.; Kisel, V. E.; Dashkevich, V. I.; Orlovich, V. A.; Pavlyuk, A. A.; Vatnik, S. M.; Bagaev, S. N.; Kuleshov, N. V.

    2018-02-01

    The spectroscopic properties of Tm, Ho:KYW crystals with different Ho concentrations were investigated. The diode-pumped microchip laser operation of Tm (5 at.%), Ho (0.5 at.%):KYW and Tm (5 at.%), Ho (1 at.%):KYW was demonstrated. The highest, to our knowledge, output power of 480 mW with slope efficiency of 31% for CW Tm (5 at.%), Ho (0.5 at.%):KYW microchip laser was obtained.

  14. Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals.

    PubMed

    Hradski, Jasna; Chorváthová, Mária Drusková; Bodor, Róbert; Sabo, Martin; Matejčík, Štefan; Masár, Marián

    2016-12-01

    Although microchip electrophoresis (MCE) is intended to provide reliable quantitative data, so far there is only limited attention paid to these important aspects. This study gives a general overview of key aspects to be followed to reach high-precise determination using isotachophoresis (ITP) on the microchip with conductivity detection. From the application point of view, the procedure for the determination of acetate, a main component in the pharmaceutical preparation buserelin acetate, was developed. Our results document that run-to-run fluctuations in the sample injection volume limit the reproducibility of quantitation based on the external calibration. The use of a suitable internal standard (succinate in this study) improved the repeatability of the precision of acetate determination from six to eight times. The robustness of the procedure was studied in terms of impact of fluctuations in various experimental parameters (driving current, concentration of the leading ions, pH of the leading electrolyte and buffer impurities) on the precision of the ITP determination. The use of computer simulation programs provided means to assess the ITP experiments using well-defined theoretical models. A long-term validity of the calibration curves on two microchips and two MCE equipments was verified. This favors ITP over other microchip electrophoresis techniques, when chip-to-chip or equipment-to-equipment transfer of the analytical method is required. The recovery values in the range of 98-101 % indicate very accurate determination of acetate in buserelin acetate, which is used in the treatment of hormone-dependent tumors. This study showed that microchip ITP is suitable for reliable determination of main components in pharmaceutical preparations.

  15. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Thomas; Willem, Henry; Ni, Chun Chun

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance ofmore » PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.« less

  16. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07].

    PubMed

    Dengg, S; Kneissl, S

    2013-01-01

    Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n  =  15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.

  17. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A

    2006-08-01

    The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.

  18. Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips.

    PubMed

    Zhou, Jianhua; Ren, Kangning; Zheng, Yizhe; Su, Jing; Zhao, Yihua; Ryan, Declan; Wu, Hongkai

    2010-09-01

    This report describes a convenient method for the fabrication of a miniaturized, reliable Ag/AgCl reference electrode with nanofluidic channels acting as a salt bridge that can be easily integrated into microfluidic chips. The Ag/AgCl reference electrode shows high stability with millivolt variations. We demonstrated the application of this reference electrode in a portable microfluidic chip that is connected to a USB-port microelectrochemical station and to a computer for data collection and analysis. The low fabrication cost of the chip with the potential for mass production makes it disposable and an excellent candidate for real-world analysis and measurement. We used the chip to quantitatively analyze the concentrations of heavy metal ions (Cd(2+) and Pb(2+)) in sea water. We believe that the Ag/AgCl reference microelectrode and the portable electrochemical system will be of interest to people in microfluidics, environmental science, clinical diagnostics, and food research.

  19. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  20. Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.

    2015-01-01

    Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809

  1. Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva

    PubMed Central

    Shafiee, Hadi; Kanakasabapathy, Manoj Kumar; Juillard, Franceline; Keser, Mert; Sadasivam, Magesh; Yuksekkaya, Mehmet; Hanhauser, Emily; Henrich, Timothy J.; Kuritzkes, Daniel R.; Kaye, Kenneth M.; Demirci, Utkan

    2015-01-01

    We report a biosensing platform for viral load measurement through electrical sensing of viruses on a flexible plastic microchip with printed electrodes. Point-of-care (POC) viral load measurement is of paramount importance with significant impact on a broad range of applications, including infectious disease diagnostics and treatment monitoring specifically in resource-constrained settings. Here, we present a broadly applicable and inexpensive biosensing technology for accurate quantification of bioagents, including viruses in biological samples, such as plasma and artificial saliva, at clinically relevant concentrations. Our microchip fabrication is simple and mass-producible as we print microelectrodes on flexible plastic substrates using conductive inks. We evaluated the microchip technology by detecting and quantifying multiple Human Immunodeficiency Virus (HIV) subtypes (A, B, C, D, E, G, and panel), Epstein-Barr Virus (EBV), and Kaposi’s Sarcoma-associated Herpes Virus (KSHV) in a fingerprick volume (50 µL) of PBS, plasma, and artificial saliva samples for a broad range of virus concentrations between 102 copies/mL and 107 copies/mL. We have also evaluated the microchip platform with discarded, de-identified HIV-infected patient samples by comparing our microchip viral load measurement results with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) as the gold standard method using Bland-Altman Analysis. PMID:26046668

  2. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.

    PubMed

    Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa

    2012-11-07

    The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.

  3. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.

    PubMed

    Shadpour, Hamed; Hupert, Mateusz L; Patterson, Donald; Liu, Changgeng; Galloway, Michelle; Stryjewski, Wieslaw; Goettert, Jost; Soper, Steven A

    2007-02-01

    A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides

  4. Efficient second to ninth harmonic generation using megawatt peak power microchip laser.

    PubMed

    Bhandari, R; Tsuji, N; Suzuki, T; Nishifuji, M; Taira, T

    2013-11-18

    We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

  5. Integration of On-Chip Peristaltic Pumps and Injection Valves with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Bowen, Amanda L; Martin, R. Scott

    2010-01-01

    A microfluidic approach that integrates peristaltic pumping from an on-chip reservoir with injection valves, microchip electrophoresis and electrochemical detection is described. Fabrication and operation of both the peristaltic pumps and injection valves were optimized to ensure efficient pumping and discrete injections. The final device uses the peristaltic pumps to continuously direct sample from a reservoir containing a mixture of analytes to injection valves that are coupled with microchip electrophoresis and amperometric detection. The separation and direct detection of dopamine and norepinephrine were possible with this approach and the utility of the device was demonstrated by monitoring the stimulated release of these neurotransmitters from a layer of cells introduced into the microchip. It is also shown that this pumping/reservoir approach can be expanded to multiple reservoirs and pumps, where one reservoir can be addressed individually or multiple reservoirs sampled simultaneously. PMID:20665914

  6. Integrated Micro-Chip Amino Acid Chirality Detector for MOD

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Botta, O.; Kminek, G.; Grunthaner, F.; Mathies, R.

    2001-01-01

    Integration of a micro-chip capillary electrophoresis analyzer with a sublimation-based extraction technique, as used in the Mars Organic Detector (MOD), for the in-situ detection of amino acids and their enantiomers on solar system bodies. Additional information is contained in the original extended abstract.

  7. Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Belghachem, Nabil

    2015-12-01

    The highest ever reported 10 kW peak power in monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip laser was achieved. To show the superiority of monolithic microchip lasers over those with external mirrors the laser generation characteristics of the same samples in both cases were compared.

  8. A Monolithic Multisensor Microchip with Complete On-Chip RF Front-End

    PubMed Central

    Felini, Corrado; Della Corte, Francesco G.

    2018-01-01

    In this paper, a new wireless sensor, designed for a 0.35 µm CMOS technology, is presented. The microchip was designed to be placed on an object for the continuous remote monitoring of its temperature and illumination state. The temperature sensor is based on the temperature dependence of the I-V characteristics of bipolar transistors available in CMOS technology, while the illumination sensor is an integrated p-n junction photodiode. An on-chip 2.5 GHz transmitter, coupled to a mm-sized dipole radiating element fabricated on the same microchip and made in the top metal layer of the same die, sends the collected data wirelessly to a radio receiver using an On-Off Keying (OOK) modulation pattern. PMID:29301297

  9. Evaluation of pain and inflammation associated with hot iron branding and microchip transponder injection in horses.

    PubMed

    Lindegaard, Casper; Vaabengaard, Dorte; Christophersen, Mogens T; Ekstøm, Claus T; Fjeldborg, Julie

    2009-07-01

    To compare effects of hot iron branding and microchip transponder injection regarding aversive behavioral reactions indicative of pain and inflammation in horses. 7 adult horses. In a randomized controlled clinical crossover study, behavioral reactions to hot iron branding and microchip transponder injection were scored by 4 observers. Local and systemic inflammation including allodynia were assessed and compared by use of physiologic and biochemical responses obtained repeatedly for the 168-hour study period. Serum cortisol concentration was measured repeatedly throughout the first 24 hours of the study. Sham treatments were performed 1 day before and 7 days after treatments. Hot iron branding elicited a significantly stronger aversive reaction indicative of pain than did microchip transponder injection (odds ratio [OR], 12.83). Allodynia quantified by means of skin sensitivity to von Frey monofilaments was significantly greater after hot iron branding than after microchip transponder injection (OR, 2.59). Neither treatment induced signs of spontaneously occurring pain that were observed during the remaining study period, and neither treatment induced increased serum cortisol concentrations. Comparison with sham treatments indicated no memory of an unpleasant event. The hot iron branding areas had significantly increased skin temperature and swelling (OR, 14.6). Systemic inflammation as measured via serum amyloid A concentration was not detected after any of the treatments. Microchip transponder injection induced less signs of pain and inflammation and did not seem to pose a higher long-term risk than hot iron branding. Consequently, results indicated that hot iron branding does inflict more pain and should be abandoned where possible.

  10. Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2013-07-15

    We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.

  11. Sub-nanosecond Yb:KLu(WO4)2 microchip laser.

    PubMed

    Loiko, P; Serres, J M; Mateos, X; Yumashev, K; Yasukevich, A; Petrov, V; Griebner, U; Aguiló, M; Díaz, F

    2016-06-01

    A diode-pumped Yb:KLu(WO4)2 microchip laser passively Q-switched by a Cr4+:YAG saturable absorber generated a maximum average output power of 590 mW at 1031 nm with a slope efficiency of 55%. The pulse characteristics were 690 ps/47.6 μJ at a pulse repetition frequency of 12.4 kHz. The output beam had an excellent circular profile with M2<1.05. Yb:KLu(WO4)2 is very promising for ultrathin sub-ns microchip lasers.

  12. Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding.

    PubMed

    Steinmetz, Alexander; Nodop, Dirk; Martin, Andreas; Limpert, Jens; Tünnermann, Andreas

    2010-09-01

    We present an efficient, simple, and passive technique for the reduction of timing jitter in passively Q-switched microchip lasers via self-injection seeding using a fiber delay line. The presented approach mitigates one inherent issue of passively Q-switched lasers without the need for active stabilization. At a repetition rate of a few hundred kilohertz and pulse duration of approximately 200 ps delivered by a microchip laser, the rms jitter is reduced from several nanoseconds down to 20 ps, hence, significantly below the pulse duration of the laser source.

  13. Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations.

    PubMed

    N Genikomsakis, Konstantinos; Galatoulas, Nikolaos-Fivos; I Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S Ioakimidis, Christos

    2018-04-01

    Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium.

  14. Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations

    PubMed Central

    Galatoulas, Nikolaos-Fivos; I. Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S. Ioakimidis, Christos

    2018-01-01

    Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium. PMID:29614770

  15. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  16. Microchips and controlled-release drug reservoirs.

    PubMed

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  17. A Field-Portable Cell Analyzer without a Microscope and Reagents

    PubMed Central

    Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha

    2017-01-01

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm3 and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer (de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis. PMID:29286336

  18. A Field-Portable Cell Analyzer without a Microscope and Reagents.

    PubMed

    Seo, Dongmin; Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha; Seo, Sungkyu

    2017-12-29

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm³ and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer ( de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - METOREX, INC. X-MET 920-P AND 940

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  20. Portable wide-field hand-held NIR scanner

    NASA Astrophysics Data System (ADS)

    Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha

    2013-03-01

    Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..

  1. In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification

    PubMed Central

    Moreno, Freddy; Vallejo, Diego; Garzón, Herney; Moreno, Sandra

    2013-01-01

    Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: In vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE®) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification. PMID:24255554

  2. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  3. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway

    PubMed Central

    Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.

    2016-01-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983

  4. In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2015-02-01

    We report on a continuous-wave Ho:KLu(WO4)2 (KLuW) microchip laser with a record slope efficiency of 84%, the highest value among the holmium inband-pumped lasers, delivering 201 mW output power at 2105 nm. The Ho laser operating at room temperature on the (5)I8→(5)I7 transition is in-band-pumped by a diode-pumped Tm:KLuW microchip laser at 1946 nm. Ho:KLuW laser operation at 2061 and 2079 nm is also demonstrated with a maximum slope efficiency of 79%. The microchip laser generates an almost diffraction-limited output beam with a Gaussian profile and a M2<1.1. The laser performance of the Ng-cut Ho:KLuW crystal is very similar for pump light polarizations ‖Nm and Np. The positive thermal lens plays a key role in the laser mode stabilization and proper mode-matching. The latter, together with the low quantum defect under in-band-pumping (∼0.08), is responsible for the extraordinary high slope efficiency.

  5. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  6. Microchip-Based Single-Cell Functional Proteomics for Biomedical Applications

    PubMed Central

    Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui

    2017-01-01

    Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that fail to be addressed by traditional population-based methods. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical framework to extract new biology. In this review article, we highlight a few biological and clinical applications in which the microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating well-contolled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies. PMID:28280819

  7. Field analyses of (238)U and (226)Ra in two uranium mill tailings piles from Niger using portable HPGe detector.

    PubMed

    Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael

    2014-11-01

    The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multi-pulse drug delivery from a resorbable polymeric microchip device

    NASA Astrophysics Data System (ADS)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  9. A micro surface tension pump (MISPU) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  10. Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2014-11-17

    A microchip laser is realized on the basis of a monoclinic Tm,Ho-codoped KLu(WO₄)₂crystal cut for light propagation along the Ng optical indicatrix axis. This crystal cut provides positive thermal lens with extremely weak astigmatism, S/M = 4%. High sensitivity factors, M = dD/dP(abs), of 24.9 and 24.1 m(-1)/W for the mg- and pg- tangential planes are calculated with respect to the absorbed pump power. Such thermo-optic behavior is responsible for mode stabilization in the plano-plano microchip laser cavity, as well as the demonstrated perfect circular beam profile (M(2) < 1.1). Maximum continuous-wave output power of 450 mW is obtained with a slope efficiency of 31%. A set of output couplers is employed to achieve lasing in the spectral range of 2060-2096 nm. The increase of output coupler transmission results in deterioration of the laser performance attributed to the increased up-conversion losses.

  11. Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips.

    PubMed

    Ro, Kyung Won; Chang, Woo-Jin; Kim, Ho; Koo, Yoon-Mo; Hahn, Jong Hoon

    2003-09-01

    Capillary electrochromatography (CEC) and preconcentration of neutral compounds have been realized on poly(dimethylsiloxane) (PDMS) microchips. The channels are coated with polyelectrolyte multilayers to avoid absorption of hydrophobic analytes into PDMS. The structures of a microchip include an injector and a bead chamber with integrated frits, where the particles of the stationary phase are completely retained. Dimensions of the frit structures are 25 micro mx20 micro m, and the space between the structures is 3 micro m. A neutral compound, BODIPY, that is strongly absorbed into native PDMS, is successfully and selectively retained on octadecylsilane-coated silica beads in the bead chamber with a concentration enhancement of up to 100 times and eluted with elution buffer solution containing 70% acetonitrile. Preconcentrations and CEC separations of coumarins have been conducted with the same device and achieved complete separations in less than 50 s.

  12. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents

    USGS Publications Warehouse

    Takekawa, John Y.; Iverson, Samuel A.; Schultz, Annie K.; Hill, Nichola J.; Cardona, Carol J.; Boyce, Walter M.; Dudley, Joseph P.

    2010-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID(Registered), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.

  13. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  14. Metal oxide based multisensor array and portable database for field analysis of antioxidants

    PubMed Central

    Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana

    2014-01-01

    We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993

  15. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  16. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Use of portable ladders - field observations and self-reported safety performance in the cable TV industry.

    PubMed

    Chang, Wen-Ruey; Huang, Yueng-Hsiang; Brunette, Christopher; Lee, Jin

    2017-11-01

    Portable ladders incidents remain a major cause of falls from heights. This study reported field observations of environments, work conditions and safety behaviour involving portable ladders and their correlations with self-reported safety performance. Seventy-five professional installers of a company in the cable and other pay TV industry were observed for 320 ladder usages at their worksites. The participants also filled out a questionnaire to measure self-reported safety performance. Proper setup on slippery surfaces, correct method for ladder inclination setup and ladder secured at the bottom had the lowest compliance with best practices and training guidelines. The observation compliance score was found to have significant correlation with straight ladder inclined angle (Pearson's r = 0.23, p < 0.0002) and employees' self-reported safety participation (r = 0.29, p < 0.01). The results provide a broad perspective on employees' safety compliance and identify areas for improving safety behaviours. Practitioner Summary: A checklist was used while observing professional installers of a cable company for portable ladder usage at their worksites. Items that had the lowest compliance with best practices and training guidelines were identified. The results provide a broad perspective on employees' safety compliance and identify areas for improving safety behaviours.

  18. Free-solution electrophoretic separations of DNA–drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength

    PubMed Central

    Albrecht, Jennifer Coyne; Kerby, Matthew B.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Wang, Xiaoxiao; Barron, Annelise E.

    2012-01-01

    Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of Free-Solution Conjugate Electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. Single-stranded DNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE’s ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with pHEA-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags. PMID:21500207

  19. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control.

    PubMed

    Ouyang, Yiwen; Duarte, Gabriela R M; Poe, Brian L; Riehl, Paul S; dos Santos, Fernando M; Martin-Didonet, Claudia C G; Carrilho, Emanuel; Landers, James P

    2015-12-11

    Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s(-1) with a cooling rate of roughly -12 ± 0.9 °C s(-1) assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human β-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human β-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification while

  20. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T

    2009-04-07

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.

  1. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.

    2009-01-01

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306

  2. Comparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus).

    PubMed

    Chen, Patty H; White, Charles E

    2006-01-01

    This study compared rabbit rectal thermometry with 4 other thermometry techniques: an implantable microchip temperature transponder, an environmental noncontact infrared thermometer, a tympanic infrared thermometer designed for use on humans, and a tympanic infrared thermometer designed for use on animals. The microchip transponder was implanted between the shoulder blades; the environmental noncontact infrared thermometer recorded results from the base of the right pinna and the left inner thigh, and the tympanic infrared thermometer temperatures were taken from the right ear. Results from each technique were compared to determine agreement between the test modality and the rectal temperature. The practicality and reliability of the modalities were reviewed also. According to this study, the implantable microchip transponder measurements agreed most closely with the rectal temperature.

  3. Integration of a Graphite/PMMA CompositeElectrode into a Poly(methyl methacrylate) (PMMA) Substrate for Electrochemical Detection in Microchips

    PubMed Central

    Regel, Anne; Lunte, Susan

    2013-01-01

    Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by microchip electrophoresis (ME). PMID:23670816

  4. R&D 100, 2016: T-Quake – Quantum-Mechanical Transmitter/Receiver Microchip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauke-Pedretti, Anna; Camacho, Ryan; Thayer, Gayle

    2016-11-07

    Applying advanced microfabrication techniques and innovative microdesign, the Sandia Enabled Communications and Authentication Network (SECANT) team has designed and produced photonic microchips capable of sending, receiving, and processing quantum signals for applications in cyber and physical security.

  5. Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis

    PubMed Central

    Nikcevic, Irena; Lee, Se Hwan; Piruska, Aigars; Ahn, Chong H.; Ridgway, Thomas H.; Limbach, Patrick A.; Wehmeyer, K. R.; Heineman, William R.; Seliskar, Carl J.

    2009-01-01

    Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I–V) characteristic, and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes - fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters PMID:17477932

  6. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.

    PubMed

    Price, Alexander K; Fischer, David J; Martin, R Scott; Spence, Dana M

    2004-08-15

    The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.

  7. Hand-portable liquid chromatographic instrumentation.

    PubMed

    Sharma, Sonika; Tolley, Luke T; Tolley, H Dennis; Plistil, Alex; Stearns, Stanley D; Lee, Milton L

    2015-11-20

    Over the last four decades, liquid chromatography (LC) has experienced an evolution to smaller columns and particles, new stationary phases and low flow rate instrumentation. However, the development of person-portable LC has not followed, mainly due to difficulties encountered in miniaturizing pumps and detectors, and in reducing solvent consumption. The recent introduction of small, non-splitting pumping systems and UV-absorption detectors for use with capillary columns has finally provided miniaturized instrumentation suitable for high-performance hand-portable LC. Fully integrated microfabricated LC still remains a significant challenge. Ion chromatography (IC) has been successfully miniaturized and applied for field analysis; however, applications are mostly limited to inorganic and small organic ions. This review covers advancements that make possible more rapid expansion of portable forms of LC and IC. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  9. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  10. Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy.

    PubMed

    Kudlinski, A; Lelek, M; Barviau, B; Audry, L; Mussot, A

    2010-08-02

    Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350-600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.

  11. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  12. A simple and highly sensitive spectroscopic fluorescence-detection system for multi-channel plastic-microchip electrophoresis based on side-entry laser-beam zigzag irradiation.

    PubMed

    Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro

    2017-06-27

    A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.

  13. Simultaneous detection of 19 K-ras mutations by free-solution conjugate electrophoresis of ligase detection reaction products on glass microchips

    PubMed Central

    Albrecht, Jennifer Coyne; Kotani, Akira; Lin, Jennifer S.; Soper, Steven A.; Barron, Annelise E.

    2015-01-01

    We demonstrate here the power and flexibility of free-solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild-type DNA. Here, four large drag-tags are used to achieve free-solution electrophoretic separation of 19 LDR products ranging in size from 42–66 nt that correspond to mutations in the K-ras oncogene. LDR-FSCE enabled electrophoretic resolution of these 19 LDR-FSCE products by CE in 13.5 minutes (E = 310 V/cm) and by microchip electrophoresis in 140 seconds (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free-solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR-FSCE products were separated in < 70 seconds with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K-ras mutations on integrated “sample-in/answer-out” devices with amplification, LDR, and detection all on one platform. PMID:23192597

  14. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  15. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    PubMed

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  16. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-10-15

    We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.

  17. Laser-induced fluorescence microscopic system using an optical parametric oscillator for tunable detection in microchip analysis.

    PubMed

    Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi

    2005-06-01

    A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.

  18. Portable Applications in Mobile Education. Technical Evaluation Report 57

    ERIC Educational Resources Information Center

    Baggaley, Jon

    2006-01-01

    Portable software applications can be carried on a convenient storage medium such as a USB drive, and offer numerous benefits to mobile teachers and learner. The article illustrates the growing field of "portable apps" in reviews of seven contrasting products. These represent the major categories of document editing, email maintenance,…

  19. Development and Applications of Portable Gas Chromatography-Mass Spectrometry for Emergency Responders, the Military, and Law-Enforcement Organizations.

    PubMed

    Leary, Pauline E; Dobson, Gareth S; Reffner, John A

    2016-05-01

    Portable gas chromatography-mass spectrometry (GC-MS) systems are being deployed for field use, and are designed with this goal in mind. Performance characteristics of instruments that are successful in the field are different from those of equivalent technologies that are successful in a laboratory setting. These field-portable systems are extending the capabilities of the field user, providing investigative leads and confirmatory identifications in real time. Many different types of users benefit from the availability of this technology including emergency responders, the military, and law-enforcement organizations. This manuscript describes performance characteristics that are important for field-portable instruments, especially field-portable GC-MS systems, and demonstrates the value of this equipment to the disciplines of explosives investigations, fire investigations, and counterfeit-drug detection. This paper describes the current state of portable GC-MS technology, including a review of the development of portable GC-MS, as well as a demonstration of the value of this capability using different examples. © The Author(s) 2016.

  20. Portable track loading fixture improvement.

    DOT National Transportation Integrated Search

    2012-12-01

    The portable track loading fixture (PTLF) has been used in the field as a nondestructive means of testing track strength, as per the Federal Railroad Administrations (FRA) Track Safety Standards (TSS) 49 CFR 213.110 (m). The PTLF operates by pla...

  1. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  2. Advances in field-portable ion trap GC/MS instrumentation

    NASA Astrophysics Data System (ADS)

    Diken, Eric G.; Arno, Josep; Skvorc, Ed; Manning, David; Andersson, Greger; Judge, Kevin; Fredeen, Ken; Sadowski, Charles; Oliphant, Joseph L.; Lammert, Stephen A.; Jones, Jeffrey L.; Waite, Randall W.; Grant, Chad; Lee, Edgar D.

    2012-06-01

    The rapid and accurate detection and identification of chemical warfare agents and toxic industrial chemicals can be critical to the protection of military and civilian personnel. The use of gas chromatography (GC) - mass spectrometry (MS) can provide both the sensitivity and selectivity required to identify unknown chemicals in complex (i.e. real-world) environments. While most widely used as a laboratory-based technique, recent advances in GC, MS, and sampling technologies have led to the development of a hand-portable GC/MS system that is more practical for field-based analyses. The unique toroidal ion trap mass spectrometer (TMS) used in this instrument has multiple benefits related to size, weight, start-up time, ruggedness, and power consumption. Sample separation is achieved in record time (~ 3 minutes) and with high resolution using a state-of-the-art high-performance low-thermal-mass GC column. In addition to providing a system overview highlighting its most important features, the presentation will focus on the chromatographic and mass spectral performance of the system. Results from exhaustive performance testing of the new instrument will be introduced to validate its unique robustness and ability to identify targeted and unknown chemicals.

  3. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  4. Continuous two-wave lasing in microchip Nd : YAG lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S

    2011-08-31

    Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

  5. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunn, Amoret L.; Fritz, Brad G.; Wellman, Dawn M.

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist inmore » the planning for the characterization activities in the RI/FS.« less

  6. Lunar portable magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.; Dubois, R. L.; Simmons, G.

    1972-01-01

    The purpose of the Apollo 16 lunar portable magnetometer (LPM) experiment is to measure the permanent magnetic field at different geological sites on the lunar surface. The LPM field measurements are a vector sum of the steady remanent field from the lunar crust and of the time-varying ambient fields. The remanent magnetic fields measured in the Descartes region are the largest extraterrestrial fields yet measured in situ. These measurements show for the first time that the Descartes highlands have a stronger remanent magnetization than do the mare regions of the previous Apollo landing sites. The experimental technique used in the LPM experiment is described and the preliminary results obtained are discussed.

  7. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection.

    PubMed

    Liu, Junshan; Wang, Junyao; Chen, Zuanguang; Yu, Yong; Yang, Xiujuan; Zhang, Xianbin; Xu, Zheng; Liu, Chong

    2011-03-07

    A three-layer poly (methyl methacrylate) (PMMA) electrophoresis microchip integrated with Pt microelectrodes for contactless conductivity detection is presented. A 50 μm-thick PMMA film is used as the insulating layer and placed between the channel plate (containing the microchannel) and the electrode plate (containing the microelectrode). The three-layer structure facilitates the achievement of a thin insulating layer, obviates the difficulty of integrating microelectrodes on a thin film, and does not compromise the integration of microchips. To overcome the thermal and chemical incompatibilities of polymers and photolithographic techniques, a modified lift-off process was developed to integrate Pt microelectrodes onto the PMMA substrate. A novel two-step bonding method was created to assemble the complete PMMA microchip. A low limit of detection of 1.25 μg ml(-1) for Na(+) and high separation efficiency of 77,000 and 48,000 plates/m for Na(+) and K(+) were obtained when operating the detector at a low excitation frequency of 60 kHz.

  8. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  9. Expanding portable B-WIM technology.

    DOT National Transportation Integrated Search

    2011-06-28

    Advances in weigh-in-motion technology over the past 15 years have led to successful field application of a : commercial grade portable Bridge WIM system (B-WIM) in Europe. Under a previous UTCA Research : Project No. 07212, UTCA tested the state-of-...

  10. Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.

    PubMed

    Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H

    2007-04-15

    A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.

  11. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis.

    PubMed

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam T

    2009-12-01

    Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.

  12. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    PubMed

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  13. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    PubMed

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  14. A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for controllable high-order Hermite-Gaussian modes

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Bai, Sheng-Chuang; Ueda, Ken-ichi; Kaminskii, Alexander A.

    2016-09-01

    A nanosecond, high peak power, passively Q-switched laser for controllable Hermite-Gaussian (HG) modes has been achieved by manipulating the saturated inversion population inside the gain medium. The stable HG modes are generated in a Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser by applying a tilted pump beam. The asymmetrical saturated inversion population distribution inside the Nd:YVO4 crystal for desirable HG modes is manipulated by choosing the proper pump beam diameter and varying pump power. A HG9,8 mode passively Q-switched Nd:YVO4 microchip laser with average output power of 265 mW has been obtained. Laser pulses with a pulse width of 7.3 ns and peak power of over 1.7 kW working at 21 kHz have been generated in the passively Q-switched Nd:YVO4 microchip laser.

  15. Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration

    NASA Astrophysics Data System (ADS)

    Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart

    2015-09-01

    The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.

  16. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel. © The Author(s) 2016.

  17. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    NASA Astrophysics Data System (ADS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-03-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.

  18. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry

    PubMed Central

    2017-01-01

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples. PMID:28632988

  19. Observations of the Wind Field in Tornadoes, Funnel Clouds, and Wall Clouds with a Portable Doppler Radar.

    NASA Astrophysics Data System (ADS)

    Bluestein, H. B.; Unruh, W. P.

    1989-12-01

    A severe-storm intercept field program was held in Oklahoma and nearby parts of Texas during the 1987-38 spring seasons. The purpose of the experiment was to use, for the first time, a low-power, portable, continuous-wave (CW), 3-cm Doppler radar to obtain wind spectra in tornadoes from a distance of less than 10 km.We discuss measurements of spectra we recorded in a tornado, a funnel cloud, and two wall clouds. Photographic documentation is also given to aid in the interpretation of our data. Wind speeds as high as 60 m s1 were measured in the tornado. It was found that deploying the portable Doppler radar from a storm-intercept vehicle may increase substantially the number of measurements of wind speeds in tornadoes.The radar has recently been modified so that it has frequency modulation (FM) capability, and hence can obtain wind spectra within range bins. A plan is presented for using the radar to find the source of vorticity in tornadoes.

  20. A portable extensional rheometer for measuring the viscoelasticity of pitcher plant and other sticky liquids in the field.

    PubMed

    Collett, Catherine; Ardron, Alia; Bauer, Ulrike; Chapman, Gary; Chaudan, Elodie; Hallmark, Bart; Pratt, Lee; Torres-Perez, Maria Dolores; Wilson, D Ian

    2015-01-01

    Biological fluids often have interesting and unusual physical properties to adapt them for their specific purpose. Laboratory-based rheometers can be used to characterise the viscoelastic properties of such fluids. This, however, can be challenging as samples often do not retain their natural properties in storage while conventional rheometers are fragile and expensive devices ill-suited for field measurements. We present a portable, low-cost extensional rheometer designed specifically to enable in situ studies of biological fluids in the field. The design of the device (named Seymour) is based on a conventional capillary break-up extensional rheometer (the Cambridge Trimaster). It works by rapidly stretching a small fluid sample between two metal pistons. A battery-operated solenoid switch triggers the pistons to move apart rapidly and a compact, robust and inexpensive, USB 3 high speed camera is used to record the thinning and break-up of the fluid filament that forms between the pistons. The complete setup runs independently of mains electricity supply and weighs approximately 1 kg. Post-processing and analysis of the recorded images to extract rheological parameters is performed using open source software. The device was tested both in the laboratory and in the field, in Brunei Darussalam, using calibration fluids (silicone oil and carboxymethyl cellulose solutions) as well as Nepenthes pitcher plant trapping fluids as an example of a viscoelastic biological fluid. The fluid relaxation times ranged from 1 ms to over 1 s. The device gave comparable performance to the Cambridge Trimaster. Differences in fluid viscoelasticity between three species were quantified, as well as the change in viscoelasticity with storage time. This, together with marked differences between N. rafflesiana fluids taken from greenhouse and wild plants, confirms the need for a portable device. Proof of concept of the portable rheometer was demonstrated. Quantitative measurements of

  1. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    DOE PAGES

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; ...

    2012-01-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the compositionmore » of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1μg/cm 2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.« less

  2. A semi-automated, field-portable microscopy platform for clinical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2015-08-01

    Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.

  3. R&D 100, 2016: T-Quake – Quantum-Mechanical Transmitter/Receiver Microchip

    ScienceCinema

    Tauke-Pedretti, Anna; Camacho, Ryan; Thayer, Gayle

    2018-06-13

    Applying advanced microfabrication techniques and innovative microdesign, the Sandia Enabled Communications and Authentication Network (SECANT) team has designed and produced photonic microchips capable of sending, receiving, and processing quantum signals for applications in cyber and physical security.

  4. AN IMPROVED PORTABLE SURGICAL TABLE FOR THE FIELD AND LABORATORY

    EPA Science Inventory

    I substantially modified a portable surgical table design by Courtois (1981) to increase its durability and utility. The new design incorporated durable plastic components, a nonskid neoprene surgery surface, and surgical tool bins. The system was used to implant fish and amphibi...

  5. Polymer microchip capillary electrophoresis of proteins either off- or on-chip labeled with chameleon dye for simplified analysis

    PubMed Central

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam

    2009-01-01

    Microchip capillary electrophoresis of proteins labeled either off- or on-chip with the “chameleon” CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant cetyltrimethyl ammonium bromide prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for bovine serum albumin (BSA), corresponding to a ~7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 μg/mL concentration detection limit for BSA, corresponding to a ~700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices. PMID:19924700

  6. Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection

    PubMed Central

    Bowen, Amanda L; Martin, R. Scott

    2010-01-01

    While it has been shown that microchip electrophoresis with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in microchip electrophoresis has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for microchip electrophoresis and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both resolution and the number of theoretical plates for these analytes. The use of a bi-layer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multi-analyte separation and an average of 28,700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neuro-transmitters from a confluent layer of PC 12 cells. PMID:19739137

  7. Microchip problems plague DOD

    NASA Astrophysics Data System (ADS)

    Smith, R. J.

    1984-10-01

    The major issues in the controversy over the discovery of millions of defective microchips sold to the DOD by the Texas Instruments (TI) corporation are outlined. Defects in the microcircuits are blamed on inadequate testing procedures performed by TI during manufacture, and on inadequate testing procedures used by a subcontractor especially contracted to test the chips. Because the problem persisted over a period of years, defects might be possible in as many as 100 million chips used in a broad range of military applications including the Trident submarine, the B-52, B-1B, F-15, F-111, F-4, A-6, and A-7 aircraft, the Harpoon and HARM missile systems, and the Space Shuttles Discovery and Challenger. It is pointed out that although TI has accepted responsibility for the defective chips, little will be done by the DOD to compel the company to replace them, or to upgrade testing procedures. It is concluded that the serious nature of the problem could renew interest in recommendations for the standardization of military microcircuits.

  8. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    PubMed

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.

  9. A portable helium sniffer

    USGS Publications Warehouse

    Friedman, Irving; Denton, E.H.

    1976-01-01

    A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.

  10. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    PubMed

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  12. [Current status and prospects of portable NIR spectrometer].

    PubMed

    Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi

    2013-11-01

    Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.

  13. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  14. Fast analysis of domoic acid using microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Cheng, Yongqiang; Guo, Cuilian; Zhao, Bin; Yang, Li

    2017-04-01

    A fast and effective method was developed to detect domoic acid based upon microchip electrophoresis combined with laser-induced fluorescence detection. Through study of the gated injection process on the cross channel of the microchip, the low-voltage mode with relatively longer sample loading time was adopted to reduce the sample discrimination and improve the signal sensitivity. Fluorescein isothiocyanate was used as the derivatizing reagent for domoic acid. Under the optimized conditions, domoic acid was completely separated in 60 s with separation efficiency of 1.35 × 10 5  m -1 . The calibration curve was obtained in the range of 1.0 × 10 -9 to 1.0 × 10 -7  mol/L, and the detection limit reached 2.8 × 10 -10  mol/L. This developed method was successfully applied to analyze domoic acid in real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  16. Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm.

    PubMed

    You, Zhenyu; Wang, Yan; Xu, Jinlong; Zhu, Zhaojie; Li, Jianfu; Wang, Hongyan; Tu, Chaoyang

    2015-08-15

    We reported on a diode-end-pumped single-longitudinal-mode microchip laser using a 600-μm-thick Er:GGG crystal at ∼2.7  μm, generating a maximum output power of 50.8 mW and the maximum pulsed energy of 0.306 mJ, with repetition rates of pumping light of 300, 200, and 100 Hz, respectively. The maximum slope efficiency of the laser was 20.1%. The laser was operated in a single-longitudinal mode centered at about 2704 nm with a FWHM of 0.42 nm. The laser had a fundamental beam profile and the beam quality parameter M(2) was measured as 1.46. These results indicate that the Er:GGG microchip laser is a potential compact mid-infrared laser source.

  17. High-gain mid-infrared optical-parametric generation pumped by microchip laser.

    PubMed

    Ishizuki, Hideki; Taira, Takunori

    2016-01-25

    High-gain mid-infrared optical-parametric generation was demonstrated by simple single-pass configuration using PPMgLN devices pumped by giant-pulse microchip laser. Effective mid-infrared wavelength conversion with 1 mJ output energy from 2.4 mJ pumping using conventional PPMgLN could be realized. Broadband optical-parametric generation from 1.7 to 2.6 µm could be also measured using chirped PPMgLN.

  18. Portable atomic frequency standard based on coherent population trapping

    NASA Astrophysics Data System (ADS)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  19. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.

  20. Defense program pushes microchip frontiers

    NASA Astrophysics Data System (ADS)

    Julian, K.

    1985-05-01

    The very-high-speed integrated circuit (VHSIC) program of the Department of Defense will have a significant effect on the expansion of integrated circuit technology. This program, which is to cost several hundred million dollars, is accelerating the trend toward higher-speed, denser circuitry for microchips through innovative design and fabrication techniques. Teams in six different American companies are to design and fabricate a military useful 'brassboard' system which would employ chips developed in the first phase of the VHSIC program. Military objectives envisaged include automatic monitoring of displays in tactical aircraft by means of an artificial intelligence system, a brassboard used in airborne electronic warfare system, and antisubmarine warfare applications. After a fivefold improvement in performance achieved in the first phase, the second phase is concerned with a further 20-fold increase. The entire VHSIC program is, therefore, to produce a 100-fold gain over the state of the art found when the program started.

  1. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    ranged from 38% to 72%. In sum, all but one study advocated the use of portable bladder ultrasound as an alternative to catheterization. Economic Analysis An economic analysis estimating the budget-impact of BladderScan in complex continuing care facilities was completed. The analysis results indicated a $192,499 (Cdn) cost-savings per year per facility and a cost-savings of $2,887,485 (Cdn) for all 15 CCC facilities. No economic analysis was completed for long-term care and acute care facilities due to lack of data. Considerations for Policy Development Rapid diffusion of portable bladder ultrasound technology is expected. Recently, the IC5 project on improving continence care in Ontario’s complex continuing care centres piloted portable bladder ultrasound at 12 sites. Preliminary results were promising. Many physicians and health care facilities already have portable bladder ultrasound devices. However, portable bladder ultrasound devices for PVR measurement are not in use at most health care facilities in Ontario and Canada. The Verathon Corporation (Bothell, Wisconsin, United States), which patents BladderScan, is the sole licensed manufacturer of the portable bladder ultrasound in Canada. Field monopoly may influence the rising costs of portable bladder ultrasound, particularly when faced with rapid expansion of the technology. Several thousand residents of Ontario would benefit from portable bladder ultrasound. The number of residents of Ontario that would benefit from the technology is difficult to quantify, because the incidence and prevalence of incontinence are grossly under-reported. However, long-term care and complex continuing care institutions would benefit greatly from portable bladder ultrasound, as would numerous rehabilitation units, postsurgical care units, and urology clinics. The cost of the portable bladder ultrasound devices ranges from $17,698.90 to $19,565.95 (Cdn) (total purchase price per unit as quoted by the manufacturer). Additional

  2. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Reche, C.; Fonseca, A. S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.

    2015-12-01

    The performance of three portable monitors (micro-aethalometer AE51, DiscMini, Dusttrak DRX) was assessed for outdoor air exposure assessment in a representative Southern European urban environment. The parameters evaluated were black carbon, particle number concentration, alveolar lung-deposited surface area, mean particle diameter, PM10, PM2.5 and PM1. The performance was tested by comparison with widely used stationary instruments (MAAP, CPC, SMPS, NSAM, GRIMM aerosol spectrometer). Results evidenced a good agreement between most portable and stationary instruments, with R2 values mostly >0.80. Relative differences between portable and stationary instruments were mostly <20%, and <10% between different units of the same instrument. The only exception was found for the Dusttrak DRX measurements, for which occasional concentration jumps in the time series were detected. Our results validate the performance of the black carbon, particle number concentration, particle surface area and mean particle diameter monitors as indicative instruments (tier 2) for outdoor air exposure assessment studies.

  3. Performance Comparison of Field Portable Instruments to the Scanning Mobility Particle Sizer Using Monodispersed and Polydispersed Sodium Chloride Aerosols.

    PubMed

    Vo, Evanly; Horvatin, Matthew; Zhuang, Ziqing

    2018-05-21

    This study compared the performance of the following field portable aerosol instrument sets to performance of the reference Scanning Mobility Particle Sizer (SMPS): the handheld CPC-3007, the portable aerosol mobility spectrometer (PAMS), the NanoScan scanning mobility particle sizer (NanoScan SMPS) combined with an optical particle sizer (OPS). Tests were conducted with monodispersed and polydispersed aerosols. Monodispersed aerosols were controlled at the approximate concentration of 1 × 105 particles cm-3 and four monodispersed particle sizes of 30, 60, 100, and 300 nm were selected and classified for the monodispersed aerosol test, while three different steady-state concentration levels (low, medium, and high: ~8 × 103, 5 × 104, and 1 × 105 particles cm-3, respectively) were selected for the polydispersed aerosol test. For all four monodispersed aerosol sizes, particle concentrations measured with the NanoScan SMPS were within 13% of those measured with the reference SMPS. Particle concentrations measured with the PAMS were within 25% of those measured with the reference SMPS. Concentrations measured with the handheld condensation particle counter were within 30% of those measured with the reference SMPS. For the polydispersed aerosols, the particle sizes and concentrations measured with the NanoScan-OPS compared most favorably with those measured with the reference SMPS for three different concentration levels of low, medium, and high (concentration deviations ≤10% for all three concentration levels; deviations of particle size ≤4%). Although the particle-size comparability between the PAMS and the reference SMPS was quite reasonable with the deviations within 10%, the polydispersed particle concentrations measured with the PAMS were within 36% of those measured with the reference SMPS. The results of this evaluation will be useful for selecting a suitable portable device for our next workplace study phase of respiratory protection assessment. This

  4. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    PubMed

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  5. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.

    PubMed

    Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon

    2009-10-07

    We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.

  6. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Thomas; Willem, Henry; Ni, Chun Chun

    2014-12-12

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance ofmore » PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling

  7. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    PubMed Central

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  8. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes.

    PubMed

    Fredlake, Christopher P; Hert, Daniel G; Kan, Cheuk-Wai; Chiesl, Thomas N; Root, Brian E; Forster, Ryan E; Barron, Annelise E

    2008-01-15

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.

  9. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Kan, Cheuk-Wai; Chiesl, Thomas N.; Root, Brian E.; Forster, Ryan E.; Barron, Annelise E.

    2008-01-01

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require ≈70 min to deliver ≈650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered “hybrid” mechanism of DNA electromigration, in which DNA molecules alternate rapidly between reptating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs. PMID:18184818

  10. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    NASA Astrophysics Data System (ADS)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  11. Portable Welder

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A low cost, low power, self-contained portable welding gun designed for joining thermoplastics which become soft when heated and harden when cooled was developed originally by NASA's Langley Research Center for repairing helicopter windshields. Welder has a broad range of applications for joining both thermoplastic materials in the aerospace, automotive, appliance, and construction industries. Welders portability and low power requirement allow its use on-site in any type of climate, with power supplied by a variety of portable sources.

  12. Onsite Portable Alarm System - Its Merit and Application

    NASA Astrophysics Data System (ADS)

    Saita, J.; Sato, T.; Nakamura, Y.

    2007-12-01

    wave alarms was actually issued by three times during the rescue work. Although this is one example for the actual application of portable onsite alarm, it is possible to apply the other field as the construction field. In this presentation, Portable Onsite Alarm is discussed from views of its necessity and application.

  13. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.

    PubMed

    Natiele Tiago da Silva, Eiva; Marques Petroni, Jacqueline; Gabriel Lucca, Bruno; Souza Ferreira, Valdir

    2017-11-01

    In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out. The graphite electrode was coupled to PDMS microchips in end-channel configuration and electrophoretic experiments were performed using nitrite and ascorbate as probe analytes. The analytes were successfully separated and detected in well-defined peaks with satisfactory resolution using the microfluidic platform proposed. The repeatability of the pencil graphite electrode was satisfactory (RSD values of 1.6% for nitrite and 12.3% for ascorbate, regarding the peak currents) and its lifetime was estimated to be ca. 700 electrophoretic runs over a cost of ca. $ 0.05 per electrode. The limits of detection achieved with this system were 2.8 μM for nitrite and 5.7 μM for ascorbate. For proof of principle, the pencil graphite electrode was employed for the real analysis of well water samples and nitrite was successfully quantified at levels below its maximum contaminant level established in Brazil and US. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy.

    PubMed

    Wang, Kang; Xia, Xing-Hua

    2006-03-31

    The end of separation channel in a microchip was electrochemically mapped using the feedback imaging mode of scanning electrochemical microscopy (SECM). This method provides a convenient way for microchannel-electrode alignment in microchip capillary electrophoresis. Influence of electrode-to-channel positions on separation parameters in this capillary electrophoresis-electrochemical detection (CE-ED) was then investigated. For the trapezoid shaped microchannel, detection in the central area resulted in the best apparent separation efficiency and peak shape. In the electrode-to-channel distance ranging from 65 to 15mum, the limiting peak currents of dopamine increased with the decrease of the detection distance due to the limited diffusion and convection of the sample band. Results showed that radial position and axial distance of the detection electrode to microchannel was important for the improvement of separation parameters in CE amperometric detection.

  15. Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode.

    PubMed

    Ma, Yingjun; Wu, Li; Wu, Hehui; Chen, Weimin; Wang, Yanli; Gu, Shijie

    2008-11-10

    We present a single longitudinal mode, diode pumped Nd:YVO(4) microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO(4) and the principle axes of QWPs are oriented at 45 degrees to the c-axis of Nd:YVO(4). Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO(4), two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO(4). The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30 degrees C, respectively.

  16. Portable Technology Comes of Age

    ERIC Educational Resources Information Center

    Wangemann, Paul; Lewis, Nina; Squires, David A.

    2003-01-01

    The PDA was originally conceived of as a portable handheld electronic device that provided a user with a tool to organize his or her life through easy access to a personal calendar, daily planner, and address book. Over the years, these devices have expanded to include many new functions, which have helped more applications in diverse fields. This…

  17. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Dong, Jun

    2017-05-01

    A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.

  18. Passive Q-switching of microchip lasers based on Ho:YAG ceramics.

    PubMed

    Lan, R; Loiko, P; Mateos, X; Wang, Y; Li, J; Pan, Y; Choi, S Y; Kim, M H; Rotermund, F; Yasukevich, A; Yumashev, K; Griebner, U; Petrov, V

    2016-06-20

    A Ho:YAG ceramic microchip laser pumped by a Tm fiber laser at 1910 nm is passively Q-switched by single- and multi-layer graphene, single-walled carbon nanotubes (SWCNTs), and Cr2+:ZnSe saturable absorbers (SAs). Employing SWCNTs, this laser generated an average power of 810 mW at 2090 nm with a slope efficiency of 68% and continuous wave to Q-switching conversion efficiency of 70%. The shortest pulse duration was 85 ns at a repetition rate of 165 kHz, and the pulse energy reached 4.9 μJ. The laser performance and pulse stability were superior compared to graphene SAs even for a different number of graphene layers (n=1 to 4). A model for the description of the Ho:YAG laser Q-switched by carbon nanostructures is presented. This modeling allowed us to estimate the saturation intensity for multi-layered graphene and SWCNT SAs to be 1.2±0.2 and 7±1  MW/cm2, respectively. When using Cr2+:ZnSe, the Ho:YAG microchip laser generated 11 ns/25 μJ pulses at a repetition rate of 14.8 kHz.

  19. Design of portable ultraminiature flow cytometers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Leary, James F.

    2018-02-01

    Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.

  20. Portable System for Field-Feeding Greywater Remediation and Recycling

    DTIC Science & Technology

    2006-07-01

    greywater made from canned chili con carne, baked beans, vegetable oil, and powdered soap in the proportions shown in Table 1. The food mixture was...the first box shows a scenario where the AFSC, without the benefit of recycling, uses 200 gpd; the cost of potable water is $0.03 per gallon; and...systems would benefit from miniaturization. The smaller, lighter, and more portable the device is, the more attractive it is to the Army. 6.4

  1. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.

    PubMed

    Cheng, Ying; Dong, Jun; Ren, Yingying

    2012-10-22

    Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

  2. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  3. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  4. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.

    PubMed

    Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A

    2007-08-01

    We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.

  5. Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications.

    PubMed

    Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H

    2018-01-16

    A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.

  6. Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xu, Yuanhong; Li, Jing; Wang, Erkang

    2008-05-01

    Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.

  7. Very Portable Remote Automatic Weather Stations

    Treesearch

    John R. Warren

    1987-01-01

    Remote Automatic Weather Stations (RAWS) were introduced to Forest Service and Bureau of Land Management field units in 1978 following development, test, and evaluation activities conducted jointly by the two agencies. The original configuration was designed for semi-permanent installation. Subsequently, a need for a more portable RAWS was expressed, and one was...

  8. Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.

    PubMed

    Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A

    2016-08-01

    Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261  cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.

  9. Trace analysis of D-tyrosine in biological samples by microchip electrophoresis with laser induced fluorescence detection.

    PubMed

    Huang, Yong; Shi, Ming; Zhao, Shulin; Liang, Hong

    2011-11-01

    A rapid and sensitive microchip electrophoresis (MCE) method with laser induced fluorescence (LIF) detection has been developed for the quantification of D-tyrosine (Tyr) in biological samples. The assay was performed using a MCE-LIF system with glass/poly(dimethylsiloxane) (PDMS) hybrid microchip after pre-column derivatization of amino acids with fluorescein isothiocyanate (FITC). Chiral separation of the derivatives was achieved by cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) using γ-CD as chiral selector in the running buffer. D/L-Tyr enantiomer was well separated in less than 140s. The limit of detection (S/N=3) was 3.3 × 10(-8) M. Using the present method, D-Tyr level in human plasma was found to vary significantly from normal humans to patients suffering from renal failure. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power.

    PubMed

    Serres, Josep Maria; Mateos, Xavier; Loiko, Pavel; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2014-07-15

    A diode-pumped microchip laser containing a quasi-monolithic plano-plano cavity is realized on the basis of a Tm:KLu(WO₄)₂ crystal. The maximum CW output power is 3.2 W (at an absorbed pump power of 6.8 W) and the slope efficiency as high as 50.4%. The laser is operating at 1946 nm in the TEM₀₀ mode with a M²<1.05. Microchip operation with Tm:KLu(WO₄)₂ is, in principle, due to a special crystal cut along the N(g) optical indicatrix axis. This crystal cut possesses positive near-spherical thermal lens that provides the required mode stabilization in the plano-plano cavity. Sensitivity factors of the thermal lens, "generalized" thermo-optic coefficients and constants describing the photoelastic effect are determined for the monolithic Tm:KLu(WO₄)₂ crystal.

  11. Nanoparticle-enhanced electrical detection of Zika virus on paper microchips.

    PubMed

    Draz, Mohamed Shehata; Venkataramani, Manasa; Lakshminarayanan, Harini; Saygili, Ecem; Moazeni, Maryam; Vasan, Anish; Li, Yudong; Sun, Xiaoming; Hua, Stephane; Yu, Xu G; Shafiee, Hadi

    2018-06-08

    Zika virus (ZIKV) is a reemerging flavivirus causing an ongoing pandemic and public health emergency worldwide. There are currently no effective vaccines or specific therapy for Zika infection. Rapid, low-cost diagnostics for mass screening and early detection are of paramount importance in timely management of the infection at the point-of-care (POC). The current Zika diagnostics are laboratory-based and cannot be implemented at the POC particularly in resource-limited settings. Here, we develop a nanoparticle-enhanced viral lysate electrical sensing assay for Zika virus detection on paper microchips with printed electrodes. The virus is isolated from biological samples using antibodies and labeled with platinum nanoparticles (PtNPs) to enhance the electrical signal. The captured ZIKV-PtNP complexes are lysed using a detergent to release the electrically charged molecules associated with the intact virus and the PtNPs on the captured viruses. The released charged molecules and PtNPs change the electrical conductivity of the solution, which can be measured on a cellulose paper microchip with screen-printed microelectrodes. The results confirmed a highly specific detection of ZIKV in the presence of other non-targeted viruses, including closely related flaviviruses such as dengue virus-1 and dengue virus-2 with a detection limit down to 101 virus particles per μl. The developed assay is simple, rapid, and cost-effective and has the potential for POC diagnosis of viral infections and treatment monitoring.

  12. Electro-optically tunable microwave source based on composite-cavity microchip laser.

    PubMed

    Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin

    2012-12-17

    A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.

  13. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  14. Analysis of munitions constituents in groundwater using a field-portable GC-MS.

    PubMed

    Bednar, A J; Russell, A L; Hayes, C A; Jones, W T; Tackett, P; Splichal, D E; Georgian, T; Parker, L V; Kirgan, R A; MacMillan, D K

    2012-05-01

    The use of munitions constituents (MCs) at military installations can produce soil and groundwater contamination that requires periodic monitoring even after training or manufacturing activities have ceased. Traditional groundwater monitoring methods require large volumes of aqueous samples (e.g., 2-4 L) to be shipped under chain of custody, to fixed laboratories for analysis. The samples must also be packed on ice and shielded from light to minimize degradation that may occur during transport and storage. The laboratory's turn-around time for sample analysis and reporting can be as long as 45 d. This process hinders the reporting of data to customers in a timely manner; yields data that are not necessarily representative of current site conditions owing to the lag time between sample collection and reporting; and incurs significant shipping costs for samples. The current work compares a field portable Gas Chromatograph-Mass Spectrometer (GC-MS) for analysis of MCs on-site with traditional laboratory-based analysis using High Performance Liquid Chromatography with UV absorption detection. The field method provides near real-time (within ~1 h of sampling) concentrations of MCs in groundwater samples. Mass spectrometry provides reliable confirmation of MCs and a means to identify unknown compounds that are potential false positives for methods with UV and other non-selective detectors. Published by Elsevier Ltd.

  15. GOSAT field experiments with a new portable mid-IR FTS in the western US

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kikuchi, N.; Kuze, A.; Suto, H.; Kawakami, S.; Hashimoto, M.; Kataoka, F.; Kasai, K.; Arai, T.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Roehl, C. M.; Leifer, I.; Yates, E. L.; Marrero, J. E.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.

    2016-12-01

    The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using a new portable Fourier transform spectrometer (FTS), EM27/SUN mid-IR,in western US field experiments at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy farming region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. These measurements were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in the early summer of 2016. Before the campaign, measurements from the JAXA EM27/SUN mid-IR were compared with those from the Total Carbon Column Observing Network (TCCON) station at Caltech. Then, we observed a diurnal cycle at the Chino dairy site, an area of concentrated animal husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, in-situ vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX). We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with the portable FTS.

  16. In-channel electrochemical detection in the middle of microchannel under high electric field.

    PubMed

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  17. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.

    PubMed

    Fogarty, Barbara A; Heppert, Kathleen E; Cory, Theodore J; Hulbutta, Kalonie R; Martin, R Scott; Lunte, Susan M

    2005-06-01

    The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.

  18. First-in-human testing of a wirelessly controlled drug delivery microchip.

    PubMed

    Farra, Robert; Sheppard, Norman F; McCabe, Laura; Neer, Robert M; Anderson, James M; Santini, John T; Cima, Michael J; Langer, Robert

    2012-02-22

    The first clinical trial of an implantable microchip-based drug delivery device is discussed. Human parathyroid hormone fragment (1-34) [hPTH(1-34)] was delivered from the device in vivo. hPTH(1-34) is the only approved anabolic osteoporosis treatment, but requires daily injections, making patient compliance an obstacle to effective treatment. Furthermore, a net increase in bone mineral density requires intermittent or pulsatile hPTH(1-34) delivery, a challenge for implantable drug delivery products. The microchip-based devices, containing discrete doses of lyophilized hPTH(1-34), were implanted in eight osteoporotic postmenopausal women for 4 months and wirelessly programmed to release doses from the device once daily for up to 20 days. A computer-based programmer, operating in the Medical Implant Communications Service band, established a bidirectional wireless communication link with the implant to program the dosing schedule and receive implant status confirming proper operation. Each woman subsequently received hPTH(1-34) injections in escalating doses. The pharmacokinetics, safety, tolerability, and bioequivalence of hPTH(1-34) were assessed. Device dosing produced similar pharmacokinetics to multiple injections and had lower coefficients of variation. Bone marker evaluation indicated that daily release from the device increased bone formation. There were no toxic or adverse events due to the device or drug, and patients stated that the implant did not affect quality of life.

  19. Evaluation and Refinement of a Field-Portable Drinking Water Toxicity Sensor Utilizing Electric Cell-Substrate Impedance Sensing and a Fluidic Biochip

    DTIC Science & Technology

    2014-01-01

    Potential interferences tested were chlorine and chloramine (commonly used for drinking water disinfection ), geosmin and 2-methyl-isoborneol (MIB...Protection Agency maximum residual disinfectant level for chlorine and chloramine is set at 4 mg l1 under the Safe Drinking Water Act and thus would...Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell–substrate impedance sensing and a fluidic

  20. Science and Technology of Bio-Inert Thin Films as Hermetic-Encapsulating Coatings for Implantable Biomedical Devices: Application to Implantable Microchip in the Eye for the Artificial Retina

    NASA Astrophysics Data System (ADS)

    Auciello, Orlando; Shi, Bing

    Extensive research has been devoted to the development of neuron prostheses and hybrid bionic systems to establish links between the nervous system and electronic or robotic prostheses with the main focus of restoring motor and sensory functions in blind patients. Artificial retinas, one type of neural prostheses we are currently working on, aim to restore some vision in blind patients caused by retinitis picmentosa or macular degeneration, and in the future to restore vision at the level of face recognition, if not more. Currently there is no hermetic microchip-size coating that provides a reliable, long-term (years) performance as encapsulating coating for the artificial retina Si microchip to be implanted inside the eye. This chapter focuses on the critical topics relevant to the development of a robust, long-term artificial retina device, namely the science and technology of hermetic bio-inert encapsulating coatings to protect a Si microchip implanted in the human eye from being attacked by chemicals existing in the eye's saline environment. The work discussed in this chapter is related to the development of a novel ultrananocrystalline diamond (UNCD) hermetic coating, which exhibited no degradation in rabbit eyes. The material synthesis, characterization, and electrochemical properties of these hermetic coatings are reviewed for application as encapsulating coating for the artificial retinal microchips implantable inside the human eye. Our work has shown that UNCD coatings may provide a reliable hermetic bio-inert coating technology for encapsulation of Si microchips implantable in the eye specifically and in the human body in general. Electrochemical tests of the UNCD films grown under CH4/Ar/H2 (1%) plasma exhibit the lowest leakage currents (˜7 × 10-7 A/cm2) in a saline solution simulating the eye environment. This leakage is incompatible with the functionality of the first-generation artificial retinal microchip. However, the growth of UNCD on top of the

  1. Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems.

    PubMed

    Selimovic, Asmira; Johnson, Alicia S; Kiss, István Z; Martin, R Scott

    2011-04-01

    A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various sizes and compositions is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against poly(dimethylsiloxane) (PDMS)-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode is used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing compositions enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 μm in diameter and 27 μm in height) that can be integrated within a fluidic network. As compared with the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/μM for the pillar versus 4.2 pA/μM for the flat electrode) and limit of detection (20 nM for the pillar versus 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface is generated as desired. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.

    PubMed

    Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun

    2007-08-20

    Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.

  3. Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip.

    PubMed

    Tsai, Shuo-Wen; Loughran, Michael; Suzuki, Hiroaki; Karube, Isao

    2004-02-01

    Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.

  4. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    PubMed

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sample preparation and detection device for infectious agents

    DOEpatents

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  6. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  7. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils.

    PubMed

    Cooley, Clarissa Zimmerman; Stockmann, Jason P; Armstrong, Brandon D; Sarracanie, Mathieu; Lev, Michael H; Rosen, Matthew S; Wald, Lawrence L

    2015-02-01

    As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. We construct and validate a truly portable (<100 kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating spatial encoding magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed two-dimensional (2D) image. Multiple receive channels are used to disambiguate the nonbijective encoding field. The system is validated with experimental images of 2D test phantoms. Similar to other nonlinear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. © 2014 Wiley Periodicals, Inc.

  8. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  9. Linearly polarized pumped passively Q-switched Nd:YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi

    2016-12-01

    A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.

  10. FieldSpec: A field portable mass spectrometer prototype for high frequency measurements of δ (2) H and δ (18) O ratios in water

    NASA Astrophysics Data System (ADS)

    López Días, Veneranda; Quang Hoang, Hung; Martínez-Carreras, Núria; Barnich, François; Wirtz, Tom; Pfister, Laurent; McDonnell, Jeffrey

    2016-04-01

    Hydrological studies relying on stable water isotopes to better understand water sources, flowpaths and transit times are currently limited by the coarse temporal resolution of sampling and analysis protocols. At present, two kinds of lab-based instruments are used : (i) the standard isotope ratio mass spectrometers (IRMS) [1] and (ii) the laser-based instruments [2, 3]. In both cases, samples need to be collected in the field and then transferred to the laboratory for the water isotopic ratio measurements (even further complex sample preparation is required for the IRMS). Hence, past and ongoing research targets the development of field deployable instruments for measuring stable water isotopes at high temporal frequencies. While recent studies have demonstrated that laser-based instruments may be taken to the field [4, 5], their size and power consumption still restrict their use to sites equipped with mains power or generators. Here, we present progress on the development of a field portable mass spectrometer (FieldSpec) for direct high frequency measurements of δ2H and δ18O ratios in water. The FieldSpec instrument is based upon the use of a double focusing magnetic sector mass spectrometer in combination with an electron impact ion source and a membrane dual inlet system. The instrument directly collects liquid water samples in the field, which are then converted into water vapour before being injected into the mass spectrometer for the stable isotope analysis. δ2H and δ18O are derived from the measured mass spectra. All the components are arranged in a vacuum case having a suit case type dimension with portable electronics and battery. Proof-of-concept experiments have been carried out to characterize the instrument. The results show that the FieldSpec instrument has good linearity (R2 = 0.99). The reproducibility of the instrument ranges between 1 and 4 ‰ for δ2H and between 0.1 and 0.4 ‰ for δ18O isotopic ratio measurements. A measurement

  11. View northeast of a microchip based computer control system installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of a microchip based computer control system installed in the early 1980's to replace Lamokin Tower, at center of photograph; panels 1 and 2 at right of photograph are part of main supervisory board; panel 1 controlled Allen Lane sub-station #7; responsiblity for this portion of the system was transferred to southeast Pennsylvania transit authority (septa) in 1985; panel 2 at extreme right controls catenary switches in a coach storage yard adjacent to the station - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  12. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-01-01

    We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.

  13. Determination of trace amount of cyanobacterial toxin in water by microchip based enzyme-linked immunosorbent assay.

    PubMed

    Pyo, Dongjin; Hahn, Jong Hoon

    2009-01-01

    Routine monitoring of microcystin in natural waters is difficult because the concentration of the toxin is usually lower than the detection limits. As a more sensitive detection method for microcystin, we developed a microchip based enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibodies. New monoclonal antibodies against the microcystin leucine-arginine variant (MCLR), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa, were prepared from cloned hybridoma cell lines. We used keyhole limpet hemocyanin(KLH)-conjugated MCLR as an immunogen for the production of mouse monoclonal antibody. The immunization, cell fusion, and screening of hybridoma cells producing anti-MCLR antibody were conducted. Since the ELISA test was highly sensitive, the newly developed microchip based ELISA can be suitable for the trace analysis of cyanobacterial hepatotoxins, microcystins in water. The linear responses of monoclonal antibodies with different concentrations of microcystin LR were established between 0.025 and 0.3 ng/mL.

  14. Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers

    NASA Astrophysics Data System (ADS)

    Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing

    2016-10-01

    It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.

  15. Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

    PubMed Central

    Chen, Ping-Hung; Chen, Shun-Niang; Tseng, Sheng-Hao; Deng, Ming-Jay; Lin, Yang-Wei; Sun, Yuh-Chang

    2016-01-01

    This paper describes a fabrication protocol for a dipole-assisted solid phase extraction (SPE) microchip available for trace metal analysis in water samples. A brief overview of the evolution of chip-based SPE techniques is provided. This is followed by an introduction to specific polymeric materials and their role in SPE. To develop an innovative dipole-assisted SPE technique, a chlorine (Cl)-containing SPE functionality was implanted into a poly(methyl methacrylate) (PMMA) microchip. Herein, diverse analytical techniques including contact angle analysis, Raman spectroscopic analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis were employed to validate the utility of the implantation protocol of the C-Cl moieties on the PMMA. The analytical results of the X-ray absorption near-edge structure (XANES) analysis also demonstrated the feasibility of the Cl-containing PMMA used as an extraction medium by virtue of the dipole-ion interactions between the highly electronegative C-Cl moieties and the positively charged metal ions. PMID:27584954

  16. Tm:GdVO4 microchip laser Q-switched by a Sb2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Bogusławski, Jakub; Serres, Josep Maria; Kifle, Esrom; Kowalczyk, Maciej; Mateos, Xavier; Sotor, Jarosław; Zybała, Rafał; Mars, Krzysztof; Mikuła, Andrzej; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin

    2018-02-01

    We report on the first application of a topological insulator based on antimony telluride (Sb2Te3) as a saturable absorber (SA) in a bulk microchip laser. The transmission-type SA consisted of a thin film of Sb2Te3 (thickness: 3 nm) deposited on a glass substrate by pulsed magnetron sputtering. The saturable absorption of the Sb2Te3 film was confirmed for ns-long pulses. The microchip laser was based on a Tm:GdVO4 crystal diode-pumped at 802 nm. In the continuous-wave regime, this laser generated 3.54 W at 1905-1921 nm with a slope efficiency η of 37%. The Q-switched laser generated a maximum average output power of 0.70 W at 1913 nm. The pulse energy and duration were 3.5 μJ and 223 ns, respectively, at a repetition rate of 200 kHz. The Sb2Te3 SAs are promising for passively Q-switched waveguide lasers at 2 μm.

  17. Simulating real-world field-based petrologic research in a field course: Incorporation of portable X-ray fluorescence spectrometry in the Iceland Volcanology Field Camp

    NASA Astrophysics Data System (ADS)

    Jordan, B.

    2016-12-01

    Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.

  18. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright... Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing portable transmitting...

  19. Efficacy of a portable oxygen concentrator with pulsed delivery for treatment of hypoxemia during equine field anesthesia.

    PubMed

    Coutu, Paige; Caulkett, Nigel; Pang, Daniel; Boysen, Søren

    2015-09-01

    Hypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air. Prospective clinical study. Fifteen yearling (250 - 400 kg) horses during field castration. Horses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05. Mean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003). These data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin. The portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  20. Microchip dual-frequency laser with well-balanced intensity utilizing temperature control.

    PubMed

    Hu, Miao; Zhang, Yu; Wei, Mian; Zeng, Ran; Li, Qiliang; Lu, Yang; Wei, Yizhen

    2016-10-03

    A continuous-wave microchip dual-frequency laser (DFL) with well balanced intensity was presented. In order to obtain such a balanced intensity distribution of the two frequency components, the DFL wavelengths were precisely tuned and spectrally matched with the emission cross section (ECS) spectrum of the gain medium by employing a temperature controller. Finally, when the heat sink temperature was controlled at -5.6°C, a 264 mW DFL signal was achieved with frequency separation at 67.52 GHz and intensity balance ratio (IBR) at 0.991.

  1. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets†

    PubMed Central

    Muluneh, M.

    2015-01-01

    Microfluidic chips have been developed to generate droplets and microparticles with control over size, shape, and composition not possible using conventional methods. However, it has remained a challenge to scale-up production for practical applications due to the inherently limited throughput of micro-scale devices. To address this problem, we have developed a self-contained microchip that integrates many (N = 512) micro-scale droplet makers. This 3 × 3 cm2 PDMS microchip consists of a two-dimensional array of 32 × 16 flow-focusing droplet makers, a network of flow channels that connect them, and only two inputs and one output. The key innovation of this technology is the hybrid use of both soft-lithography and direct laser-micromachining. The microscale resolution of soft lithography is used to fabricate flow-focusing droplet makers that can produce small and precisely defined droplets. Deeply engraved (h ≈ 500 μm) laser-machined channels are utilized to supply each of the droplet makers with its oil phase, aqueous phase, and access to an output channel. The engraved channels' low hydrodynamic resistance ensures that each droplet maker is driven with the same flow rates for highly uniform droplet formation.To demonstrate the utility of this approach, water droplets (d ≈ 80 μm) were generated in hexadecane on both 8 × 1 and 32 × 16 geometries. PMID:24166156

  2. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    NASA Astrophysics Data System (ADS)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  3. Operations manual for portable profiler : installing and using the portable profiler.

    DOT National Transportation Integrated Search

    2010-06-01

    This manual is divided into two sections. The first is using the UTA-Profiler Program : with the portable profiler for generating surface profilers. The second is installing the : portable profiler module on a typical van or truck. The calibration an...

  4. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    PubMed Central

    Gooneratne, Chinthaka P.; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jürgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device. PMID:27571084

  5. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization.

    PubMed

    Gooneratne, Chinthaka P; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G; Kosel, Jürgen

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  6. A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate.

    PubMed

    Guo, Jinxiu; Chen, Yu; Zhao, Lizhi; Sun, Ping; Li, Hongli; Zhou, Lei; Wang, Xiayan; Pu, Qiaosheng

    2016-12-16

    Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10 -4 cm 2 V -1 s -1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×10 5 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×10 5 /m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Loiko, P.; Yoon, S. J.; Serres, J. M.; Mateos, X.; Beecher, S. J.; Birch, R. B.; Savitski, V. G.; Kemp, A. J.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.; Mackenzie, J. I.

    2016-08-01

    High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77-450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.

  8. Portable Medical Laboratory Applications Software

    PubMed Central

    Silbert, Jerome A.

    1983-01-01

    Portability implies that a program can be run on a variety of computers with minimal software revision. The advantages of portability are outlined and design considerations for portable laboratory software are discussed. Specific approaches for achieving this goal are presented.

  9. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households.

    PubMed

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R

    2017-08-16

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.

  10. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households

    PubMed Central

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.

    2017-01-01

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989

  11. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  12. Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Cai, Zhiping; Chardon, Alain; Xu, Huiying; Féron, Patrice; Michel Stéphan, Guy

    2002-03-01

    An Er:Yb codoped phosphate glass microchip laser has been studied under pumping with a Ti:sapphire laser ranging from 945 to 990 nm. The characteristics (threshold, slope efficiency) are first described for an optimized laser. The gain spectrum is calculated for the transition 4I13/2→ 4I15/2 around 1535 nm from fundamental spectroscopic data and from experimental results. Red-shift effect on the frequency of a single mode is experimentally observed when the pump power is increased, originating from thermal effects. Temperature inside the microchip cavity and thermal expansion coefficient were determined by employing the intensity ratio of two green upconversion emission line centered at 530 and 554 nm, respectively, which quantitatively explain this red shift.

  13. Evaluation of a portable automated serum chemistry analyzer for field assessment of harlequin ducks, Histrionicus histrionicus

    USGS Publications Warehouse

    Stoskopf, Michael K.; Mulcahy, Daniel M.; Esler, Daniel N.

    2010-01-01

    A portable analytical chemistry analyzer was used to make field assessments of wild harlequin ducks (Histrionicus histrionicus) in association with telemetry studies of winter survival in Prince William Sound, Alaska. We compared serum chemistry results obtained on-site with results from a traditional laboratory. Particular attention was paid to serum glucose and potassium concentrations as potential indicators of high-risk surgical candidates based on evaluation of the field data. The median differential for glucose values ( = 8 2) between methods was 0.6 mmol/L (quartiles 0.3 and 0.9 mmol/L) with the median value higher when assayed on site. Analysis of potassium on site returned a median of 2.7 mmol/L ( = 8 8 ; quartiles 2.4 and 3.0 mmol/L). Serum potassium values were too low for quantitation by the traditional laboratory. Changes in several serum chemistry values following a three-day storm during the study support the value of on site evaluation of serum potassium to identify presurgical patients with increased anesthetic risk.

  14. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...

  15. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps...

  16. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips.

    PubMed

    Chen, Ying-Chieh; Tsai, Che-Yao; Lee, Chi-Young; Lin, I-Nan

    2014-05-01

    Thin ultrananocrystalline diamond (UNCD) films were evaluated for use as hermetic and bioinert encapsulating coatings for implantable microchips, where the reaction to UNCD in vitro and in vivo tissue was investigated. Leakage current tests showed that depositing UNCD coatings, which were conformally grown in (1% H2) Ar/CH4 plasma, on microchips rendered the surface electrochemically inactive, i.e. with a very low leakage current density (2.8×10(-5)Acm(-2) at -1V and 1.9×10(-3)Acm(-2) at ±5V) ex vivo. The impact of UNCD with different surface modifications on the growth and activation of macrophages was compared to that of standard-grade polystyrene. Macrophages attached to oxygen-terminated UNCD films down-regulated their production of cytokines and chemokines. Moreover, with UNCD-coated microchips, which were implanted subcutaneously into BALB/c mice for up to 3months, the tissue reaction and capsule formation was significantly decreased compared to the medical-grade titanium alloy Ti-6Al-4V and bare silicon. Additionally, the leakage current density, elicited by electrochemical activity, on silicon chips encapsulated in oxygen-terminated UNCD coatings remained at the low level of 2.5×10(-3)Acm(-2) at 5V for up to 3months in vivo, which is half the level of those encapsulated in hydrogen-terminated UNCD coatings. Thus, controlling the surface properties of UNCDs makes it possible to manipulate the in vivo functionality and stability of implantable devices so as to reduce the host inflammatory response following implantation. These observations suggest that oxygen-terminated UNCDs are promising candidates for use as encapsulating coatings for implantable microelectronic devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Chemical and biological threat-agent detection using electrophoresis-based lab-on-a-chip devices.

    PubMed

    Borowsky, Joseph; Collins, Greg E

    2007-10-01

    The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.

  18. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat

    PubMed Central

    Gunasekara, Dulan B.; Hulvey, Matthew K.; Lunte, Susan M.

    2012-01-01

    The combination of microchip electrophoresis (ME) with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection (ME-EC) with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (TTAB, as a buffer modifier) for the separation of nitrite (NO2-), glutathione (GSH), ascorbic acid (AA), and tyrosine (Tyr). A half-wave potential (E½) shift of approximately negative 500 mV was observed for NO2- and H2O2 standards in the in-channel configuration compared to end channel. Higher separation efficiencies were observed for both NO2- and H2O2 with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described. PMID:21437918

  19. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.

    PubMed

    Ladner, Yoann; Crétier, Gérard; Faure, Karine

    2012-10-01

    This article shows that there is great interest in using an electrochromatographic microchip made of hexyl acrylate (HA) based porous monolith cast within the channel of a cyclic olefin copolymer (COC) device. The monolith is simultaneously in situ synthesized and anchored to the inner walls of the channel in less than 10 min. By appropriate choice of light intensity used during the synthesis, the separation efficiency obtained for nonpolar solutes such as polycyclic aromatic hydrocarbons (PAH) is increased up to 250 000 plates/m. The performance of this HA-filled COC microchip was investigated for a wide range of analytes of varying nature. The reversed-phase separation of four aflatoxins is obtained in less than 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is possible thanks to the superimposition of the differences in electrophoretic mobility on the chromatographic process. The durability of the system at pH 13 allows the separation of five biogenic amines and the quantitative determination of two of them in numerous wine samples. The feasibility of on-line preconcentration is also demonstrated. Hydrophilic surface modification of COC channel via UV-photografting with poly(ethylene glycol) methacrylate (PEGMA) before in situ synthesis of HA, is necessary to reduce the adsorption of very hydrophobic solutes such as PAH during enrichment. The detection limit of fluoranthene is decreased down to less than 1 ppb with a preconcentration of 4.5 h on the HA-filled PEGMA functionalized COC microchip. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  1. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.119 Portable ladders. (a) Scope and applicability... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made...

  2. Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer.

    PubMed

    Lim, Hyunjung; Nam, Jeonghun; Xue, Shubin; Shin, Sehyun

    2011-01-01

    Even though blood coagulation can be tested by various methods and techniques, the effect of RBC aggregation on blood coagulation is not fully understood. The present study monitored clot formation in a microchip-based light transmission aggregometer. Citrated blood samples with and without the addition of calcium ion solution were initially disaggregated by rotating a stirrer in the microchip. After abrupt stop of the rotating stirrer, the transmitted light intensity over time was recorded. The syllectogram (light intensity vs. time graph) manifested a rapid increase that is associated with RBC aggregation followed by a decrease that is associated with blood coagulation. The time to reach the peak point was used as a new index of coagulation time (CT) and ranged from 200 to 500 seconds in the present measurements. The CT was inversely proportional to the concentration of fibrinogen, which enhances RBC aggregation. In addition, the CT was inversely proportional to the hematocrit, which is similar to the case of the prothrombin time (PT), as measured by a commercial coagulometer. Thus, we carefully concluded that RBC aggregation should be considered in tests of blood coagulation.

  3. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  4. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND ROUTINE USE OF THE SPECTRACE 9000 FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER (UA-L-10.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for operating and calibrating the Spectrace 9000 field portable X-ray fluorescence analyzer. This procedure applies to the determination of metal concentrations in samples during the Arizona NHEXAS project and the "Border" st...

  5. Intelligent hand-portable proliferation sensing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantagesmore » of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.« less

  6. 20 T portable bipolar magnetic pulser.

    PubMed

    Wolf Cruz, R R; Dias, A L B; Bonfim, M J C

    2010-06-01

    High magnetic fields are required for the study of hard magnetic materials and, in many cases, the reversal of these fields is essential. This paper describes a portable pulse generator capable of producing bipolar magnetic fields up to 20 T into a copper coil. The peak current around 7 kA is achieved by discharging two capacitor banks through a combination of thyristors and fast diodes. Each pulse polarity has a semisinusoidal shape with 18 mus base width. Pulse triggering is computer controlled and magnetic measurements are done by an induction coil or Kerr effect acquired by a sampling oscilloscope. The whole apparatus weighs less than 2 kg. Hysteresis loops of NdFeB magnets were done to demonstrate the viability of the system.

  7. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.

    PubMed

    Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao

    2012-01-01

    Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.

  8. New designs for portable Raman instrumentation in defense applications

    NASA Astrophysics Data System (ADS)

    Carron, Keith; Ray, Bryan; Buller, Shane; Strickland, Aaron

    2016-05-01

    The realization of global terrorism after the September 11 attacks led immediately to a need for rapid field analysis of materials. Colorimetric test kits existed, but they are very subjective to interpret and they require contact with the sample. A push for handheld spectrometers quickly led to FTIR systems with ATR sampling, handheld IMS systems, and handheld Raman spectrometers. No single technique solves all of the problems of field detection. We will discuss the development of Raman instrumentation and, in particular, cover the advantages and the problems that are inherent in Raman portability. Portable Raman instrumentation began with a limited number of accessories: a point-and-shoot and some sort of vial adaptor. Currently this has expanded to stand-off attachments for measurements at a distance, air sampling to look for toxic gasses or aerosols, Orbital Raster Scan (ORS) to spatially average over samples, SERS attachments for trace detection, and fiber optic probes.

  9. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    PubMed Central

    Tahara, Yusuke; Nakashi, Kenichi; Ji, Ke; Ikeda, Akihiro; Toko, Kiyoshi

    2013-01-01

    We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor's performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm) with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm). The working electrode consists of a taste-sensing site comprising a poly(hydroxyethyl)methacrylate (pHEMA) hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC) membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor's response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research. PMID:23325168

  10. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  11. A portable vacuum for collecting arthropods from drop cloths.

    Treesearch

    H.G. Paul; R.R. Mason

    1985-01-01

    A hand-held vacuum modified for collecting insects and spiders in the field is described. The vacuum with battery is mounted on a lightweight pack-frame and is portable and versatile. It is especially useful for collecting arthropods that are dislodged from foliage samples and drop onto cloths.

  12. [Advances of portable electrocardiogram monitor design].

    PubMed

    Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong

    2014-06-01

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

  13. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

    PubMed

    Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz

    2017-08-01

    Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψ s ) (cross-validation correlation coefficient (r cv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (r cv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Operational field evaluation of the PAC-MAG man-portable magnetometer array

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan

    2013-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.

  15. Measurement of monomolecular binding constants of neutral phenols into the beta-cyclodextrin by continuous frontal analysis in capillary and microchip electrophoresis via a competitive assay.

    PubMed

    Le Saux, Thomas; Hisamoto, Hideaki; Terabe, Shigeru

    2006-02-03

    Measurement of binding constant by chip electrophoresis is a very promising technique for the high throughput screening of non-covalent interactions. Among the different electrophoretic methods available that yield the binding parameters, continuous frontal analysis is the most appropriate for a transposition from capillary electrophoresis (CE) to microchip electrophoresis. Implementation of this methodology in microchip was exemplified by the measurement of inclusion constants of 2-naphtalenesulfonate and neutral phenols (phenol, 4-chlorophenol and 4-nitrophenol) into beta-cyclodextrin by competitive assays. The issue of competitor choice is discussed in relation to its appropriateness for proper monitoring of the interaction.

  16. Cryogenic Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Hubka, Zbyněk.; Å ulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2016-04-01

    The spectral characteristics of laser active media, and thus those of the laser output, are temperature dependent. Specifically, in almost every crystal host, cooling to low temperatures leads to better heat removal, a higher efficiency and output power, and a reduced lasing threshold. Tm-ion doped lasers have an emission wavelength around 2 μm and are important in medicine for soft tissue cutting and hemostasis, as well as in LIDAR or atmosphere sensing technology. This paper presents the performance-temperature dependency of a 4 at. % doped Tm:YAP microchip. During the experiment the Tm:YAP crystal was placed inside an evacuated liquid nitrogen cryostat on a cooling finger. As its temperature was varied from 80 K to 340 K, changes were observed in the absorption spectrum, ranging from 750 nm to 2000 nm and in the fluorescence spectrum from 1600 nm to 2050 nm. Fluorescence lifetime was seen to rise and fall with decreasing temperature. The laser was pumped by a 792 nm laser diode and at 80 K the maximum output peak power of the laser was 4.6 W with 23 % slope efficiency and 0.6 W threshold, compared to 2.4 W output peak power, 13 % slope efficiency and 3.3 W threshold when at 340 K. The laser emission wavelength changed from 1883 nm to 1993 nm for 80 K and 300 K, respectively.

  17. Microchip electrospray: improvements in spray and signal stability during gradient elution by an inverted postcolumn makeup flow.

    PubMed

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-12-01

    Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.

  18. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number portability...

  19. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number portability...

  20. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number portability...

  1. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number portability...

  2. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number portability...

  3. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  4. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    PubMed

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  5. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...

  6. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...

  7. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used...

  8. 46 CFR 169.743 - Portable magazine chests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable magazine chests. 169.743 Section 169.743... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.743 Portable magazine chests. Portable magazine chests must be marked in letters at least 3 inches high: “PORTABLE MAGAZINE CHEST...

  9. 48 CFR 1837.170 - Pension portability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Pension portability. 1837... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Service Contracts-General 1837.170 Pension portability. (a) It is NASA's policy not to require pension portability in service contracts. However, pension...

  10. Portable classroom leads to partnership.

    PubMed

    Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John

    2004-01-01

    Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library.

  11. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  12. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  13. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  14. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  15. 46 CFR 195.11-30 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable tanks. 195.11-30 Section 195.11-30 Shipping... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Portable Vans and Tanks § 195.11-30 Portable tanks. (a) All portable tanks, whether hazardous or nonhazardous commodities, shall be loaded and stowed in accordance...

  16. 46 CFR 108.651 - Portable magazine chests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable magazine chests. 108.651 Section 108.651... AND EQUIPMENT Equipment Markings and Instructions § 108.651 Portable magazine chests. Each portable magazine chest must be marked: “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP LIGHTS AND FIRE AWAY” in letters at...

  17. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  18. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  19. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  20. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  1. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  2. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers.

    PubMed

    Shi, Wei; Kerr, Shaun; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Zemp, Roger J; Fedosejevs, Robert

    2010-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging technology for visualizing optically absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, OR-PAM imaging speed is limited by both scanning speed and laser pulse repetition rate. Unfortunately, lasers with high repetition rates and suitable pulse durations and energies are not widely available and can be cost-prohibitive and bulky. We are developing compact, passively Q-switched fiber and microchip laser sources for this application. The properties of these lasers are discussed, and pulse repetition rates up to 100 kHz are demonstrated. OR-PAM imaging was conducted using a previously developed photoacoustic probe, which enabled flexible scanning of the focused output of the lasers. Phantom studies demonstrate the ability to image with lateral spatial resolution of 7±2 μm with the microchip laser system and 15±5 μm with the fiber laser system. We believe that the high pulse repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where real-time imaging performance is essential.

  3. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    PubMed Central

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  4. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  5. Enhanced Microchip Electrophoresis Separations Combined with Electrochemical Detection Utilizing a Capillary Embedded in Polystyrene.

    PubMed

    Mehl, Benjamin T; Martin, R Scott

    2018-01-07

    The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.

  6. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  7. Deflectometry using portable devices

    NASA Astrophysics Data System (ADS)

    Butel, Guillaume P.; Smith, Greg A.; Burge, James H.

    2015-02-01

    Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.

  8. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  9. A portable instrument for the measurement of salinity of rainwater using FET's

    NASA Astrophysics Data System (ADS)

    Rao, A. M.

    1985-03-01

    A portable salinity meter with field effect transistors for the continuous recording of salinity of rainwater is described. The variations in salinity are converted into current variations by using a D.C. differential amplifier and is recorded on an Esterline Angus Recorder. The Meter enables us to measure rainfall intensity as well as salinity simultaneously. The chief advantages of the present instrument are that it is portable and has a range of measurement from 1×10-4 to 1×10-1 ppm on a linear scale.

  10. When microchip implants do more than drug delivery: blending, blurring, and bundling of protected health information and patient monitoring.

    PubMed

    Bramstedt, Katrina A

    2005-01-01

    Although currently in the research stage, scientists argue that drug-releasing microchip implants are on the horizon for future patients. This paper presents ethical reflection on these implants and identifies specific areas of concern; namely, patient monitoring and tracking, and patient privacy and confidentiality. It is foreseeable that drug delivery chips could be multifunctional with the overt or covert addition of sensors that monitor more than just the bloodstream concentrations of prescribed drugs (e.g., cotinine and alcohol in non-compliant patients, patient location via radio frequency or global positioning satellite). Similarly, it is foreseeable that these chips could be embedded with a patient's protected health information that could potentially be accessed and used by unauthorized persons. While drug delivery microchips are theoretically convenient and accurate for dosing, and might offer faster drug delivery with fewer side effects, ethical issues loom and should be contemplated now, while the technology is still under development.

  11. Analysis of anabolic steroids in urine by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry with chlorobenzene as dopant.

    PubMed

    Hintikka, Laura; Haapala, Markus; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2013-10-18

    A gas chromatography-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) method was developed for the analysis of anabolic androgenic steroids in urine as their trimethylsilyl derivatives. The method utilizes a heated nebulizer microchip in atmospheric pressure photoionization mode (μAPPI) with chlorobenzene as dopant, which provides high ionization efficiency by producing abundant radical cations with minimal fragmentation. The performance of GC-μAPPI-MS/MS was evaluated with respect to repeatability, linearity, linear range, and limit of detection (LOD). The results confirmed the potential of the method for doping control analysis of anabolic steroids. Repeatability (RSD<10%), linearity (R(2)≥0.996) and sensitivity (LODs 0.05-0.1ng/mL) were acceptable. Quantitative performance of the method was tested and compared with that of conventional GC-electron ionization-MS, and the results were in good agreement. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on two...

  13. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on two...

  14. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on two...

  15. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on two...

  16. Pulse laser head with monolithic thermally bonded microchip operating at 1.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Młyńczak, Jarosław; Kopczyński, Krzysztof; Belghachem, Nabil; Kisielewski, Jarosław; Stepień, Ryszard; Wychowaniec, Marek; Galas, Jacek; Litwin, Dariusz; CzyŻewski, Adam

    2016-12-01

    On the basis of thermally bonded Er,Yb:glass/Co:MALO microchip a laser head pumped by fiber coupled laser diode was designed. The performance of the laser head were investigated and the main output parameters were determined. The energy over 40 μJ in 3.8 ns pulse with repetition rate of 0.735 kHz was achieved. The laser head characterized by such parameters can successfully be used in tele-detection applications.

  17. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and...

  18. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and...

  19. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and...

  20. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and...

  1. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and...

  2. Study on portable optical 3D coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  3. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  4. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the access...

  5. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the access...

  6. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the access...

  7. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the access...

  8. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the access...

  9. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekova, legal representative, Natalia V.; Mirzabekov, deceased, Andrei D.

    2007-12-04

    The present invention relates to methods and compositions for using nucleotide sequence variations of 16S and 23S rRNA within the B. cereus group to discriminate a highly infectious bacterium B. anthracis from closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations and discriminate B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed samples, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  10. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  11. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  12. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  13. Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.

    PubMed

    Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A

    2012-11-01

    We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.

  14. Recent Developments in Instrumentation for Capillary Electrophoresis and Microchip-Capillary Electrophoresis

    PubMed Central

    Felhofer, Jessica L.; Blanes, Lucas; Garcia, Carlos D.

    2010-01-01

    Over the last years there has been an explosion in the number of developments and applications of capillary electrophoresis (CE) and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on contributions published in the last five years, is intended to complement the papers presented in this special issue dedicated to Instrumentation and to provide an overview on the general trend and some of the most remarkable developments published in the areas of high voltage power supplies, detectors, auxiliary components, and compact systems. It also includes few examples of alternative uses of and modifications to traditional CE instruments. PMID:20665910

  15. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.

    PubMed

    Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G

    2018-02-15

    Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    PubMed

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  17. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsenko, E V; Voinilovich, A G; Rzheutskii, N V

    2013-05-31

    The room temperature laser generation in the yellow-green ({lambda} = 558.5-566.7 nm) spectral range has been demonstrated under optical pumping by a pulsed nitrogen laser of Cd(Zn)Se/ZnSe quantum dot heterostructures. The maximum achieved laser wavelength was as high as {lambda} = 566.7 nm at a laser cavity length of 945 {mu}m. High values of both the output pulsed power (up to 50 W) and the external differential quantum efficiency ({approx}60%) were obtained at a cavity length of 435 {mu}m. Both a high quality of the laser heterostructure and a low lasing threshold ({approx}2 kW cm{sup -2}) make it possible tomore » use a pulsed InGaN laser diode as a pump source. A laser microchip converter based on this heterostructure has demonstrated a maximum output pulse power of {approx}90 mW at {lambda} = 560 nm. The microchip converter was placed in a standard TO-18 (5.6 mm in diameter) laser diode package. (semiconductor lasers. physics and technology)« less

  18. From Bonding Wires to Banding Women. Proceedings of the International Consultation on Micro-Chips Technology (Manila, Philippines, October 1986).

    ERIC Educational Resources Information Center

    Center for Women's Resources, Quezon City (Philippines).

    In October 1986, 40 women from 12 countries gathered in the Philippines for a 10-day meeting of organizers, educators, and workers affected by and confronting the international electronics industry in microchip plants and in automated offices. Participants were from Malaysia, Indonesia, Thailand, the Philippines, Hong Kong, Japan, the Netherlands,…

  19. A laboratory and field evaluation of a portable immunoassay test for triazine herbicides in environmental water samples

    USGS Publications Warehouse

    Schulze, P.A.; Capel, P.D.; Squillace, P.J.; Helsel, D.R.

    1993-01-01

    The usefulness and sensitivity, of a portable immunoassay test for the semiquantitative field screening of water samples was evaluated by means of laboratory and field studies. Laboratory results indicated that the tests were useful for the determination of atrazine concentrations of 0.1 to 1.5 μg/L. At a concentration of 1 μg/L, the relative standard deviation in the difference between the regression line and the actual result was about 40 percent. The immunoassay was less sensitive and produced similar errors for other triazine herbicides. After standardization, the test results were relatively insensitive to ionic content and variations in pH (range, 4 to 10), mildly sensitive to temperature changes, and quite sensitive to the timing of the final incubation step, variances in timing can be a significant source of error. Almost all of the immunoassays predicted a higher atrazine concentration in water samples when compared to results of gas chromatography. If these tests are used as a semiquantitative screening tool, this tendency for overprediction does not diminish the tests' usefulness. Generally, the tests seem to be a valuable method for screening water samples for triazine herbicides.

  20. Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber.

    PubMed

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2015-06-01

    We report on the first Tm-doped double tungstate microchip laser Q-switched with graphene using a Tm:KLu(WO4)2 crystal cut along the Ng dielectric axis. This laser generates a maximum average output power of 310 mW with a slope efficiency of 13%. At a repetition rate of 190 kHz the shortest pulses with 285 ns duration and 1.6 µJ energy are achieved.

  1. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.

    PubMed

    Lobo-Júnior, Eulício O; Gabriel, Ellen F M; Dos Santos, Rodrigo A; de Souza, Fabrício R; Lopes, Wanderson D; Lima, Renato S; Gobbi, Angelo L; Coltro, Wendell K T

    2017-01-01

    This study describes a simple, rapid, and cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) (PVAc) emulsion as photoresist master. High-relief microfluidic structures were defined on poly(vinyl acetate) previously deposited on printed circuit boards surfaces without cleanroom facilities and sophisticated instrumentation. After a UV exposure, channels with heights ranging from 30 to 140 μm were obtained by controlling the emulsion mass deposited on the master surface. The developing stage was performed using water rather than the organic solvents that are applied for conventional masks. The surface morphology was characterized by optical imaging, profilometry, and SEM. Based on the achieved results, the proposed method offers suitable reproducibility for the prototyping of electrophoresis microchips in PDMS. The feasibility of the resulting PDMS electrophoresis chips was successfully demonstrated with the separation of major inorganic cations within 100 s using a contactless conductivity detection system. The separation efficiencies ranged from ca. 67 900 to 125 600 plates/m. Due to the satisfactory performance and simplified instrumentation, we believe this fabrication protocol presents potential to be implemented in any chemical, biochemical, or biological laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Trusted Portable Computing Device

    NASA Astrophysics Data System (ADS)

    Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang

    A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.

  3. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND ROUTINE USE OF THE SPECTRACE 9000 FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER (UA-L-10.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for operating and calibrating the Spectrace 9000 field portable X-ray fluorescence analyzer. This procedure applies to the determination of metal concentrations in samples during the Arizona NHEXAS project and the Border stud...

  4. Portable modular detection system

    DOEpatents

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  5. 49 CFR 180.603 - Qualification of portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Qualification of portable tanks. 180.603 Section... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Portable Tanks § 180.603 Qualification of portable tanks. (a) Each portable tank used for the transportation of hazardous materials must be an authorized...

  6. Microchip-Based Organophosphorus Detection Using Bienzyme Bioelectrocatalysis

    NASA Astrophysics Data System (ADS)

    Han, Yong Duk; Jeong, Chi Yong; Lee, Jun Hee; Lee, Dae-Sik; Yoon, Hyun C.

    2012-06-01

    We have developed a microsystem for the detection of organophosphorus (OP) compounds using acetylcholine esterase (AchE) and choline oxidase (ChOx) bienzyme bioelectrocatalysis. Because AchE is irreversibly inhibited by OP pesticides, the change in AchE activity with OP treatment can be traced to determine OP concentration. Polymer-associated ChOx immobilization on the working electrode surface and magnetic microparticle (MP)-assisted AchE deposition methods were employed to create an AchE-ChOx bienzyme-modified biosensing system. ChOx was immobilized on the micropatterned electrodes using poly(L-lysine), glutaraldehyde, and amine-rich interfacial surface. AchE was immobilized on the MP surface via Schiff's base formation, and the enzyme-modified MPs were deposited on the working electrode using a magnet under the microfluidic channel. The bioelectrocatalytic reaction between AchE-ChOx bienzyme cascade and the ferrocenyl electron shuttle was successfully used to detect OP with the developed microchip. This provides a self-contained and relatively easy method for OP detection. It requires minimal time and a small sample size, and has potential analytic applications in pesticides and chemical warfare agents.

  7. Portable bladder ultrasound: an evidence-based analysis.

    PubMed

    2006-01-01

    alternative to catheterization. An economic analysis estimating the budget-impact of BladderScan in complex continuing care facilities was completed. The analysis results indicated a $192,499 (Cdn) cost-savings per year per facility and a cost-savings of $2,887,485 (Cdn) for all 15 CCC facilities. No economic analysis was completed for long-term care and acute care facilities due to lack of data. Rapid diffusion of portable bladder ultrasound technology is expected. Recently, the IC5 project on improving continence care in Ontario's complex continuing care centres piloted portable bladder ultrasound at 12 sites. Preliminary results were promising. Many physicians and health care facilities already have portable bladder ultrasound devices. However, portable bladder ultrasound devices for PVR measurement are not in use at most health care facilities in Ontario and Canada. The Verathon Corporation (Bothell, Wisconsin, United States), which patents BladderScan, is the sole licensed manufacturer of the portable bladder ultrasound in Canada. Field monopoly may influence the rising costs of portable bladder ultrasound, particularly when faced with rapid expansion of the technology. Several thousand residents of Ontario would benefit from portable bladder ultrasound. The number of residents of Ontario that would benefit from the technology is difficult to quantify, because the incidence and prevalence of incontinence are grossly under-reported. However, long-term care and complex continuing care institutions would benefit greatly from portable bladder ultrasound, as would numerous rehabilitation units, postsurgical care units, and urology clinics. The cost of the portable bladder ultrasound devices ranges from $17,698.90 to $19,565.95 (Cdn) (total purchase price per unit as quoted by the manufacturer). Additional training packages, batteries and battery chargers, software, gel pads, and yearly warranties are additional costs. Studies indicate that portable bladder ultrasound is a

  8. 46 CFR 2.75-25 - Portable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Portable fire extinguishers. 2.75-25 Section 2.75-25... Personnel § 2.75-25 Portable fire extinguishers. (a) The portable fire extinguishers listed and labeled as..., inclusive. (b) The procedures for manufacturers to follow and the requirements governing portable fire...

  9. 47 CFR 80.1189 - Portable ship earth stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Portable ship earth stations. 80.1189 Section....1189 Portable ship earth stations. (a) Portable ship earth stations are authorized to operate on board more than one ship. Portable ship earth stations are also authorized to be operated on board fixed...

  10. 47 CFR 80.1189 - Portable ship earth stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Portable ship earth stations. 80.1189 Section....1189 Portable ship earth stations. (a) Portable ship earth stations are authorized to operate on board more than one ship. Portable ship earth stations are also authorized to be operated on board fixed...

  11. 47 CFR 80.1189 - Portable ship earth stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Portable ship earth stations. 80.1189 Section....1189 Portable ship earth stations. (a) Portable ship earth stations are authorized to operate on board more than one ship. Portable ship earth stations are also authorized to be operated on board fixed...

  12. 47 CFR 80.1189 - Portable ship earth stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Portable ship earth stations. 80.1189 Section....1189 Portable ship earth stations. (a) Portable ship earth stations are authorized to operate on board more than one ship. Portable ship earth stations are also authorized to be operated on board fixed...

  13. 47 CFR 80.1189 - Portable ship earth stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Portable ship earth stations. 80.1189 Section....1189 Portable ship earth stations. (a) Portable ship earth stations are authorized to operate on board more than one ship. Portable ship earth stations are also authorized to be operated on board fixed...

  14. 21 CFR 868.5655 - Portable liquid oxygen unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...

  15. 21 CFR 868.5655 - Portable liquid oxygen unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...

  16. 21 CFR 868.5655 - Portable liquid oxygen unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...

  17. 21 CFR 868.5655 - Portable liquid oxygen unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...

  18. 21 CFR 868.5655 - Portable liquid oxygen unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...

  19. Microfluidic biosensing systems. Part I. Development and optimisation of enzymatic chemiluminescent micro-biosensors based on silicon microchips.

    PubMed

    Davidsson, Richard; Genin, Frédéric; Bengtsson, Martin; Laurell, Thomas; Emnéus, Jenny

    2004-10-01

    Chemiluminescent (CL) enzyme-based flow-through microchip biosensors (micro-biosensors) for detection of glucose and ethanol were developed for the purpose of monitoring real-time production and release of glucose and ethanol from microchip immobilised yeast cells. Part I of this study focuses on the development and optimisation of the micro-biosensors in a microfluidic sequential injection analysis (microSIA) system. Glucose oxidase (GOX) or alcohol oxidase (AOX) was co-immobilised with horseradish peroxidase (HRP) on porous silicon flow through microchips. The hydrogen peroxide produced from oxidation of the corresponding analyte (glucose or ethanol) took part in the chemiluminescent (CL) oxidation of luminol catalysed by HRP enhanced by addition of p-iodophenol (PIP). All steps in the microSIA system, including control of syringe pump, multiposition valve (MPV) and data readout, were computer controlled. The influence of flow rate and luminol- and PIP concentration were investigated using a 2(3)-factor experiment using the GOX-HRP sensor. It was found that all estimated single factors and the highest order of interaction were significant. The optimum was found at 250 microM luminol and 150 microM PIP at a flow rate of 18 microl min(-1), the latter as a compromise between signal intensity and analysis time. Using the optimised system settings one sample was processed within 5 min. Two different immobilisation chemistries were investigated for both micro-biosensors based on 3-aminopropyltriethoxsilane (APTS)- or polyethylenimine (PEI) functionalisation followed by glutaraldehyde (GA) activation. GOX-HRP micro-biosensors responded linear in a log-log format within the range 10-1000 microM glucose. Both had an operational stability of at least 8 days, but the PEI-GOX-HRP sensor was more sensitive. The AOX-HRP micro-biosensors responded linear (log-log) in the range between 1 and 10 mM ethanol, but the PEI-AOX-HRP sensor was in general more sensitive. Both sensors

  20. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  1. Portable apparatus for separating sample and detecting target analytes

    DOEpatents

    Renzi, Ronald F.; Wally, Karl; Crocker, Robert W.; Stamps, James F.; Griffiths; Stewart K. ,; Fruetel, Julia A.; Horn, Brent A.; Shokair, Isaac R.; Yee, Daniel D.; VanderNoot, Victoria A.; Wiedenman, Boyd J.; West, Jason A. A.; Ferko, Scott M.

    2008-11-18

    Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.

  2. 46 CFR 78.47-70 - Portable magazine chests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Portable magazine chests. 78.47-70 Section 78.47-70... Fire and Emergency Equipment, Etc. § 78.47-70 Portable magazine chests. (a) Portable magazine chest shall be marked in letters of at least 3 inches high “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP LIGHTS AND...

  3. 46 CFR 97.37-47 - Portable magazine chests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable magazine chests. 97.37-47 Section 97.37-47... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-47 Portable magazine chests. (a) Portable magazine chests shall be marked in letters at least 3 inches high: “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP...

  4. 46 CFR 196.37-47 - Portable magazine chests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable magazine chests. 196.37-47 Section 196.37-47... Markings for Fire and Emergency Equipment, etc. § 196.37-47 Portable magazine chests. (a) Portable magazine chests shall be marked in letters at least 3 inches high: PORTABLE MAGAZINE CHEST — FLAMMABLE — KEEP...

  5. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  6. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  7. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  8. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  9. 29 CFR 1915.132 - Portable electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  10. 29 CFR 1915.132 - Portable electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  11. 29 CFR 1915.132 - Portable electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  12. 29 CFR 1915.132 - Portable electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  13. 29 CFR 1915.132 - Portable electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  14. 21 CFR 868.5440 - Portable oxygen generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  15. 21 CFR 868.5440 - Portable oxygen generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  16. 21 CFR 868.5440 - Portable oxygen generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  17. 21 CFR 868.5440 - Portable oxygen generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  18. 21 CFR 868.5440 - Portable oxygen generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  19. 46 CFR 98.30-6 - Lifting a portable tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifting a portable tank. 98.30-6 Section 98.30-6... CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-6 Lifting a portable tank. No person may lift a portable tank with another portable tank. [CGD 73-172, 39 FR...

  20. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  1. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  2. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  3. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  4. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  5. 30 CFR 47.44 - Temporary, portable containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary, portable containers. 47.44 Section... TRAINING HAZARD COMMUNICATION (HazCom) Container Labels and Other Forms of Warning § 47.44 Temporary, portable containers. (a) The operator does not have to label a temporary, portable container if he or she...

  6. 48 CFR 1852.237-71 - Pension portability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Pension portability. 1852... 1852.237-71 Pension portability. As prescribed at 1837.110-70(b), insert the following clause: Pension Portability (JAN 1997) (a) In order for pension costs attributable to employees assigned to this contract to...

  7. Laser induced disruption of bacterial spores on a microchip.

    PubMed

    Hofmann, Oliver; Murray, Kirk; Wilkinson, Alan-Shaun; Cox, Timothy; Manz, Andreas

    2005-04-01

    We report on the development of a laser based spore disruption method. Bacillus globigii spores were mixed with a laser light absorbing matrix and co-crystallized into 200-microm-wide and 20-microm-deep nanovials formed in a polydimethylsiloxane (PDMS) target plate. Surface tension effects were exploited to effect up to 125-fold spore enrichment. When the target zones were illuminated at atmospheric pressure with pulsed UV-laser light at fluences below 20 mJ cm(-2) a change in spore morphology was observed within seconds. Post illumination PCR analysis suggests the release of endogenous DNA indicative of spore disruption. For laser fluences above 20 mJ cm(-2), desorption of spores and fragments was also observed even without a matrix being employed. Desorbed material was collected in a PDMS flowcell attached to the target plate during laser illumination. This opens up a route towards the direct extraction of released DNA in an integrated spore disruption-PCR amplification microchip device.

  8. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    PubMed Central

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  9. Optical design of portable nonmydriatic fundus camera

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Chang, Jun; Lv, Fengxian; He, Yifan; Liu, Xin; Wang, Dajiang

    2016-03-01

    Fundus camera is widely used in screening and diagnosis of retinal disease. It is a simple, and widely used medical equipment. Early fundus camera expands the pupil with mydriatic to increase the amount of the incoming light, which makes the patients feel vertigo and blurred. Nonmydriatic fundus camera is a trend of fundus camera. Desktop fundus camera is not easy to carry, and only suitable to be used in the hospital. However, portable nonmydriatic retinal camera is convenient for patient self-examination or medical stuff visiting a patient at home. This paper presents a portable nonmydriatic fundus camera with the field of view (FOV) of 40°, Two kinds of light source are used, 590nm is used in imaging, while 808nm light is used in observing the fundus in high resolving power. Ring lights and a hollow mirror are employed to restrain the stray light from the cornea center. The focus of the camera is adjusted by reposition the CCD along the optical axis. The range of the diopter is between -20m-1 and 20m-1.

  10. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a... for the construction, care, and use of the common types of portable wood ladders, in order to insure...

  11. 29 CFR 1910.25 - Portable wood ladders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Portable wood ladders. 1910.25 Section 1910.25 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.25 Portable wood ladders. (a... for the construction, care, and use of the common types of portable wood ladders, in order to insure...

  12. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  13. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  14. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  15. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  16. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  17. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  18. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  19. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  20. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  1. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  2. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  3. Microchip-based Integration of Cell Immobilization, Electrophoresis, Post-column Derivatization, and Fluorescence Detection for Monitoring the Release of Dopamine from PC 12 Cells

    PubMed Central

    Li, Michelle W.; Martin, R. Scott

    2008-01-01

    In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-β-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means. PMID:18810283

  4. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made... usage. (1) Ladders made by fastening rungs or devices across a single rail are prohibited. (2) Ladders...

  5. A Portable Farmland Information Collection System with Multiple Sensors.

    PubMed

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-10-22

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture-efficient use of agricultural resources, and improving the crop yields and quality-some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops.

  6. A Portable Farmland Information Collection System with Multiple Sensors

    PubMed Central

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-01-01

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture—efficient use of agricultural resources, and improving the crop yields and quality—some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops. PMID:27782076

  7. The Use of Portable Microcomputers to Collect Student and Teacher Behavior Data.

    ERIC Educational Resources Information Center

    Rieth, Herbert; And Others

    1989-01-01

    Using portable microcomputers, three applications programs were developed and implemented to collect, store, transmit, and analyze teacher/student observational data. The three applications involved: analyzing teaching behaviors of trainees in field-site placements, using microcomputers to educate mildly handicapped high-school students, and using…

  8. Portable instrument for inspecting irradiated nuclear fuel assemblies

    DOEpatents

    Nicholson, Nicholas; Dowdy, Edward J.; Holt, David M.; Stump, Jr., Charles J.

    1985-01-01

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  9. Portable Chemical Sterilizer (PCS) for Surgical Instruments

    DTIC Science & Technology

    2004-12-01

    PORTABLE CHEMICAL STERILIZER (PCS) FOR SURGICAL INSTRUMENTS CJ Doona*, FE Feeherry, MA Curtin‡, K Kustin‡, S Kandlikar‡ U.S. Army-Soldier...denotes Contractors) Biomedical Technologies ABSTRACT A novel device called the Portable Chemical Sterilizer (PCS) has been developed for the...rapid, safe, portable, power-free, and convenient sterilization of objects or surfaces contaminated with pathogenic microorganisms that cause

  10. Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating Segmented Flow with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott

    2011-01-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004

  11. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    PubMed

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  12. Portable laser speckle perfusion imaging system based on digital signal processor.

    PubMed

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  13. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording

    PubMed Central

    Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.

    2014-01-01

    Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119

  14. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  15. Rapid determination of gizzerosine in fish meals using microchip capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xiao, Meng-Wei; Bai, Xiao-Lin; Xu, Pei-Li; Zhao, Yan; Yang, Li; Liu, Yi-Ming; Liao, Xun

    2017-05-01

    Sensitive detection of gizzerosine, a causative agent for deadly gizzard erosion in chicken feeds, is very important to the poultry industry. In this work, a new method was developed based on microchip capillary electrophoresis (MCE) with laser-induced fluorescence (LIF) detection for rapid analysis of gizzerosine, a biogenic amine in fish meals. The MCE separation was performed on a glass microchip using sodium dodecyl sulfate (SDS) as dynamic coating modifier. Separation conditions, including running buffer pH and concentration, SDS concentration, and the separation voltage were investigated to achieve fast and sensitive quantification of gizzerosine. The assay proposed was very quick and could be completed within 65 s. A linear calibration curve was obtained in the range from 0.04 to 1.8 μg ml -1 gizzerosine. The detection limit was 0.025 μg ml -1 (0.025 mg kg -1 ), which was far more sensitive than those previously reported. Gizzerosine was well separated from other endogenous components in fish meal samples. Recovery of gizzerosine from this sample matrix (n = 3) was determined to be 97.2-102.8%. The results from analysing fish meal samples indicated that the present MCE-LIF method might hold the potential for rapid detection of gizzerosine in poultry feeds.

  16. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A

    2010-11-01

    A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... petroleum gas (LPG) that is unodorized as authorized in § 173.315(b)(1) unless it is legibly marked NON... the portable tank are not visible. (d) NON-ODORIZED marking on portable tanks containing LPG. After...

  18. Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.

    PubMed

    Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P

    2006-03-01

    The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.

  19. Development of a portable petroleum by-products chemical sensor, phase 1 and 2 report.

    DOT National Transportation Integrated Search

    2006-07-31

    We have proposed to tailor design nanoparticle based chemical sensors for the sensitive, selective and field portable analyses of soil samples for petroleum spill indicating hydrocarbons (such as benzene, toluene, ethyl-benzenes, xylenes, PCBs, trich...

  20. Blinded study determination of high sensitivity and specificity microchip electrophoresis–SSCP/HA to detect mutations in the p53 gene

    PubMed Central

    Hestekin, Christa N.; Lin, Jennifer S.; Senderowicz, Lionel; Jakupciak, John P.; O’Connell, Catherine; Rademaker, Alfred; Barron, Annelise E.

    2012-01-01

    Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here we demonstrate the first blinded study using microchip electrophoresis-SSCP/HA. We demonstrate the ability of microchip electrophoresis-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5–9 in a blinded study in an analysis time of less than 10 minutes. PMID:22002021