Sample records for field potential analysis

  1. Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data

    NASA Astrophysics Data System (ADS)

    Saibi, Hakim; Azizi, Masood; Mogren, Saad

    2016-08-01

    This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.

  2. AN ANALYSIS OF SYSTEMS FOR FEEDING HOT MEALS TO THE ARMY IN THE FIELD DURING 1975-1990 TIME FRAME.

    DTIC Science & Technology

    An analysis was conducted of a large number of potential systems for feeding hot meals to the Army in the field during the 1975-1990 time frame...system of company level feeding . An analysis of alternative mixed systems (company level and higher) is also made indicating greater potential for food

  3. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  4. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  5. Electric field computation analysis for the Electric Field Detector (EFD) on board the China Seismic-Electromagnetic Satellite (CSES)

    NASA Astrophysics Data System (ADS)

    Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.

    2017-11-01

    The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.

  6. Introduction to Electrodynamics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  7. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  8. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.

    PubMed

    Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh

    2018-06-25

    New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.

  9. A regularization method for extrapolation of solar potential magnetic fields

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  10. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  11. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.

    1993-01-01

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  12. Variational optimization analysis of temperature and moisture advection in a severe storm environment

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central U.S. were analyzed from synoptic upper air observations with a nonhomogeneous, anisotropic weighting function. Each data field was filtered with variational optimization analysis techniques. Variational optimization analysis was also performed on the vertical motion field and was used to produce advective forecasts of the potential temperature and mixing ratio fields. Results show that the dry intrusion is characterized by warm air, the advection of which produces a well-defined upward motion pattern. A corresponding downward motion pattern comprising a deep vertical circulation in the warm air sector of the low pressure system was detected. The axes alignment of maximum dry and warm advection with the axis of the tornado-producing squall line also resulted.

  13. Single-scale renormalisation group improvement of multi-scale effective potentials

    NASA Astrophysics Data System (ADS)

    Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła

    2018-03-01

    We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.

  14. Self-constrained inversion of potential fields

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  15. Dynamical systems analysis of phantom dark energy models

    NASA Astrophysics Data System (ADS)

    Roy, Nandan; Bhadra, Nivedita

    2018-06-01

    In this work, we study the dynamical systems analysis of phantom dark energy models considering five different potentials. From the analysis of these five potentials we have found a general parametrization of the scalar field potentials which is obeyed by many other potentials. Our investigation shows that there is only one fixed point which could be the beginning of the universe. However, future destiny has many possible options. A detailed numerical analysis of the system has been presented. The observed late time behaviour in this analysis shows very good agreement with the recent observations.

  16. The Location of Sources of Human Computer Processed Cerebral Potentials for the Automated Assessment of Visual Field Impairment

    PubMed Central

    Leisman, Gerald; Ashkenazi, Maureen

    1979-01-01

    Objective psychophysical techniques for investigating visual fields are described. The paper concerns methods for the collection and analysis of evoked potentials using a small laboratory computer and provides efficient methods for obtaining information about the conduction pathways of the visual system.

  17. Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Kaplar, Robert J.

    2017-02-01

    Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.

  18. The Potential for Meta-Analysis to Support Decision Analysis in Ecology

    ERIC Educational Resources Information Center

    Mengersen, Kerrie; MacNeil, M. Aaron; Caley, M. Julian

    2015-01-01

    Meta-analysis and decision analysis are underpinned by well-developed methods that are commonly applied to a variety of problems and disciplines. While these two fields have been closely linked in some disciplines such as medicine, comparatively little attention has been paid to the potential benefits of linking them in ecology, despite reasonable…

  19. Two-field analysis of no-scale supergravity inflation

    DOE PAGES

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; ...

    2015-01-08

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary Kähler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index n s and the tensor-to-scalar ratio r, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflationmore » model with a quadratic potential are capable of reducing r to very small values << 0.1. Here, we also calculate the non-Gaussianity measure f NL, finding that is well below the current experimental sensitivity.« less

  20. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    PubMed

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  1. On symmetry inheritance of nonminimally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Smolić, Ivica

    2018-04-01

    We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.

  2. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  3. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  4. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  5. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  6. Spectral analysis of pipe-to-soil potentials with variations of the Earth's magnetic field in the Australian region

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Waters, C. L.; Sciffer, M. D.

    2010-05-01

    Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.

  7. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  8. Differentially Variable Component Analysis (dVCA): Identifying Multiple Evoked Components using Trial-to-Trial Variability

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.

    2003-01-01

    Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.

  9. Potential roughness near lithographically fabricated atom chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.

    2007-12-15

    Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less

  10. On Electron-Positron Pair Production by a Spatially Inhomogeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Chervyakov, A.; Kleinert, H.

    2018-05-01

    A detailed analysis of electron-positron pair creation induced by a spatially non-uniform and static electric field from vacuum is presented. A typical example is provided by the Sauter potential. For this potential, we derive the analytic expressions for vacuum decay and pair production rate accounted for the entire range of spatial variations. In the limit of a sharp step, we recover the divergent result due to the singular electric field at the origin. The limit of a constant field reproduces the classical result of Euler, Heisenberg and Schwinger, if the latter is properly averaged over the width of a spatial variation. The pair production by the Sauter potential is described for different regimes from weak to strong fields. For all these regimes, the locally constant-field rate is shown to be the upper limit.

  11. Using object-based image analysis to guide the selection of field sample locations

    USDA-ARS?s Scientific Manuscript database

    One of the most challenging tasks for resource management and research is designing field sampling schemes to achieve unbiased estimates of ecosystem parameters as efficiently as possible. This study focused on the potential of fine-scale image objects from object-based image analysis (OBIA) to be u...

  12. Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).

    PubMed

    van Groen, T; Ruardy, L; da Silva, F H

    1986-07-01

    Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.

  13. Fate of inflation and the natural reduction of vacuum energy

    NASA Astrophysics Data System (ADS)

    Nakamichi, Akika; Morikawa, Masahiro

    2014-04-01

    In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.

  14. Lessening the Effects of Projection for Line-of-Sight Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2016-05-01

    A method for treating line-of-sight magnetic field data (Blos) is developed for the goal of reconstructing the radially-directed component (Br) of the solar photospheric magnetic field. The latter is generally the desired quantity for use as a boundary for modeling efforts and observational interpretation of the surface field, but the two are only equivalent where the viewing angle is exactly zero (μ=1.0). A common approximation known as the "μ-correction", which assumes all photospheric field to be radial, is compared to a method which invokes a potential field constructed to match the observed Blos (Alissandrakis 1981; Sakurai 1982), from which the potential field radial field component (Brpot) is recovered.We compare this treatment of Blos data to the radial component derived from SDO/HMI full-disk vector magnetograms as the "ground truth", and discuss the implications for data analysis and modeling efforts. In regions that are truly dominated by radial field, the μ-correction performs acceptably if not better than the potential-field approach. However, for any solar structure which includes horizontal fields, i.e. active regions, the potential-field method better recovers magnetic neutral line location and the inferred strength of the radial field.This work was made possible through contracts with NASA, NSF, and NOAA/SBIR.

  15. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  16. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  17. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift correspondingmore » to band bending by the field effect, resulting in p-type doping.« less

  18. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...

  19. [Multi-channel in vivo recording techniques: signal processing of action potentials and local field potentials].

    PubMed

    Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian

    2014-06-25

    Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.

  20. Surface patterning of soft polymer film-coated cylinders via an electric field.

    PubMed

    Li, Bo; Li, Yue; Xu, Guang-Kui; Feng, Xi-Qiao

    2009-11-04

    Using the linear stability analysis method, we investigate the surface wrinkling of a thin polymer coating on a cylinder in an externally applied electric field. It is demonstrated that energy competition between surface energy, van der Waals interactive potential energy and electrostatic interaction energy may lead to ordered patterns on the film surface. The analytical solutions are derived for the critical conditions of both longitudinal and circumferential instabilities. The wavelengths of the generated surface patterns can be mediated by changing the magnitude of the electric field. Our analysis shows that the surface morphology is sensitive to the curvature radius of the fiber, especially in the micrometer and nanometer length scales. Furthermore, we suggest a potential approach for fabricating hierarchical patterns on curved surfaces.

  1. Data on copula modeling of mixed discrete and continuous neural time series.

    PubMed

    Hu, Meng; Li, Mingyao; Li, Wu; Liang, Hualou

    2016-06-01

    Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience ("Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula" [1]). Here we present further data for joint analysis of spike and local field potential (LFP) with copula modeling. In particular, the details of different model orders and the influence of possible spike contamination in LFP data from the same and different electrode recordings are presented. To further facilitate the use of our copula model for the analysis of mixed data, we provide the Matlab codes, together with example data.

  2. Students' Problem Solving Approaches for Developing Geologic Models in the Field

    ERIC Educational Resources Information Center

    Balliet, Russell N.; Riggs, Eric M.; Maltese, Adam V.

    2015-01-01

    Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods within geology and other science fields. Recent work has highlighted many aspects of fieldwork, but the problem solving behaviors displayed by geologists during fieldwork and the associated cognitive…

  3. Integrating teaching and authentic research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Kaseke, K. F.; Ravi, S.

    2016-12-01

    Typically authentic research activities are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research activities both in the field and in the laboratory. We worked with students from both US and abroad without strong science background to utilize advanced environmental sensors and statistical tool to conduct innovative projects. The students include one from Namibia and two local high school students in Indianapolis (through Project SEED, Summer Experience for the Economically Disadvantaged). They conducted leaf potential measurements, isotope measurements and meta-analysis. The experience showed us the great potential of integrating teaching and research in both field and laboratory settings.

  4. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, L G; Glaser, R E; Chin, H S

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less

  5. Oceanic lithospheric magnetisation: Forward modelling and analysis using vector spherical harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Masterton, S. M.; Gubbins, D.; Müller, D.; Williams, S.

    2013-12-01

    The lithospheric contribution to the geomagnetic field arises from magnetised rocks that are cooler than the Curie temperature of their constituent minerals. Inversion of the magnetic field for this magnetisation is subject to inherent non-uniqueness, as many magnetisation distributions yield no potential field outside of the lithosphere. Such distributions are termed annihilators. We use a complete set of orthogonal vector spherical harmonics that separate the part of the magnetisation responsible for the magnetic field observed above the Earth's surface from the annihilators. A similar set of vector harmonics has been developed in Cartesian geometry suitable for small scale, industrial applications. In an attempt to quantify the significance of the annihilators, we first construct a global model of vertically integrated magnetisation (VIM) by combining a model of remanent magnetisation for the oceans with a previous model of induced magnetisation for the whole Earth. Remanence is computed by assigning magnetisations to the oceanic lithosphere acquired at the location and time of formation. The magnetising field is assumed to be an axial dipole that switches polarity with the reversal time scale. The magnetisation evolves with time by decay of thermal remanence and acquisition of chemical remanence. Remanence directions are calculated by implementing finite rotations of the original geomagnetic field direction with respect to an absolute reference frame. We then represent our estimated VIM in terms of vector spherical harmonics, to allow us to evaluate its relative contributions to a potential field that is observable outside of the lithosphere and to fields (both potential and non-potential) that are not observable. This analysis shows that our model of magnetisation is dominated by a part of the magnetisation that produces a potential field restricted to Earth's sub-lithospheric interior; it therefore contributes significantly to the huge null space in the inversion of lithospheric magnetic anomaly data for VIM. We calculate the observable potential field that arises from our magnetisation estimates and compare it with a model that is based upon satellite data (MF7); this allows us to evaluate our magnetisation estimates and suggest likely sources of error in areas with high misfit between our predictions and the observed magnetic field. For example, under-prediction of the observed magnetic field may be indicative of poorly-known magnetisation deep in the crust or upper mantle, locally underplated continental lithosphere or anomalous oceanic crust.

  6. Shale characterization on Barito field, Southeast Kalimantan for shale hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Sumotarto, T. A.; Haris, A.; Riyanto, A.; Usman, A.

    2017-07-01

    Exploration and exploitation in Indonesia now are still focused on conventional hydrocarbon energy than unconventional hydrocarbon energy such as shale gas. Tanjung Formation is a source rock of Barito Basin located in South Kalimantan that potentially as shale hydrocarbon. In this research, integrated methods using geochemical analysis, mineralogy, petrophysical analysis and seismic interpretation has been applied to explore the shale hydrocarbon potential in Barito Field for Tanjung formation. The first step is conducting geochemical and mineralogy analysis to the shale rock sample. Our analysis shows that the organic richness is ranging from 1.26-5.98 wt.% (good to excellent) with the depth of early mature window of 2170 m. The brittleness index is in an average of 0.44-0.56 (less Brittle) and Kerogen type is classified into II/III type that potentially produces oil and gas. The second step is continued by performing petrophysical analysis, which includes Total Organic Carbon (TOC) calculation and brittleness index continuously. The result has been validated with a laboratory measurement that obtained a good correlation. In addition, seismic interpretation based on inverted acoustic impedance is applied to map the distributions of shale hydrocarbon potential. Our interpretation shows that shale hydrocarbon potential is localized in the eastern and southeastern part of the study area.

  7. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... characteristics; (2) The potential for broken windows due to peak incident overpressures below 1.0 psi and related... the potentially affected windows, including their size, location, orientation, glazing material, and...

  8. An introduction to metabolomics and its potential application in veterinary science.

    PubMed

    Jones, Oliver A H; Cheung, Victoria L

    2007-10-01

    Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.

  9. Open source tools for the information theoretic analysis of neural data.

    PubMed

    Ince, Robin A A; Mazzoni, Alberto; Petersen, Rasmus S; Panzeri, Stefano

    2010-01-01

    The recent and rapid development of open source software tools for the analysis of neurophysiological datasets consisting of simultaneous multiple recordings of spikes, field potentials and other neural signals holds the promise for a significant advance in the standardization, transparency, quality, reproducibility and variety of techniques used to analyze neurophysiological data and for the integration of information obtained at different spatial and temporal scales. In this review we focus on recent advances in open source toolboxes for the information theoretic analysis of neural responses. We also present examples of their use to investigate the role of spike timing precision, correlations across neurons, and field potential fluctuations in the encoding of sensory information. These information toolboxes, available both in MATLAB and Python programming environments, hold the potential to enlarge the domain of application of information theory to neuroscience and to lead to new discoveries about how neurons encode and transmit information.

  10. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  11. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galanti, Eli; Kaspi, Yohai; Durante, Daniele

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulatedmore » Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.« less

  12. Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.

    1982-01-01

    An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.

  13. Identification of potential wetlands in training areas on Ravenna Army Ammunition Plant, Ohio, and guidelines for their management

    USGS Publications Warehouse

    Schalk, C.W.; Tertuliani, J.S.; Darner, R.A.

    1999-01-01

    Potential wetlands in training areas on Ravenna Army Ammunition Plant, Ohio, were mapped by use of geographic information system (GIS) data layers and field inspection. The GIS data layers were compiled from existing sources and interpretation of aerial photography. Data layers used in the GIS analysis were wetland-plant communities, hydric soils, National Wetlands Inventory designated areas, and wet areas based on photogrammetry. According to review of these data layers, potential wetlands constitute almost one-third of the land in the training areas. A composite map of these four data layers was compiled for use during inspection of the training areas. Field inspection focused on the presence of hydrophytic vegetation and macroscopic evidences of wetland hydrology. Results of the field inspection were in general agreement with those predicted by the GIS analysis, except that some wet areas were more extensive than predicted because of high amounts of precipitation during critical periods of 1995 and 1996. Guidelines for managing wetlands in the training areas are presented.

  14. Numerical simulation and analysis of the flow in a two-staged axial fan

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.

    2016-05-01

    In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.

  15. Improvement of the Earth's gravity field from terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1992-01-01

    The determination of the Earth's gravitational potential can be done through the analysis of satellite perturbations, the analysis of surface gravity data, or both. The combination of the two data types yields a solution that combines the strength of each method: the longer wavelength strength in the satellite analysis with the better high frequency information from surface gravity data. Since 1972, Ohio State has carried out activities that have provided surface gravity data to a number of organizations who have developed combination potential coefficient models that describe the Earth's gravitational potential.

  16. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  17. The upper bound of abutment scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used that data to develop envelope curves defining the upper bound of abutment scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment-scour data from other sources and evaluate the upper bound of abutment scour with the larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published abutment-scour data, and selected data, consisting of 446 laboratory and 331 field measurements, were compiled for the analysis. These data encompassed a wide range of laboratory and field conditions and represent field data from 6 states within the United States. The data set was used to evaluate the South Carolina abutment-scour envelope curves. Additionally, the data were used to evaluate a dimensionless abutment-scour envelope curve developed by Melville (1992), highlighting the distinct difference in the upper bound for laboratory and field data. The envelope curves evaluated in this investigation provide simple but useful tools for assessing the potential maximum abutment-scour depth in the field setting.

  18. Electro-quasistatic analysis of an electrostatic induction micromotor using the cell method.

    PubMed

    Monzón-Verona, José Miguel; Santana-Martín, Francisco Jorge; García-Alonso, Santiago; Montiel-Nelson, Juan Antonio

    2010-01-01

    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value.

  19. Electro-Quasistatic Analysis of an Electrostatic Induction Micromotor Using the Cell Method

    PubMed Central

    Monzón-Verona, José Miguel; Santana-Martín, Francisco Jorge; García–Alonso, Santiago; Montiel-Nelson, Juan Antonio

    2010-01-01

    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value. PMID:22163397

  20. Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects.

    PubMed

    Mousa, Mohammad F; Cubbidge, Robert P; Al-Mansouri, Fatima; Bener, Abdulbari

    2014-02-01

    Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively. The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

  1. Evaluation of Hemifield Sector Analysis Protocol in Multifocal Visual Evoked Potential Objective Perimetry for the Diagnosis and Early Detection of Glaucomatous Field Defects

    PubMed Central

    Mousa, Mohammad F.; Cubbidge, Robert P.; Al-Mansouri, Fatima

    2014-01-01

    Purpose Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. Methods Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. Results Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively. Conclusions The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PMID:24511212

  2. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  3. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  4. Magnetohydrodynamics of atmospheric transients. IV - Nonplane two-dimensional analyses of energy conversion and magnetic field evolution. [during corona following solar flare

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Nakagawa, Y.; Han, S. M.; Dryer, M.

    1982-01-01

    The evolution of the magnetic field and the manner of conversion of thermal energy into different forms in the corona following a solar flare are investigated by means of a nonplane magnetohydrodynamic (MHD) analysis. All three components of magnetic field and velocity are treated in a physically self-consistent manner, with all physical variables as functions of time (t) and two spatial coordinates (r, theta). The difference arising from the initial magnetic field, either twisted (force-free) or non-twisted (potential), is demonstrated. Consideration is given to two initial field topologies (open vs. closed). The results demonstrate that the conversion of magnetic energy is faster for the case of the initially twisted (force-free) field than for the initially untwisted (potential) field. In addition, the twisted field is found to produce a complex structure of the density enhancements.

  5. Spherical Earth analysis and modeling of lithospheric gravity and magnetic anomalies. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1980-01-01

    A comprehensive approach to the lithospheric analysis of potential field anomalies in the spherical domain is provided. It has widespread application in the analysis and design of satellite gravity and magnetic surveys for geological investigation.

  6. A Guided Tour of Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; van Wijk, Kasper

    2015-05-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.

  7. On the presence of electric currents in the solar atmosphere. I - A theoretical framework

    NASA Technical Reports Server (NTRS)

    Hagyard, M.; Low, B. C.; Tandberg-Hanssen, E.

    1981-01-01

    The general magnetic field above the solar photosphere is divided by an elementary analysis based on Ampere's law into two parts: a potential field due to electric currents below the photosphere and a field produced by electric currents above the photosphere combined with the induced mirror currents. The latter, by symmetry, has a set of field lines lying in the plane taken to be the photosphere which may be constructed from given vector magnetograph measurements. These field lines also represent all the information on the electric currents above the photosphere that a magnetograph can provide. Theoretical illustrations are given, and implications for data analysis are discussed.

  8. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  9. Quantization of charged fields in the presence of critical potential steps

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    2016-02-01

    QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.

  10. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory

    PubMed Central

    Jia, Limin

    2017-01-01

    Aimed at the complicated problems of attraction characteristics regarding passenger flow in urban rail transit network, the concept of the gravity field of passenger flow is proposed in this paper. We establish the computation methods of field strength and potential energy to reveal the potential attraction relationship among stations from the perspective of the collection and distribution of passenger flow and the topology of network. As for the computation methods of field strength, an optimum path concept is proposed to define betweenness centrality parameter. Regarding the computation of potential energy, Compound Simpson’s Rule Formula is applied to get a solution to the function. Taking No. 10 Beijing Subway as a practical example, an analysis of simulation and verification is conducted, and the results shows in the following ways. Firstly, the bigger field strength value between two stations is, the stronger passenger flow attraction is, and the greater probability of the formation of the largest passenger flow of section is. Secondly, there is the greatest passenger flow volume and circulation capacity between two zones of high potential energy. PMID:28863175

  11. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  12. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Tertoolen, L G J; Braam, S R; van Meer, B J; Passier, R; Mummery, C L

    2018-03-18

    Multi electrode arrays (MEAs) are increasingly used to detect external field potentials in electrically active cells. Recently, in combination with cardiomyocytes derived from human (induced) pluripotent stem cells they have started to become a preferred tool to examine newly developed drugs for potential cardiac toxicity in pre-clinical safety pharmacology. The most important risk parameter is proarrhythmic activity in cardiomyocytes which can cause sudden cardiac death. Whilst MEAs can provide medium- to high- throughput noninvasive assay platform, the translation of a field potential to cardiac action potential (normally measured by low-throughput patch clamp) is complex so that accurate assessment of drug risk to the heart is in practice still challenging. To address this, we used computational simulation to study the theoretical relationship between aspects of the field potential and the underlying cardiac action potential. We then validated the model in both primary mouse- and human pluripotent (embryonic) stem cell-derived cardiomyocytes showing that field potentials measured in MEAs could be converted to action potentials that were essentially identical to those determined directly by electrophysiological patch clamp. The method significantly increased the amount of information that could be extracted from MEA measurements and thus combined the advantages of medium/high throughput with more informative readouts. We believe that this will benefit the analysis of drug toxicity screening of cardiomyocytes using in time and accuracy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  14. Effective potentials in nonlinear polycrystals and quadrature formulae

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  15. Effective potentials in nonlinear polycrystals and quadrature formulae.

    PubMed

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471 , 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  16. Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area

    USGS Publications Warehouse

    Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.

    2018-01-01

    Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000  km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.

  17. First Law for fields with Internal Gauge Freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2016-03-01

    We extend the analysis of Iyer and Wald to derive the First Law of blackhole mechanics in the presence of fields charged under an `internal gauge group'. We treat diffeomorphisms and gauge transformations in a unified way by formulating the theory on a principal bundle. The first law then relates the energy and angular momentum at infinity to a potential times charge term at the horizon. The gravitational potential and charge give a notion of temperature and entropy respectively.

  18. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.

  19. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawabata, Y.; Shimizu, T.; Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient freemore » energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.« less

  20. Field transportable beta spectrometer. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potentialmore » benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.« less

  1. Dark field microscopic analysis of discrete Au nanostructures: Understanding the correlation of scattering with stoichiometry

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo

    2017-09-01

    Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.

  2. A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Xiao, Binping

    2013-09-01

    A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.

  3. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    PubMed Central

    Ma, Ru

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP) sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{+}$\\end{document}4+ and high NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− content were suitable for the growth of M. oxyfera bacteria. PMID:27994974

  4. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Donald M.; Lienert, Barry R.; Wallin, Erin L.

    Our objectives for the current project were to develop an innovative inversion and analysis procedure for magnetotelluric field data and time variable self-potentials that will enable us to map not only the subsurface resistivity structure of a geothermal prospect but to also delineate the permeability distribution within the field. Hence, the ultimate objective were to provide better targeting information for exploratory and development drilling of a geothermal prospect. Field data were collected and analyzed from the Kilauea Summit, Kilauea East Rift Zone, and the Humuula Saddle between Mauna Loa and Mauna Kea volcanoes. All of these areas were known ormore » suspected to have geothermal activity of varying intensities. Our results provided evidence for significant long-term coordinated changes in spontaneous potential that could be associated with subsurface flows, significant interferences were encountered that arose from surface environmental changes (rainfall, temperature) that rendered it nearly impossible to unequivocally distinguish between deep fluid flow changes and environmental effects. Further, the analysis of the inferred spontaneous potential changes in the context of depth of the signals, and hence, permeability horizons, were unable to be completed in the time available.« less

  6. Chemical and Physical Analysis Methods for Characterizing Tire Crumb Rubber Used in Synthetic Turf Fields

    EPA Science Inventory

    Tire crumb rubber from recycled tires is widely used as infill material in synthetic turf fields in the United States. Recycled crumb rubber is a complex and potentially variable matrix with many metal, VOC, and SVOC constituents, presenting challenges for characterization and ex...

  7. MULTIMEDIA CHEMICAL ANALYSIS PLAN FOR CHILDREN'S AGGREGATE EXPOSURE FIELD STUDIES IN NORTH CAROLINA AND OHIO

    EPA Science Inventory

    The samples collected in the CTEPP North Carolina and Ohio field campaigns were analyzed for a suite of organic chemicals in various compound classes, chosen because of their possible carcinogenicity, acute or chronic toxicity, or potential for endocrine system disruption. The...

  8. Safety analysis and review system (SARS) assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.T.

    1981-03-01

    Under DOE Order 5481.1, Safety Analysis and Review System for DOE Operations, safety analyses are required for DOE projects in order to ensure that: (1) potential hazards are systematically identified; (2) potential impacts are analyzed; (3) reasonable measures have been taken to eliminate, control, or mitigate the hazards; and (4) there is documented management authorization of the DOE operation based on an objective assessment of the adequacy of the safety analysis. This report is intended to provide the DOE Office of Plans and Technology Assessment (OPTA) with an independent evaluation of the adequacy of the ongoing safety analysis effort. Asmore » part of this effort, a number of site visits and interviews were conducted, and FE SARS documents were reviewed. The latter included SARS Implementation Plans for a number of FE field offices, as well as safety analysis reports completed for certain FE operations. This report summarizes SARS related efforts at the DOE field offices visited and evaluates the extent to which they fulfill the requirements of DOE 5481.1.« less

  9. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    PubMed

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimizing one-shot learning with binary synapses.

    PubMed

    Romani, Sandro; Amit, Daniel J; Amit, Yali

    2008-08-01

    A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of both familiarity recognition and memory retrieval, and estimate the network's capacity. In the case of binary neurons, we extend the analysis of Amit and Fusi (1994) to obtain capacity limits based on computations of signal-to-noise ratio of the field difference between selective and non-selective neurons of learned signals. We show that with fast learning (potentiation probability approximately 1), the most recently learned patterns can be retrieved in working memory (selective delay activity). A much higher number of once-seen learned patterns elicit a realistic familiarity signal in the presence of an external field. With potentiation probability much less than 1 (slow learning), memory retrieval disappears, whereas familiarity recognition capacity is maintained at a similarly high level. This analysis is corroborated in simulations. For analog neurons, where such analysis is more difficult, we simplify the capacity analysis by studying the excess number of potentiated synapses above the steady-state distribution. In this framework, we derive the optimal constraint between potentiation and depression probabilities that maximizes the capacity.

  11. 2D modeling based comprehensive analysis of short channel effects in DMG strained VSTB FET

    NASA Astrophysics Data System (ADS)

    Saha, Priyanka; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-06-01

    The paper aims to develop two dimensional analytical model of the proposed dual material (DM) Vertical Super Thin Body (VSTB) strained Field Effect Transistor (FET) with focus on its short channel behaviour in nanometer regime. Electrostatic potential across gate/channel and dielectric wall/channel interface is derived by solving 2D Poisson's equation with parabolic approximation method by applying appropriate boundary conditions. Threshold voltage is then calculated by using the criteria of minimum surface potential considering both gate and dielectric wall side potential. Performance analysis of the present structure is demonstrated in terms of potential, electric field, threshold voltage characteristics and subthreshold behaviour by varying various device parameters and applied biases. Effect of application of strain in channel is further explored to establish the superiority of the proposed device in comparison to conventional VSTB FET counterpart. All analytical results are compared with Silvaco ATLAS device simulated data to substantiate the accuracy of our derived model.

  12. Impact of spatial plan on the conversion of Subak rice fields and food security, in Badung and Gianyar Regencies, Bali Province

    NASA Astrophysics Data System (ADS)

    Lanya, Indayati; Netera Subadiyasa, N.; Ratna Adi, Gst. P.

    2018-05-01

    Regional Spatial Plan of Bali Province 2009-2029, allocating rice fields can be converted 10% (± 10.800 ha). Over the next 20 years, the conversion of rice field is permitted 540 ha year-1, the real condition in Bali is 800 ha year-1.Research location in Badung and Gianyar Regencies. Visual satellite image interpretation methods, digitization of on-screen, delineation of subak rice field, field survey, superimpose analysis of Spatial Plan (SP) map with rice field map, trough toolbox-analysis tools–overlay-intersect using QGIS, Harvest Index (HI) of cropping pattern in one year. SP has a negative impact on agricultural land resources and food security. Local Regulation (SP), subak rice fields outside the agricultural area licensed to be converted, and food deficits. Regency of Badung, potential land conversion of 3,324.97 ha (34.44%) from 119 subak with paddy field area of 24,184.85 ha. There are 10 subak 100% and 8 subak > 95% can be converted; projected food deficit -115.343 tons of rice by 2020 for HI 2. In Gianyar Regency, potential land conversion 13,021.41 ha (53.51%) of 66 subak with an area of 24184.85 ha; 8 subak 100% and 8 subak with area < 5 ha can be converted; projected food deficit is about -194438 tons of rice in 2040 for HI 2.

  13. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    PubMed

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Environmental Impact Statement for BOMARC Missile Site, McGuire AFB, New Jersey. Volume 1, Sections 1 through 8

    DTIC Science & Technology

    1992-05-22

    laboratory analysis and in-situ survey techniques . It is estimated that the radiological surveys would generate four 55-gallon drums of potentially...the filters would be analyzed daily in the field for alpha activity. If air filter analysis indicates resuspension of plutonium and/or americium...successional change would eventually result in the old field vegetative zone developing into an Oak-Pine community or an oak-hickory climax community

  15. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Koyama, Yoji

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place inmore » the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.« less

  16. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiskumara, R.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.

    A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted upmore » to applied fields as high as ∼275 kV/cm.« less

  17. Perturbative stability of SFT-based cosmological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, Federico; Koshelev, Alexey S., E-mail: fgalli@tena4.vub.ac.be, E-mail: alexey.koshelev@vub.ac.be

    2011-05-01

    We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numericallymore » that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.« less

  18. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse.

    PubMed

    Hart, Francis X; Easterly, Clay E

    2004-05-01

    The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.

  19. Improving Public Perception of Behavior Analysis.

    PubMed

    Freedman, David H

    2016-05-01

    The potential impact of behavior analysis is limited by the public's dim awareness of the field. The mass media rarely cover behavior analysis, other than to echo inaccurate negative stereotypes about control and punishment. The media instead play up appealing but less-evidence-based approaches to problems, a key example being the touting of dubious diets over behavioral approaches to losing excess weight. These sorts of claims distort or skirt scientific evidence, undercutting the fidelity of behavior analysis to scientific rigor. Strategies for better connecting behavior analysis with the public might include reframing the field's techniques and principles in friendlier, more resonant form; pushing direct outcome comparisons between behavior analysis and its rivals in simple terms; and playing up the "warm and fuzzy" side of behavior analysis.

  20. Gauge Fields in Homogeneous and Inhomogeneous Cosmologies

    NASA Astrophysics Data System (ADS)

    Darian, Bahman K.

    Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on homogeneous cosmologies is amenable to a formal treatment. This dissertation is a report on a systematic approach to the general construction of invariant YM fields on homogeneous cosmologies undertaken for the first time in this context. This construction is subsequently followed by the investigation of the behavior of YM field variables for the most simple of self-gravitating YM fields. Particularly interesting was a dynamical system analysis and the discovery of chaotic signature in the axially symmetric Bianchi I-YM cosmology. Homogeneous YM fields are well studied and are known to have chaotic properties. The chaotic behavior of YM field variables in homogeneous cosmologies might eventually lead to an invariant definition of chaos in (general) relativistic cosmological models. By choosing the gauge fields to be Abelian, the construction and the field equations presented so far reduce to that of electromagnetic field in homogeneous cosmologies. A perturbative analysis of gravitationally interacting electromagnetic and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi formulation of general relativity. An essential feature of this analysis is the spatial gradient expansion of the generating functional (Hamilton principal function) to solve the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-Walker cosmology with an exponential potential for the scalar field are presented.

  1. EM61-MK2 Response of Three Munitions Surrogates

    DTIC Science & Technology

    2009-03-12

    time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic

  2. Recording the adult zebrafish cerebral field potential during pentylenetetrazole seizures

    PubMed Central

    Pineda, Ricardo; Beattie, Christine E.; Hall, Charles W.

    2017-01-01

    Although the zebrafish is increasingly used as a model organism to study epilepsy, no standard electrophysiological technique for recording electrographic seizures in adult fish exists. The purpose of this paper is to introduce a readily implementable technique for recording pentylenetetrazole seizures in the adult zebrafish. We find that we can consistently record a high quality field potential over the zebrafish cerebrum using an amplification of 5000 V/V and bandpass filtering at corner frequencies of 1.6 and 16 Hz. The cerebral field potential recordings show consistent features in the baseline, pre-seizure, seizure and post-seizure time periods that can be easily recognized by visual inspection as is the case with human and rodent electroencephalogram. Furthermore, numerical analysis of the field potential at the time of seizure onset reveals an increase in the total power, bandwidth and peak frequency in the power spectrum, as is also the case with human and rodent electroencephalogram. The techniques presented herein stand to advance the utility of the adult zebrafish in the study of epilepsy by affording an equivalent to the electroencephalogram used in mammalian models and human patients. PMID:21689682

  3. Modification of a successive corrections objective analysis for improved higher order calculations

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1988-01-01

    The use of objectively analyzed fields of meteorological data for the initialization of numerical prediction models and for complex diagnostic studies places the requirements upon the objective method that derivatives of the gridded fields be accurate and free from interpolation error. A modification was proposed for an objective analysis developed by Barnes that provides improvements in analysis of both the field and its derivatives. Theoretical comparisons, comparisons between analyses of analytical monochromatic waves, and comparisons between analyses of actual weather data are used to show the potential of the new method. The new method restores more of the amplitudes of desired wavelengths while simultaneously filtering more of the amplitudes of undesired wavelengths. These results also hold for the first and second derivatives calculated from the gridded fields. Greatest improvements were for the Laplacian of the height field; the new method reduced the variance of undesirable very short wavelengths by 72 percent. Other improvements were found in the divergence of the gridded wind field and near the boundaries of the field of data.

  4. The Energetics of Motivated Cognition: A Force-Field Analysis

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  5. Evaluation of Undergraduate Geologists' Problem Solving and Cognition during Field Exams Using a Mixed Methods Approach

    ERIC Educational Resources Information Center

    Balliet, Russell N.

    2012-01-01

    Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods. Recent progress has been made in this area but the problem solving behaviors displayed by geologists during fieldwork and the associated underlying cognition remains poorly understood. We present…

  6. Spacecraft Charging Standard Report.

    DTIC Science & Technology

    1980-09-30

    SSPM include: SAMPLE POTENTIAL (with respect to S/C ground) Aluminized Kapton -2.0 kV Silvered Teflon -4.0 kV Astroquartz -3.7 kV 50.3 Analysis. As...and potential gradients on the space vehicle (candidate spacecraft locations for ESD tests) (The NASCAP computer code, when validated, will be useful...The coupling analysis should then determine as a minimum: I. electromagnetic fields generated interior to the space vehicle due to ESD 2. induced

  7. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk factors at favorable sites enables an evaluation of project feasibility across sites based on tradeoffs in the risk factors. Uncertainties in each risk factor can also be considered to determine if the tradeoffs in risk factors between sites are meaningful.

  8. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    USGS Publications Warehouse

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  9. Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Abd Majid, Wan Haliza; Abdul Rahman, Saadah

    2012-01-01

    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

  10. Electrical Characterization of Gold-DNA-Gold Structures in Presence of an External Magnetic Field by Means of I–V Curve Analysis

    PubMed Central

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Majid, Wan Haliza Abd; Rahman, Saadah Abdul

    2012-01-01

    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I–V) curve. Acquisition of the I–V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors. PMID:22737025

  11. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    NASA Astrophysics Data System (ADS)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  12. A critical analysis of the numerical and analytical methods used in the construction of the lunar gravity potential model.

    NASA Astrophysics Data System (ADS)

    Tuckness, D. G.; Jost, B.

    1995-08-01

    Current knowledge of the lunar gravity field is presented. The various methods used in determining these gravity fields are investigated and analyzed. It will be shown that weaknesses exist in the current models of the lunar gravity field. The dominant part of this weakness is caused by the lack of lunar tracking data information (farside, polar areas), which makes modeling the total lunar potential difficult. Comparisons of the various lunar models reveal an agreement in the low-order coefficients of the Legendre polynomials expansions. However, substantial differences in the models can exist in the higher-order harmonics. The main purpose of this study is to assess today's lunar gravity field models for use in tomorrow's lunar mission designs and operations.

  13. Dynamical analysis of tachyonic chameleon

    NASA Astrophysics Data System (ADS)

    Banijamali, Ali; Solbi, Milad

    2017-08-01

    In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.

  14. What we need is theory of human cooperation (and meta-analysis) to bridge the gap between the lab and the wild.

    PubMed

    Van Lange, Paul A M; Balliet, Daniel P; IJzerman, Hans

    2012-02-01

    This commentary seeks to clarify the potential discrepancy between lab-based and field data in the use and effectiveness of punishment to promote cooperation by recommending theory that outlines key differences between the lab and field, such as the shadow of the future and degree of information availability. We also discuss a recent meta-analysis (Balliet et al. 2011) that does not support all conclusions outlined in Guala's target article.

  15. A Guided Tour of Mathematical Methods

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2009-04-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical co-ordinates; 5. The gradient; 6. The divergence of a vector field; 7. The curl of a vector field; 8. The theorem of Gauss; 9. The theorem of Stokes; 10. The Laplacian; 11. Conservation laws; 12. Scale analysis; 13. Linear algebra; 14. The Dirac delta function; 15. Fourier analysis; 16. Analytic functions; 17. Complex integration; 18. Green's functions: principles; 19. Green's functions: examples; 20. Normal modes; 21. Potential theory; 22. Cartesian tensors; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Variational calculus; 26. Epilogue, on power and knowledge; References.

  16. NON-POTENTIAL FIELDS IN THE QUIET SUN NETWORK: EXTREME-ULTRAVIOLET AND MAGNETIC FOOTPOINT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    The quiet Sun (QS) magnetic network is known to contain dynamics which are indicative of non-potential fields. Non-potential magnetic fields forming ''S-shaped'' loop arcades can lead to the breakdown of static activity and have only been observed in high temperature X-ray coronal structures—some of which show eruptive behavior. Thus, analysis of this type of atmospheric structuring has been restricted to large-scale coronal fields. Here we provide the first identification of non-potential loop arcades exclusive to the QS supergranulation network. High-resolution Atmospheric Imaging Assembly data from the Solar Dynamics Observatory have allowed for the first observations of fine-scale ''S-shaped'' loop arcadesmore » spanning the network. We have investigated the magnetic footpoint flux evolution of these arcades from Heliospheric and Magnetic Imager data and find evidence of evolving footpoint flux imbalances accompanying the formation of these non-potential fields. The existence of such non-potentiality confirms that magnetic field dynamics leading to the build up of helicity exist at small scales. QS non-potentiality also suggests a self-similar formation process between the QS network and high temperature corona and the existence of self-organized criticality (SOC) in the form of loop-pair reconnection and helicity dissipation. We argue that this type of behavior could lead to eruptive forms of SOC as seen in active region (AR) and X-ray sigmoids if sufficient free magnetic energy is available. QS magnetic network dynamics may be considered as a coronal proxy at supergranular scales, and events confined to the network can even mimic those in coronal ARs.« less

  17. A method for the investigation of hyperbolic motions in the gravitational field of a spheroidal planet

    NASA Astrophysics Data System (ADS)

    Konks, V. Ia.

    1981-05-01

    Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.

  18. Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields.

    PubMed

    Paranahewage, S Shanaka; Gierhart, Cassidy S; Fennell, Christopher J

    2016-11-01

    Alchemical transformation of solutes using classical fixed-charge force fields is a popular strategy for assessing the free energy of transfer in different environments. Accurate estimations of transfer between phases with significantly different polarities can be difficult because of the static nature of the force fields. Here, we report on an application of such calculations in the SAMPL5 experiment that also involves an effort in balancing solute and solvent interactions via their expected static dielectric constants. This strategy performs well with respect to predictive accuracy and correlation with unknown experimental values. We follow this by performing a series of retrospective investigations which highlight the potential importance of proper balancing in these systems, and we use a null hypothesis analysis to explore potential biases in the comparisons with experiment. The collective findings indicate that considerations of force field compatibility through dielectric behavior is a potential strategy for future improvements in transfer processes between disparate environments.

  19. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    PubMed

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  20. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  1. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    PubMed

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation. © 2018 Institute of Physics and Engineering in Medicine.

  2. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    NASA Astrophysics Data System (ADS)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics. Their construction is not altogether very computationally demanding when the concentration domains (the regions of spatial concentration) have circular symmetry, for example, on spherical caps or rings—even when the spherical-harmonic bandwidth is large. Data inversion proceeds by solving for the expansion coefficients of truncated function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our method brings high-resolution regional potential-field modelling from incomplete and noisy vector-valued satellite data within reach of contemporary desktop machines.

  3. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    USGS Publications Warehouse

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  4. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  5. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis

    NASA Astrophysics Data System (ADS)

    Liu, M.; Filina, I.

    2017-12-01

    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of the Gulf of Mexico.

  6. Website Analysis in an EFL Context: Content Comprehension, Perceptions on Web Usability and Awareness of Reading Strategies

    ERIC Educational Resources Information Center

    Roy, Debopriyo; Crabbe, Stephen

    2015-01-01

    Website analysis is an interdisciplinary field of inquiry that focuses on both digital literacy and language competence (Brugger, 2009). Website analysis in an EFL learning context has the potential to facilitate logical thinking and in the process develop functional language proficiency. This study reported on an English language website…

  7. Methods of DNA methylation analysis.

    USDA-ARS?s Scientific Manuscript database

    The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...

  8. Dynamical system analysis for DBI dark energy interacting with dark matter

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-01-01

    A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  9. A digital photography and analysis system for estimation of root and shoot development in rice weed suppression studies in the field

    USDA-ARS?s Scientific Manuscript database

    Rice germplasm with an inherent ability to suppress weeds can potentially improve the economics and sustainability of weed control in rice. We devised a simple, rapid, and inexpensive digital imaging system to quantify several shoot and root growth characteristics in field-grown rice plants that ha...

  10. Acceptance and Commitment Therapy and Behavioral Activation for the Treatment of Depression: Description and Comparison

    ERIC Educational Resources Information Center

    Kanter, Jonathan W.; Baruch, David E.; Gaynor, Scott T.

    2006-01-01

    The field of clinical behavior analysis is growing rapidly and has the potential to affect and transform mainstream cognitive behavior therapy. To have such an impact, the field must provide a formulation of and intervention strategies for clinical depression, the "common cold" of outpatient populations. Two treatments for depression have emerged:…

  11. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2018-01-01

    Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

  12. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  13. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    NASA Astrophysics Data System (ADS)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  14. Three-dimensional transonic potential flow about complex 3-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1984-01-01

    An analysis has been developed and a computer code written to predict three-dimensional subsonic or transonic potential flow fields about lifting or nonlifting configurations. Possible condfigurations include inlets, nacelles, nacelles with ground planes, S-ducts, turboprop nacelles, wings, and wing-pylon-nacelle combinations. The solution of the full partial differential equation for compressible potential flow written in terms of a velocity potential is obtained using finite differences, line relaxation, and multigrid. The analysis uses either a cylindrical or Cartesian coordinate system. The computational mesh is not body fitted. The analysis has been programmed in FORTRAN for both the CDC CYBER 203 and the CRAY-1 computers. Comparisons of computed results with experimental measurement are presented. Descriptions of the program input and output formats are included.

  15. Numerical assessment of low-frequency dosimetry from sampled magnetic fields

    NASA Astrophysics Data System (ADS)

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2018-01-01

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  16. Numerical assessment of low-frequency dosimetry from sampled magnetic fields.

    PubMed

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2017-12-29

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  17. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java

    NASA Astrophysics Data System (ADS)

    Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.

    2018-03-01

    Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.

  18. Longitudinal Patent Analysis for Nanoscale Science and Engineering: Country, Institution and Technology Field

    NASA Astrophysics Data System (ADS)

    Huang, Zan; Chen, Hsinchun; Yip, Alan; Ng, Gavin; Guo, Fei; Chen, Zhi-Kai; Roco, Mihail C.

    2003-08-01

    Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.

  19. Cartan symmetries and global dynamical systems analysis in a higher-order modified teleparallel theory

    NASA Astrophysics Data System (ADS)

    Karpathopoulos, L.; Basilakos, S.; Leon, G.; Paliathanasis, A.; Tsamparlis, M.

    2018-07-01

    In a higher-order modified teleparallel theory cosmological we present analytical cosmological solutions. In particular we determine forms of the unknown potential which drives the scalar field such that the field equations form a Liouville integrable system. For the determination of the conservation laws we apply the Cartan symmetries. Furthermore, inspired from our solutions, a toy model is studied and it is shown that it can describe the Supernova data, while at the same time introduces dark matter components in the Hubble function. When the extra matter source is a stiff fluid then we show how analytical solutions for Bianchi I universes can be constructed from our analysis. Finally, we perform a global dynamical analysis of the field equations by using variables different from that of the Hubble-normalization.

  20. webPIPSA: a web server for the comparison of protein interaction properties

    PubMed Central

    Richter, Stefan; Wenzel, Anne; Stein, Matthias; Gabdoulline, Razif R.; Wade, Rebecca C.

    2008-01-01

    Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org. PMID:18420653

  1. An integrated platform for simultaneous multi-well field potential recording and Fura-2-based calcium transient ratiometry in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes.

    PubMed

    Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D

    2015-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential recording and a more reliable identification of drug effects on calcium handling. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Skeletonization of Gridded Potential-Field Images

    NASA Astrophysics Data System (ADS)

    Gao, L.; Morozov, I. B.

    2012-12-01

    A new approach to skeletonization was developed for gridded potential-field data. Generally, skeletonization is a pattern-recognition technique allowing automatic recognition of near-linear features in the images, measurement of their parameters, and analyzing them for similarities. Our approach decomposes the images into arbitrarily-oriented "wavelets" characterized by positive or negative amplitudes, orientation angles, spatial dimensions, polarities, and other attributes. Orientations of the wavelets are obtained by scanning the azimuths to detect the strike direction of each anomaly. The wavelets are connected according to the similarities of these attributes, which leads to a "skeleton" map of the potential-field data. In addition, 2-D filtering is conducted concurrently with the wavelet-identification process, which allows extracting parameters of background trends and reduces the adverse effects of low-frequency background (which is often strong in potential-field maps) on skeletonization.. By correlating the neighboring wavelets, linear anomalies are identified and characterized. The advantages of this algorithm are the generality and isotropy of feature detection, as well as being specifically designed for gridded data. With several options for background-trend extraction, the stability for identification of lineaments is improved and optimized. The algorithm is also integrated in a powerful processing system which allows combining it with numerous other tools, such as filtering, computation of analytical signal, empirical mode decomposition, and various types of plotting. The method is applied to potential-field data for the Western Canada Sedimentary Basin, in a study area which extends from southern Saskatchewan into southwestern Manitoba. The target is the structure of crystalline basement beneath Phanerozoic sediments. The examples illustrate that skeletonization aid in the interpretation of complex structures at different scale lengths. The results indicate that this method is useful for identifying structures in complex geophysical images and for automatic extraction of their attributes as well as for quantitative characterization and analysis of potential-field images. Skeletonized potential-field images should also be useful for inversion.

  3. Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol V; Antanovich, Artsiom; Siebbeles, Laurens D A; Artemyev, Mikhail; Woggon, Ulrike

    2016-10-12

    We present a study of the application potential of CdSe nanoplatelets (NPLs), a model system for colloidal 2D materials, as field-controlled emitters. We demonstrate that their emission can be changed by 28% upon application of electrical fields up to 175 kV/cm, a very high modulation depth for field-controlled nanoemitters. From our experimental results we estimate the exciton binding energy in 5.5 monolayer CdSe nanoplatelets to be E B = 170 meV; hence CdSe NPLs exhibit highly robust excitons which are stable even at room temperature. This opens up the possibility to tune the emission and recombination dynamics efficiently by external fields. Our analysis further allows a quantitative discrimination of spectral changes of the emission energy and changes in PL intensity related to broadening of the emission line width as well as changes in the intrinsic radiative rates which are directly connected to the measured changes in the PL decay dynamics. With the developed field-dependent population model treating all occurring field-dependent effects in a global analysis, we are able to quantify, e.g., the ground state exciton transition dipole moment (3.0 × 10 -29 Cm) and its polarizability, which determine the radiative rate, as well as the (static) exciton polarizability (8.6 × 10 -8 eV cm 2 /kV 2 ), all in good agreement with theory. Our results show that an efficient field control over the exciton recombination dynamics, emission line width, and emission energy in these nanoparticles is feasible and opens up application potential as field-controlled emitters.

  4. Comparative Theoretical Analysis Between Parallel and Perpendicular Geomotries for 2D Particle Patterning in Photovoltaic Ferroelectric Substrates

    NASA Astrophysics Data System (ADS)

    Arregui, C.; Ramiro, J. B.; Alcázar, A.; Méndez, A.; Muñoz-Martínez, J. F.; Carrascosa, M.

    2015-05-01

    This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.

  5. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  6. Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions.

    PubMed

    Baczewski, Andrew D; Miller, Nicholas C; Shanker, Balasubramaniam

    2012-04-01

    The analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require O(N2) operations, N being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in O(N) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.

  7. Analysis of magnetic fields using variational principles and CELAS2 elements

    NASA Technical Reports Server (NTRS)

    Frye, J. W.; Kasper, R. G.

    1977-01-01

    Prospective techniques for analyzing magnetic fields using NASTRAN are reviewed. A variational principle utilizing a vector potential function is presented which has as its Euler equations, the required field equations and boundary conditions for static magnetic fields including current sources. The need for an addition to this variational principle of a constraint condition is discussed. Some results using the Lagrange multiplier method to apply the constraint and CELAS2 elements to simulate the matrices are given. Practical considerations of using large numbers of CELAS2 elements are discussed.

  8. Electric field variations measured continuously in free air over a conductive thin zone in the tilted Lias-epsilon black shales near Osnabrück, Northwest Germany

    NASA Astrophysics Data System (ADS)

    Gurk, M.; Bosch, F. P.; Tougiannidis, N.

    2013-04-01

    Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.

  9. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  10. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  11. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-20

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.

    PubMed

    van der Wouden, E J; Hermes, D C; Gardeniers, J G E; van den Berg, A

    2006-10-01

    Electroosmotic flow (EOF) in a microchannel can be controlled by electronic control of the surface charge using an electrode embedded in the wall of the channel. By setting a voltage to the electrode, the zeta-potential at the wall can be changed locally. Thus, the electrode acts as a "gate" for liquid flow, in analogy with a gate in a field-effect transistor. In this paper we will show three aspects of a Field Effect Flow Control (FEFC) structure. We demonstrate the induction of directional flow by the synchronized switching of the gate potential with the channel axial potential. The advantage of this procedure is that potential gas formation by electrolysis at the electrodes that provide the axial electric field is suppressed at sufficiently large switching frequencies, while the direction and magnitude of the EOF can be maintained. Furthermore we will give an analysis of the time constants involved in the charging of the insulator, and thus the switching of the zeta potential, in order to predict the maximum operating frequency. For this purpose an equivalent electrical circuit is presented and analyzed. It is shown that in order to accurately describe the charging dynamics and pH dependency the traditionally used three capacitor model should be expanded with an element describing the buffer capacitance of the silica wall surface.

  13. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    PubMed

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging.

    PubMed

    Sala, E; Mema, E; Himoto, Y; Veeraraghavan, H; Brenton, J D; Snyder, A; Weigelt, B; Vargas, H A

    2017-01-01

    Tumour heterogeneity in cancers has been observed at the histological and genetic levels, and increased levels of intra-tumour genetic heterogeneity have been reported to be associated with adverse clinical outcomes. This review provides an overview of radiomics, radiogenomics, and habitat imaging, and examines the use of these newly emergent fields in assessing tumour heterogeneity and its implications. It reviews the potential value of radiomics and radiogenomics in assisting in the diagnosis of cancer disease and determining cancer aggressiveness. This review discusses how radiogenomic analysis can be further used to guide treatment therapy for individual tumours by predicting drug response and potential therapy resistance and examines its role in developing radiomics as biomarkers of oncological outcomes. Lastly, it provides an overview of the obstacles in these emergent fields today including reproducibility, need for validation, imaging analysis standardisation, data sharing and clinical translatability and offers potential solutions to these challenges towards the realisation of precision oncology. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.

  16. Recent Progresses in Nanobiosensing for Food Safety Analysis

    PubMed Central

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-01-01

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636

  17. Recent Progresses in Nanobiosensing for Food Safety Analysis.

    PubMed

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-07-19

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.

  18. Rapid qualitative and quantitative analysis of opiates in extract of poppy head via FTIR and chemometrics: towards in-field sensors.

    PubMed

    Turner, Nicholas W; Cauchi, Michael; Piletska, Elena V; Preston, Christopher; Piletsky, Sergey A

    2009-07-15

    Identification and quantification of the opiates morphine and thebaine has been achieved in three commercial poppy cultivars using FTIR-ATR spectroscopy, from a simple and rapid methanolic extraction, suitable for field analysis. The limits of detection were 0.13 mg/ml (0.013%, w/v) and 0.3 mg/ml (0.03%, w/v) respectively. The concentrations of opiates present were verified with HPLC-MS. The chemometrics has been used to identify specific "signature" peaks in the poppy IR spectra for characterisation of cultivar by its unique fingerprint offering a potential forensic application in opiate crop analysis.

  19. Auditory inhibitory gating in medial prefrontal cortex: Single unit and local field potential analysis.

    PubMed

    Mears, R P; Klein, A C; Cromwell, H C

    2006-08-11

    Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial prefrontal cortex is an important site where early inhibitory functions reside and potentially mediate psychological processes.

  20. Analysis of rainfall-induced slope instability using a field of local factor of safety

    USGS Publications Warehouse

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  1. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    PubMed Central

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  2. Relation of ERTS-1 detected geologic structure to known economic ore deposits

    NASA Technical Reports Server (NTRS)

    Rich, E. I.

    1973-01-01

    A preliminary analysis of ERTS-1 imagery of the Northern Coast Ranges and Sacramento Valley, California, has disclosed a potentially important fracture system which may be one of the controlling factors in the location of known mercury deposits in the Coast Ranges and which appears to be associated with some of the oil and gas fields within the Sacramento Valley. Recognition of this fracture system may prove to be an extremely useful exploration tool, hence careful analysis of subsequent ERTS imagery might delineate areas for field evaluation.

  3. Galileon bounce after ekpyrotic contraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, M.; Rubakov, V., E-mail: osipov@ms2.inr.ac.ru, E-mail: rubakov@ms2.inr.ac.ru

    We consider a simple cosmological model that includes a long ekpyrotic contraction stage and smooth bounce after it. Ekpyrotic behavior is due to a scalar field with a negative exponential potential, whereas the Galileon field produces bounce. We give an analytical picture of how the bounce occurs within the weak gravity regime, and then perform numerical analysis to extend our results to a non-perturbative regime.

  4. A Field-Portable Cell Analyzer without a Microscope and Reagents.

    PubMed

    Seo, Dongmin; Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha; Seo, Sungkyu

    2017-12-29

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm³ and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer ( de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis.

  5. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  6. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy.

    PubMed

    Yao, Jun; Li, Pingfan; Li, Lin; Yang, Mei

    2018-07-01

    According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Toward an improved determination of Earth's lithospheric magnetic field from satellite observations

    NASA Astrophysics Data System (ADS)

    Kotsiaros, S.

    2016-12-01

    An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (1992) for the gravity potential, shows that when the tensor elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Γ(1) = {[∇B]rθ,[∇B]rφ} resp. Γ(2) = {[∇B]θθ-[∇B]φφ, 2[∇B]θφ}. It is shown that the estimated combinations Γ(1) and Γ(2) produce similar signal content as the theoretical radial gradient [∇B]rr. These results demonstrate the ability of multi-satellite missions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Γ(1) and Γ(2) and compared with models derived from traditional vector and gradient data. The model resulting from Γ(1) leads to a very similar, and in particular cases improved, model compared to models retrieved by using approximately three times more data, i.e. a full set of vector, North-South and East-West gradients. ReferencesRummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophysical Journal International, 111 (1), 159-169.

  8. Determining conduction patterns on a sparse electrode grid: Implications for the analysis of clinical arrhythmias

    NASA Astrophysics Data System (ADS)

    Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan

    2016-11-01

    We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.

  9. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  10. On-orbit assembly of a team of flexible spacecraft using potential field based method

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  11. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    ERIC Educational Resources Information Center

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  12. Ambient ionisation mass spectrometry for in situ analysis of intact proteins

    PubMed Central

    Kocurek, Klaudia I.; Griffiths, Rian L.

    2018-01-01

    Abstract Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed. PMID:29607564

  13. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    NASA Astrophysics Data System (ADS)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  14. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Zacharias, Martin

    2014-12-01

    Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.

  15. Quasi-steady-state analysis of coupled flashing ratchets.

    PubMed

    Levien, Ethan; Bressloff, Paul C

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  16. Discursive Institutionalism: Towards a Framework for Analysing the Relation between Policy and Curriculum

    ERIC Educational Resources Information Center

    Wahlström, Ninni; Sundberg, Daniel

    2018-01-01

    Discourse approaches in education policy analysis have gained prominence in the last decade. However, though the literature on policy discourses is growing, different conceptions of the "discursive" dimension and its potential for empirical analysis related to the field of curriculum policy have not yet been fully researched. To address…

  17. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  18. Toward exploratory analysis of diversity unified across fields of study: an information visualization approach

    Treesearch

    Tuan Pham; Julia Jones; Ronald Metoyer; Frederick Colwell

    2014-01-01

    The study of the diversity of multivariate objects shares common characteristics and goals across disciplines, including ecology and organizational management. Nevertheless, subject-matter experts have adopted somewhat separate diversity concepts and analysis techniques, limiting the potential for sharing and comparing across disciplines. Moreover, while large and...

  19. Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser

    NASA Astrophysics Data System (ADS)

    Kubo, Y.

    2018-01-01

    Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.

  20. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less

  1. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less

  2. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  3. From spinning conformal blocks to matrix Calogero-Sutherland models

    NASA Astrophysics Data System (ADS)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  4. Upper bound of pier scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina and used the data to develop envelope curves defining the upper bound of pier scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier scour data from other sources and to evaluate upper-bound relations with this larger data set. To facilitate this analysis, 569 laboratory and 1,858 field measurements of pier scour were compiled to form the 2014 USGS Pier Scour Database. This extensive database was used to develop an envelope curve for the potential maximum pier scour depth encompassing the laboratory and field data. The envelope curve provides a simple but useful tool for assessing the potential maximum pier scour depth for effective pier widths of about 30 ft or less.

  5. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  6. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  7. Infrared spectroscopic near-field mapping of single nanotransistors.

    PubMed

    Huber, A J; Wittborn, J; Hillenbrand, R

    2010-06-11

    We demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) for infrared (IR) spectroscopic material recognition in state-of-the-art semiconductor devices. In particular, we employ s-SNOM for imaging of industrial CMOS transistors with a resolution better than 20 nm, which allows for the first time IR spectroscopic recognition of amorphous SiO(2) and Si(3)N(4) components in a single transistor device. The experimentally recorded near-field spectral signature of amorphous SiO(2) shows excellent agreement with model calculations based on literature dielectric values, verifying that the characteristic near-field contrasts of SiO(2) stem from a phonon-polariton resonant near-field interaction between the probing tip and the SiO(2) nanostructures. Local material recognition by s-SNOM in combination with its capabilities of contact-free and non-invasive conductivity- and strain-mapping makes IR near-field microscopy a versatile metrology technique for nanoscale material characterization and semiconductor device analysis with application potential in research and development, failure analysis and reverse engineering.

  8. A new upper limit to the field-aligned potential near Titan.

    PubMed

    Coates, Andrew J; Wellbrock, Anne; Waite, J Hunter; Jones, Geraint H

    2015-06-28

    Neutral particles dominate regions of the Saturn magnetosphere and locations near several of Saturn's moons. Sunlight ionizes neutrals, producing photoelectrons with characteristic energy spectra. The Cassini plasma spectrometer electron spectrometer has detected photoelectrons throughout these regions, where photoelectrons may be used as tracers of magnetic field morphology. They also enhance plasma escape by setting up an ambipolar electric field, since the relatively energetic electrons move easily along the magnetic field. A similar mechanism is seen in the Earth's polar wind and at Mars and Venus. Here we present a new analysis of Titan photoelectron data, comparing spectra measured in the sunlit ionosphere at ~1.4 Titan radii ( R T ) and at up to 6.8 R T away. This results in an upper limit on the potential of 2.95 V along magnetic field lines associated with Titan at up to 6.8 R T , which is comparable to some similar estimates for photoelectrons seen in Earth's magnetosphere.

  9. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  10. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Demerdash, N. A.

    1992-06-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  11. Currents and Associated Electron Scattering and Bouncing Near the Diffusion Region at Earth's Magnetopause

    NASA Technical Reports Server (NTRS)

    Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.; hide

    2016-01-01

    Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).

  12. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  13. Palaeomagnetic dating method accounting for post-depositional remanence and its application to geomagnetic field modelling

    NASA Astrophysics Data System (ADS)

    Nilsson, A.; Suttie, N.

    2016-12-01

    Sedimentary palaeomagnetic data may exhibit some degree of smoothing of the recorded field due to the gradual processes by which the magnetic signal is `locked-in' over time. Here we present a new Bayesian method to construct age-depth models based on palaeomagnetic data, taking into account and correcting for potential lock-in delay. The age-depth model is built on the widely used "Bacon" dating software by Blaauw and Christen (2011, Bayesian Analysis 6, 457-474) and is designed to combine both radiocarbon and palaeomagnetic measurements. To our knowledge, this is the first palaeomagnetic dating method that addresses the potential problems related post-depositional remanent magnetisation acquisition in age-depth modelling. Age-depth models, including site specific lock-in depth and lock-in filter function, produced with this method are shown to be consistent with independent results based on radiocarbon wiggle match dated sediment sections. Besides its primary use as a dating tool, our new method can also be used specifically to identify the most likely lock-in parameters for a specific record. We explore the potential to use these results to construct high-resolution geomagnetic field models based on sedimentary palaeomagnetic data, adjusting for smoothing induced by post-depositional remanent magnetisation acquisition. Potentially, this technique could enable reconstructions of Holocene geomagnetic field with the same amplitude of variability observed in archaeomagnetic field models for the past three millennia.

  14. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey N.; Gatsonis, Nikolaos A.

    2018-06-01

    An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization efficiency investigation. Results show that the EUPIC has efficiency of more than 80% when the simulation is performed on a single CPU from a non-uniform memory access node and the efficiency is decreasing as the number of threads further increases. The EUPIC is applied to the simulation of the multi-species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC potential and flowfield distribution around the CubeSat exhibit features that are consistent with previous simulations over simpler geometrical bodies.

  15. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  16. [Visual field progression in glaucoma: cluster analysis].

    PubMed

    Bresson-Dumont, H; Hatton, J; Foucher, J; Fonteneau, M

    2012-11-01

    Visual field progression analysis is one of the key points in glaucoma monitoring, but distinction between true progression and random fluctuation is sometimes difficult. There are several different algorithms but no real consensus for detecting visual field progression. The trend analysis of global indices (MD, sLV) may miss localized deficits or be affected by media opacities. Conversely, point-by-point analysis makes progression difficult to differentiate from physiological variability, particularly when the sensitivity of a point is already low. The goal of our study was to analyse visual field progression with the EyeSuite™ Octopus Perimetry Clusters algorithm in patients with no significant changes in global indices or worsening of the analysis of pointwise linear regression. We analyzed the visual fields of 162 eyes (100 patients - 58 women, 42 men, average age 66.8 ± 10.91) with ocular hypertension or glaucoma. For inclusion, at least six reliable visual fields per eye were required, and the trend analysis (EyeSuite™ Perimetry) of visual field global indices (MD and SLV), could show no significant progression. The analysis of changes in cluster mode was then performed. In a second step, eyes with statistically significant worsening of at least one of their clusters were analyzed point-by-point with the Octopus Field Analysis (OFA). Fifty four eyes (33.33%) had a significant worsening in some clusters, while their global indices remained stable over time. In this group of patients, more advanced glaucoma was present than in stable group (MD 6.41 dB vs. 2.87); 64.82% (35/54) of those eyes in which the clusters progressed, however, had no statistically significant change in the trend analysis by pointwise linear regression. Most software algorithms for analyzing visual field progression are essentially trend analyses of global indices, or point-by-point linear regression. This study shows the potential role of analysis by clusters trend. However, for best results, it is preferable to compare the analyses of several tests in combination with morphologic exam. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-09-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  18. Review: visual analytics of climate networks

    NASA Astrophysics Data System (ADS)

    Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.

    2015-04-01

    Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.

  19. Integration of Active and Passive Safety Technologies--A Method to Study and Estimate Field Capability.

    PubMed

    Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed

    2015-11-01

    The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.

  20. Parallel Electric Field on Auroral Magnetic Field Lines.

    NASA Astrophysics Data System (ADS)

    Yeh, Huey-Ching Betty

    1982-03-01

    The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.

  1. Variable Stars in the Field of TrES-3b (Abstract)

    NASA Astrophysics Data System (ADS)

    Aadland, E.

    2018-06-01

    (Abstract only) The star field around the exoplanet TrES-3b has potential for finding unknown variable stars. The field was observed over several nights using Minnesota State University Moorheadís Feder Observatory. A light curve for each star was created and are being evaluated for variability and periodicity. A python program is in development to help complete the analysis by automating some of the process. Several stars in the field appear to be variable and are being further analyzed to determine a period and to classify the type of variable.

  2. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  3. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis ismore » based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.« less

  4. Visualization and analysis of vortex-turbine intersections in wind farms.

    PubMed

    Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I

    2013-09-01

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.

  5. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.

  6. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    NASA Technical Reports Server (NTRS)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  7. Preliminary Analysis of Ground-Based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    NASA Technical Reports Server (NTRS)

    Sease, Bradley; Myers, Jessica; Lorah, John; Webster, Cassandra

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations'' scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  8. Hydrodynamic-Driven Stability Analysis of Morphological Patterns on Stalactites and Implications for Cave Paleoflow Reconstructions

    NASA Astrophysics Data System (ADS)

    Camporeale, Carlo; Ridolfi, Luca

    2012-06-01

    A novel hydrodynamic-driven stability analysis is presented for surface patterns on speleothems, i.e., secondary sedimentary cave deposits, by coupling fluid dynamics to the geochemistry of calcite precipitation or dissolution. Falling film theory provides the solution for the flow-field and depth perturbations, the latter being crucial to triggering patterns known as crenulations. In a wide range of Reynolds numbers, the model provides the dominant wavelengths and pattern celerities, in fair agreement with field data. The analysis of the phase velocity of ridges on speleothems has a potential as a proxy of past film flow rates, thus suggesting a new support for paleoclimate analyses.

  9. Land border monitoring with remote sensing technologies

    NASA Astrophysics Data System (ADS)

    Malinowski, Radoslaw

    2010-09-01

    The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.

  10. Massive hydraulic fracture mapping and characterization program. Surface potential data for Wattenberg 1975--1976 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.P.; Bartel, L.C.; Keck, L.J.

    1977-08-01

    Three massive hydraulic fracture experiments for natural gas stimulation were conducted by Halliburton for AMOCO in the Wattenberg field northeast of Denver, Colorado. The experiments were conducted on three wells--Martin Hart ''E'' No. 1, Salazar G.U. No. 1, and UPRR-22P. All three wells were open hole and the fracture zone was located at a depth of approximately 8000 ft. All were treated with approximately 300,000 gal of fluid and 600,000 lb of proppant. The surface electrical potential technique was used to attempt characterization and mapping of the fracture. The noise perturbating the system consists of telluric currents, currents from industrialmore » sources, and natural local currents. It is difficult to determine the exact signal-to-noise ratio or the exact origin of the noise without exhaustive field measurements and data analysis. However, improvements have been made in the surface potential gradient technique since the early developmental stage of the diagnostic program. To aid in the interpretation of the field data, mathematical modeling efforts have been undertaken. The model utilizes the Green's function integral equation approach where the so-called half-space Green's function is used. The model calculates the potential difference that exists at the surface as a function of fracturing conditions. Data analysis indicates that the fracture orientation for all three wells lies in a SE to NW direction and that the fractures are asymmetric.« less

  11. A methodology to enhance electromagnetic compatibility in joint military operations

    NASA Astrophysics Data System (ADS)

    Buckellew, William R.

    The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.

  12. Potential fields & satellite missions: what they tell us about the Earth's core?

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  13. Irregular-regular mode oscillations inside plasma bubble and its fractal analysis in glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Megalingam, Mariammal; Hari Prakash, N.; Solomon, Infant; Sarma, Arun; Sarma, Bornali

    2017-04-01

    Experimental evidence of different kinds of oscillations in floating potential fluctuations of glow discharge magnetized plasma is being reported. A spherical gridded cage is inserted into the ambient plasma volume for creating plasma bubbles. Plasma is produced between a spherical mesh grid and chamber. The spherical mesh grid of 80% optical transparency is connected to the positive terminal of power supply and considered as anode. Two Langmuir probes are kept in the ambient plasma to measure the floating potential fluctuations in different positions within the system, viz., inside and outside the spherical mesh grid. At certain conditions of discharge voltage (Vd) and magnetic field, irregular to regular mode appears, and it shows chronological changes with respect to magnetic field. Further various nonlinear analyses such as Recurrence Plot, Hurst exponent, and Lyapunov exponent have been carried out to investigate the dynamics of oscillation at a range of discharge voltages and external magnetic fields. Determinism, entropy, and Lmax are important measures of Recurrence Quantification Analysis which indicate an irregular to regular transition in the dynamics of the fluctuations. Furthermore, behavior of the plasma oscillation is characterized by the technique called multifractal detrended fluctuation analysis to explore the nature of the fluctuations. It reveals that it has a multifractal nature and behaves as a long range correlated process.

  14. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  15. Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling

    NASA Astrophysics Data System (ADS)

    Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge

    2008-10-01

    Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.

  16. Maximizing research study effectiveness in malaria elimination settings: a mixed methods study to capture the experiences of field-based staff.

    PubMed

    Canavati, Sara E; Quintero, Cesia E; Haller, Britt; Lek, Dysoley; Yok, Sovann; Richards, Jack S; Whittaker, Maxine Anne

    2017-09-11

    In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols. This mixed-methods analysis sought to gain an understanding of the daily challenges encountered by research field staff in the artemisinin-resistant, malaria elimination setting of Western Cambodia. In doing so, this study seeks to understand how the experiences and opinions of field staff can be captured, and used to inform future study designs. Twenty-two reports from six field-based malaria studies conducted in Western Cambodia were reviewed using content analysis to identify challenges to conducting the research. Informal Interviews, Focus Group Discussions and In-depth Interviews were also conducted among field research staff. Thematic analysis of the data was undertaken using Nvivo 9 ® software. Triangulation and critical case analysis was also used. There was a lack of formalized avenues through which field workers could report challenges experienced when conducting the malaria studies. Field research staff faced significant logistical barriers to participant recruitment and data collection, including a lack of available transportation to cover long distances, and the fact that mobile and migrant populations (MMPs) are usually excluded from studies because of challenges in follow-up. Cultural barriers to communication also hindered participant recruitment and created unexpected delays. Field staff often paid a physical, emotional and financial cost, going beyond their duty in order to keep the study running. Formal monthly reports filled out by field study staff could be a key tool for capturing field study staff experiences effectively, but require specific report fields to encourage staff to outline their challenges and to propose potential solutions. Forging strong bonds with communities and their leaders may improve communication, and decrease barriers to participant recruitment. Study designs that make it feasible for MMPs to participate should be pursued; in addition to increasing the potential participant pool, this will ensure that the most malaria-endemic demographic is taken into account in research studies. Overlaps between clinical care and research create ethical dilemmas for study staff, a fact that warrants careful consideration. Lessons learned from study field staff should be used to create a set of locally-relevant recommendations to inform future study designs.

  17. Understanding Responses to High School Exit Exams in Literacy: A Bourdieusian Analysis of Poetic Transcriptions

    ERIC Educational Resources Information Center

    Huddleston, Andrew P.

    2012-01-01

    In this article, the author demonstrates how a Bourdieusian analysis of poetic transcriptions offers great potential for helping teachers and students to understand how they are responding to state policy mandates in schools. Specifically, the author uses Bourdieu's concepts of field, capital, and habitus to analyze two poetic transcriptions,…

  18. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.

    PubMed

    Chao, Kan; Chen, Bo; Wu, Jiankang

    2010-12-01

    The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.

  19. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.

    PubMed

    Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng

    2018-08-17

    Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Supergravity inflation free from harmful relics

    NASA Astrophysics Data System (ADS)

    Greene, Patrick B.; Kadota, Kenji; Murayama, Hitoshi

    2003-08-01

    We present a realistic supergravity inflation model that is free from the overproduction of potentially dangerous relics in cosmology, namely, moduli and gravitinos, which can lead to inconsistencies with the predictions of baryon asymmetry and nucleosynthesis. The radiative correction turns out to play a crucial role in our analysis, raising the mass of the supersymmetry breaking field to an intermediate scale. We pay particular attention to the nonthermal production of gravitinos using the nonminimal Kähler potential we obtained from loop correction. This nonthermal gravitino production is diminished, however, because of the relatively small scale of the inflaton mass and the small amplitudes of the hidden sector fields.

  1. Consequences of covariant kaon dynamics in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Fuchs, C.; Kosov, D. S.; Faessler, Amand; Wang, Z. S.; Waindzoch, T.

    1998-08-01

    The influence of the chiral mean field on the kaon dynamics in heavy ion reactions is investigated. Inside the nuclear medium the kaons are described as dressed quasi-particles carrying effective masses and momenta. A momentum dependent part of the interaction which resembles a Lorentz force originates from spatial components of the vector field and provides an important contribution to the in-medium kaon dynamics. This contribution is found to counterbalance the influence of the vector potential on the K+ in-plane flow to a strong extent. Thus it appears to be difficult to restrict the in-medium potential from the analysis of the corresponding transverse flow.

  2. Wireless, battery-operated data acquisition system for mobile spectrometry applications and (potentially) for the Internet of things

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Ryan; Karanassios, Vassili

    2017-05-01

    There are many applications requiring chemical analysis in the field and analytical results in (near) real-time. For example, when accidental spills occur. In others, collecting samples in the field followed by analysis in a lab increases costs and introduces time-delays. In such cases, "bring part of the lab to the sample" would be ideal. Toward this ideal (and to further reduce size and weight), we developed a relatively inexpensive, battery-operated, wireless data acquisition hardware system around an Arduino nano micro-controller and a 16-bit ADC (Analog-to- Digital Converter) with a max sampling rate of 860 samples/s. The hardware communicates the acquired data using low-power Bluetooth. Software for data acquisition and data display was written in Python. Potential ways of making the hardware-software approach described here a part of the Internet-of-Things (IoT) are presented.

  3. Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions

    DOE PAGES

    Baczewski, Andrew David; Miller, Nicholas C.; Shanker, Balasubramaniam

    2012-03-22

    Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν 2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodicmore » dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.« less

  4. Hydrologic Reconnaissance of Wetland-Bird Habitat in Areas With Potential to be Influenced by Water Produced During Coalbed Methane Production in the Northern Powder River Basin, MT

    NASA Astrophysics Data System (ADS)

    Custer, S. G.; Sojda, R. S.

    2003-12-01

    The removal and disposal of ground water during production of coalbed methane has the potential to influence wetland-bird habitat in the Powder River Basin. Office analysis of wetland areas was conducted on National Wetland Inventory maps and Digital Orthophoto Quadrangles along the Tongue and Powder rivers in the northern Powder River Basin, Montana. Selected sites were palustrine emergent, large enough to be important to waterbirds, part of a wetland complex, not dependent on artificial water regimes, in an area with high potential for coalbed methane production, and judged to be accessible in the field. Several promising wetland areas were selected for field examination. Field investigation suggests that the most promising wetlands in oxbow cutoffs would not be productive sites. Only facultative not obligate wetland plants were observed, the topographic position of the wetlands suggested that flooding would be infrequent, and the stream flow would likely dilute the effect of produced water adjacent to these rivers. Fortuitously wetland-bird habitat not recognized on the National Wetland Inventory maps and Digital Orthophoto Quadrangles was observed along Rosebud Creek during the field reconnaissance. This habitat is not continuous. The lack of continuity is reflected in the soil surveys as well as in the reconnaissance field nvestigation. The Alluvial Land soil series corresponds to observed wetland areas but the extent of the wetland-bird habitat varies substantially within the soil unit. When the Korchea series is present, extensive wetland-bird habitat is not observed. Field and aerial photo analysis suggests that the presence of the habitat may be controlled by beaver, and/or by stratigraphic and structural elements that influence stream erosion. Human modification of the stream for irrigation purposes may impact habitat continuity in some areas. The "Rosebud" type wetland-bird habitat may have the potential to be influenced by coalbed methane water production and warrants further more detailed investigation to determine the areal extent of the habitat, to determine the factors that control the distribution of intermittent wetland-bird-habitat areas, and to better model whether and how water produced during coalbed methane development might influence wetland-bird habitat.

  5. Environmental Assessment: Hurlburt Field Soundside Boathouse and Restroom Facility Construction

    DTIC Science & Technology

    2007-08-01

    seq., and Air Force Instruction (AFI) 32-7061, The Environmental Impact Analysis Process, the USAF concludes that the Proposed Action will have no...U.S.C.) §4321, et seq., and Air Force Instruction (AFI) 32-7061, The Environmental Impact Analysis Process, the USAF concludes that the Proposed...et seq. • AFI 32-7061, The Environmental Impact Analysis Process These regulations require federal agencies to analyze the potential environmental

  6. A Constrained Scheme for High Precision Downward Continuation of Potential Field Data

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Zhou, Zhiwen

    2018-04-01

    To further improve the accuracy of the downward continuation of potential field data, we present a novel constrained scheme in this paper combining the ideas of the truncated Taylor series expansion, the principal component analysis, the iterative continuation and the prior constraint. In the scheme, the initial downward continued field on the target plane is obtained from the original measured field using the truncated Taylor series expansion method. If the original field was with particularly low signal-to-noise ratio, the principal component analysis is utilized to suppress the noise influence. Then, the downward continued field is upward continued to the plane of the prior information. If the prior information was on the target plane, it should be upward continued over a short distance to get the updated prior information. Next, the difference between the calculated field and the updated prior information is calculated. The cosine attenuation function is adopted to get the scope of constraint and the corresponding modification item. Afterward, a correction is performed on the downward continued field on the target plane by adding the modification item. The correction process is iteratively repeated until the difference meets the convergence condition. The accuracy of the proposed constrained scheme is tested on synthetic data with and without noise. Numerous model tests demonstrate that downward continuation using the constrained strategy can yield more precise results compared to other downward continuation methods without constraints and is relatively insensitive to noise even for downward continuation over a large distance. Finally, the proposed scheme is applied to real magnetic data collected within the Dapai polymetallic deposit from the Fujian province in South China. This practical application also indicates the superiority of the presented scheme.

  7. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    PubMed

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.

  8. Infrasound Signals from Ground-Motion Sources

    DTIC Science & Technology

    2008-09-01

    signals as a basis for discriminants between underground nuclear tests ( UGT ) and earthquakes (EQ). In an earlier program, infrasound signals from... UGTs and EQs were collected at ranges of a few hundred kilometers, in the far-field. Analysis of these data revealed two parameters that had potential...well. To study the near-field signals, we are using computational techniques based on modeled ground motions from UGTs and EQs. One is the closed

  9. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.

    PubMed

    Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan

    2017-02-01

    Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.

  10. A Field-Portable Cell Analyzer without a Microscope and Reagents

    PubMed Central

    Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha

    2017-01-01

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm3 and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer (de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis. PMID:29286336

  11. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie

    2017-12-01

    The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.

  12. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis.

    PubMed

    Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T

    2017-07-01

    Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects. NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular. Copyright © 2017 the American Physiological Society.

  13. Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel.

    PubMed

    Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam

    2011-11-01

    We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spacetime algebra as a powerful tool for electromagnetism

    NASA Astrophysics Data System (ADS)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  15. Symposium on single cell analysis and genomic approaches, Experimental Biology 2017 Chicago, Illinois, April 23, 2017.

    PubMed

    Coller, Hilary A

    2017-09-01

    Emerging technologies for the analysis of genome-wide information in single cells have the potential to transform many fields of biology, including our understanding of cell states, the response of cells to external stimuli, mosaicism, and intratumor heterogeneity. At Experimental Biology 2017 in Chicago, Physiological Genomics hosted a symposium in which five leaders in the field of single cell genomics presented their recent research. The speakers discussed emerging methodologies in single cell analysis and critical issues for the analysis of single cell data. Also discussed were applications of single cell genomics to understanding the different types of cells within an organism or tissue and the basis for cell-to-cell variability in response to stimuli. Copyright © 2017 the American Physiological Society.

  16. Integrated field and laboratory tests to evaluate effects of metals-impacted wetlands on amphibians: A case study from Montana

    USGS Publications Warehouse

    Linder, G.; ,

    2003-01-01

    Mining activities frequently impact wildlife habitats, and a wide range of habitats may require evaluations of the linkages between wildlife and environmental stressors common to mining activities (e.g., physical alteration of habitat, releases of chemicals such as metals and other inorganic constituents as part of the mining operation). Wetlands, for example, are frequently impacted by mining activities. Within an ecological assessment for a wetland, toxicity evaluations for representative species may be advantageous to the site evaluation, since these species could be exposed to complex chemical mixtures potentially released from the site. Amphibian species common to these transition zones between terrestrial and aquatic habitats are one key biological indicator of exposure, and integrated approaches which involve both field and laboratory methods focused on amphibians are critical to the assessment process. The laboratory and field evaluations of a wetland in western Montana illustrates the integrated approach to risk assessment and causal analysis. Here, amphibians were used to evaluate the potential toxicity associated with heavy metal-laden sediments deposited in a reservoir. Field and laboratory methods were applied to a toxicity assessment for metals characteristic of mine tailings to reduce potential "lab to field" extrapolation errors and provide adaptive management programs with critical site-specific information targeted on remediation.

  17. Liquid biopsies come of age: towards implementation of circulating tumour DNA.

    PubMed

    Wan, Jonathan C M; Massie, Charles; Garcia-Corbacho, Javier; Mouliere, Florent; Brenton, James D; Caldas, Carlos; Pacey, Simon; Baird, Richard; Rosenfeld, Nitzan

    2017-04-01

    Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.

  18. Magnetic Properties of Strongly Correlated Hubbard Model and Quantum Spin-One Ferromagnets with Arbitrary Crystal-Field Potential: Linked Cluster Series Expansion Approach

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is roughly estimated based on this model using known experimental results.

  19. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research.

    PubMed

    Han, Seong Kyu; Lee, Dongyeop; Lee, Heetak; Kim, Donghyo; Son, Heehwa G; Yang, Jae-Seong; Lee, Seung-Jae V; Kim, Sanguk

    2016-08-30

    Online application for survival analysis (OASIS) has served as a popular and convenient platform for the statistical analysis of various survival data, particularly in the field of aging research. With the recent advances in the fields of aging research that deal with complex survival data, we noticed a need for updates to the current version of OASIS. Here, we report OASIS 2 (http://sbi.postech.ac.kr/oasis2), which provides extended statistical tools for survival data and an enhanced user interface. In particular, OASIS 2 enables the statistical comparison of maximal lifespans, which is potentially useful for determining key factors that limit the lifespan of a population. Furthermore, OASIS 2 provides statistical and graphical tools that compare values in different conditions and times. That feature is useful for comparing age-associated changes in physiological activities, which can be used as indicators of "healthspan." We believe that OASIS 2 will serve as a standard platform for survival analysis with advanced and user-friendly statistical tools for experimental biologists in the field of aging research.

  20. MIPs as Tools in Environmental Biotechnology.

    PubMed

    Mattiasson, Bo

    2015-01-01

    Molecular imprints are potentially fantastic constructions. They are selective, robust, and nonbiodegradable if produced from stable polymers. A range of different applications has been presented, everything from separation of enantiomers, via adsorbents for sample preparation before analysis to applications in wastewater treatment. This chapter deals with molecularly imprinted polymers (MIPs) as tools in environmental biotechnology, a field that has the potential to become very important in the future.

  1. Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field

    PubMed Central

    Hahn, David; Boers, Frank; Shah, N. Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538

  2. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  3. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.

    PubMed

    Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H

    2013-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

  4. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    PubMed Central

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  5. Satellite-based studies of maize yield spatial variations and their causes in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2013-12-01

    Maize production in China has been expanding significantly in the past two decades, but yield has become relatively stagnant in the past few years, and needs to be improved to meet increasing demand. Multiple studies found that the gap between potential and actual yield of maize is as large as 40% to 60% of yield potential. Although a few major causes of yield gap have been qualitatively identified with surveys, there has not been spatial analysis aimed at quantifying relative importance of specific biophysical and socio-economic causes, information which would be useful for targeting interventions. This study analyzes the causes of yield variation at field and village level in Quzhou county of North China Plain (NCP). We combine remote sensing and crop modeling to estimate yields in 2009-2012, and identify fields that are consistently high or low yielding. To establish the relationship between yield and potential factors, we gather data on those factors through a household survey. We select targeted survey fields such that not only both extremes of yield distribution but also all soil texture categories in the county is covered. Our survey assesses management and biophysical factors as well as social factors such as farmers' access to agronomic knowledge, which is approximated by distance to the closest demonstration plot or 'Science and technology backyard'. Our survey covers 10 townships, 53 villages and 180 fields. Three to ten farmers are surveyed depending on the amount of variation present among sub pixels of each field. According to survey results, we extract the amount of variation within as well as between villages and or soil type. The higher within village or within field variation, the higher importance of management factors. Factors such as soil type and access to knowledge are more represented by between village variation. Through regression and analysis of variance, we gain more quantitative and thorough understanding of causes to yield variation at village scale, which further explains the gap between average and highest achieved yield.

  6. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    PubMed

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  8. [Applications of near infrared reflectance spectroscopy in detecting chitin, ergosterol and mycotoxins].

    PubMed

    Yi, Yong-Yan; Li, De-Rong; Zhang, Yun-Wei; Yang, Fu-Yu

    2009-07-01

    The invasion extent and harmfulness of fungi can be determined by chitin, ergosterol and mycotoxins. It is important to monitor chitin, ergosterol and mycotoxins changes to prevent contamination of forage and feed products, and effectively control the sustainable development of the mildew. Predication of these chemical materials was often completed by laboratory analysis, which was time-consuming and cumbersome and could not reflect the results in time in the past. Near infrared reflectance spectroscopy (NIRS) is a rapid, convenient, highly efficient, nondestructive and low-cost analytical technique, which has been widely used in various fields such as food field and feed field for quantitative and qualitative analysis. It has a great potentiality of application in quality analysis. In this paper, the principle and the characteristic of NIRS and its applications in food, forage, feed and other agriculture products quality analysis were introduced. Its applications in fungal biomass (chitin, ergosterol) and mycotoxins were mainly reviewed. NIRS was used to quantify chitin, ergosterol and mycotoxins. Calibration equations and validation equations for these materials were developed. It is also expected that NIRS will play a more and more important role in the field of fungi with the establishment of calibration equation and improvement of model database.

  9. Electroosmosis over charge-modulated surfaces with finite electrical double layer thicknesses: Asymptotic and numerical investigations

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman

    2017-06-01

    Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.

  10. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  11. Evaluation of military field-water quality: Volume 9, Data for assessing health risks in potential theaters of operation for US military forces: (Final report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, J.I.; Layton, D.W.

    1988-02-01

    Data are presented in this volume for assessing the health risks in populations of military personnel that could result as a consequence of exposure to field waters containing constituents or infectious organisms of military concern, which are from natural and anthropogenic sources, at levels above those recommended as field-water-quality standards (i.e., above safe levels). Turbidity and color are the physical properties that are of military concern in field water. The other constituents that are of military concern in field water are (1) total dissolved solids, (2) chloride, (3) magnesium, (4) sulfate, (5) arsenic, (6) cyanide, (7) the pesticide lindane, andmore » (8) metabolites of algae and associated bacteria. Bacteria, viruses, and parasites (e.g., protozoa and helminths) are categories of water-related infectious organisms that are of military concern. Figures were developed from dose-response data to enable military risk managers to quickly assess the potential performance-degrading effects in personnel exposed to a measured concentration of a particular constituent in field water. The general physical, chemical, and biological quality of field waters in geographic regions worldwide, representing potential theaters of operation for U.S. military forces, also are evaluated. This analysis is based on available water-quality monitoring data and indicators of likely water-quality conditions (e.g., geohydrology, climate, sanitation, industrialization, etc.). Accompanying our evaluation are maps and tables alerting military planners and risk managers to the physical, chemical, or biological quality of field water that can be expected generally in geographic regions of concern.« less

  12. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  13. Land utilization and water resource inventories over extended test sites

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  14. Comparative Analysis of Combat Attitudes of Air Force Administrative Personnel.

    DTIC Science & Technology

    1986-04-01

    on mobility and readiness, the personnel in the Administrative Career Field can expect to be involved in the combat arena . Career field functional...military operations, the atomic bomb, and recognition of space as a potential military arena . Indeed, the old-fashioned garrison lifestyle and the...married to another military member. More than 77% (39.) of the officers’ spouses are employed outside the home. In the education arena , 33% of 29 II

  15. Selection of nontarget arthropod taxa for field research on transgenic insecticidal crops: using empirical data and statistical power.

    PubMed

    Prasifka, J R; Hellmich, R L; Dively, G P; Higgins, L S; Dixon, P M; Duan, J J

    2008-02-01

    One of the possible adverse effects of transgenic insecticidal crops is the unintended decline in the abundance of nontarget arthropods. Field trials designed to evaluate potential nontarget effects can be more complex than expected because decisions to conduct field trials and the selection of taxa to include are not always guided by the results of laboratory tests. Also, recent studies emphasize the potential for indirect effects (adverse impacts to nontarget arthropods without feeding directly on plant tissues), which are difficult to predict because of interactions among nontarget arthropods, target pests, and transgenic crops. As a consequence, field studies may attempt to monitor expansive lists of arthropod taxa, making the design of such broad studies more difficult and reducing the likelihood of detecting any negative effects that might be present. To improve the taxonomic focus and statistical rigor of future studies, existing field data and corresponding power analysis may provide useful guidance. Analysis of control data from several nontarget field trials using repeated-measures designs suggests that while detection of small effects may require considerable increases in replication, there are taxa from different ecological roles that are sampled effectively using standard methods. The use of statistical power to guide selection of taxa for nontarget trials reflects scientists' inability to predict the complex interactions among arthropod taxa, particularly when laboratory trials fail to provide guidance on which groups are more likely to be affected. However, scientists still may exercise judgment, including taxa that are not included in or supported by power analyses.

  16. Computation of load performance and other parameters of extra high speed modified Lundell alternators from 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.

  17. A new upper limit to the field‐aligned potential near Titan

    PubMed Central

    Wellbrock, Anne; Waite, J. Hunter; Jones, Geraint H.

    2015-01-01

    Abstract Neutral particles dominate regions of the Saturn magnetosphere and locations near several of Saturn's moons. Sunlight ionizes neutrals, producing photoelectrons with characteristic energy spectra. The Cassini plasma spectrometer electron spectrometer has detected photoelectrons throughout these regions, where photoelectrons may be used as tracers of magnetic field morphology. They also enhance plasma escape by setting up an ambipolar electric field, since the relatively energetic electrons move easily along the magnetic field. A similar mechanism is seen in the Earth's polar wind and at Mars and Venus. Here we present a new analysis of Titan photoelectron data, comparing spectra measured in the sunlit ionosphere at ~1.4 Titan radii (R T) and at up to 6.8 R T away. This results in an upper limit on the potential of 2.95 V along magnetic field lines associated with Titan at up to 6.8 R T, which is comparable to some similar estimates for photoelectrons seen in Earth's magnetosphere. PMID:27609997

  18. Israel Country Analysis Brief

    EIA Publications

    2016-01-01

    Israel, once dependent on imports to supply its energy, now has a growing natural gas industry. Recent discoveries of offshore natural gas fields have the potential to provide adequate amounts of energy to meet domestic demand, while allowing the country to export excess volumes.

  19. Calculation and Analysis of magnetic gradient tensor components of global magnetic models

    NASA Astrophysics Data System (ADS)

    Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  20. Magnetic topological analysis of coronal bright points

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.

    2017-10-01

    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org

  1. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

    PubMed

    Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K

    2010-12-01

    Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

  2. Opto-mechatronics issues in solid immersion lens based near-field recording

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  3. Investigation of complexity dynamics in a DC glow discharge magnetized plasma using recurrence quantification analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less

  4. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  5. Analysis of Discontinuities in a Rectangular Waveguide Using Dyadic Green's Function Approach in Conjunction with Method of Moments

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.

    1997-01-01

    The dyadic Green's function for an electric current source placed in a rectangular waveguide is derived using a magnetic vector potential approach. A complete solution for the electric and magnetic fields including the source location is obtained by simple differentiation of the vector potential around the source location. The simple differentiation approach which gives electric and magnetic fields identical to an earlier derivation is overlooked by the earlier workers in the derivation of the dyadic Green's function particularly around the source location. Numerical results obtained using the Green's function approach are compared with the results obtained using the Finite Element Method (FEM).

  6. Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation

    NASA Technical Reports Server (NTRS)

    Chang, I. C.

    1985-01-01

    A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.

  7. On the topology of the inflaton field in minimal supergravity models

    NASA Astrophysics Data System (ADS)

    Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.

    2014-04-01

    We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.

  8. The formation and analysis of a 5 deg equal area block terrestrial gravity field

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1972-01-01

    A set of 23,355 1 degree x 1 degree mean free air anomalies were used to predict a set of 5 degree equal area anomalies and their standard errors. Using the 1 degree data incorporating geophysically predicted values of ACIC, 1283 5 degree blocks were computed. Excluding the geophysically predicted anomalies 1249 blocks were computed. The 1 degree data were also used to compute covariance functions and the equatorial gravity and flattening implied by this data. The predicted anomalies were supplemented by model anomalies to form a complete 1654 global anomaly field. These data were used in a weighted least squares to determine potential coefficients to degree 15, and in a summation type formulation to determine potential coefficients to degree 25. These potential coefficients sets are compared to recent satellite determinations.

  9. Finite element analysis of time-independent superconductivity. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Schuler, James J.

    1993-01-01

    The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principle is presented. The use of the four-potential variational principle allows for downstream coupling of EM fields with the thermal, mechanical, and quantum effects exhibited by superconducting materials. The use of variational methods to model an EM system allows for a greater range of applications than just the superconducting problem. The four-potential variational principle can be used to solve a broader range of EM problems than any of the currently available formulations. It also reduces the number of independent variables from six to four while easily dealing with conductor/insulator interfaces. This methodology was applied to a range of EM field problems. Results from all these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.

  10. Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China

    NASA Astrophysics Data System (ADS)

    GAO, X.

    2017-12-01

    China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.

  11. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    NASA Astrophysics Data System (ADS)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  12. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    PubMed

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  14. Is there the potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free air CO2 enrichment

    USDA-ARS?s Scientific Manuscript database

    Rising atmospheric [CO2] is a uniform and global change that increases C3 photosynthesis by suppressing the oxygenation reaction of Rubisco and accelerating carboxylation. This has the potential to provide some offset to the negative effects of global change on crop yields. However, under field cond...

  15. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  16. Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.

    PubMed

    Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth

    2013-02-13

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.

  17. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  18. Kelvin-Helmholtz instability for flow in porous media under the influence of oblique magnetic fields: A viscous potential flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.

    2013-10-15

    In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less

  19. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity

    PubMed Central

    Pertl, Laura; Steinwender, Gernot; Mayer, Christoph; Hausberger, Silke; Pöschl, Eva-Maria; Wackernagel, Werner; Wedrich, Andreas; El-Shabrawi, Yosuf; Haas, Anton

    2015-01-01

    Introduction Laser photocoagulation is the current gold standard treatment for proliferative retinopathy of prematurity (ROP). However, it permanently reduces the visual field and might induce myopia. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of ROP may enable continuing vascularization of the retina, potentially allowing the preservation of the visual field. However, for their use in infants concern remains. This meta-analysis explores the safety of VEGF inhibitors. Methods The Ovid Interface was used to perform a systematic review of the literature in the databases PubMed, EMBASE and the Cochrane Library. Results This meta-analysis included 24 original reports (including 1.457 eyes) on VEGF inhibitor treatment for ROP. The trials were solely observational except for one randomized and two case-control studies. We estimated a 6-month risk of retreatment per eye of 2.8%, and a 6-month risk of ocular complication without the need of retreatment of 1.6% per eye. Systemic complications were only reported as isolated incidents. Discussion VEGF inhibitors seem to be associated with low recurrence rates and ocular complication rates. They may have the benefit of potentially allowing the preservation of visual field and lower rates of myopia. Due to the lack of data, the risk of systemic side effects cannot be assessed. PMID:26083024

  1. Conventional 4-field box radiotherapy technique for cancer cervix: potential for geographic miss without CECT scan-based planning.

    PubMed

    Nagar, Y S; Singh, S; Kumar, S; Lal, P

    2004-01-01

    The advantage of 4-field radiation to the pelvis is that the use of lateral portals spares a portion of the small bowel anteriorly and rectum posteriorly. The standard lateral portals defined in textbooks are not always adequate especially in advanced cancer cervix. An analysis was done to determine adequacy of margins of standard lateral pelvic portals with CECT defined tumor volumes. The study included 40 patients of FIGO stage IIB and IIIB treated definitively for cancer cervix between 1998 and 2000. An inadequate margin was defined if the cervical growth and uterus were not encompassed by the 95% isodose. An inadequate posterior margin was common with bulky disease (P = 0.06) and with retroverted uterus (P = 0.08). Menopausal status, FIGO stage, associated myoma, and age were of no apparent prognostic significance. Bulk retained significant on multivariate analysis. An inadequate anterior margin was common in premenopausal (P = 0.01); anteverted uterus (P = 0.02); associated myoma (P = 0.01); and younger patients (P = 0.03). It was not influenced by bulk or stage. Menopausal status and associated myoma retained significant on multivariate analysis. Without the knowledge of precise tumor volume, the 4-field technique with standard portals is potentially risky as it may under dose the tumor through lateral portals and the standard AP/ PA portals are a safer option.

  2. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  3. Analysis of regional crustal magnetization in Vector Cartesian Harmonics

    NASA Astrophysics Data System (ADS)

    Gubbins, D.; Ivers, D. J.; Williams, S.

    2017-12-01

    We introduce a set of basis functions for analysing magnetization in a plane layer, called Vector Cartesian Harmonics, that separate the part of the magnetization responsible for generating the external potential field from the part that generates no observable field. They are counterparts of similar functions defined on a sphere, Vector Spherical Harmonics, which we introduced earlier for magnetization in a spherical shell. We expand four example magnetizations in these functions and determine which parts are responsible for the observed magnetic field above the layer. For a point dipole, the component of magnetization responsible for the external potential field is the sum of a point dipole of half strength and a distributed magnetization that gives the same field. The dipping prism has no magnetic field if magnetized along strike; otherwise it, like the point dipole, has the correct dipping structure but of half the correct intensity accompanied by a distributed magnetization producing the same magnetic field. Interestingly, the distributed magnetization has singularities at the edges of the dipping slab. The buried cube is done numerically and again only a fraction of the true magnetization appears along with distributed magnetizations, strongest at the edges of the cube, making up the rest of the field. The Bishop model, a model of magnetization often used to test analysis methods, behaves similarly. In cases where the magnetization is induced by a known, non-horizontal field it is always possible to recover the vertically averaged susceptibility except for its horizontal average. Simple damped inversion of magnetic data will return only the harmonics responsible for the external field, so the analysis gives a clear indication of how any combination of induced and remanent magnetization would be returned. In practice, most interpretations of magnetic surveys are done in combination with other geological data and insights. We propose using this prior information to construct a quantitative magnetization that can be expanded in Vector Cartesian Harmonics to determine the part that generates the observed magnetic anomalies; this part can be refined to fit the data while the remaining part can only be improved using different information. The separation is simple and fast to implement using standard software because it involves only elementary manipulations of 2-dimensional Fourier transforms.

  4. Source imaging of potential fields through a matrix space-domain algorithm

    NASA Astrophysics Data System (ADS)

    Baniamerian, Jamaledin; Oskooi, Behrooz; Fedi, Maurizio

    2017-01-01

    Imaging of potential fields yields a fast 3D representation of the source distribution of potential fields. Imaging methods are all based on multiscale methods allowing the source parameters of potential fields to be estimated from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in performing upward continuation and differentiation of the field has therefore a key role for this class of methods. We here describe an accurate method for performing upward continuation and vertical differentiation in the space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert transform; from these equations we then define matrix operators performing the transformation, which are symmetric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our approach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable differentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the continuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms and standard convolution procedures.

  5. Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework.

    PubMed

    Evans, Robert; McNamee, Michael; Guy, Owen

    2017-12-01

    Individual athletes, coaches and sports teams seek continuously for ways to improve performance and accomplishment in elite competition. New techniques of performance analysis are a crucial part of the drive for athletic perfection. This paper discusses the ethical importance of one aspect of the future potential of performance analysis in sport, combining the field of biomedicine, sports engineering and nanotechnology in the form of 'Nanobiosensors'. This innovative technology has the potential to revolutionise sport, enabling real time biological data to be collected from athletes that can be electronically distributed. Enabling precise real time performance analysis is not without ethical problems. Arguments concerning (1) data ownership and privacy; (2) data confidentiality; and (3) athlete welfare are presented alongside a discussion of the use of the Precautionary Principle in making ethical evaluations. We conclude, that although the future potential use of Nanobiosensors in sports analysis offers many potential benefits, there is also a fear that it could be abused at a sporting system level. Hence, it is essential for sporting bodies to consider the development of a robust ethically informed governance framework in advance of their proliferated use.

  6. Experimental Design for Evaluating the Safety Benefits of Railroad Advance Warning Signs

    DOT National Transportation Integrated Search

    1979-04-01

    The report presents the findings and conclusions of a study to develop an experimental design and analysis plan for field testing and evaluation of the accident reduction potential of a proposed new railroad grade crossing advance warning sign. Sever...

  7. EPA Technology Available for Licensing: Portable Device to Concentrate Water Samples for Microorganism Analysis

    EPA Pesticide Factsheets

    Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.

  8. Preliminary Prioritization of California Oil and Gas Fields for Regional Groundwater Monitoring Based on Intensity of Petroleum Resource Development and Proximity to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Landon, M. K.; Bennett, G.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.

  9. Analysis of the interaction between experimental and applied behavior analysis.

    PubMed

    Virues-Ortega, Javier; Hurtado-Parrado, Camilo; Cox, Alison D; Pear, Joseph J

    2014-01-01

    To study the influences between basic and applied research in behavior analysis, we analyzed the coauthorship interactions of authors who published in JABA and JEAB from 1980 to 2010. We paid particular attention to authors who published in both JABA and JEAB (dual authors) as potential agents of cross-field interactions. We present a comprehensive analysis of dual authors' coauthorship interactions using social networks methodology and key word analysis. The number of dual authors more than doubled (26 to 67) and their productivity tripled (7% to 26% of JABA and JEAB articles) between 1980 and 2010. Dual authors stood out in terms of number of collaborators, number of publications, and ability to interact with multiple groups within the field. The steady increase in JEAB and JABA interactions through coauthors and the increasing range of topics covered by dual authors provide a basis for optimism regarding the progressive integration of basic and applied behavior analysis. © Society for the Experimental Analysis of Behavior.

  10. The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Pratt, William

    2010-01-01

    With each flight test a Range Safety Data Package is assembled to understand the potential consequences of various failure scenarios. Debris catalog analysis considers an overpressure failure of the Abort Motor and the resulting debris field created 1. Characterize debris fragments generated by failure: weight, shape, and area 2. Compute fragment ballistic coefficients 3. Compute fragment ejection velocities.

  11. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change.

    PubMed

    Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun

    2016-07-01

    We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.

  12. Theoretical and observational constraints on Tachyon Inflation

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; De-Santiago, Josue; German, Gabriel; Hidalgo, Juan Carlos; Rigel Mora-Luna, Refugio

    2018-03-01

    We constrain several models in Tachyonic Inflation derived from the large-N formalism by considering theoretical aspects as well as the latest observational data. On the theoretical side, we assess the field range of our models by means of the excursion of the equivalent canonical field. On the observational side, we employ BK14+PLANCK+BAO data to perform a parameter estimation analysis as well as a Bayesian model selection to distinguish the most favoured models among all four classes here presented. We observe that the original potential V propto sech(T) is strongly disfavoured by observations with respect to a reference model with flat priors on inflationary observables. This realisation of Tachyon inflation also presents a large field range which may demand further quantum corrections. We also provide examples of potentials derived from the polynomial and the perturbative classes which are both statistically favoured and theoretically acceptable.

  13. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  14. Simple and Multiple Endmember Mixture Analysis in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie

    2000-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.

  15. Influence of gate width on gate-channel carrier mobility in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao

    2017-11-01

    For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.

  16. Monitoring Space Weather Hazards caused by geomagnetic disturbances with Space Hazard Monitor (SHM) systems

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.

    2017-12-01

    One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.

  17. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  18. Cosmological evolution of a tachyon-quintom model of dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shang-Gang; Piao, Yun-Song; Qiao, Cong-Feng, E-mail: shishanggang06@mails.gucas.ac.cn, E-mail: yspiao@gucas.ac.cn, E-mail: qiaocf@gucas.ac.cn

    2009-04-15

    In this work we study the cosmological evolution of a dark energy model with two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables the equation of state w to change from w > -1 to w < -1 in the evolution of the universe. The phase-space analysis for such a system with inverse square potentials shows that there exists a unique stable critical point, which has power-law solution. In this paper, we also study another form of tachyon-quintom model with two fields, which involves the interactions between both fields.

  19. Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles.

    PubMed

    Holmström, Petter; Yuan, Jun; Qiu, Min; Thylén, Lars; Bratkovsky, Alexander M

    2011-04-11

    The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures. © 2011 Optical Society of America

  20. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  1. Exotic dark spinor fields

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff

    2011-04-01

    Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.

  2. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  3. Scalable Electrospray Components for Portable Power Applications Using MEMS Fabrication Techniques

    DTIC Science & Technology

    2006-11-01

    electric field induced between the electrode and the conducting liquid initially causes a Taylor cone to form at the tip of the tube where the field...voltage source, creating a strong electrical potential difference between the two. A Taylor -cone forms at the tip of each nozzle from the electro...Combustion Institute, 20, pp. 965-972. Muler, N. and Fréchette, L.G., 2002: Performance Analysis of Brayton and Rankine Cycle Microsystems for

  4. An overview of pharmaceutical cocrystals as intellectual property.

    PubMed

    Trask, Andrew V

    2007-01-01

    This review article focuses on the interaction among certain scientific, legal, and regulatory aspects of pharmaceutical crystal forms. The article offers an analysis of pharmaceutical cocrystals as patentable inventions by drawing upon recent scientific developments in the field. Several potential commercial advantages of pharmaceutical cocrystals are highlighted, and a number of recent court decisions involving salient issues are summarized. The article provides an outlook on how the developing field of cocrystallization may impact the pharmaceutical intellectual property landscape.

  5. Common time-frequency analysis of local field potential and pyramidal cell activity in seizure-like events of the rat hippocampus

    NASA Astrophysics Data System (ADS)

    Cotic, M.; Chiu, A. W. L.; Jahromi, S. S.; Carlen, P. L.; Bardakjian, B. L.

    2011-08-01

    To study cell-field dynamics, physiologists simultaneously record local field potentials and the activity of individual cells from animals performing cognitive tasks, during various brain states or under pathological conditions. However, apart from spike shape and spike timing analyses, few studies have focused on elucidating the common time-frequency structure of local field activity relative to surrounding cells across different periods of phenomena. We have used two algorithms, multi-window time frequency analysis and wavelet phase coherence (WPC), to study common intracellular-extracellular (I-E) spectral features in spontaneous seizure-like events (SLEs) from rat hippocampal slices in a low magnesium epilepsy model. Both algorithms were applied to 'pairs' of simultaneously observed I-E signals from slices in the CA1 hippocampal region. Analyses were performed over a frequency range of 1-100 Hz. I-E spectral commonality varied in frequency and time. Higher commonality was observed from 1 to 15 Hz, and lower commonality was observed in the 15-100 Hz frequency range. WPC was lower in the non-SLE region compared to SLE activity; however, there was no statistical difference in the 30-45 Hz band between SLE and non-SLE modes. This work provides evidence of strong commonality in various frequency bands of I-E SLEs in the rat hippocampus, not only during SLEs but also immediately before and after.

  6. A study on assimilating potential vorticity data

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ménard, Richard; Riishøjgaard, Lars Peter; Cohn, Stephen E.; Rood, Richard B.

    1998-08-01

    The correlation that exists between the potential vorticity (PV) field and the distribution of chemical tracers such as ozone suggests the possibility of using tracer observations as proxy PV data in atmospheric data assimilation systems. Especially in the stratosphere, there are plentiful tracer observations but a general lack of reliable wind observations, and the correlation is most pronounced. The issue investigated in this study is how model dynamics would respond to the assimilation of PV data. First, numerical experiments of identical-twin type were conducted with a simple univariate nuding algorithm and a global shallow water model based on PV and divergence (PV-D model). All model fields are successfully reconstructed through the insertion of complete PV data alone if an appropriate value for the nudging coefficient is used. A simple linear analysis suggests that slow modes are recovered rapidly, at a rate nearly independent of spatial scale. In a more realistic experiment, appropriately scaled total ozone data from the NIMBUS-7 TOMS instrument were assimilated as proxy PV data into the PV-D model over a 10-day period. The resulting model PV field matches the observed total ozone field relatively well on large spatial scales, and the PV, geopotential and divergence fields are dynamically consistent. These results indicate the potential usefulness that tracer observations, as proxy PV data, may offer in a data assimilation system.

  7. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    PubMed

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  8. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  9. Elongation of Flare Ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.

    2017-03-20

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less

  10. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  11. Ultra-localized single cell electroporation using silicon nanowires.

    PubMed

    Jokilaakso, Nima; Salm, Eric; Chen, Aaron; Millet, Larry; Guevara, Carlos Duarte; Dorvel, Brian; Reddy, Bobby; Karlstrom, Amelie Eriksson; Chen, Yu; Ji, Hongmiao; Chen, Yu; Sooryakumar, Ratnasingham; Bashir, Rashid

    2013-02-07

    Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.

  12. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.

  13. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    NASA Astrophysics Data System (ADS)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  14. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    PubMed Central

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008

  15. Real-time biosensor for the assessment of nanotoxicity and cancer electrotherapy

    NASA Astrophysics Data System (ADS)

    Hondroulis, Evangelia

    Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

  16. Angular momentum and torque described with the complex octonion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn

    2014-08-15

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less

  17. Near-field photothermal microspectroscopy for adult stem-cell identification and characterization.

    PubMed

    Grude, Olaug; Hammiche, Azzedine; Pollock, Hubert; Bentley, Adam J; Walsh, Michael J; Martin, Francis L; Fullwood, Nigel J

    2007-12-01

    The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.

  18. An inexpensive, temporally-integrated system for monitoring occurrence and biological effects of aquatic contaminants in the field

    EPA Science Inventory

    Assessment of potential ecological risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. Instrumental analysis of environmental samples alone can identify contaminants, but provides only limited insights as to possible a...

  19. INTRODUCTION TO THE LANDSCAPE ANALYSIS TOOLS ARCVIEW EXTENSION

    EPA Science Inventory

    Geographic Information Systems (GIS) have become a powerful tool in the field of landscape ecology. A common application of GIS is the generation of landscape indicators, which are quantitative measurements of the status or potential health of an area (e.g. watershed or county). ...

  20. PARTICIPATION OF ADULTS IN EDUCATION, A FORCE-FIELD ANALYSIS.

    ERIC Educational Resources Information Center

    MILLER, HARRY L.

    VARIOUS SOCIOLOGICAL AND PSYCHOLOGICAL THEORIES RELATING TO MOTIVATION ARE POTENTIALLY USEFUL TOOLS FOR PREDICTING AND INFLUENCING ADULT EDUCATION PARTICIPATION. MASLOW'S NEED HIERARCHY IS BASED ON FUNDAMENTAL NEEDS (SURVIVAL, SAFETY, AND BELONGING), WHICH ARE NORMALLY FOLLOWED BY EGO NEEDS (RECOGNITION OR STATUS, ACHIEVEMENT, AND…

  1. An inexpensive, temporally-integrated system for monitoring occurrence and biological effects of contaminants in the field

    EPA Science Inventory

    Assessing potential biological impacts of complex mixtures of contaminants in aquatic environments is an ongoing challenge for ecotoxicologists. Instrumental analysis of site waters alone can identify contaminants but provides only limited insights as to possible adverse effects...

  2. Spatial Analysis of Biomass Supply: Economic and Environmental Impacts

    USDA-ARS?s Scientific Manuscript database

    The EPIC simulation model is used with SSURGO soils, field location information, and a transportation cost model to analyze potential biomass supply for a West Central MN bioenergy plant. The simulation shows the relationship between biomass price, locations of where biomass production is profitable...

  3. Pesticide mitigation capacities of constructed wetlands

    Treesearch

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  4. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007

    DOT National Transportation Integrated Search

    2011-01-01

    Determination of pier-scour potential is an important consideration in the hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways in the United States. A primary goal of ongoing research in the field of bridg...

  5. Acoustic detection of Melolonthine larvae in Australian sugarcane

    USDA-ARS?s Scientific Manuscript database

    Decision support systems have been developed for risk analysis and control of root-feeding white grub pests in Queensland sugarcane, based partly on manual inspection of cane soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were...

  6. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    PubMed Central

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-01-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384

  7. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-02-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

  8. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  9. Modal element method for potential flow in non-uniform ducts: Combining closed form analysis with CFD

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Baumeister, Joseph F.

    1994-01-01

    An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.

  10. Stability of Molasse: TLS for structural analysis in the valley of Gotteron-Fribourg, Switzerland

    NASA Astrophysics Data System (ADS)

    Ben Hammouda, Mariam; Jaboyedoff, Michel; Derron, Marc Henri; Bouaziz, Samir; Mazotti, Benoit

    2016-04-01

    The marine molasses of Fribourg (Switzerland) is an area where the cliff collapses and rockfalls are quite frequent and difficult to predict due to this particular lithology, a poorly consolidated greywacke. Because of some recent rockfall events, the situation became critical especially in the valley of Gotteron where a big block has slightly moved down and might destroy a house in case of rupture. The cliff made of jointed sandstone and thin layers of clay and siltstone presents many fractures, joints and massive cross bedding surfaces which increases the possibility of slab failure. This paper presents a detailed structural analysis of the cliff and the identification of the potential failure mechanisms. The methodology is about combining field observation and terrestrial LiDAR scanning point cloud in order to assess the stability of potential slope instabilities of molasses. Three LiDAR scans were done i) to extract discontinuity families depending to the dip and the dip direction of joints and ii) to run kinematic tests in order to identify responsible sets for each potential failure mechanisms. Raw point clouds were processed using IMAlign module of Polyworks and CloudCompare software. The structural analysis based on COLTOP 3D (Jaboyedoff et al. 2007) allowed the identification of four discontinuity sets that were not measured in the field. Two different failure mechanisms have been identified as critical: i) planar sliding which is the main responsible mechanism of the present fallen block and ii) wedge sliding. The planar sliding is defined by the discontinuity sets J1 and J5 with a direction parallel to the slope and with a steep dip angle. The wedges, defined by couples of discontinuity sets, contribute to increase cracks' opening and to the detachment of slabs. The use of TLS combined with field survey provides us a first interpretation of instabilities and a very promising structural analysis.

  11. Local classifiers for evoked potentials recorded from behaving rats.

    PubMed

    Jakuczun, Wit; Kublik, Ewa; Wójcik, Daniel K; Wróbel, Andrzej

    2005-01-01

    Dynamic states of the brain determine the way information is processed in local neural networks. We have applied classical conditioning paradigm in order to study whether habituated and aroused states can be differentiated in single barrel column of rat's somatosensory cortex by means of analysis of field potentials evoked by stimulation of a single vibrissa. A new method using local classifiers is presented which allows for reliable and meaningful classification of single evoked potentials which might be consequently attributed to different functional states of the cortical column.

  12. The frequency-difference and frequency-sum acoustic-field autoproducts.

    PubMed

    Worthmann, Brian M; Dowling, David R

    2017-06-01

    The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.

  13. Experimental Design and Data Analysis Issues Contribute to Inconsistent Results of C-Bouton Changes in Amyotrophic Lateral Sclerosis.

    PubMed

    Dukkipati, S Shekar; Chihi, Aouatef; Wang, Yiwen; Elbasiouny, Sherif M

    2017-01-01

    The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic ( G93A ) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.

  14. Comparative molecular field analysis of artemisinin derivatives: Ab initio versus semiempirical optimized structures

    NASA Astrophysics Data System (ADS)

    Tonmunphean, Somsak; Kokpol, Sirirat; Parasuk, Vudhichai; Wolschann, Peter; Winger, Rudolf H.; Liedl, Klaus R.; Rode, Bernd M.

    1998-07-01

    Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using these optimized geometries, the CoMFA results derived from the HF/3-21G method are found to be usually but not drastically better than those from AM1. Additional calculations were performed to investigate the electrostatic field difference using the Gasteiger and Marsili charges, the electrostatic potential fit charges at the AM1 level, and the natural population analysis charges at the HF/3-21G level of theory. For the HF/3-21G optimized structures no difference in predictability was observed, whereas for AM1 optimized structures such differences were found. Interestingly, if ionic compounds are omitted, differences between the various HF/3-21G optimized structure models using these electrostatic fields were found.

  15. A model-reduction approach to the micromechanical analysis of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2016-03-01

    The present study is devoted to the extension to polycrystals of a model-reduction technique introduced by the authors, called the nonuniform transformation field analysis (NTFA). This new reduced model is obtained in two steps. First the local fields of internal variables are decomposed on a reduced basis of modes as in the NTFA. Second the dissipation potential of the phases is replaced by its tangent second-order (TSO) expansion. The reduced evolution equations of the model can be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations on two specific applications, creep of polycrystalline ice and response of polycrystalline copper to a cyclic tension-compression test. The new reduced evolution equations is faster than the full-field computations by two orders of magnitude in the two examples.

  16. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field.

    PubMed

    de Abreu E Lima, Francisco; Westhues, Matthias; Cuadros-Inostroza, Álvaro; Willmitzer, Lothar; Melchinger, Albrecht E; Nikoloski, Zoran

    2017-04-01

    Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F 1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Can cognitive processes help explain the success of instructional techniques recommended by behavior analysts?

    NASA Astrophysics Data System (ADS)

    Markovits, Rebecca A.; Weinstein, Yana

    2018-01-01

    The fields of cognitive psychology and behavior analysis have undertaken separate investigations into effective learning strategies. These studies have led to several recommendations from both fields regarding teaching techniques that have been shown to enhance student performance. While cognitive psychology and behavior analysis have studied student performance independently from their different perspectives, the recommendations they make are remarkably similar. The lack of discussion between the two fields, despite these similarities, is surprising. The current paper seeks to remedy this oversight in two ways: first, by reviewing two techniques recommended by behavior analysts—guided notes and response cards—and comparing them to their counterparts in cognitive psychology that are potentially responsible for their effectiveness; and second, by outlining some other areas of overlap that could benefit from collaboration. By starting the discussion with the comparison of two specific recommendations for teaching techniques, we hope to galvanize a more extensive collaboration that will not only further the progression of both fields, but also extend the practical applications of the ensuing research.

  18. On holographic Rényi entropy in some modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Roy, Pratim; Sarkar, Tapobrata

    2018-04-01

    We perform a detailed analysis of holographic entanglement Rényi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the Rényi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the validity of our perturbative analysis, whenever applicable.

  19. Penetration of Nonstationary Ionospheric Electric Fields into Lower Atmospheric Layers in the Global Electric Circuit Model

    NASA Astrophysics Data System (ADS)

    Morozov, V. N.

    2018-01-01

    The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.

  20. Eye-Tracking as a Tool to Evaluate Functional Ability in Everyday Tasks in Glaucoma.

    PubMed

    Kasneci, Enkelejda; Black, Alex A; Wood, Joanne M

    2017-01-01

    To date, few studies have investigated the eye movement patterns of individuals with glaucoma while they undertake everyday tasks in real-world settings. While some of these studies have reported possible compensatory gaze patterns in those with glaucoma who demonstrated good task performance despite their visual field loss, little is known about the complex interaction between field loss and visual scanning strategies and the impact on task performance and, consequently, on quality of life. We review existing approaches that have quantified the effect of glaucomatous visual field defects on the ability to undertake everyday activities through the use of eye movement analysis. Furthermore, we discuss current developments in eye-tracking technology and the potential for combining eye-tracking with virtual reality and advanced analytical approaches. Recent technological developments suggest that systems based on eye-tracking have the potential to assist individuals with glaucomatous loss to maintain or even improve their performance on everyday tasks and hence enhance their long-term quality of life. We discuss novel approaches for studying the visual search behavior of individuals with glaucoma that have the potential to assist individuals with glaucoma, through the use of personalized programs that take into consideration the individual characteristics of their remaining visual field and visual search behavior.

  1. Eye-Tracking as a Tool to Evaluate Functional Ability in Everyday Tasks in Glaucoma

    PubMed Central

    Black, Alex A.

    2017-01-01

    To date, few studies have investigated the eye movement patterns of individuals with glaucoma while they undertake everyday tasks in real-world settings. While some of these studies have reported possible compensatory gaze patterns in those with glaucoma who demonstrated good task performance despite their visual field loss, little is known about the complex interaction between field loss and visual scanning strategies and the impact on task performance and, consequently, on quality of life. We review existing approaches that have quantified the effect of glaucomatous visual field defects on the ability to undertake everyday activities through the use of eye movement analysis. Furthermore, we discuss current developments in eye-tracking technology and the potential for combining eye-tracking with virtual reality and advanced analytical approaches. Recent technological developments suggest that systems based on eye-tracking have the potential to assist individuals with glaucomatous loss to maintain or even improve their performance on everyday tasks and hence enhance their long-term quality of life. We discuss novel approaches for studying the visual search behavior of individuals with glaucoma that have the potential to assist individuals with glaucoma, through the use of personalized programs that take into consideration the individual characteristics of their remaining visual field and visual search behavior. PMID:28293433

  2. Local dynamics in decision making: The evolution of preference within and across decisions

    NASA Astrophysics Data System (ADS)

    O'Hora, Denis; Dale, Rick; Piiroinen, Petri T.; Connolly, Fionnuala

    2013-07-01

    Within decisions, perceived alternatives compete until one is preferred. Across decisions, the playing field on which these alternatives compete evolves to favor certain alternatives. Mouse cursor trajectories provide rich continuous information related to such cognitive processes during decision making. In three experiments, participants learned to choose symbols to earn points in a discrimination learning paradigm and the cursor trajectories of their responses were recorded. Decisions between two choices that earned equally high-point rewards exhibited far less competition than decisions between choices that earned equally low-point rewards. Using positional coordinates in the trajectories, it was possible to infer a potential field in which the choice locations occupied areas of minimal potential. These decision spaces evolved through the experiments, as participants learned which options to choose. This visualisation approach provides a potential framework for the analysis of local dynamics in decision-making that could help mitigate both theoretical disputes and disparate empirical results.

  3. A simple Lagrangian forecast system with aviation forecast potential

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.; Homan, J. H.

    1983-01-01

    A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.

  4. Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Verdon, Joseph M.

    1991-01-01

    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.

  5. Potential for wind extraction from 4D-Var assimilation of aerosols and moisture

    NASA Astrophysics Data System (ADS)

    Zaplotnik, Žiga; Žagar, Nedjeljka

    2017-04-01

    We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.

  6. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    NASA Astrophysics Data System (ADS)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  7. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis

    PubMed Central

    Ma, Xiaoxiao; Ouyang, Zheng

    2016-01-01

    Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191

  8. Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arpita

    2018-02-01

    We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.

  9. A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland.

    PubMed

    Vinten, Andy; Sample, James; Ibiyemi, Adekunle; Abdul-Salam, Yakubu; Stutter, Marc

    2017-05-15

    The cost-effectiveness of six edge-of-field measures for mitigating diffuse pollution from sediment bound phosphorus (P) runoff from temperate arable farmland is analysed at catchment/field scales. These measures were: buffer strips, permanent grassland in the lowest 7% of arable fields, dry detention bunds, wetlands, and temporary barriers such as sediment fences. Baseline field P export was estimated using export coefficients (low risk crops) or a modified Universal Soil Loss Equation (high risk crops). The impact of measures was estimated using simple equations. Costs were estimated from gross margin losses or local data on grants. We used a net cost:benefit (NCB) factor to normalise the costs and impacts of each measure over time. Costs minimisation for target impact was done using PuLP, a linear programming module for Python, across 1634 riparian and non-riparian fields in the Lunan Water, a mixed arable catchment in Eastern Scotland. With all measures in place, average cost-effectiveness increases from £9 to £48/kg P as target P mitigation increases from 500 to 2500kg P across the catchment. Costs increase significantly when the measures available are restricted only to those currently eligible for government grants (buffers, bunds and wetlands). The assumed orientation of the average field slope makes a strong difference to the potential for storage of water by bunds and overall cost-effectiveness, but the non-funded measures can substitute for the extra expense incurred by bunds, where the slope orientation is not suitable. Economic discounting over time of impacts and costs of measures favours those measures, such as sediment fences, which are strongly targeted both spatially and temporally. This tool could be a useful guide for dialogue with land users about the potential fields to target for mitigation to achieve catchment targets. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Curvature Analysis of Cardiac Excitation Wavefronts

    DTIC Science & Technology

    2013-04-01

    required at this level either. To enable this kind of analysis, a type field is added to the polyline data structure, too. The downside of reusing the...GPU-based parallel methods. The wave curvature and the refractory period of the cardiac cells influence the motion of cardiac waves. The role of...propagation speed, the action potential duration, and the refractory period is studied. In the recent work of [26], multiple spirals and their

  11. GEO Collisional Risk Assessment Based on Analysis of NASA-WISE Data and Modeling

    DTIC Science & Technology

    2015-10-18

    GEO Collisional Risk Assessment Based on Analysis of NASA -WISE Data and Modeling Jeremy Murray Krezan1, Samantha Howard1, Phan D. Dao1, Derek...Surka2 1AFRL Space Vehicles Directorate,2Applied Technology Associates Incorporated From December 2009 through 2011 the NASA Wide-Field Infrared...of known debris. The NASA -WISE GEO belt debris population adds potentially thousands previously uncataloged objects. This paper describes

  12. Ephemeral Electric Potential and Electric Field Sensor

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  13. The presence of a phantom field in a Randall–Sundrum scenario

    NASA Astrophysics Data System (ADS)

    Acuña-Cárdenas, Rubén O.; Astorga-Moreno, J. A.; García-Aspeitia, Miguel A.; López-Domínguez, J. C.

    2018-02-01

    The presence of phantom dark energy in brane world cosmology generates important new effects, causing a premature big rip singularity when we increase the presence of extra dimensions and considerably competing with the other components of our Universe. This article first considers only a field with the characteristic equation ω<-1 and then the explicit form of the scalar field with a potential with a maximum (with the aim of avoiding a big rip singularity). In both cases we study the dynamics robustly through dynamical analysis theory, considering in detail parameters such as the deceleration q and the vector field associated to the dynamical system. Results are discussed with the purpose of treating the cosmology with a phantom field as dark energy in a Randall–Sundrum scenario.

  14. The analysis of ion-selective field-effect transistor operation in chemical sensors

    NASA Astrophysics Data System (ADS)

    Hotra, Zenon; Holyaka, Roman; Hladun, Michael; Humenuk, Iryna

    2003-09-01

    In this paper we present the research results of influence of substrate potential in ion-selective field-effect transistors (ISFET) on output signal of chemical sensors, e.g. PH-meters. It is shown that the instability of substrate-source p-n junction bias in well-known chemical sensors, which use grounded reference electrode - ISFET gate, affect on sensor characteristics in negative way. The analytical description and research results of 'substrate effect' on ISFET characteristics are considered.

  15. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Williams, Graham V.; Goldman-Rakic, Patricia S.

    1995-08-01

    Dopamine has been implicated in the cognitive process of working memory but the cellular basis of its action has yet to be revealed. By combining iontophoretic analysis of dopamine receptors with single-cell recording during behaviour, we found that D1 antagonists can selectively potentiate the 'memory fields' of prefrontal neurons which subserve working memory. The precision shown for D1 receptor modulation of mnemonic processing indicates a direct gating of selective excitatory synaptic inputs to prefrontal neurons during cognition.

  16. An analysis of phonon emission as controlled by the combined interaction with the acoustic and piezoelectric phonons in a degenerate III-V compound semiconductor using an approximated Fermi-Dirac distribution at low lattice temperatures

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2018-03-01

    Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.

  17. Industrial benefits and future expectations in materials and processes resulting from space technology

    NASA Technical Reports Server (NTRS)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  18. An inexpensive, temporally-integrated system for monitoring occurrence and biological effects of contaminants in the field (Poster)

    EPA Science Inventory

    Assessing potential biological impacts of complex mixtures of contaminants in aquatic environments is an ongoing challenge for ecotoxicologists. Instrumental analysis of site waters alone can identify contaminants but provides only limited insights as to possible adverse effects...

  19. Fundamental Neutron Physics: Theory and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudkov, Vladimir

    The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity- and time reversal invariance-violating processes in neutron-induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity- and time reversal-violating effects in the consistent way. A major emphasis of our research during themore » funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three-nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects, and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.« less

  20. Visibility graphs of random scalar fields and spatial data

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Iacovacci, Jacopo

    2017-07-01

    We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.

  1. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  2. Facilitated Diagnosis of Pneumothoraces in Newborn Mice Using X-ray Dark-Field Radiography.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Pritzke, Tina; Baumann, Alena; Hesse, Nina; Auweter, Sigrid; Reiser, Maximilian F; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne; Meinel, Felix G

    2016-10-01

    The aim of this study was to evaluate the diagnostic value of x-ray dark-field imaging in projection radiography-based depiction of pneumothoraces in the neonatal murine lung, a potentially life-threatening medical condition that requires a timely and correct diagnosis. By the use of a unique preclinical model, 7-day-old C57Bl/6N mice received mechanical ventilation for 2 or 8 hours with oxygen-rich gas (FIO2 = 0.4; n = 24). Unventilated mice either spontaneously breathed oxygen-rich gas (FIO2 = 0.4) for 2 or 8 hours or room air (n = 22). At the end of the experiment, lungs were inflated with a standardized volume of air after a lethal dose of pentobarbital was administered to the pups. All lungs were imaged with a prototype grating-based small-animal scanner to acquire x-ray transmission and dark-field radiographs. Image contrast between the air-filled pleural space and lung tissue was quantified for both transmission and dark-field radiograms. After the independent expert's assessment, 2 blinded readers evaluated all dark-field and transmission images for the presence or absence of pneumothoraces. Contrast ratios, diagnostic accuracy, as well as reader's confidence and interreader agreement were recorded for both imaging modalities. Evaluation of both x-ray transmission and dark-field radiographs by independent experts revealed the development of a total of 10 pneumothoraces in 8 mice. Here, the contrast ratio between the air-filled pleural space of the pneumothoraces and the lung tissue was significantly higher in the dark field (8.4 ± 3.5) when compared with the transmission images (5.1 ± 2.8; P < 0.05). Accordingly, the readers' diagnostic confidence for the diagnosis of pneumothoraces was significantly higher for dark-field compared with transmission images (P = 0.001). Interreader agreement improved from moderate for the analysis of transmission images alone (κ = 0.41) to very good when analyzing dark-field images alone (κ = 0.90) or in combination with transmission images (κ = 0.88). Diagnostic accuracy significantly improved for the analysis of dark-field images alone (P = 0.04) or in combination with transmission images (P = 0.02), compared with the analysis of transmission radiographs only. The significant improvement in contrast ratios between lung parenchyma and free air in the dark-field images allows the facilitated detection of pneumothoraces in the newborn mouse. These preclinical experiments indicate the potential of the technique for future clinical applications.

  3. Principles of Experimental Design for Big Data Analysis.

    PubMed

    Drovandi, Christopher C; Holmes, Christopher; McGree, James M; Mengersen, Kerrie; Richardson, Sylvia; Ryan, Elizabeth G

    2017-08-01

    Big Datasets are endemic, but are often notoriously difficult to analyse because of their size, heterogeneity and quality. The purpose of this paper is to open a discourse on the potential for modern decision theoretic optimal experimental design methods, which by their very nature have traditionally been applied prospectively, to improve the analysis of Big Data through retrospective designed sampling in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has the potential for wide generality and advantageous inferential and computational properties. We highlight current hurdles and open research questions surrounding efficient computational optimisation in using retrospective designs, and in part this paper is a call to the optimisation and experimental design communities to work together in the field of Big Data analysis.

  4. Principles of Experimental Design for Big Data Analysis

    PubMed Central

    Drovandi, Christopher C; Holmes, Christopher; McGree, James M; Mengersen, Kerrie; Richardson, Sylvia; Ryan, Elizabeth G

    2016-01-01

    Big Datasets are endemic, but are often notoriously difficult to analyse because of their size, heterogeneity and quality. The purpose of this paper is to open a discourse on the potential for modern decision theoretic optimal experimental design methods, which by their very nature have traditionally been applied prospectively, to improve the analysis of Big Data through retrospective designed sampling in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has the potential for wide generality and advantageous inferential and computational properties. We highlight current hurdles and open research questions surrounding efficient computational optimisation in using retrospective designs, and in part this paper is a call to the optimisation and experimental design communities to work together in the field of Big Data analysis. PMID:28883686

  5. Programming Wireless Handheld Devices for Applications in Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Budiardja, R.; Saranathan, V.; Guidry, M.

    2002-12-01

    Wireless technology implemented with handheld devices has attractive features because of the potential to access large amounts of data and the prospect of on-the-fly computational analysis from a device that can be carried in a shirt pocket. We shall describe applications of such technology to the general paradigm of making digital wireless connections from the field to upload information and queries to network servers, executing (potentially complex) data analysis and/or database operations on fast network computers, and returning real-time information from this analysis to the handheld device in the field. As illustration, we shall describe several client/server programs that we have written for applications in teaching introductory astronomy. For example, one program allows static and dynamic properties of astronomical objects to be accessed in a remote observation laboratory setting using a digital cell phone or PDA. Another implements interactive quizzing over a cell phone or PDA using a 700-question introductory astronomy quiz database, thus permitting students to study for astronomy quizzes in any environment in which they have a few free minutes and a digital cell phone or wireless PDA. The presentation will include hands-on demonstrations with real devices.

  6. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  7. Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.

    2000-01-01

    High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.

  8. Forensic electrochemistry: indirect electrochemical sensing of the components of the new psychoactive substance "Synthacaine".

    PubMed

    Cumba, Loanda R; Kolliopoulos, Athanasios V; Smith, Jamie P; Thompson, Paul D; Evans, Peter R; Sutcliffe, Oliver B; do Carmo, Devaney R; Banks, Craig E

    2015-08-21

    "Synthacaine" is a New Psychoactive Substance which is, due to its inherent psychoactive properties, reported to imitate the effects of cocaine and is therefore consequently branded as "legal cocaine". The only analytical approach reported to date for the sensing of "Synthacaine" is mass spectrometry. In this paper, we explore and evaluate a range of potential analytical techniques for its quantification and potential use in the field screening "Synthacaine" using Raman spectroscopy, presumptive (colour) testing, High Performance Liquid Chromatography (HPLC) and electrochemistry. HPLC analysis of street samples reveals that "Synthacaine" comprises a mixture of methiopropamine (MPA) and 2-aminoindane (2-AI). Raman spectroscopy and presumptive (colour) tests, the Marquis, Mandelin, Simon's and Robadope test, are evaluated towards a potential in-the-field screening approach but are found to not be able to discriminate between the two when they are both present in the same sample, as is the case in the real street samples. We report for the first time a novel indirect electrochemical protocol for the sensing of MPA and 2-AI which is independently validated in street samples with HPLC. This novel electrochemical approach based upon one-shot disposable cost effective screen-printed graphite macroelectrodes holds potential for in-the-field screening for "Synthacaine".

  9. Optical vortices as potential indicators of biophysical dynamics

    NASA Astrophysics Data System (ADS)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  10. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  11. New Computational Methods for the Prediction and Analysis of Helicopter Noise

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper describes several new methods to predict and analyze rotorcraft noise. These methods are: 1) a combined computational fluid dynamics and Kirchhoff scheme for far-field noise predictions, 2) parallel computer implementation of the Kirchhoff integrations, 3) audio and visual rendering of the computed acoustic predictions over large far-field regions, and 4) acoustic tracebacks to the Kirchhoff surface to pinpoint the sources of the rotor noise. The paper describes each method and presents sample results for three test cases. The first case consists of in-plane high-speed impulsive noise and the other two cases show idealized parallel and oblique blade-vortex interactions. The computed results show good agreement with available experimental data but convey much more information about the far-field noise propagation. When taken together, these new analysis methods exploit the power of new computer technologies and offer the potential to significantly improve our prediction and understanding of rotorcraft noise.

  12. Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.

    PubMed Central

    Schumaker, M F; Kentler, C J

    1998-01-01

    We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651

  13. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  14. Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio.

    PubMed

    Keith, David W; Duren, Riley; MacMartin, Douglas G

    2014-12-28

    We summarize a portfolio of possible field experiments on solar radiation management (SRM) and related technologies. The portfolio is intended to support analysis of potential field research related to SRM including discussions about the overall merit and risk of such research as well as mechanisms for governing such research and assessments of observational needs. The proposals were generated with contributions from leading researchers at a workshop held in March 2014 at which the proposals were critically reviewed. The proposed research dealt with three major classes of SRM proposals: marine cloud brightening, stratospheric aerosols and cirrus cloud manipulation. The proposals are summarized here along with an analysis exploring variables such as space and time scale, risk and radiative forcing. Possible gaps, biases and cross-cutting considerations are discussed. Finally, suggestions for plausible next steps in the development of a systematic research programme are presented.

  15. High-Speed Videography Overview

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1989-02-01

    The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.

  16. Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio

    PubMed Central

    Keith, David W.; Duren, Riley; MacMartin, Douglas G.

    2014-01-01

    We summarize a portfolio of possible field experiments on solar radiation management (SRM) and related technologies. The portfolio is intended to support analysis of potential field research related to SRM including discussions about the overall merit and risk of such research as well as mechanisms for governing such research and assessments of observational needs. The proposals were generated with contributions from leading researchers at a workshop held in March 2014 at which the proposals were critically reviewed. The proposed research dealt with three major classes of SRM proposals: marine cloud brightening, stratospheric aerosols and cirrus cloud manipulation. The proposals are summarized here along with an analysis exploring variables such as space and time scale, risk and radiative forcing. Possible gaps, biases and cross-cutting considerations are discussed. Finally, suggestions for plausible next steps in the development of a systematic research programme are presented. PMID:25404684

  17. An equivalent potential vorticity theory applied to the analysis and prediction of severe storm dynamics

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1976-01-01

    Potential vorticity theory is developed in a description of an equivalent potential temperature topography, and a new theory suited to the description of scale interaction is elaborated. Macroscale triggering of ageostrophic flow fields at the mesoscale, in turn leading to release of convective instability along narrow zones at the microscale, is examined. Correlation of appreciable decrease in potential vorticity with such phenomena as cumulonimbi, tornados, and duststorms is examined. The relevance of a multiscale energy-momentum cascade in numerical prediction of severe mesoscale and microscale phenomena from radiosonde data is reviewed. Hypotheses for mesoscale dynamics are constructed.

  18. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    PubMed Central

    Lourenço, Célia; Turner, Claire

    2014-01-01

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037

  19. Breath analysis in disease diagnosis: methodological considerations and applications.

    PubMed

    Lourenço, Célia; Turner, Claire

    2014-06-20

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  20. Advancing Global Health – The Need for (Better) Social Science

    PubMed Central

    Hanefeld, Johanna

    2016-01-01

    In his perspective "Navigating between stealth advocacy and unconscious dogmatism: the challenge of researching the norms, politics and power of global health," Ooms argues that actions taken in the field of global health are dependent not only on available resources, but on the normative premise that guides how these resources are spent. This comment sets out how the application of a predominately biomedical positivist research tradition in global health, has potentially limited understanding of the value judgements underlying decisions in the field. To redress this critical social science, including health policy analysis has much to offer, to the field of global health including on questions of governance. PMID:27239873

  1. Stability analysis in tachyonic potential chameleon cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farajollahi, H.; Salehi, A.; Tayebi, F.

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  2. Installation Restoration Program. Preliminary Assessment: 192nd Tactical Fighter Group, Virginia Air National Guard, Richmond International Airport, Sandston, Virginia

    DTIC Science & Technology

    1989-02-01

    contaminated by past disposal practices. Sampling and analysis was not included in the PA. B. MAJOR FINDINGS The Air National Guard has utilized...with 23 Base personnel and the field surveys identified 3 potentially contaminated sites resulting from past disposal, storage, and/or spills and leaks...characteristic petroleum odor. With visible evidence of released contaminants , there is potential for contaminant migration by shallow groundwater. Site No. 3

  3. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    PubMed

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p < 0.01. Cluster analysis indicated that Cluster 1 (extremely polluted) probably originated from anthropogenic inputs of phosphate fertilizer and past usage of arsenical pesticides.

  4. Experimental and numerical analysis of metal leaching from fly ash-amended highway bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetin, Bora; Aydilek, Ahmet H., E-mail: aydilek@umd.edu; Li, Lin

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. Thismore » objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.« less

  5. Regulatory Science in Professional Education.

    PubMed

    Akiyama, Hiroshi

    2017-01-01

    In the field of pharmaceutical sciences, the subject of regulatory science (RS) includes pharmaceuticals, food, and living environments. For pharmaceuticals, considering the balance between efficacy and safety is a point required for public acceptance, and in that balance, more importance is given to efficacy in curing disease. For food, however, safety is the most important consideration for public acceptance because food should be essentially free of risk. To ensure food safety, first, any hazard that is an agent in food or condition of food with the potential to cause adverse health effects should be identified and characterized. Then the risk that it will affect public health is scientifically analyzed. This process is called risk assessment. Second, risk management should be conducted to reduce a risk that has the potential to affect public health found in a risk assessment. Furthermore, risk communication, which is the interactive exchange of information and opinions concerning risk and risk management among risk assessors, risk managers, consumers, and other interested parties, should be conducted. Food safety is ensured based on risk analysis consisting of the three components of risk assessment, risk management, and risk communication. RS in the field of food safety supports risk analysis, such as scientific research and development of test methods to evaluate food quality, efficacy, and safety. RS is also applied in the field of living environments because the safety of environmental chemical substances is ensured based on risk analysis, similar to that conducted for food.

  6. Electroencephalogram (EEG) and Magnetoencephalogram (MEG) as Tools for Evaluation of Cognitive Function

    NASA Technical Reports Server (NTRS)

    Fender, Derek H.; Hestenes, John D.

    1985-01-01

    We have developed computerized analysis and display techniques to help identify the origins of visually evoked scalped potentials (VESP). The potentials are recorded simultaneously from many electrodes (usually 40 to 48) spaced over the region of the scalp where appreciable evoked potentials are found in response to particular stimulus. Contour mapping algorithms are then used to display the time behavior of equipotential surfaces on the scalp during the VESP. We then use an optimization technique to select the parameters of arrays of current dipole sources within the model until the model equipotential field distribution closely fits the measured data. Computer graphics are then used to display, as a movie, the actual and model scalp potential fields and the parameters of the dipole generators within the model head during the course of VESP activity. We have devised reaction time tests that involve potentially separable stages of cognitive processing and utilize stimuli that produce measurable cognition-related features in the late component of the evoked potential. We have used these techniques to determine the loci in the brain where known cognition-related features in the evoked potential are generated and we have explored the extent to which each of these features can be related to the reaction time tasks. We have also examined the temporal-spatial aspects of their cerebral involvement. Our current work is planned to characterize the age-related changes in the processes performed by such sources. We also use a neuromagnetometer to measure the evoked magnetic fields in similar circumstances; we will discuss the relative merits of the two methodologies.

  7. Non-minimally coupled scalar field in Kantowski-Sachs model and symmetry analysis

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Lakshmanan, Muthusamy; Chakraborty, Subenoy

    2018-06-01

    The paper deals with a non-minimally coupled scalar field in the background of homogeneous but anisotropic Kantowski-Sachs space-time model. The form of the coupling function of the scalar field with gravity and the potential function of the scalar field are not assumed phenomenologically, rather they are evaluated by imposing Noether symmetry to the Lagrangian of the present physical system. The physical system gets considerable mathematical simplification by a suitable transformation of the augmented variables (a , b , ϕ) →(u , v , w) and by the use of the conserved quantities due to the geometrical symmetry. Finally, cosmological solutions are evaluated and analyzed from the point of view of the present evolution of the Universe.

  8. Ground Field-Based Hyperspectral Imaging: A Preliminary Study to Assess the Potential of Established Vegetation Indices to Infer Variation in Water-Use Efficiency.

    NASA Astrophysics Data System (ADS)

    Pelech, E. A.; McGrath, J.; Pederson, T.; Bernacchi, C.

    2017-12-01

    Increases in the global average temperature will consequently induce a higher occurrence of severe environmental conditions such as drought on arable land. To mitigate these threats, crops for fuel and food must be bred for higher water-use efficiencies (WUE). Defining genomic variation through high-throughput phenotypic analysis in field conditions has the potential to relieve the major bottleneck in linking desirable genetic traits to the associated phenotypic response. This can subsequently enable breeders to create new agricultural germplasm that supports the need for higher water-use efficient crops. From satellites to field-based aerial and ground sensors, the reflectance properties of vegetation measured by hyperspectral imaging is becoming a rapid high-throughput phenotyping technique. A variety of physiological traits can be inferred by regression analysis with leaf reflectance which is controlled by the properties and abundance of water, carbon, nitrogen and pigments. Although, given that the current established vegetation indices are designed to accentuate these properties from spectral reflectance, it becomes a challenge to infer relative measurements of WUE at a crop canopy scale without ground-truth data collection. This study aims to correlate established biomass and canopy-water-content indices with ground-truth data. Five bioenergy sorghum genotypes (Sorghum bicolor L. Moench) that have differences in WUE and wild-type Tobacco (Nicotiana tabacum var. Samsun) under irrigated and rainfed field conditions were examined. A linear regression analysis was conducted to determine if variation in canopy water content and biomass, driven by natural genotypic and artificial treatment influences, can be inferred using established vegetation indices. The results from this study will elucidate the ability of ground field-based hyperspectral imaging to assess variation in water content, biomass and water-use efficiency. This can lead to improved opportunities to select ideal genotypes for an increasing water-limited environment and to help parameterize and validate terrestrial vegetation models that require a better representation of genetic variation within crop species.

  9. Finding Multi-scale Connectivity in Our Geospace Observational System: A New Perspective for Total Electron Content Data Through Network Analysis

    NASA Astrophysics Data System (ADS)

    McGranaghan, R. M.; Mannucci, A. J.; Verkhoglyadova, O. P.; Malik, N.

    2017-12-01

    How do we evolve beyond current traditional methods in order to innovate into the future? In what disruptive innovations will the next frontier of space physics and aeronomy (SPA) be grounded? We believe the answer to these compelling, yet equally challenging, questions lies in a shift of focus: from a narrow, field-specific view to a radically inclusive, interdisciplinary new modus operandi at the intersection of SPA and the information and data sciences. Concretely addressing these broader themes, we present results from a novel technique for knowledge discovery in the magnetosphere-ionosphere-thermosphere (MIT) system: complex network analysis (NA). We share findings from the first NA of ionospheric total electron content (TEC) data, including hemispheric and interplanetary magnetic field clock angle dependencies [1]. Our work shows that NA complements more traditional approaches for the investigation of TEC structure and dynamics, by both reaffirming well-established understanding, giving credence to the method, and identifying new connections, illustrating the exciting potential. We contextualize these new results through a discussion of the potential of data-driven discovery in the MIT system when innovative data science techniques are embraced. We address implications and potentially disruptive data analysis approaches for SPA in terms of: 1) the future of the geospace observational system; 2) understanding multi-scale phenomena; and 3) machine learning. [1] McGranaghan, R. M., A. J. Mannucci, O. Verkhoglyadova, and N. Malik (2017), Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024202.

  10. Content Analysis of Computer Conferencing Transcripts

    ERIC Educational Resources Information Center

    Donnelly, Roisin; Gardner, John

    2011-01-01

    Within the field of higher education, there are situations where the learner is not well served in a classroom setting. Problematic issues such as scheduling, critical mass, time, pace and location have the potential to be counterbalanced by e-learning. Within this, the asynchronous nature of today's online learning environments and computer…

  11. Expanding the Field of Vision

    ERIC Educational Resources Information Center

    Anklam, Patti; Cross, Rob; Gulas, Vic

    2005-01-01

    Purpose: The purpose of this article is to describe the emerging business discipline of organizational network analysis and its potential as a tool to guide efforts in creating awareness of where knowledge exists in an organization and how this expertise can be best tapped by an organization's workforce. Specific initiatives and activities that…

  12. Resource Characterization | Water Power | NREL

    Science.gov Websites

    characterization and assessment, NREL has extended its capabilities to the field of water power. NREL's team of , modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate the development potential of many

  13. Push-through direct injection NMR: an optimized automation method applied to metabolomics

    EPA Science Inventory

    There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. ...

  14. Comparative Data Mining Analysis for Information Retrieval of MODIS Images: Monitoring Lake Turbidity Changes at Lake Okeechobee, Florida

    EPA Science Inventory

    In the remote sensing field, a frequently recurring question is: Which computational intelligence or data mining algorithms are most suitable for the retrieval of essential information given that most natural systems exhibit very high non-linearity. Among potential candidates mig...

  15. Computer-Game-Based Tutoring of Mathematics

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2013-01-01

    This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…

  16. Human Validation of the AUDIB Auditory Perception Model for Rotarywing Aircraft

    DTIC Science & Technology

    2008-04-01

    obtained in the laboratory. Helicopter and ambient soundscape signals were obtained from high sensitivity recordings in the field. Playback in the...and a variety of urban soundscapes , to represent the spectrum of potential environments involved in a real world scenario. Analysis compares the...10 Ambient soundscapes ........................................................................................................... 12

  17. Optical techniques in pulmonary medicine. SPIE photonics West.

    PubMed

    Suter, Melissa J; Lam, Stephen; Brenner, Matthew

    2012-04-01

    There is ongoing interest in the emerging field of pulmonary photonic-based diagnostics. Potential clinical need areas that are being actively investigated at this time include airway and peripheral lung cancer diagnostics, pulmonary parenchymal and interstitial disorders, alveolar structure function, inhalation injury, ciliary function analysis, asthma and obstructive lung diseases.

  18. Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Emma M.; Hendrix, Val; Chertkov, Michael

    This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper wemore » consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis are becoming significant, with more data and multi-objective concerns. Efficient applications of analysis and the machine learning field are being considered in the loop.« less

  19. Time domain structures in a colliding magnetic flux rope experiment

    NASA Astrophysics Data System (ADS)

    Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick

    2017-10-01

    Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.

  20. Theoretical analysis of non-linear Joule heating effects over an electro-thermal patterned flow

    NASA Astrophysics Data System (ADS)

    Sanchez, Salvador; Ascanio, Gabriel; Mendez, Federico; Bautista, Oscar

    2017-11-01

    In this work, non-linear Joule heating effects for electro-thermal patterned flows driven inside of a slit microchannel are analyzed. Here, the movement of fluids is controlled by placing electro-thermal forces, which are generated through an imposed longitudinal electric field, E0, and the wall electric potential produced by electrodes inserted along the surface of the microchannel wall, ζ. For this analysis, viscosity and electrical conductivity of fluids are included as known functions, which depend on the temperature; therefore, in order to determine the flow, temperature and electric potential fields together with its simultaneous interactions, the equations of continuity, momentum, energy, charges distribution and electrical current have to be solved in a coupled manner. The main results obtained in the study reveal that with the presence of thermal gradients along of the microchannel, local electro-thermal forces, Fχ, are affected in a sensible manner, and consequently, the flow field is modified substantially, causing the interruption or intensification of recirculations along of the microchannel. This work was supported by the Fondo SEP-CONACYT through research Grants No. 220900 and 20171181 from SIP-IPN. F. Mendez acknowledges support from PAPIIT-UNAM under Contract Number IN112215. S. Sanchez thanks to DGAPA-UNAM for the postdoctoral fellowship.

  1. Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis

    PubMed Central

    2015-01-01

    Circulating tumor cells (CTCs) are low frequency cells found in the bloodstream after having been shed from a primary tumor. These cells are research targets because of the information they may potentially provide about both an individual cancer as well as the mechanisms through which cancer spreads in the process of metastasis. Established technologies exist for CTC isolation, but the recent progress and future of this field lie in nanomaterials. In this review, we provide perspective into historical CTC capture as well as current research being conducted, emphasizing the significance of the materials being used to fabricate these devices. The modern investigation into CTCs initially featured techniques that have since been commercialized. A major innovation in the field was the development of a microfluidic capture device, first fabricated in silicon and followed up with glass and thermopolymer devices. We then specifically highlight the technologies incorporating magnetic nanoparticles, carbon nanotubes, nanowires, nanopillars, nanofibers, and nanoroughened surfaces, graphene oxide and their fabrication methods. The nanoscale provides a new set of tools that has the potential to overcome current limitations associated with CTC capture and analysis. We believe the current trajectory of the field is in the direction of nanomaterials, allowing the improvements necessary to further CTC research. PMID:24601556

  2. A scale-up field experiment for the monitoring of a burning process using chemical, audio, and video sensors.

    PubMed

    Stavrakakis, P; Agapiou, A; Mikedi, K; Karma, S; Statheropoulos, M; Pallis, G C; Pappa, A

    2014-01-01

    Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.

  3. Synthesis of MnFe2O4 magnetic nano hollow spheres by a facile solvothermal route and its characterization

    NASA Astrophysics Data System (ADS)

    Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal

    2018-04-01

    Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.

  4. Comparisons of measured and calculated potential magnetic fields. [in solar corona

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.

    1978-01-01

    Photospheric line-of-sight and transverse-magnetic-field data obtained, with a vector magnetograph system for an isolated sunspot are described. A study of the linear polarization patterns and of the calculated transverse field lines indicates that the magnetic field of the region is very nearly potential. The H-alpha fibril structures of this region as seen in high-resolution photographs corroborate this conclusion. Consequently, a potential-field calculation is described using the measured line-of-sight fields together with assumed Neumann boundary conditions; both are necessary and sufficient for a unique solution. The computed transverse fields are then compared with the measured transverse fields to verify the potential-field model and assumed boundary values. The implications of these comparisons for the validity of magnetic-field extrapolations using potential theory are discussed.

  5. Design and Management of Field Trials of Transgenic Cereals

    NASA Astrophysics Data System (ADS)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  6. Fault seal analysis of Okan and Meren fields, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.A.; Brenneman, R.J.; Adeogba, A.A.

    The sealing capacity and the dynamic seal behavior of faults between juxtaposed reservoirs were analyzed for Okan and Meren fields, offshore Nigeria. In both fields correlations were found between reservoir performance, juxtaposed fluid types, oil geochemistry, interpreted fluid contact relationships, fault sealing/leaking condition, and calculated smear gouge ratios. Integration of these data has been invaluable in quantifying fault seal risk and may effect depletion strategies for fault-juxtaposed reservoirs within these fields. Fault plane sections defined reservoir juxtapositions and aided visualization of potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materialsmore » between the juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character based on fluid contact relationships in proved reservoirs and, in addition, were used to quantify fault seal risk of untested fault-dependent closures in Okan. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and also to risk seal integrity of fault dependent closures within the untested O-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits potential reserves within the O-sand package. In Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, specific G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios. The cross-sealing and/or cross-leaking nature of compartment boundaries at Meren is related to fault displacement variation and the composition of displaced stratigraphy.« less

  7. Continuous exposure to low amplitude extremely low frequency electrical fields characterizing the vascular streaming potential alters elastin accumulation in vascular smooth muscle cells.

    PubMed

    Bergethon, Peter R; Kindler, Dean D; Hallock, Kevin; Blease, Susan; Toselli, Paul

    2013-07-01

    In normal development and pathology, the vascular system depends on complex interactions between cellular elements, biochemical molecules, and physical forces. The electrokinetic vascular streaming potential (EVSP) is an endogenous extremely low frequency (ELF) electrical field resulting from blood flowing past the vessel wall. While generally unrecognized, it is a ubiquitous electrical biophysical force to which the vascular tree is exposed. Extracellular matrix elastin plays a central role in normal blood vessel function and in the development of atherosclerosis. It was hypothesized that ELF fields of low amplitude would alter elastin accumulation, supporting a link between the EVSP and the biology of vascular smooth muscle cells. Neonatal rat aortic smooth muscle cell cultures were exposed chronically to electrical fields characteristic of the EVSP. Extracellular protein accumulation, DNA content, and electron microscopic (EM) evaluation were performed after 2 weeks of exposure. Stimulated cultures showed no significant change in cellular proliferation as measured by the DNA concentration. The per-DNA normalized protein in the extracellular matrix was unchanged while extracellular elastin accumulation decreased 38% on average. EM analysis showed that the stimulated cells had a 2.85-fold increase in mitochondrial number. These results support the formulation that ELF fields are a potential factor in both normal vessel biology and in the pathogenesis of atherosclerotic diseases including heart disease, stroke, and peripheral vascular disease. Copyright © 2013 Wiley Periodicals, Inc.

  8. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  9. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  10. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  11. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  12. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.

  13. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less

  14. Food availability in exotic grasslands: a potential mechanism for depauperate breeding assemblages

    USGS Publications Warehouse

    George, Andrew D.; O'Connell, Timothy J.; Hickman, Karen R.; Leslie, David M.

    2013-01-01

    We investigated the influence of Old World bluestem (Bothriochloa ischaemum; OWB) monocultures on grassland bird abundance through analysis of vegetation structure and food availability. We compared breeding bird density, vegetation structure and composition, and arthropod biomass between six native grass and six OWB fields in the southern Great Plains. The OWB fields supported 1.70 ± 0.27 (mean ± SE) Grasshopper Sparrows (Ammodramus savannarum) per ha compared to 0.95 ± 0.25 in native grass fields, but total species richness was greater in native grass fields (40 versus 28 species). Density of some bird species was correlated with vegetation structure regardless of field type, suggesting that management practices may be more influential than plant species composition. Mean arthropod biomass was 3.39× greater in native grass fields than in OWB monocultures. Native grass fields provided habitat for a larger complement of birds than did OWB monocultures, and reduced food availability in OWB fields suggests a mechanism for that difference.

  15. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency

    PubMed Central

    An, Ran; Massa, Katherine

    2014-01-01

    AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200

  16. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged with the media to counteract this effect.

  17. Integrated fault seal analysis and risk assessemt: Okan and Meren Fields, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.A.; Brenneman, R.J.; Adepoju, A.A.

    1996-01-01

    Integration of production, geochemical, seismic, well log, and structural data provides important constraints on the sealing capacity and dynamic behavior of fault juxtaposed reservoirs in Okan and Meren fields, offshore Nigeria. Correlations were found between pressure decline histories, juxtaposed fluid types, oil composition, fluid contact relationships, fault sealing/leaking condition, and estimates of the composition of the fault gouge. Fault plane sections defined reservoir juxtapositions and potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materials between juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character in proved reservoirs and were usedmore » to quantify fault seal risk of untested, fault-dependent closures. In the Okan Field juxtapositions of the G-, H, L-, M, and O-sands were analyzed. Smear gouge ratios correlated to fluid contact relationships and pressure decline histories within these juxtaposed reservoirs empirically calibrate sealing potential. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and to risk seal integrity of fault-dependent closures within the untested 0-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits column heights and potential reserves within the O-sand package. In the Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, the G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios.« less

  18. Integrated fault seal analysis and risk assessemt: Okan and Meren Fields, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.A.; Brenneman, R.J.; Adepoju, A.A.

    Integration of production, geochemical, seismic, well log, and structural data provides important constraints on the sealing capacity and dynamic behavior of fault juxtaposed reservoirs in Okan and Meren fields, offshore Nigeria. Correlations were found between pressure decline histories, juxtaposed fluid types, oil composition, fluid contact relationships, fault sealing/leaking condition, and estimates of the composition of the fault gouge. Fault plane sections defined reservoir juxtapositions and potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materials between juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character in proved reservoirs and were usedmore » to quantify fault seal risk of untested, fault-dependent closures. In the Okan Field juxtapositions of the G-, H, L-, M, and O-sands were analyzed. Smear gouge ratios correlated to fluid contact relationships and pressure decline histories within these juxtaposed reservoirs empirically calibrate sealing potential. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and to risk seal integrity of fault-dependent closures within the untested 0-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits column heights and potential reserves within the O-sand package. In the Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, the G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios.« less

  19. Ion beam probing of electrostatic fields

    NASA Technical Reports Server (NTRS)

    Persson, H.

    1979-01-01

    The determination of a cylindrically symmetric, time-independent electrostatic potential V in a magnetic field B with the same symmetry by measurements of the deflection of a primary beam of ions is analyzed and substantiated by examples. Special attention is given to the requirements on canonical angular momentum and total energy set by an arbitrary, nonmonotone V, to scaling laws obtained by normalization, and to the analogy with ionospheric sounding. The inversion procedure with the Abel analysis of an equivalent problem with a one-dimensional fictitious potential is used in a numerical experiment with application to the NASA Lewis Modified Penning Discharge. The determination of V from a study of secondary beams of ions with increased charge produced by hot plasma electrons is also analyzed, both from a general point of view and with application to the NASA Lewis SUMMA experiment. Simple formulas and geometrical constructions are given for the minimum energy necessary to reach the axis, the whole plasma, and any point in the magnetic field. The common, simplifying assumption that V is a small perturbation is critically and constructively analyzed; an iteration scheme for successively correcting the orbits and points of ionization for the electrostatic potential is suggested.

  20. Meta-analysis and psychophysiology: A tutorial using depression and action-monitoring event-related potentials.

    PubMed

    Moran, Tim P; Schroder, Hans S; Kneip, Chelsea; Moser, Jason S

    2017-01-01

    Meta-analyses are regularly used to quantitatively integrate the findings of a field, assess the consistency of an effect and make decisions based on extant research. The current article presents an overview and step-by-step tutorial of meta-analysis aimed at psychophysiological researchers. We also describe best-practices and steps that researchers can take to facilitate future meta-analysis in their sub-discipline. Lastly, we illustrate each of the steps by presenting a novel meta-analysis on the relationship between depression and action-monitoring event-related potentials - the error-related negativity (ERN) and the feedback negativity (FN). This meta-analysis found that the literature on depression and the ERN is contaminated by publication bias. With respect to the FN, the meta-analysis found that depression does predict the magnitude of the FN; however, this effect was dependent on the type of task used by the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Formalizing the definition of meta-analysis in Molecular Ecology.

    PubMed

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  2. Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: The evaluation of the contact stiffness and the effective piezoelectric constant

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian

    2008-04-01

    A general solution of the axisymmetric indentation is obtained in the closed form for a semi-infinite, transverse isotropic piezoelectric material by a rigid-conducting indenter of arbitrary-axisymmetric profile. Explicit relationships are derived for dependences of the indentation depth and the indentation-induced charge on indentation force and applied electrical potential. Simple formulas are obtained for contact stiffness and effective piezoelectric constant, which can be used in indentation test and piezoresponse force microscopy to analyze the elastic and piezoelectric responses of piezoelectric materials. Depending on the direction of electric field (the potential difference), the electric field can either increase or suppress indentation deformation. The corresponding results are given for cylindrical, conical, and paraboloidal indenters.

  3. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  4. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  5. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  6. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  7. Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field.

    PubMed

    Li, Peng-Cheng; Sheu, Yae-Lin; Laughlin, Cecil; Chu, Shih-I

    2015-05-20

    Near- and below-threshold harmonic generation provides a potential approach to generate vacuum-ultraviolet frequency comb. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of caesium (Cs) atoms in an intense 3,600-nm mid-infrared laser field. Combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, the roles of multiphoton and multiple rescattering trajectories on the near- and below-threshold harmonic generation processes are clarified. We find that the multiphoton-dominated trajectories only involve the electrons scattered off the higher part of the combined atom-field potential followed by the absorption of many photons in near- and below-threshold regime. Furthermore, only the near-resonant below-threshold harmonic is exclusive to exhibit phase locked features. Our results shed light on the dynamic origin of the near- and below-threshold harmonic generation.

  8. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  9. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  10. Stability analysis for non-minimally coupled dark energy models in the Palatini formalism

    NASA Astrophysics Data System (ADS)

    Wang, Zuobin; Wu, Puxun; Yu, Hongwei

    2018-06-01

    In this paper, we use the method of global analysis to study the stability of de-Sitter solutions in an universe dominated by a scalar field dark energy, which couples non-minimally with the Ricci scalar defined in the Palatini formalism. Effective potential and phase-space diagrams are introduced to describe qualitatively the de-Sitter solutions and their stabilities. We find that for the simple power-law function V(φ)=V0φn there are no stable de-Sitter solutions. While for some more complicated potentials, i.e. V(φ)=V0φn+Λ and V(φ)=V0 (e ^{-λφ}+e^{λφ)2, stable de-Sitter solutions can exist.

  11. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  12. Use of failure modes and effects analysis in design of the tracker system for the HET wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hayes, Richard; Beets, Tim; Beno, Joseph; Booth, John; Cornell, Mark; Good, John; Heisler, James; Hill, Gary; Kriel, Herman; Penney, Charles; Rafal, Marc; Savage, Richard; Soukup, Ian; Worthington, Michael; Zierer, Joseph

    2012-09-01

    In support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the Center for Electromechanics at The University of Texas at Austin was tasked with developing the new Tracker and control system to support the HETDEX Wide-Field Upgrade. The tracker carries the 3,100 kg Prime Focus Instrument Package and Wide Field Corrector approximately 13 m above the 10 m diameter primary mirror. Its safe and reliable operation by a sophisticated control system, over a 20 year life time is a paramount requirement for the project. To account for all potential failures and potential hazards, to both the equipment and personnel involved, an extensive Failure Modes and Effects Analysis (FMEA) was completed early in the project. This task required participation of all the stakeholders over a multi-day meeting with numerous follow up exchanges. The event drove a number of significant design decisions and requirements that might not have been identified this early in the project without this process. The result is a system that has multiple layers of active and passive safety systems to protect the tens of millions of dollars of hardware involved and the people who operate it. This paper will describe the background of the FMEA process, how it was utilized on HETDEX, the critical outcomes, how the required safety systems were implemented, and how they have worked in operation. It should be of interest to engineers, designers, and managers engaging in complex multi-disciplinary and parallel engineering projects that involve automated hardware and control systems with potentially hazardous operating scenarios.

  13. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  14. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  15. Economic evaluation of medical tests at the early phases of development: a systematic review of empirical studies.

    PubMed

    Frempong, Samuel N; Sutton, Andrew J; Davenport, Clare; Barton, Pelham

    2018-02-01

    There is little specific guidance on the implementation of cost-effectiveness modelling at the early stage of test development. The aim of this study was to review the literature in this field to examine the methodologies and tools that have been employed to date. Areas Covered: A systematic review to identify relevant studies in established literature databases. Five studies were identified and included for narrative synthesis. These studies revealed that there is no consistent approach in this growing field. The perspective of patients and the potential for value of information (VOI) to provide information on the value of future research is often overlooked. Test accuracy is an essential consideration, with most studies having described and included all possible test results in their analysis, and conducted extensive sensitivity analyses on important parameters. Headroom analysis was considered in some instances but at the early development stage (not the concept stage). Expert commentary: The techniques available to modellers that can demonstrate the value of conducting further research and product development (i.e. VOI analysis, headroom analysis) should be better utilized. There is the need for concerted efforts to develop rigorous methodology in this growing field to maximize the value and quality of such analysis.

  16. Analysis of munitions constituents in groundwater using a field-portable GC-MS.

    PubMed

    Bednar, A J; Russell, A L; Hayes, C A; Jones, W T; Tackett, P; Splichal, D E; Georgian, T; Parker, L V; Kirgan, R A; MacMillan, D K

    2012-05-01

    The use of munitions constituents (MCs) at military installations can produce soil and groundwater contamination that requires periodic monitoring even after training or manufacturing activities have ceased. Traditional groundwater monitoring methods require large volumes of aqueous samples (e.g., 2-4 L) to be shipped under chain of custody, to fixed laboratories for analysis. The samples must also be packed on ice and shielded from light to minimize degradation that may occur during transport and storage. The laboratory's turn-around time for sample analysis and reporting can be as long as 45 d. This process hinders the reporting of data to customers in a timely manner; yields data that are not necessarily representative of current site conditions owing to the lag time between sample collection and reporting; and incurs significant shipping costs for samples. The current work compares a field portable Gas Chromatograph-Mass Spectrometer (GC-MS) for analysis of MCs on-site with traditional laboratory-based analysis using High Performance Liquid Chromatography with UV absorption detection. The field method provides near real-time (within ~1 h of sampling) concentrations of MCs in groundwater samples. Mass spectrometry provides reliable confirmation of MCs and a means to identify unknown compounds that are potential false positives for methods with UV and other non-selective detectors. Published by Elsevier Ltd.

  17. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in accretion powered by large-scale fields. An equilibrium model is presented for the radial structure of an axisymmetric, magnetically-braked accretion disc connected to a force-free external field. The accretion rate is multivalued at protoplanetary disc column densities, featuring an `S-curve' associated with models of accretion outbursting. A local, linear analysis of the stability of radial modes finds that the rapidly accreting, middle and upper solution branches are unstable, further highlighting the potential for eruptive accretion events.

  18. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, Travis; Beck, Thomas L.; Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters ofmore » size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.« less

  19. Laser-driven two-electron quantum dot in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-06-01

    We have investigated the energies of two-electron parabolic quantum dots (TEPQdots) embedded in plasmas characterized by more general exponential cosine screened Coulomb (MGECSC) potential under the action of a monochromatic, linearly polarized laser field by solving the corresponding Schrödinger equation numerically via the asymptotic iteration method. The four different cases of the MGECSC potential constituted by various sets of the potential parameters are reckoned in modeling of the interactions in the plasma environments which are Debye and quantum plasmas. The plasma environment is a remarkable experimental argument for the quantum dots and the interactions in plasma environments are different compared to the interactions in an environment without plasma and the screening specifications of the plasmas can be controlled through the plasma parameters. These findings constitute our major motivation in consideration of the plasma environments. An appreciable confinement effect is made up by implementing the laser field on the TEPQdot. The influences of the laser field on the system are included by using the Ehlotzky approximation, and then Kramers-Henneberger transformation is carried out for the corresponding Schrödinger equation. The influences of the ponderomotive force on two-electron quantum dots embedded in plasmas are investigated. The behaviours, the similarities and the functionalities of the laser field, the plasma environment, and the quantum dot confinement are also scrutinized. In addition, the role of the plasma environments in the mentioned analysis is also discussed in detail.

  20. Modeling and simulations of the double-probe electric field instrument in tenuous and cold streaming plasmas

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.

    2013-12-01

    In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The paper also reports some recent progress of ongoing PIC simulation research that focuses on spurious electric field generation in subsonic ion flows. Our preliminary simulation results revealed that; (1) there is no apparent wake signature behind the spacecraft in such a condition, but (2) spurious electric field over 1 mV/m amplitude is observed in the direction of the flow vector. The observed field amplitude is sometimes comparable to the convection electric field (a few mV/m) associated with the flow. Our analysis also confirmed that the spurious field is caused by a weakly-asymmetric potential pattern created by the ion flow. We will present the parametric study of such spurious fields for various conditions of plasma flows. [References] [1] Miyake, Y., C. M. Cully, H. Usui, and H. Nakashima (2013), Plasma particle simulations of wake formation behind a spacecraft with thin wire booms, submitted to J. Geophys. Res. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922.

  1. Assessment of the behavior of potentially toxic elements (PTEs) in soil from the Sarno River Basin through a compositional data analysis

    NASA Astrophysics Data System (ADS)

    Matar, Thiombane; Vivo Benedetto, De; Albanese, Stefano; Martín-Fernández, Josep-Antoni; Lima, Annamaria; Doherty, Angela

    2017-04-01

    The Sarno River Basin (south-west Italy), nestled between the Somma-Vesuvius volcanic complex and the limestone formations of the Campania-Apennine Chain, is one of the most polluted river basins in Europe due to a high rate of industrialization and intensive agriculture. Water from the Sarno River, which is heavily contaminated by the discharge of human and industrial waste, is partially used for irrigation on the agricultural fields surrounding it. We apply compositional data analysis on 319 samples collected during two field campaigns along the river course, and throughout the basin, to determine the level and potential origin (anthropogenic and/or geogenic) of the potentially toxic elements (PTEs). The concentrations of 53 elements determined by ICP-MS, and were subsequently log-transformed. Using a clr-biplot and principal factor analysis, the variability and the correlations between a subset of extracted variables (26 elements) were identified. Using both normalized raw data and clr-transformed coordinates, factor association interpolated maps were generated to better visualize the distribution and potential sources of the PTEs in the Sarno Basin. The underlying geology substrata appear to be associated with raised of levels of Na, K, P, Rb, Ba, V, Co, B, Zr, and Li, due to the presence of pyroclastic rocks from Mt. Somma-Vesuvius. Similarly, elevated Pb, Zn, Cd, and Hg concentrations are most likely related to both geological and anthropogenic sources, the underlying volcanic rocks and contamination from fossil fuel combustion associated with urban centers. Interpolated factors score maps and clr-biplot indicate a clear correlation between Ni and Cr in samples taken along the Sarno River, and Ca and Mg near the Solofra district. After considering nearby anthropogenic sources, the Ni and Cr are PTEs from the Solofra tannery industry, while Ca and Mg correlate to the underlying limestone-rich soils of the area. This study shows the applicability of the compositional data analysis transformations, which relates perfectly relationships and dependencies between elements which can be lost when univariate and classical multivariate analyses are employed on normal data. Keywords: Sarno basin, PTEs, compositional data analysis, centered-log Transformation (clr), Biplot, Factor analysis, ArcGIS

  2. Copernicus Big Data and Google Earth Engine for Glacier Surface Velocity Field Monitoring: Feasibility Demonstration on San Rafael and San Quintin Glaciers

    NASA Astrophysics Data System (ADS)

    Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.

    2018-04-01

    The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.

  3. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.

    PubMed

    Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick

    2018-04-01

    Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy.

    PubMed

    Friedrichs, Stephanie; Malan, Daniela; Voss, Yvonne; Sasse, Philipp

    2015-01-08

    Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  5. Design of a global soil moisture initialization procedure for the simple biosphere model

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Walker, G. K.

    1993-01-01

    Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.

  6. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    NASA Astrophysics Data System (ADS)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  7. The evaluation of complex interventions in palliative care: an exploration of the potential of case study research strategies.

    PubMed

    Walshe, Catherine

    2011-12-01

    Complex, incrementally changing, context dependent and variable palliative care services are difficult to evaluate. Case study research strategies may have potential to contribute to evaluating such complex interventions, and to develop this field of evaluation research. This paper explores definitions of case study (as a unit of study, a process, and a product) and examines the features of case study research strategies which are thought to confer benefits for the evaluation of complex interventions in palliative care settings. Ten features of case study that are thought to be beneficial in evaluating complex interventions in palliative care are discussed, drawing from exemplars of research in this field. Important features are related to a longitudinal approach, triangulation, purposive instance selection, comprehensive approach, multiple data sources, flexibility, concurrent data collection and analysis, search for proving-disproving evidence, pattern matching techniques and an engaging narrative. The limitations of case study approaches are discussed including the potential for subjectivity and their complex, time consuming and potentially expensive nature. Case study research strategies have great potential in evaluating complex interventions in palliative care settings. Three key features need to be exploited to develop this field: case selection, longitudinal designs, and the use of rival hypotheses. In particular, case study should be used in situations where there is interplay and interdependency between the intervention and its context, such that it is difficult to define or find relevant comparisons.

  8. Temporal genetic analysis of the endangered tidewater goby: extinction-colonization dynamics or drift in isolation?

    PubMed

    Kinziger, Andrew P; Hellmair, Michael; McCraney, W Tyler; Jacobs, David K; Goldsmith, Greg

    2015-11-01

    Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. © 2015 John Wiley & Sons Ltd.

  9. Investor Outlook: Focus on Upcoming LCA2 Gene Therapy Phase III Results.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2015-09-01

    Investor interest in gene therapy has increased substantially over the past few years, and the next major catalyst for the field is likely to be Spark Therapeutics's phase III trial for the treatment of visual impairment caused by RPE65 gene mutations (often referred to as Leber congenital amaurosis type 2, or LCA2, but may include other retinal disorders). Analysis of the approach from the basic genetics, underlying visual mechanisms, clinical data, and commercialization considerations helps frame investor expectations and the potential implications for the broader field.

  10. The Field Shower Wastewater Recycling System: Development of a Program of Instruction and Preliminary Analysis of Its Potential Health Implications.

    DTIC Science & Technology

    1987-02-01

    The FSWRS will be used by forces deployed to Theaters of Operations located in water-short areas of the world, and will greatly reduce water supply... operators take ’ A appropriate precautions in handling sulfuric acid and un- . treat.d waters. Although no health hazards are anticipated to result from...field. The FSWRS will be used by forces deployed to Theaters of Operations located in water short areas of the world, and will greatly reduce water

  11. Two Distinct Clones of Methicillin-Resistant Staphylococcus aureus (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA▿

    PubMed Central

    Larsen, Anders Rhod; Goering, Richard; Stegger, Marc; Lindsay, Jodi A.; Gould, Katherine A.; Hinds, Jason; Sørum, Marit; Westh, Henrik; Boye, Kit; Skov, Robert

    2009-01-01

    Analysis of methicillin-resistant Staphylococcus aureus (MRSA) characterized as USA300 by pulsed-field gel electrophoresis identified two distinct clones. One was similar to community-associated USA300 MRSA (ST8-IVa, t008, and Panton-Valentine leukocidin positive). The second (ST8-IVa, t024, and PVL negative) had different molecular characteristics and epidemiology, suggesting independent evolution. We recommend spa typing and/or PCR to discriminate between the two clones. PMID:19759225

  12. Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Fu, Lung-Ming; Lee, Kuo-Hoong; Yang, Ruey-Jen

    2004-10-01

    This paper presents a new electrokinetically driven active micro-mixer which uses localized capacitance effects to induce zeta potential variations along the surface of silica-based microchannels. The mixer is fabricated by etching bulk flow and shielding electrode channels into glass substrates and then depositing Au/Cr thin films within the latter to form capacitor electrodes, which establish localized zeta potential variations near the electrical double layer (EDL) region of the electroosmotic flow (EOF) within the microchannels. The potential variations induce flow velocity changes within a homogeneous fluid and a rapid mixing effect if an alternating electric field is provided. The current experimental data confirm that the fluid velocity can be actively controlled by using the capacitance effect of the buried shielding electrodes to vary the zeta potential along the channel walls. While compared with commonly used planar electrodes across the microchannels, the buried shielding electrodes prevent current leakage caused by bad bonding and allow direct optical observation during operation. It also shows that the buried shielding electrodes can significantly induce the field effect, resulting in higher variations of zeta potential. Computational fluid dynamic simulations are also used to study the fluid characteristics of the developed active mixers. The numerical and experimental results demonstrate that the developed microfluidic device permits a high degree of control over the fluid flow and an efficient mixing effect. Moreover, the developed device could be used as a pumping device as well. The development of the active electrokinetically driven micro-mixer could be crucial for micro-total-analysis-systems.

  13. Relational Framing Theory and Coming-Out Narratives: A Data Analysis Activity

    ERIC Educational Resources Information Center

    Helens-Hart, Rose

    2015-01-01

    Coming-out scenarios have been described as potentially traumatic events that change the parent-child relationship (MacDonald, 1983). Little research in the field of communication studies has been conducted on how the process of coming out unfolds within families (Valentine, Skelton, & Butler, 2003). The exercise described in this article…

  14. Narratives of Classroom Life: Changing Conceptions of Knowledge

    ERIC Educational Resources Information Center

    Nelson, Cynthia D.

    2011-01-01

    Narratives of classroom life--the type that blend analysis with artistry, in the form of plays, poems, stories, and the like--remain relatively uncommon within language education research. Yet such narratives have the potential to make a significant and timely contribution to the field, given the ways in which knowledge is being reconceptualised…

  15. Programming Video Games and Simulations in Science Education: Exploring Computational Thinking through Code Analysis

    ERIC Educational Resources Information Center

    Garneli, Varvara; Chorianopoulos, Konstantinos

    2018-01-01

    Various aspects of computational thinking (CT) could be supported by educational contexts such as simulations and video-games construction. In this field study, potential differences in student motivation and learning were empirically examined through students' code. For this purpose, we performed a teaching intervention that took place over five…

  16. A Profile and Analysis of Major Departments of Slavic Languages and Literatures

    ERIC Educational Resources Information Center

    Millar, Gera A.

    1976-01-01

    A survey is reported investigating the outlook of teachers and administrators on the growth potential of the field of Slavic languages and literature and providing a body of data on major programs in the United States. A questionnaire was mailed to the heads of 26 departments in spring 1975. (RM)

  17. On Power, Psychopolitical Validity, and Play

    ERIC Educational Resources Information Center

    Angelique, Holly L.

    2008-01-01

    In this commentary, the author discusses power as a useful concept for community psychology. Although Prilleltensky's analysis of power (this issue, pp. 116-136) has the potential to shift the ideological foundation of the field, the author notes that he focuses primarily on the ability to coerce and/or resist coercion. The author argues that…

  18. Large Space Systems/Low-Thrust Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potentially critical interactions that occur between propulsion, structures and materials, and controls for large spacecraft are considered, the technology impacts within these fields are defined and the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization.

  19. A statistical study of ionopause perturbation and associated boundary wave formation at Venus.

    NASA Astrophysics Data System (ADS)

    Chong, G. S.; Pope, S. A.; Walker, S. N.; Zhang, T.; Balikhin, M. A.

    2017-12-01

    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were once considered similar. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of ionospheric boundary waves. These structures may play an important role in the atmospheric evolution of Venus. By using Venus Express data, the crossings of the ionopause boundary are determined based on the observations of photoelectrons during 2011. Pulses of dropouts in the electron energy spectrometer were observed in 92 events, which suggests potential perturbations of the boundary. Minimum variance analysis of the 1Hz magnetic field data for the perturbations is conducted and used to confirm the occurrence of the boundary waves. Statistical analysis shows that they were propagating mainly in the ±VSO-Y direction in the polar north terminator region. The generation mechanisms of boundary waves and their evolution into the potential nonlinear regime are discussed and analysed.

  20. Efficacy of a lead based paint XRF analyzer and a commercially available colorimetric lead test kit as qualitative field tools for determining presence of lead in religious powders.

    PubMed

    Shah, Manthan P; Shendell, Derek G; Meng, Qingyu; Ohman-Strickland, Pamela; Halperin, William

    2018-04-23

    The performances of a portable X-Ray Fluorescence (XRF) lead paint analyzer (RMD LPA-1, Protec Instrument Corp., Waltham, MA) and a commercially available colorimetric lead test kit (First Alert Lead Test Kit, eAccess Solutions, Inc., Palatine, IL) were evaluated for use by local or state health departments as potential cost-effective rapid analysis or "spot test" field techniques for tentative identification of lead content in sindoor powders. For both field-sampling methods, sensitivity, specificity and predictive values varied widely for samples containing <300,000 μg/g lead. For samples containing ≥300,000 μg/g lead, the aforementioned metrics were 100% (however, the CIs had a wide range). In addition, both field sampling methods showed clear, consistent positive readings only for samples containing ≥300,000 μg/g lead. Even samples with lead content as high as 5,110 μg/g were not positively identified by either field analysis technique. The results of this study suggest the XRF analyzer and colorimetric lead test kit cannot be used as a rapid field test for sindoor by health department inspectors.

  1. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface

    NASA Astrophysics Data System (ADS)

    Song, Xu; Huang, Lingling; Sun, Lin; Zhang, Xiaomeng; Zhao, Ruizhe; Li, Xiaowei; Wang, Jia; Bai, Benfeng; Wang, Yongtian

    2018-02-01

    Metasurfaces have recently intrigued extensive interest due to their ability to locally manipulate electromagnetic waves, which provide great feasibility for tailoring both propagation waves and surface plasmon polaritons (SPPs). Manipulation of SPPs with arbitrary complex fields is an important issue in integrated nanophotonics due to their capability of guiding waves with subwavelength footprints. Here, an approach with metasurfaces composed of nanoaperture arrays is proposed and experimentally demonstrated which can effectively manipulate the complex amplitude of SPPs in the near-field regime. Tailoring the azimuthal angles of individual nanoapertures and simultaneously tuning their geometric parameters, the phase and amplitude are controlled based on the Pancharatnam-Berry phases and their individual transmission coefficients. For the verification of the concept, Airy plasmons and axisymmetric Airy-SPPs are generated. The results of numerical simulations and near-field imaging are consistent with each other. Besides the rigorous simulations, we applied a 2D dipole analysis for additional analysis. This strategy of complex amplitude manipulation with metasurfaces can be used for potential applications in plasmonic beam shaping, integrated optoelectronic systems, and surface wave holography.

  2. Geostatistics: a common link between medical geography, mathematical geology, and medical geology

    PubMed Central

    Goovaerts, P.

    2015-01-01

    Synopsis Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential ‘causes’ of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. PMID:25722963

  3. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    PubMed

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  4. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    PubMed Central

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652

  5. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    PubMed

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  6. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Integrated modeling and field study of potential mechanisms forinduced seismicity at The Geysers Goethermal Field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Majer, Ernie; Oldenburg, Curt

    2006-06-07

    In this paper, we present progress made in a study aimed atincreasing the understanding of the relative contributions of differentmechanisms that may be causing the seismicity occurring at The Geysersgeothermal field, California. The approach we take is to integrate: (1)coupled reservoir geomechanical numerical modeling, (2) data fromrecently upgraded and expanded NCPA/Calpine/LBNL seismic arrays, and (3)tens of years of archival InSAR data from monthly satellite passes. Wehave conducted a coupled reservoir geomechanical analysis to studypotential mechanisms induced by steam production. Our simulation resultscorroborate co-locations of hypocenter field observations of inducedseismicity and their correlation with steam production as reported in theliterature. Seismicmore » and InSAR data are being collected and processed foruse in constraining the coupled reservoir geomechanicalmodel.« less

  8. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  9. PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre

    2017-06-01

    We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.

  10. Analysis of temperature rise for piezoelectric transformer using finite-element method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2006-08-01

    Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.

  11. Accidents at work and costs analysis: a field study in a large Italian company.

    PubMed

    Battaglia, Massimo; Frey, Marco; Passetti, Emilio

    2014-01-01

    Accidents at work are still a heavy burden in social and economic terms, and action to improve health and safety standards at work offers great potential gains not only to employers, but also to individuals and society as a whole. However, companies often are not interested to measure the costs of accidents even if cost information may facilitate preventive occupational health and safety management initiatives. The field study, carried out in a large Italian company, illustrates technical and organisational aspects associated with the implementation of an accident costs analysis tool. The results indicate that the implementation (and the use) of the tool requires a considerable commitment by the company, that accident costs analysis should serve to reinforce the importance of health and safety prevention and that the economic dimension of accidents is substantial. The study also suggests practical ways to facilitate the implementation and the moral acceptance of the accounting technology.

  12. Accidents at Work and Costs Analysis: A Field Study in a Large Italian Company

    PubMed Central

    BATTAGLIA, Massimo; FREY, Marco; PASSETTI, Emilio

    2014-01-01

    Accidents at work are still a heavy burden in social and economic terms, and action to improve health and safety standards at work offers great potential gains not only to employers, but also to individuals and society as a whole. However, companies often are not interested to measure the costs of accidents even if cost information may facilitate preventive occupational health and safety management initiatives. The field study, carried out in a large Italian company, illustrates technical and organisational aspects associated with the implementation of an accident costs analysis tool. The results indicate that the implementation (and the use) of the tool requires a considerable commitment by the company, that accident costs analysis should serve to reinforce the importance of health and safety prevention and that the economic dimension of accidents is substantial. The study also suggests practical ways to facilitate the implementation and the moral acceptance of the accounting technology. PMID:24869894

  13. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson, E-mail: campista@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br

    2017-09-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n {sub s} plane, where r is the tensor-to-scalarmore » ratio and n {sub s} the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.« less

  14. Characterization of PET/CT images using texture analysis: the past, the present… any future?

    PubMed

    Hatt, Mathieu; Tixier, Florent; Pierce, Larry; Kinahan, Paul E; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2017-01-01

    After seminal papers over the period 2009 - 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.

  15. Exploring critical youth media practice: connections and contributions for social work.

    PubMed

    Johnston-Goodstar, Katie; Richards-Schuster, Katie; Sethi, Jenna K

    2014-10-01

    Youth media is emerging as an interdisciplinary field of practice and subject of study. Over the last two decades, there have been many efforts within communities to engage in media, especially within the fields of youth work and education. Despite the increase in practice, we found surprisingly little attention to the potential for youth media within the social work literature. Drawing on a qualitative content analysis of program descriptions from 49 youth media groups, the authors attempt to examine the current field of youth media. Using a critical media literacy framework, the authors analyze the practice of these youth media groups and apply those findings to social work practice, education, and research.

  16. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.

    PubMed

    Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao

    2012-01-01

    Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.

  17. 3D seismic data interpretation of Boonsville Field, Texas

    NASA Astrophysics Data System (ADS)

    Alhakeem, Aamer Ali

    The Boonsville field is one of the largest gas fields in the US located in the Fort Worth Basin, north central Texas. The highest potential reservoirs reside in the Bend Conglomerate deposited during the Pennsylvanian. The Boonsville data set is prepared by the Bureau of Economic Geology at the University of Texas, Austin, as part of the secondary gas recovery program. The Boonsville field seismic data set covers an area of 5.5 mi2. It includes 38 wells data. The Bend Conglomerate is deposited in fluvio-deltaic transaction. It is subdivided into many genetic sequences which include depositions of sandy conglomerate representing the potential reserves in the Boonsville field. The geologic structure of the Boonsville field subsurface are visualized by constructing structure maps of Caddo, Davis, Runaway, Beans Cr, Vineyard, and Wade. The mapping includes time structure, depth structure, horizon slice, velocity maps, and isopach maps. Many anticlines and folds are illustrated. Karst collapse features are indicated specially in the lower Atoka. Dipping direction of the Bend Conglomerate horizons are changing from dipping toward north at the top to dipping toward east at the bottom. Stratigraphic interpretation of the Runaway Formation and the Vineyard Formation using well logs and seismic data integration showed presence of fluvial dominated channels, point bars, and a mouth bar. RMS amplitude maps are generated and used as direct hydrocarbon indicator for the targeted formations. As a result, bright spots are indicated and used to identify potential reservoirs. Petrophysical analysis is conducted to obtain gross, net pay, NGR, water saturation, shale volume, porosity, and gas formation factor. Volumetric calculations estimated 989.44 MMSCF as the recoverable original gas in-place for a prospect in the Runaway and 3.32 BSCF for a prospect in the Vineyard Formation.

  18. Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field

    NASA Astrophysics Data System (ADS)

    Dawson, Lon A.; Pohl, Phillip I.

    1997-11-01

    The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.

  19. BSDWormer; an Open Source Implementation of a Poisson Wavelet Multiscale Analysis for Potential Fields

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; Gaede, O.

    2014-12-01

    Wavelet multiscale edge analysis of potential fields (a.k.a. "worms") has been known since Moreau et al. (1997) and was independently derived by Hornby et al. (1999). The technique is useful for producing a scale-explicit overview of the structures beneath a gravity or magnetic survey, including establishing the location and estimating the attitude of surface features, as well as incorporating information about the geometric class (point, line, surface, volume, fractal) of the underlying sources — in a fashion much like traditional structural indices from Euler solutions albeit with better areal coverage. Hornby et al. (2002) show that worms form the locally highest concentration of horizontal edges of a given strike — which in conjunction with the results from Mallat and Zhong (1992) induces a (non-unique!) inversion where the worms are physically interpretable as lateral boundaries in a source distribution that produces a close approximation of the observed potential field. The technique has enjoyed widespread adoption and success in the Australian mineral exploration community — including "ground truth" via successfully drilling structures indicated by the worms. Unfortunately, to our knowledge, all implementations of the code to calculate the worms/multiscale edges (including Horowitz' original research code) are either part of commercial software packages, or have copyright restrictions that impede the use of the technique by the wider community. The technique is completely described mathematically in Hornby et al. (1999) along with some later publications. This enables us to re-implement from scratch the code required to calculate and visualize the worms. We are freely releasing the results under an (open source) BSD two-clause software license. A git repository is available at . We will give an overview of the technique, show code snippets using the codebase, and present visualization results for example datasets (including the Surat basin of Australia, and the Lake Ontario region of North America). We invite you to join us in creating and using the best worming software for potential fields in existence — as both gratis and libre software!

  20. Critical points of the cosmic velocity field and the uncertainties in the value of the Hubble constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Naselsky, Pavel; Mohayaee, Roya, E-mail: liuhao@nbi.dk, E-mail: roya@iap.fr, E-mail: naselsky@nbi.dk

    2016-06-01

    The existence of critical points for the peculiar velocity field is a natural feature of the correlated vector field. These points appear at the junctions of velocity domains with different orientations of their averaged velocity vectors. Since peculiar velocities are the important cause of the scatter in the Hubble expansion rate, we propose that a more precise determination of the Hubble constant can be made by restricting analysis to a subsample of observational data containing only the zones around the critical points of the peculiar velocity field, associated with voids and saddle points. On large-scales the critical points, where themore » first derivative of the gravitational potential vanishes, can easily be identified using the density field and classified by the behavior of the Hessian of the gravitational potential. We use high-resolution N-body simulations to show that these regions are stable in time and hence are excellent tracers of the initial conditions. Furthermore, we show that the variance of the Hubble flow can be substantially minimized by restricting observations to the subsample of such regions of vanishing velocity instead of aiming at increasing the statistics by averaging indiscriminately using the full data sets, as is the common approach.« less

  1. Gauge-invariant formulation of high-field transport in semiconductors

    NASA Astrophysics Data System (ADS)

    Ciancio, Emanuele; Iotti, Rita C.; Rossi, Fausto

    2004-04-01

    In this paper we revisit the conventional description of carrier-phonon scattering in the presence of high electric fields by means of a gauge-invariant density-matrix approach. The proposed formulation of the transport problem allows us, on the one hand, to provide a gauge-independent formulation of Fermi’s golden rule; on the other hand, our analysis clearly shows that in the standard treatments of high-field carrier-phonon scattering—also referred to as intracollisional field effect—the possible variation of the basis states has been usually neglected. This is recognized to be the origin of the apparent discrepancy between scalar- and vector-potential treatments of the problem; indeed, a proper account of such contributions leads, in general, to an ill-defined Markov limit in the carrier-phonon interaction process, assigning to the scalar-potential or Wannier-Stark picture a privileged role. The neglect of such Zener-like contributions in the transport equation leads to a wrong estimation of the high-field voltage-current characteristics, and may partially account for the surprisingly good agreement between semiclassical and rigorous quantum-transport calculations previously reported. This is confirmed by fully three-dimensional simulations of charge transport in state-of-the-art semiconductor superlattices, which show a significant current overestimation.

  2. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  3. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  4. Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials.

    PubMed

    Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper; Kongsted, Jacob

    2015-04-14

    Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, both the electronic structure model of the active region and the embedding potential need to be of sufficiently high quality. In fact, failures in quantum mechanics/molecular mechanics (QM/MM)-based embedding methods have often been associated with the QM/MM methodology itself; however, in many cases the reason for such failures is due to the use of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn-Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than fragment-based approaches. We also find that standard protein force fields yield poor embedding potentials, and it is therefore not advisable to use such force fields in general QM/MM-type calculations of molecular properties other than energies and structures.

  5. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  6. Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials.

    PubMed

    Cohen, Ariel; Shappir, Joseph; Yitzchaik, Shlomo; Spira, Micha E

    2006-12-15

    Understanding the mechanisms that generate field potentials (FPs) by neurons grown on semiconductor chips is essential for implementing neuro-electronic devices. Earlier studies emphasized that FPs are generated by current flow between differentially expressed ion channels on the membranes facing the chip surface, and those facing the culture medium in electrically compact cells. Less is known, however, about the mechanisms that generate FPs by action potentials (APs) that propagate along typical non-isopotential neurons. Using Aplysia neurons cultured on floating gate-transistors, we found that the FPs generated by APs in cultured neurons are produced by current flow along neuronal compartments comprising the axon, cell body, and neurites, rather than by flow between the membrane facing the chip substrate and that facing the culture medium. We demonstrate that the FPs waveform generated by non-isopotential neurons largely depends on the morphology of the neuron.

  7. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  8. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Marshall, Matthew S. J.; ...

    2017-03-23

    The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fieldsmore » and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.« less

  10. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  11. Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Nemeth, M. P.

    2007-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  12. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    PubMed

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Oterkus, E.; Madenci, E.

    2005-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  14. NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis.

    PubMed

    Zhang, Bo; Dai, Ji; Zhang, Tao

    2017-11-13

    In a typical electrophysiological experiment, especially one that includes studying animal behavior, the data collected normally contain spikes, local field potentials, behavioral responses and other associated data. In order to obtain informative results, the data must be analyzed simultaneously with the experimental settings. However, most open-source toolboxes currently available for data analysis were developed to handle only a portion of the data and did not take into account the sorting of experimental conditions. Additionally, these toolboxes require that the input data be in a specific format, which can be inconvenient to users. Therefore, the development of a highly integrated toolbox that can process multiple types of data regardless of input data format and perform basic analysis for general electrophysiological experiments is incredibly useful. Here, we report the development of a Python based open-source toolbox, referred to as NeoAnalysis, to be used for quick electrophysiological data processing and analysis. The toolbox can import data from different data acquisition systems regardless of their formats and automatically combine different types of data into a single file with a standardized format. In cases where additional spike sorting is needed, NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, and local field potentials analysis, behavioral response (e.g. saccade) detection and extraction, with several options available for data plotting and statistics. Particularly, it can automatically generate sorted results without requiring users to manually sort data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis supports analysis at the population level. With the multitude of general-purpose functions provided by NeoAnalysis, users can easily obtain publication-quality figures without writing complex codes. NeoAnalysis is a powerful and valuable toolbox for users doing electrophysiological experiments.

  15. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass.

    PubMed

    Durairaj, Varalakshmi; Hoda, Muddasarul; Shakya, Garima; Babu, Sankar Pajaniradje Preedia; Rajagopalan, Rukkumani

    2014-09-01

    To screen the phytochemical constituents and study antioxidant properties of the aqueous extract of the wheatgrass. The current study was focused on broad parameters namely, phytochemical analysis, gas chromatography-mass spectrometry analysis and antioxidant properties in order to characterize the aqueous extract of wheatgrass as a potential free radical quencher. The phytochemical screening of the aqueous extract of wheatgrass showed the presence of various secondary metabolites but the absence of sterols and quinone in general. Wheatgrass was proved to be an effective radical scavenger in all antioxidant assays. The gas chromatography-mass spectrometry analysis confirmed the presence of diverse category of bioactive compounds such as squalene, caryophyllene and amyrins in varying percentage. From the results obtained, we conclude that wheatgrass aqueous extract contains various effective compounds. It is a potential source of natural antioxidants. Further analysis of this herb will help in finding new effective compounds which can be of potent use in pharmacological field. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Constant fields and constant gradients in open ionic channels.

    PubMed Central

    Chen, D P; Barcilon, V; Eisenberg, R S

    1992-01-01

    Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159

  17. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    NASA Astrophysics Data System (ADS)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  18. Evaluation of military field-water quality: Volume 3, Opportunity poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciccone, V.J.; Carmer, M.B.; Daniels, J.I.

    1987-12-01

    The term ''opportunity poison'' refers to any substance that in military situations might be intentionally added to field water to deny its use; it implies that such contamination will be introduced as a spontaneous action, rather than as part of a preconceived plan. There are many different substances in military inventories and the civilian marketplace that, because of their availability and toxic or organoleptic properties (e.g., taste, odor, or appearance), can be considered potential opportunity poisons for field water. To identify these substances and indicate their relative importance from a military perspective, we present a categorization matrix in which classesmore » of compounds are ranked according to their military significance as potential opportunity poisons. The categorization matrix was assembled by considering (1) the probable availability from military or civilian sources, (2) the possible water-related health or aesthetic effects, and (3) the potential impacts on water-treatment equipment of the principal constituents of each class of compounds. On the basis of the analysis, recommendations are made for US military forces to meet the threat of opportunity poisons by instituting guidelines and training programs that will (1) alert field forces to situations likely to involve the use of opportunity poisons and (2) define appropriated procedures for dealing with such situations. Quantifying the effects of the most important opportunity poisons (e.g., petroleum products) on field-water treatment equipment, particularly the reverse osmosis water purification unit (ROWPU), also is advised so that contingency plans can be made for operating and maintaining the equipment in the presence of such opportunity poisons. 149 refs., 8 tabs.« less

  19. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150 fT/Hz1/2 operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125 μL tap water was detected at an ultralow magnetic field down to 47 nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  20. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed outmore » in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.« less

Top