NASA Astrophysics Data System (ADS)
Kaldonski, Nicolas; Lagrue, Clément; Motreuil, Sébastien; Rigaud, Thierry; Bollache, Loïc
2008-09-01
Predation is often considered as one of the most important biotic factor determining the success of exotic species. The freshwater amphipod Gammarus roeseli has widely colonized Western Europe, where it is frequently found in sympatry with the native species ( Gammarus pulex). Previous laboratory experiments revealed that G. roeseli may have an advantage over G. pulex through differential predation by native fish (brown trout). Morphological anti-predator defences (spines) were found responsible for lower rates of predation on the invasive G. roeseli. Here, using both field surveys and laboratory experiments, we tested if a differential of predation exists with other fish predators naturally encountered by gammarids. The main predators present in our field site were nocturnal benthic feeders (mainly bullheads, Cottus gobio). Fish diet analysis showed that, compared to its global availability in the river, G. roeseli was less consumed than G. pulex. In the field, however, G. roeseli was found mainly in the aquatic vegetation whereas G. pulex was found in all habitat types. Laboratory experiments in microcosms revealed that G. roeseli was less prone to predation by C. gobio only when vegetation was present. Depending on the type of predator, the differential of predation could therefore be mediated by antipredator behaviour, and a better usage of refuges, rather than by morphological defences.
Ballman, Elissa S; Collins, Judith A; Drummond, Francis A
2017-12-05
Drosophila suzukii (Matsumura; Diptera: Drosophilidae) is an invasive vinegar fly and pest of soft fruits in North America, including wild blueberries (Vaccinium angustifolium Aiton) in Maine. Despite its presence in the continental United States for 9 yr, little is known about its natural enemy complex. Here we report the results of a 3-yr study designed to identify naturally-occurring predators in Maine's wild blueberry fields. Experiments were conducted to determine pupation site and pupation depth to understand D. suzukii's predation vulnerability. Predation rates in the field of fully-exposed, caged, and buried pupae were measured. Pitfall traps were deployed to identify the potential predator assemblage, and laboratory experiments were conducted to determine how many pupae were consumed by commonly occurring ground beetle species (Carabidae) and field crickets (Gryllus pennsylvanicus Burmeister). The most commonly collected predators were ants, ground beetles, harvestmen, and field crickets. Significantly more pupae were found to occur in the soil compared to blueberry fruit, with most pupae in the top 0.5 cm layer of soil. Pupal predation rates in the field were high, with higher rates of predation on exposed pupae compared to buried pupae. Laboratory studies revealed that ground beetles and field crickets are likely predators of D. suzukii pupae. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Predation of warm-and cool-season grass seed by the common cricket (Acheta domesticus L.)
USDA-ARS?s Scientific Manuscript database
In field experiments we noted that one of the main predators of tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.) seed was the field cricket (Gryllus sp.). To determine if there might be a seed predation preference among forage grasses a laboratory study was ...
Species invasion shifts the importance of predator dependence.
Griffen, Blaine D; Delaney, David G
2007-12-01
The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.
Differential predation of forage seed
USDA-ARS?s Scientific Manuscript database
In recent field experiments we observed that the main invertebrate seed predators of overseeded tall fescue (Festuca arundinacea Schreb.) or Italian ryegrass (Lolium multiflorum Lam.) seed in unimproved pastures were harvester ants (Pogonomyrmex sp.) and common field crickets (Gryllus sp.) To determ...
Foraging trade-offs along a predator-permanence gradient in subalpine wetlands
Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.
1999-01-01
We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders probably reflects a tradeoff between competitive superiority and vulnerability to predation. The high activity levels and aggressiveness that enable Asynarchus to complete development in temporary habitats result in strong asymmetric competition (via intraguild predation) with Limnephilus. In permanent habitats these same behaviors increase Asynarchus vulnerability to salamander predation, which indirectly benefits Limnephilus. This and previous work implicate salamanders as keystone predators that exert a major influence on the composition of benthic and planktonic assemblages in subalpine wetlands.
Gut microbiomes of mobile predators vary with landscape context and species identity.
Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D; Gratton, Claudio
2017-10-01
Landscape context affects predator-prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.
Using Artificial Nests to Study Nest Predation in Birds
ERIC Educational Resources Information Center
Belthoff, James R.
2005-01-01
A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.
Flocking and self-defense: experiments and simulations of avian mobbing
NASA Astrophysics Data System (ADS)
Kane, Suzanne Amador
2011-03-01
We have performed motion capture studies in the field of avian mobbing, in which flocks of prey birds harass predatory birds. Our empirical studies cover both field observations of mobbing occurring in mid-air, where both predator and prey are in flight, and an experimental system using actual prey birds and simulated predator ``perch and wait'' strategies. To model our results and establish the effectiveness of mobbing flight paths at minimizing risk of capture while optimizing predator harassment, we have performed computer simulations using the actual measured trajectories of mobbing prey birds combined with model predator trajectories. To accurately simulate predator motion, we also measured raptor acceleration and flight dynamics, well as prey-pursuit strategies. These experiments and theoretical studies were all performed with undergraduate research assistants in a liberal arts college setting. This work illustrates how biological physics provides undergraduate research projects well-suited to the abilities of physics majors with interdisciplinary science interests and diverse backgrounds.
Predator effects on reef fish settlement depend on predator origin and recruit density.
Benkwitt, Cassandra E
2017-04-01
During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.
Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.
2016-01-01
The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.
Behavioral Response of Corophium volutator to Shorebird Predation in the Upper Bay of Fundy, Canada
MacDonald, Elizabeth C.; Frost, Elisabeth H.; MacNeil, Stephanie M.; Hamilton, Diana J.; Barbeau, Myriam A.
2014-01-01
Predator avoidance is an important component of predator-prey relationships and can affect prey availability for foraging animals. Each summer, the burrow-dwelling amphipod Corophium volutator is heavily preyed upon by Semipalmated Sandpipers (Calidris pusilla) on mudflats in the upper Bay of Fundy, Canada. We conducted three complementary studies to determine if adult C. volutator exhibit predator avoidance behavior in the presence of sandpipers. In a field experiment, we monitored vertical distribution of C. volutator adults in bird exclosures and adjacent control plots before sandpipers arrived and during their stopover. We also made polymer resin casts of C. volutator burrows in the field throughout the summer. Finally, we simulated shorebird pecking in a lab experiment and observed C. volutator behavior in their burrows. C. volutator adults were generally distributed deeper in the sediment later in the summer (after sandpipers arrived). In August, this response was detectably stronger in areas exposed to bird predation than in bird exclosures. During peak predator abundance, many C. volutator adults were beyond the reach of feeding sandpipers (>1.5 cm deep). However, burrow depth did not change significantly throughout the summer. Detailed behavioral observations indicated that C. volutator spent more time at the bottom of their burrow when exposed to a simulated predator compared to controls. This observed redistribution suggests that C. volutator adults move deeper into their burrows as an anti-predator response to the presence of sandpipers. This work has implications for predators that feed on burrow-dwelling invertebrates in soft-sediment ecosystems, as density may not accurately estimate prey availability. PMID:25354218
Clark, Rulon W; Dorr, Scott W; Whitford, Malachi D; Freymiller, Grace A; Putman, Breanna J
2016-06-01
Predators often employ a complex series of behaviors to overcome antipredator defenses and effectively capture prey. Although hunting behaviors can improve with age and experience, many precocial species are necessarily effective predators from birth. Additionally, many predators experience innate ontogenetic shifts in predatory strategies as they grow, allowing them to adapt to prey more appropriate for their increased size and energetic needs. Understanding how the relative roles of innate age-specific adaptation and learning have evolved requires information on how predation behavior develops in situ, in free-ranging predators. However, most of the research on the ontogeny of predation behavior is based on laboratory studies of captive animals, largely due to the difficulty of following newborn individuals in nature. Here, we take advantage of the unique tracks left by juveniles of a precocial viperid, the sidewinder rattlesnake (Crotalus cerastes), which we used to follow free-ranging snakes in the field. We recorded details of their ambush hunting behavior, and compared the behaviors of these juveniles to adult snakes that we monitored in the field via radio telemetry. Although juvenile and adult behaviors were similar in most respects, we did find that adults chose more effective ambush sites, which may be due to their increased experience. We also found that juveniles (but typically not adults) perform periodic tail undulations while in ambush, and that juveniles displayed slightly different activity cycles. Both of these latter differences are likely the result of age-specific adaptations for juveniles' greater reliance on lizards versus small mammals as prey. We also compared the general predatory behavior of sidewinders to that of other species in the genus Crotalus. These findings will provide important baseline field information for more detailed empirical research on the ontogeny of predation behavior in precocial vertebrates. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sparrevik, Erik; Leonardsson, Kjell
1999-07-01
We performed a 6-month laboratory experiment to investigate the direct and indirect effects of predation by the benthic invertebrate predator Saduria entomon on the growth and survival of Monopreia affinis prey individuals in different age-cohorts at low and high prey densities. The experimental results were compared with changes of growth and abundance in corresponding age-cohorts of M. affinis at sites with different S. entomon and M. affinis densities in the deep sublittoral zone of the Bothnian Sea during the same year. In the experiment, the presence of S. entomon reduced growth rate of M. affinis in the 1-year and 2-year age-cohorts at low amphipod density. Increased refuge use by M. affinis, expressed as a decrease in swimming activity in the presence of S. entomon, is suggested to have reduced feeding rate and therefore growth of the amphipods. The recruitment of M. affinis offspring was reduced in presence of S. entomon. In the field, the growth rate of amphipods in the 1-year cohort increased with increasing S. entomon density at low amphipod density. We found no corresponding increase of M. affinis growth in the 2-year cohort. The positive effect on 1-year amphipod growth indicated that predation reduced intra-cohort competition of M. affinis and increased growth of surviving prey at high predator density. In both the experiment and the field data we found indications of size-selective predation on smaller M. affinis specimens. This was because of the changed ratio between number of individuals in the juvenile age-cohorts and lower recruitment of amphipod offspring connected to S. entomon density. The experimental results and field data suggest that predation by S. entomon may have both direct and indirect effects on the size-structure of M. affinis populations.
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
Innate and Learned Prey-Searching Behavior in a Generalist Predator.
Ardanuy, Agnès; Albajes, Ramon; Turlings, Ted C J
2016-06-01
Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator's odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable quantitative differences in (Z)-3-hexenal, (E)-2-hexenal, and methyl salicylate. These compounds might serve as reliable indicators of prey presence and identity for the predator. Our results support the idea that feeding by Z. scutellaris results in the emission of maize's HIPVs that initially recruit Orius spp. into maize fields.
Phenotypically plastic neophobia: a response to variable predation risk.
Brown, Grant E; Ferrari, Maud C O; Elvidge, Chris K; Ramnarine, Indar; Chivers, Douglas P
2013-04-07
Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions.
Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.
Wang, Xiaoying; Zou, Xingfu
2017-06-01
Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.
Metamorphosing reef fishes avoid predator scent when choosing a home.
Vail, Alexander L; McCormick, Mark I
2011-12-23
Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.
Contribution of predator identity to the suppression of herbivores by a diverse predator assemblage.
Long, Elizabeth Y; Finke, Deborah L
2014-06-01
Studies manipulating predator diversity and measuring the impact on herbivore abundance have found that enhancing predator species richness often increases the strength of prey suppression. This relationship may be due to mechanisms such as complementarity or facilitation, which are considered "true" benefits of diversity because greater prey suppression is an emergent property of the multispecies predator community. Or it may be due to an identity effect, an "apparent" benefit of diversity that results from the greater likelihood of including one particularly voracious predator species as the total number of predator species increases. In separate greenhouse and field experiments, we simultaneously manipulated the species richness and species composition of predators attacking bird cherry-oat aphids (Rhopalosiphum padi) (L.) on wheat (Triticum aestivum L.). We found that on average aphid suppression by species-rich predator assemblages was greater than suppression by single-species monocultures. However, the performance of individual predator species varied and the species-rich assemblages did not outperform all single-species compositions, suggesting an identity effect. In particular, single-species compositions of the lady beetle Coleomegilla maculata (DeGeer) exhibited high performance across experiments, and on average predator assemblages that contained a lady beetle predator had lower overall aphid abundance than compositions where lady beetles were absent. Taken together, these results provide evidence for the dominant role of lady beetles, especially C. maculata, in natural pest suppression and suggest that predator species composition and identity are important factors to consider in efforts to conserve this valuable ecosystem service.
Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul
2017-08-01
Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.
Quantifying predator dependence in the functional response of generalist predators.
Novak, Mark; Wolf, Christopher; Coblentz, Kyle E; Shepard, Isaac D
2017-06-01
A long-standing debate concerns how functional responses are best described. Theory suggests that ratio dependence is consistent with many food web patterns left unexplained by the simplest prey-dependent models. However, for logistical reasons, ratio dependence and predator dependence more generally have seen infrequent empirical evaluation and then only so in specialist predators, which are rare in nature. Here we develop an approach to simultaneously estimate the prey-specific attack rates and predator-specific interference (facilitation) rates of predators interacting with arbitrary numbers of prey and predator species in the field. We apply the approach to surveys and experiments involving two intertidal whelks and their full suite of potential prey. Our study provides strong evidence for predator dependence that is poorly described by the ratio dependent model over manipulated and natural ranges of species abundances. It also indicates how, for generalist predators, even the qualitative nature of predator dependence can be prey-specific. © 2017 John Wiley & Sons Ltd/CNRS.
Hardwick, Kayla M.; Harmon, Luke J.; Hardwick, Scott D.; Rosenblum, Erica Bree
2015-01-01
Determining the adaptive significance of phenotypic traits is key for understanding evolution and diversification in natural populations. However, evolutionary biologists have an incomplete understanding of how specific traits affect fitness in most populations. The White Sands system provides an opportunity to study the adaptive significance of traits in an experimental context. Blanched color evolved recently in three species of lizards inhabiting the gypsum dunes of White Sands and is likely an adaptation to avoid predation. To determine whether there is a relationship between color and susceptibility to predation in White Sands lizards, we conducted enclosure experiments, quantifying survivorship of Holbrookia maculate exhibiting substrate-matched and substrate-mismatched phenotypes. Lizards in our study experienced strong predation. Color did not have a significant effect on survival, but we found several unexpected relationships including variation in predation over small spatial and temporal scales. In addition, we detected a marginally significant interaction between sex and color, suggesting selection for substrate matching may be stronger for males than females. We use our results as a case study to examine six major challenges frequently encountered in field-based studies of natural selection, and suggest that insight into the complexities of selection often results when experiments turn out differently than expected. PMID:25714838
Therese M. Poland; John H. Borden
1997-01-01
The bark beetle predator Thanasimus undatulus Say was captured in statistically significant numbers (total catch = 470, 713, and 137) in three field experiments using multiple-funnel traps baited with various combinations of pheromones for the spruce beetle, Dendroctonus rufipennis Kirby, and the secondary bark beetles ...
Influence of Fish Predation on Assemblage Structure of Macroinvertebrates in an Intermittent Stream
Lance R. Williams; Christopher M. Taylor; Melvin L. Warren
2003-01-01
Despite considerable investigation of stream systems, the influence of fish predation on macroinvertebrate assemblages is still poorly understood and remains a controversial subject. We conducted a field experiment in an intermittent reach of Alum Creek in the Ouachita Mountains, Arkansas, to examine the effects of predatory fish on macroinvertebrate assemblages. We...
Phenotypically plastic neophobia: a response to variable predation risk
Brown, Grant E.; Ferrari, Maud C. O.; Elvidge, Chris K.; Ramnarine, Indar; Chivers, Douglas P.
2013-01-01
Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions. PMID:23390103
At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango
Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas
2017-01-01
Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561
Pickering, Tyler R; Poirier, Luke A; Barrett, Timothy J; McKenna, Shawn; Davidson, Jeff; Quijón, Pedro A
2017-06-01
Non-indigenous green crabs (Carcinus maenas) are emerging as important predators of autogenic engineers like American oysters (Crassostrea virginica) throughout the eastern seaboard of Canada and the United States. To document the spreading distribution of green crabs, we carried out surveys in seven sites of Prince Edward Island during three fall seasons. To assess the potential impact of green crabs on oyster mortality in relation to predator and prey size, we conducted multiple predator-prey manipulations in the field and laboratory. The surveys confirmed an ongoing green crab spread into new productive oyster habitats while rapidly increasing in numbers in areas where crabs had established already. The experiments measured mortality rates on four sizes of oysters exposed to three sizes of crab, and lasted 3-5 days. The outcomes of experiments conducted in Vexar ® bags, laboratory tanks and field cages were consistent and were heavily dependent on both crab size and oyster size: while little predation occurred on large oysters, large and medium green crabs preyed heavily on small sizes. Oysters reached a refuge within the 35-55 mm shell length range; below that range, oysters suffered high mortality due to green crab predation and thus require management measures to enhance their survival. These results are most directly applicable to aquaculture operations and restoration initiatives but have implications for oyster sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona
Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.
2013-01-01
Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686
Intraguild predation and native lady beetle decline.
Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A
2011-01-01
Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.
Management effect on bird and arthropod interaction in suburban woodlands
2011-01-01
Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods. PMID:21362174
Intraspecific variation in body size does not alter the effects of mesopredators on prey.
Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C
2016-12-01
As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.
Voellmy, Irene K; Purser, Julia; Simpson, Stephen D; Radford, Andrew N
2014-01-01
Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuessly, G.S.; Sterling, W.L.
1986-12-01
Factors responsible for low recovery rates of radioactive Solenopsis invicta Buren following placement of /sup 32/P-labeled Heliothis zea (Boddie) eggs on cotton in field predation tests were investigated using laboratory colonies of the ants. S. invicta workers became radioactive while handling labeled eggs by rupturing the egg chorion or by picking up labeled substances present on the surface of eggs. Foragers that removed the eggs from the plants picked up significantly more of the label than did workers that were sampled from the colonies between 12 and 72 h after egg introduction. Percentage of workers that became labeled over timemore » was much lower with the solid live food than in other studies that used powdered food sources. Problems in finding labeled ants in the field may have been associated with low mean levels of /sup 32/P per ant, together with difficulty in locating and isolating labeled ants from the population. Results indicate that egg predation rates estimated from counts per minute per predator have high variability, and suggest fairly large errors in estimates of eggs consumed per ant. Use of recovery rates of labeled predators to improve estimation of predation rates is discussed.« less
Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands
Wissinger, S.A.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.; Steltzer, Heidi
1996-01-01
Comparative data from subalpine wetlands in Colorado indicate that larvae of the limnephilid caddisflies, Asynarchus nigriculus and Limnephilus externus, are reciprocally abundant among habitats - Limnephilus larvae dominate in permanent waters, whereas Asynarchus larvae dominate in temporary basins. The purpose of this paper is to report on field and laboratory experiments that link this pattern of abundance to biotic interactions among larvae. In the first field experiment, growth and survival were compared in single and mixed species treatments in littoral enclosures. Larvae, which eat mainly vascular plant detritus, grew at similar rates among treatments in both temporary and permanent habitats suggesting that exploitative competition is not important under natural food levels and caddisfly densities. However, the survival of Limnephilus larvae was reduced in the presence of Asynarchus larvae. Subsequent behavioral studies in laboratory arenas revealed that Asynarchus larvae are extremely aggressive predators on Limnephilus larvae. In a second field experiment we manipulated the relative sizes of larvae and found that Limnephilus larvae were preyed on only when Asynarchus larvae had the same size advantage observed in natural populations. Our data suggest that the dominance of Asynarchus larvae in temporary habitats is due to asymmetric intraguild predation (IGP) facilitated by a phenological head start in development. These data do not explain the dominance of Limnephilus larvae in permanent basins, which we show elsewhere to be an indirect effect of salamander predation. Behavioral observations also revealed that Asynarchus larvae are cannibalistic. In contrast to the IGP on Limnephilus larvae, Asynarchus cannibalism occurs among same-sized larvae and often involves the mobbing of one victim by several conspecifics. In a third field experiment, we found that Asynarchus cannibalism was not density-dependent and occurred even at low larval densities. We hypothesize that Asynarchus IGP and cannibalism provide a dietary supplement to detritus that may be necessary for the timely completion of development in these nutrient-poor, high-elevation wetlands.
Predator cognition permits imperfect coral snake mimicry.
Kikuchi, David W; Pfennig, David W
2010-12-01
Batesian mimicry is often imprecise. An underexplored explanation for imperfect mimicry is that predators might not be able to use all dimensions of prey phenotype to distinguish mimics from models and thus permit imperfect mimicry to persist. We conducted a field experiment to test whether or not predators can distinguish deadly coral snakes (Micrurus fulvius) from nonvenomous scarlet kingsnakes (Lampropeltis elapsoides). Although the two species closely resemble one another, the order of colored rings that encircle their bodies differs. Despite this imprecise mimicry, we found that L. elapsoides that match coral snakes in other respects are not under selection to match the ring order of their model. We suggest that L. elapsoides have evolved only those signals necessary to deceive predators. Generally, imperfect mimicry might suffice if it exploits limitations in predator cognitive abilities.
Evolutionary trade-offs in plants mediate the strength of trophic cascades.
Mooney, Kailen A; Halitschke, Rayko; Kessler, Andre; Agrawal, Anurag A
2010-03-26
Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants.
Raptors and primate evolution.
McGraw, W Scott; Berger, Lee R
2013-01-01
Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review. Copyright © 2013 Wiley Periodicals, Inc.
Smith, Chelsea A.; Gardiner, Mary M.
2013-01-01
Exotic species are widely accepted as a leading cause of biodiversity decline. Lady beetles (Coccinellidae) provide an important model to study how competitor introductions impact native communities since several native coccinellids have experienced declines that coincide with the establishment and spread of exotic coccinellids. This study tested the central hypothesis that intraguild predation by exotic species has caused these declines. Using sentinel egg experiments, we quantified the extent of predation on previously-common (Hippodamia convergens) and common (Coleomegilla maculata) native coccinellid eggs versus exotic coccinellid (Harmonia axyridis) eggs in three habitats: semi-natural grassland, alfalfa, and soybean. Following the experiments quantifying egg predation, we used video surveillance to determine the composition of the predator community attacking the eggs. The extent of predation varied across habitats, and egg species. Native coccinellids often sustained greater egg predation than H. axyridis. We found no evidence that exotic coccinellids consumed coccinellid eggs in the field. Harvestmen and slugs were responsible for the greatest proportion of attacks. This research challenges the widely-accepted hypothesis that intraguild predation by exotic competitors explains the loss of native coccinellids. Although exotic coccinellids may not be a direct competitor, reduced egg predation could indirectly confer a competitive advantage to these species. A lower proportion of H. axyridis eggs removed by predators may have aided its expansion and population increase and could indirectly affect native species via exploitative or apparent competition. These results do not support the intraguild predation hypothesis for native coccinellid decline, but do bring to light the existence of complex interactions between coccinellids and the guild of generalist predators in coccinellid foraging habitats. PMID:24386383
Currens, C.R.; Liss, W.J.; Hoffman, R.L.
2007-01-01
The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.
Fish predators reduce kelp frond loss via a trait-mediated trophic cascade.
Haggerty, Miranda B; Anderson, Todd W; Long, Jeremy D
2018-05-05
Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Summer time predation on the obligatory off-host stage of an invasive ectoparasite.
Kaunisto, Sirpa; Raunismaa, Ilkka; Kortet, Raine; Ylönen, Hannu
2016-12-01
Predation can regulate populations and strongly affect invasion success of novel prey. The deer ked (Lipoptena cervi; Linnaeus 1758) is an invasive ectoparasite of cervids that spends a long period of its life cycle outside the host. Prior to this study, virtually nothing was known about natural summer time predation on the deer ked. We aimed to evaluate the magnitude of summer time predation on L. cervi pupae in different habitats and to identify potential predators. We conducted a set of field experiments, where we exposed L. cervi pupae to various ground-dwelling vertebrate and invertebrate predators. The loss of pupae was monitored for different predator guilds. Three habitats of the moose, the main host species, were studied: (1) moist heath forest; (2) dry, logged heath forest; and (3) moist meadow. The results indicate notable summer time predation on L. cervi pupae, and the pupal predation varied within and between habitats, being lowest in the meadow habitat. We found a positive correlation between pupal loss and abundance of the common lizard (Zootoca vivipara), harvestmen (Opiliones), ground spiders (Gnaphosidae) and Formicinae-ants. We conclude that summer time predation during the pupal phase can have a notable local importance for the L. cervi abundance.
Declines in predatory fish promote bloom-forming macroalgae.
Eriksson, Britas Klemens; Ljunggren, Lars; Sandström, Alfred; Johansson, Gustav; Mattila, Johanna; Rubach, Anja; Råberg, Sonja; Snickars, Martin
2009-12-01
In the Baltic Sea, increased dominance of ephemeral and bloom-forming algae is presently attributed to increased nutrient loads. Simultaneously, coastal predatory fish are in strong decline. Using field data from nine areas covering a 700-km coastline, we examined whether formation of macroalgal blooms could be linked to the composition of the fish community. We then tested whether predator or nutrient availability could explain the field patterns in two small-scale field experiments, by comparing joint effects on algal net production from nutrient enrichment with agricultural fertilizer and exclusion of larger predatory fish with cages. We also manipulated the presence of invertebrate grazers. The abundance of piscivorous fish had a strong negative correlation with the large-scale distribution of bloom-forming macroalgae. Areas with depleted top-predator communities displayed massive increases in their prey, small-bodied fish, and high covers of ephemeral algae. Combining the results from the two experiments showed that excluding larger piscivorous fish: (1) increased the abundance of small-bodied predatory fish; (2) changed the size distribution of the dominating grazers, decreasing the smaller gastropod scrapers; and (3) increased the net production of ephemeral macroalgae. Effects of removing top predators and nutrient enrichment were similar and additive, together increasing the abundance of ephemeral algae many times. Predator effects depended on invertebrate grazers; in the absence of invertebrates there were no significant effects of predator exclusion on algal production. Our results provide strong support for regional declines of larger predatory fish in the Baltic Sea promoting algal production by decreasing invertebrate grazer control. This highlights the importance of trophic interactions for ecosystem responses to eutrophication. The view emerges that to achieve management goals for water quality we need to consider the interplay between top-down and bottom-up processes in future ecosystem management of marine resources.
Convergence between a mosquito-eating predator's natural diet and its prey-choice behaviour
Jackson, Robert R.; Deng, Chan
2016-01-01
On the basis of 1115 records of Evarcha culicivora feeding in the field, we can characterize this East African jumping spider (Salticidae) as being distinctively stenophagic. We can also, on the basis of laboratory prey-choice experiments, characterize E. culicivora as having a specialized prey-classification system and a hierarchy of innate preferences for various categories of mosquitoes and other arthropods. Prey from the field belonged to 10 arthropod orders, but 94.5% of the prey records were dipterans. Mosquitoes were the dominant prey (80.2% of the records), with the majority (82.9%) of the mosquitoes being females, and thereafter midges were the most common prey (9.2% of the records). Preference profiles that were determined from experiments showed strong convergence with natural diet in some, but not all, instances. In experiments, E. culicivora adults appeared to distinguish between six prey categories and juveniles between seven, with blood-carrying anopheline female mosquitoes being ranked highest in preference. For adults, this was followed by blood-carrying culicine female mosquitoes and then anopheline female mosquitoes not carrying blood, but these two preferences were reversed for juveniles. Moreover, for juveniles, but not for adults, anopheline male mosquitoes seem to be a distinct prey category ranked in preference after blood-carrying culicine females and, for both adults and juveniles, preference for midges is evident when the alternatives are not mosquitoes. These findings illustrate the importance of going beyond simply specifying preferred prey categories when characterizing predators as ‘specialized’ and a need to make clear conceptual distinctions between a predator's natural diet, the prey categories that are relevant to the predator, and the predator's prey-choicebehaviour. PMID:28083103
Voellmy, Irene K.; Purser, Julia; Simpson, Stephen D.; Radford, Andrew N.
2014-01-01
Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator−prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences. PMID:25058618
Alhmedi, A; Haubruge, E; Bodson, B; Francis, F
2006-01-01
A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to integrated pest management approach.
The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.
Michalko, Radek; Pekár, Stano
2017-03-01
Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.
Apfelbach, Raimund; Parsons, Michael H.; Soini, Helena A.; Novotny, Milos V.
2015-01-01
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and—in some cases—physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology—from chemistry to ecology including anatomy, physiology, and behavior—is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey. PMID:26283903
Apfelbach, Raimund; Parsons, Michael H; Soini, Helena A; Novotny, Milos V
2015-01-01
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and-in some cases-physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology-from chemistry to ecology including anatomy, physiology, and behavior-is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey.
Balancing past and present: how experience influences boldness over time in Eurasian perch
Magnhagen, Carin
2017-01-01
Abstract Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels. PMID:29491973
Balancing past and present: how experience influences boldness over time in Eurasian perch.
Hellström, Gustav; Magnhagen, Carin
2017-04-01
Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels.
Deterred but not preferred: Predation by native whelk Reishia clavigera on invasive bivalves.
Astudillo, Juan C; Bonebrake, Timothy C; Leung, Kenneth M Y
2018-01-01
This study tested the potential bio-control role of the common native predatory whelk Reishia clavigera on the invasive bivalves Xenostrobus securis and Mytilopsis sallei and the native Brachidontes variabilis in Hong Kong. Predation experiments were conducted in the laboratory under salinity levels of 22‰ and 32‰, as well as under field conditions. The results indicate that the invasive bivalves are more vulnerable to predation than the native bivalve in environments with high salinity, whereas environments with moderately low salinity (22‰) may reduce predation. Because R. clavigera did not show clear prey preference, the low survival of the invasive species might be due to a lack of effective anti-predatory defenses under experimental conditions. These findings could explain the high abundance of the invasive bivalves in disturbed environments in Hong Kong where predation appears to be lower.
Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs.
Galasso, Nicola M; Bonaviri, Chiara; Di Trapani, Francesco; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio
2015-07-22
Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts.
Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs
Galasso, Nicola M.; Bonaviri, Chiara; Trapani, Francesco Di; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio
2015-01-01
Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts. PMID:26198539
Do predators cause frog deformities? The need for an eco-epidemiological approach.
Johnson, Pieter T J; Bowerman, Jay
2010-11-15
Renewed controversy has emerged over the likely causes and consequences of deformed amphibians, particularly those with missing limbs. The results of a series of experiments by Ballengée and Sessions (2009) implicate aquatic predators (i.e. dragonfly larvae) in causing such abnormalities. Skelly and Benard (2010), however, argued that the small scale of these experiments and the absence of a correlation between predator abundance and deformity frequencies in natural amphibian populations undermine such a conclusion. Drawing upon our experiences with frog malformations, we suggest that the study of amphibian deformities has been hindered by two, interrelated problems. First, empirical studies often fail to critically define the expected baseline level of abnormalities and differentiate between "epidemic" and "endemic" frequencies of malformations. Second, recognizing the likelihood of multiple causes in driving amphibian malformations, continued research needs to embrace a "multiple lines of evidence" approach that allows for complex etiologies by integrating field surveys, diagnostic pathology, comparative modeling, and experiments across a range of ecological scales. We conclude by highlighting the results of a recent study that uses this approach to identify the role of aquatic predators (i.e., fishes and dragonflies) in causing high frequencies of deformed frogs in Oregon. By combining long-term data, comparative data and mechanistic experiments, this study provides compelling evidence that certain predators do cause deformities under ecologically relevant conditions. In light of continuing concerns about amphibian deformities and population declines, we emphasize the need to integrate ecological, epidemiological, and developmental tools in addressing such environmental enigmas. Copyright © 2010 Wiley-Liss, Inc., A Wiley Company.
The Neurological Ecology of Fear: Insights Neuroscientists and Ecologists Have to Offer one Another
Clinchy, Michael; Schulkin, Jay; Zanette, Liana Y.; Sheriff, Michael J.; McGowan, Patrick O.; Boonstra, Rudy
2011-01-01
That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.” PMID:21629856
Predation of Songbird Nests Differs By Predator and Between Field and Forest Habitats
Frank R., III Thompson; Dirk E. Burhans
2003-01-01
Our understanding of factors affecting nest predation and ability to mitigate high nest predation rates is hampered by a lack of information on the importance of various nest predator species in different habitats and landscapes. We identified predators of songbird nests in old-field and forest habitats in central Missouri, USA, with miniature video cameras. We used an...
von Berg, Karsten; Thies, Carsten; Tscharntke, Teja; Scheu, Stefan
2010-08-01
Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.
Hill, Malcolm S; Hill, April L
2002-02-01
The goal of the research presented here was to examine phenotypic plasticity exhibited by three morphotypes of the common Caribbean sponge Anthosigmella varians (Duchassaing & Michelotti). We were interested in examining the biotic (and, to a lesser extent, abiotic) factors responsible for branch production in this species. We also tested the hypothesis that the skeleton may serve an antipredator function in this sponge, focusing on vertebrate fish predators (i.e., angelfish) in this work. In transplant and caging experiments, unprotected forma varians replicates were immediately consumed by angelfish, while caged replicates persisted on the reef for several months. These findings support the hypothesis that predators (and not wave energy) restrict forma varians to lagoonal habitats. Branch production was not observed in A. varians forma incrustans when sponges were protected from predators or placed in predator-free, low-wave-energy environments. It is not clear from our work whether forma incrustans is capable of producing branches (i.e., whether branch production is a plastic trait in this morph). Additional field experiments demonstrated that A. varians forma varians increased spicule concentrations, compared to uninjured sponges, in response to artificial predation events, and A. varians forma rigida reduced spicule concentrations, compared to uncaged controls, when protected from predators. These findings indicate that spicule concentration is a plastic morphological trait that can be induced by damage, and that A. varians may be able to reduce spicule concentrations when environmental conditions change (e.g., in the absence of predators). The potential significance of inducible defenses and structural anti-predator defenses in sponges is discussed in relation to recent work on sponge chemical defenses.
Predator-induced morphological plasticity across local populations of a freshwater snail.
Brönmark, Christer; Lakowitz, Thomas; Hollander, Johan
2011-01-01
The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.
Top predators suppress rather than facilitate plants in a trait-mediated tri-trophic cascade.
Griffin, John N; Butler, Jack; Soomdat, Nicole N; Brun, Karen E; Chejanovski, Zachary A; Silliman, Brian R
2011-10-23
Classical ecological theory states that in tri-trophic systems, predators indirectly facilitate plants by reducing herbivore densities through consumption, while more recent work has revealed that predators can generate the same positive effect on plants non-consumptively by inducing changes in herbivore traits (e.g. feeding rates). Based on observations in US salt marshes dominated by vast monocultures of cordgrass, we hypothesized that sit-and-wait substrate-dwelling predators (crabs) could actually strengthen per capita impacts of potent grazers (snails), by non-consumptively inducing a vertical habitat shift of snails to their predation refuge high on canopy leaves that are vulnerable to grazing. A two-month field experiment supported this hypothesis, revealing that predators non-consumptively increased the mean climbing height of snails on grasses, increased grazing damage per leaf and ultimately suppressed cordgrass biomass, relative to controls. While seemingly counterintuitive, our results can be explained by (i) the vulnerability of refuge resources to grazing, and (ii) universal traits that drove the vertical habitat shift--i.e. relative habitat domains of predator and prey, and the hunting mode of the top predator. These results underline the fact that not only should we continue to incorporate non-consumptive effects into our understanding of top-down predator impacts, but we should do so in a spatially explicit manner.
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.; /Northern Illinois U. /Northern Illinois U.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased P. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in P. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased f. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in f. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
Kolbe, Jason J.
2015-01-01
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly. PMID:26384236
Predators select against high growth rates and risk-taking behaviour in domestic trout populations.
Biro, Peter A; Abrahams, Mark V; Post, John R; Parkinson, Eric A
2004-11-07
Domesticated (farm) salmonid fishes display an increased willingness to accept risk while foraging, and achieve high growth rates not observed in nature. Theory predicts that elevated growth rates in domestic salmonids will result in greater risk-taking to access abundant food, but low survival in the presence of predators. In replicated whole-lake experiments, we observed that domestic trout (selected for high growth rates) took greater risks while foraging and grew faster than a wild strain. However, survival consequences for greater growth rates depended upon the predation environment. Domestic trout experienced greater survival when risk was low, but lower survival when risk was high. This suggests that animals with high intrinsic growth rates are selected against in populations with abundant predators, explaining the absence of such phenotypes in nature. This is, to our knowledge, the first large-scale field experiment to directly test this theory and simultaneously quantify the initial invasibility of domestic salmonid strains that escape into the wild from aquaculture operations, and the ecological conditions affecting their survival.
Survey of predators and sampling method comparison in sweet corn.
Musser, Fred R; Nyrop, Jan P; Shelton, Anthony M
2004-02-01
Natural predation is an important component of integrated pest management that is often overlooked because it is difficult to quantify and perceived to be unreliable. To begin incorporating natural predation into sweet corn, Zea mays L., pest management, a predator survey was conducted and then three sampling methods were compared for their ability to accurately monitor the most abundant predators. A predator survey on sweet corn foliage in New York between 1999 and 2001 identified 13 species. Orius insidiosus (Say), Coleomegilla maculata (De Geer), and Harmonia axyridis (Pallas) were the most numerous predators in all years. To determine the best method for sampling adult and immature stages of these predators, comparisons were made among nondestructive field counts, destructive counts, and yellow sticky cards. Field counts were correlated with destructive counts for all populations, but field counts of small insects were biased. Sticky cards underrepresented immature populations. Yellow sticky cards were more attractive to C. maculata adults than H. axyridis adults, especially before pollen shed, making coccinellid population estimates based on sticky cards unreliable. Field counts were the most precise method for monitoring adult and immature stages of the three major predators. Future research on predicting predation of pests in sweet corn should be based on field counts of predators because these counts are accurate, have no associated supply costs, and can be made quickly.
Liesenjohann, Monique; Liesenjohann, Thilo; Palme, Rupert; Eccard, Jana Anja
2013-09-08
Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators.
2013-01-01
Background Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators. PMID:24010574
Yakovis, Eugeniy; Artemieva, Anna
2015-01-01
The strength of top-down control by consumers is predicted to decrease with latitude, but most data confirming this assumption come from latitudes <60°, while empirical studies of predation in sub-arctic and arctic marine habitats are few. A barnacle Balanus crenatus is a native foundation species in the shallow subtidal of the White Sea (65° N), hosting a diverse (250+ species) assemblage of macrobenthic organisms. On mixed sediments live barnacles share primary substrates (shells and gravel) with numerous empty barnacle tests, 7% of which had drill holes of an unidentified origin. We manipulated the densities of (i) adult muricid whelks Boreotrophon clathratus (of previously unknown feeding habits), to check if they prey on barnacles, (ii) other predators to reveal their effect on juvenile Boreotrophon, and (iii) empty tests to assess the community-wide effect of predation on barnacles. The abundance of drilled empty tests in the field correlated with that of Boreotrophon. A year-long caging experiment clearly confirmed predation, showing the highest barnacle mortality and proportion of drilled tests in whelk enclosures, and the lowest--in predator exclosure treatments. Boreotrophon preferred the barnacles attached to conspecifics to those from primary substrates. Because of its scarcity Boreotrophon had a minor direct effect on barnacle abundance in the field. Yet, initially defaunated empty tests and live barnacles developed markedly different macrobenthic assemblages, suggesting a strong indirect effect of the predation. Juvenile Boreotrophon were 5-6 times less abundant in open and partial cages than in exclosures and enclosures, which indicates that the recruitment and, consequently, the abundance of Boreotrophon and its predation on Balanus are top-down controlled by apex predators. In contrast, in tropical and temperate intertidal the predation on barnacles is stronger and primarily limited by environmental stress and prey availability.
Behavioral responses of native prey to disparate predators: naiveté and predator recognition.
Anson, Jennifer R; Dickman, Chris R
2013-02-01
It is widely accepted that predator recognition and avoidance are important behaviors in allowing prey to mitigate the impacts of their predators. However, while prey species generally develop anti-predator behaviors through coevolution with predators, they sometimes show accelerated adoption of these behaviors under strong selection pressure from novel species. We used a field manipulation experiment to gauge the ability of the common ringtail possum (Pseudocheirus peregrinus), a semi-arboreal Australian marsupial, to recognize and respond to olfactory cues of different predator archetypes. We predicted that ringtails would display stronger anti-predator behaviors to cues of the invasive European red fox (Vulpes vulpes) in areas where fox impacts had been greatest, and to cues of the native lace monitor (Varanus varius) in areas of sympatry compared with allopatry. We found that ringtails fled quickly and were more alert when exposed to the fecal odors of both predators compared to neutral and pungent control odors, confirming that predator odors are recognized and avoided. However, these aversive responses were similar irrespective of predator presence or level of impact. These results suggest that selection pressure from the fox has been sufficient for ringtails to develop anti-predator behaviors over the few generations since foxes have become established. In contrast, we speculate that aversive responses by ringtails to the lace monitor in areas where this predator is absent reflect recent coexistence of the two species. We conclude that rapid evolution of anti-predator behaviors may occur when selection is strong. The maintenance of these behaviors should allow re-establishment of predator-prey relationships if the interactants regain sympatry via range shifts or management actions to reintroduce them to their former ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.K.
1977-01-01
Field studies were undertaken to determine the nature and extent of melanism in two populations of the cryptic moth, Panthea furcilla. Melanic frequencies significantly increased over a three year period in both populations of P. furcilla sampled. Predation experiments showed that melanics suffer less predation than typicals. However, life expectancies for typical and melanic morphs were nearly equal as computed from mark-release-recapture data. Accordingly it is suggested that one advantage melanics enjoy is their greater vigor prior to the imaginal stage. Acid-rainfall, as a Northeast regional problem, is advanced as a possible cause for the increase in melanic frequencies. 22more » references, 9 tables.« less
Rattanapun, W
2012-01-01
The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow the natural balance between pests and their predators to be restored and maintained.
Signal honesty and predation risk among a closely related group of aposematic species
María Arenas, Lina; Walter, Dominic; Stevens, Martin
2015-01-01
Many animals have bright colours to warn predators that they have defences and are not worth attacking. However, it remains unclear whether the strength of warning colours reliably indicate levels of defence. Few studies have unambiguously established if warning signals are honest, and have rarely considered predator vision or conspicuousness against the background. Importantly, little data exists either on how differences in signal strength translate into survival advantages. Ladybirds exhibit impressive variation in coloration both among and within species. Here we demonstrate that different levels of toxicity exist among and within ladybird species, and that signal contrast against the background is a good predictor of toxicity, showing that the colours are honest signals. Furthermore, field experiments with ladybird models created with regards to predator vision show that models with lower conspicuousness were attacked more frequently. This provides one of the most comprehensive studies on signal honesty in warning coloration to date. PMID:26046332
Anthropogenic noise increases fish mortality by predation
Simpson, Stephen D.; Radford, Andrew N.; Nedelec, Sophie L.; Ferrari, Maud C. O.; Chivers, Douglas P.; McCormick, Mark I.; Meekan, Mark G.
2016-01-01
Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans. PMID:26847493
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached. PMID:21611171
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Diversity of protists and bacteria determines predation performance and stability.
Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis
2013-10-01
Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.
Schoenly, Kenneth G; Cohen, Michael B; Barrion, Alberto T; Zhang, Wenjun; Gaolach, Bradley; Viajante, Vicente D
2003-01-01
Endotoxins from Bacillus thuringiensis (Bt) produced in transgenic pest-resistant Bt crops are generally not toxic to predatory and parasitic arthropods. However, elimination of Bt-susceptible prey and hosts in Bt crops could reduce predator and parasitoid abundance and thereby disrupt biological control of other herbivorous pests. Here we report results of a field study evaluating the effects of Bt sprays on non-target terrestrial herbivore and natural enemy assemblages from three rice (Oryza sativa L.) fields on Luzon Island, Philippines. Because of restrictions on field-testing of transgenic rice, Bt sprays were used to remove foliage-feeding lepidopteran larvae that would be targeted by Bt rice. Data from a 546-taxa Philippines-wide food web, matched abundance plots, species accumulation curves, time-series analysis, and ecostatistical tests for species richness and ranked abundance were used to compare different subsets of non-target herbivores, predators, and parasitoids in Bt sprayed and water-sprayed (control) plots. For whole communities of terrestrial predators and parasitoids, Bt sprays altered parasitoid richness in 3 of 3 sites and predator richness in 1 of 3 sites, as measured by rarefaction (in half of these cases, richness was greater in Bt plots), while Spearman tests on ranked abundances showed that correlations, although significantly positive between all treatment pairs, were stronger for predators than for parasitoids, suggesting that parasitoid complexes may have been more sensitive than predators to the effects of Bt sprays. Species accumulation curves and time-series analyses of population trends revealed no evidence that Bt sprays altered the overall buildup of predator or parasitoid communities or population trajectories of non-target herbivores (planthoppers and leafhoppers) nor was evidence found for bottom-up effects in total abundances of non-target species identified in the food web from the addition of spores in the Bt spray formulation. When the same methods were applied to natural enemies (predators and parasitoids) of foliage-feeding lepidopteran and non-lepidopteran (homopteran, hemipteran and dipteran) herbivores, significant differences between treatments were detected in 7 of 12 cases. However, no treatment differences were found in mean abundances of these natural enemies, either in time-series plots or in total (seasonal) abundance. Analysis of guild-level trajectories revealed population behavior and treatment differences that could not be predicted in whole-community studies of predators and parasitoids. A more conclusive test of the impact of Bt rice will require field experiments with transgenic plants, conducted in a range of Asian environments, and over multiple cropping seasons.
Effects of urbanization on direct and indirect interactions in a tri-trophic system.
Tabea, Turrini; Dirk, Sanders; Eva, Knop
2016-04-01
While effects of urbanization on species assemblages are receiving increasing attention, effects on ecological interactions remain largely unexplored. We investigated how urbanization influences the strength of direct and indirect trophic interactions in a tri- trophic system. In a field experiment including five cities and nearby farmed areas, we used potted Vicia faba plants and manipulated the presence of Megoura viciae aphids and that of naturally occurring aphid predators. When predators could access aphids, they reduced their abundance less in the urban than in the agricultural ecosystem. Compared to aphid abundance on plants without predator access, abundance on plants with predator access was 2.58 times lower in urban and 5.27 times lower in agricultural areas. This indicates that urbanization limited top-down control of aphids by predators. In both ecosystems, plant biomass was negatively affected by herbivores and positively affected by predators, but the positive indirect predator effect was weaker in cities. Compared to aphid-infested plants without predator access, plants with predator access were 1.89 times heavier in urban and 2.12 times heavier in agricultural areas. Surprisingly, differences between ecosystems regarding the indirect predator effect on plants were not explained by the differentially strong herbivore suppression. Instead, the urban environment limited plant biomass per se, thereby mitigating the scope of a positive predator effect. Our results show that urbanization can influence direct and indirect trophic interactions through effects on biotic top-down forces and on plant growth. In order to understand how urbanization affects biodiversity and ecosystem functioning, it is fundamental to not only consider species assemblages, but also species interactions.
Petranka, James W; Kennedy, Caroline A
1999-09-01
With rare exceptions, anuran larvae have traditionally been considered to occupy lower trophic levels in aquatic communities where they function as microphagous suspension feeders. This view is being challenged by studies showing that tadpoles with generalized morphology often function as macrophagous predators. Here, we review the literature concerning macrophagy by tadpoles and provide two additional examples involving generalized tadpoles. In the first, we demonstrate with laboratory and field experiments that wood frog (Rana sylvatica) tadpoles are major predators of macroinvertebrates in ponds. In the second, we show that green frog (R. clamitans) tadpoles can cause catastrophic reproductive failure of the wood frog via egg predation. These results and data from other studies challenge the assumption that generalized tadpoles function as filter-feeding omnivores, and question the general applicability of community organization models which assume that predation risk increases with pond permanence. We suggest that predation risk is greater in temporary ponds than in more permanent ponds for many organisms that are vulnerable to predation by tadpoles. This being so, a conditional model based upon interactions that are species-specific, life-stage-specific, and context-dependent may better explain community organization along hydrological gradients than models which assume that temporary ponds have few or no predators.
An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans)
Miller, Ashadee Kay; Maritz, Bryan; McKay, Shannon; Glaudas, Xavier; Alexander, Graham J.
2015-01-01
Ambush foragers use a hunting strategy that places them at risk of predation by both visual and olfaction-oriented predators. Resulting selective pressures have driven the evolution of impressive visual crypsis in many ambushing species, and may have led to the development of chemical crypsis. However, unlike for visual crypsis, few studies have attempted to demonstrate chemical crypsis. Field observations of puff adders (Bitis arietans) going undetected by several scent-orientated predator and prey species led us to investigate chemical crypsis in this ambushing species. We trained dogs (Canis familiaris) and meerkats (Suricata suricatta) to test whether a canid and a herpestid predator could detect B. arietans using olfaction. We also tested for chemical crypsis in five species of active foraging snakes, predicted to be easily detectable. Dogs and meerkats unambiguously indicated active foraging species, but failed to correctly indicate puff adder, confirming that B. arietans employs chemical crypsis. This is the first demonstration of chemical crypsis anti-predatory behaviour, though the phenomenon may be widespread among ambushers, especially those that experience high mortality rates owing to predation. Our study provides additional evidence for the existence of an ongoing chemically mediated arms race between predator and prey species. PMID:26674950
Top down and bottom up selection drives variations in frequency and form of a visual signal.
Yeh, Chien-Wei; Blamires, Sean J; Liao, Chen-Pan; Tso, I-Min
2015-03-30
The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments.
An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans).
Miller, Ashadee Kay; Maritz, Bryan; McKay, Shannon; Glaudas, Xavier; Alexander, Graham J
2015-12-22
Ambush foragers use a hunting strategy that places them at risk of predation by both visual and olfaction-oriented predators. Resulting selective pressures have driven the evolution of impressive visual crypsis in many ambushing species, and may have led to the development of chemical crypsis. However, unlike for visual crypsis, few studies have attempted to demonstrate chemical crypsis. Field observations of puff adders (Bitis arietans) going undetected by several scent-orientated predator and prey species led us to investigate chemical crypsis in this ambushing species. We trained dogs (Canis familiaris) and meerkats (Suricata suricatta) to test whether a canid and a herpestid predator could detect B. arietans using olfaction. We also tested for chemical crypsis in five species of active foraging snakes, predicted to be easily detectable. Dogs and meerkats unambiguously indicated active foraging species, but failed to correctly indicate puff adder, confirming that B. arietans employs chemical crypsis. This is the first demonstration of chemical crypsis anti-predatory behaviour, though the phenomenon may be widespread among ambushers, especially those that experience high mortality rates owing to predation. Our study provides additional evidence for the existence of an ongoing chemically mediated arms race between predator and prey species. © 2015 The Author(s).
Interactive effects of nutrient additions and predation on infaunal communities
Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.
1999-01-01
Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.
Effects of intraguild predators on nest-site selection by prey.
Huang, Wen-San; Pike, David A
2012-01-01
Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.
Plastic Responses of a Sessile Prey to Multiple Predators: A Field and Experimental Study
Hirsch, Philipp Emanuel; Cayon, David; Svanbäck, Richard
2014-01-01
Background Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs. Principal Findings We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density. Conclusions Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild. PMID:25517986
The biological control of Pomacea canaliculata population by rice-duck mutualism in paddy fields
Kiang Liang; Jia-en Zhang; Li Fang; Benliang Zaho; Mingzhu Luo; Prem Parajuli; Ying Ouyang
2013-01-01
Duck has been used as a non-chemical control method against Pomacea canaliculata Lamarck, but little is known about its principles that underlie the control of snail populations. An indoor experiment was initially used to observe the predation potential of ducks, followed by replicated field trials. In the indoor studies, ducks effectively preyed on...
Petersen, James H.; Gadomski, Dena M.; Poe, Thomas P.
1994-01-01
Juvenile salmonids (Oncorhynchus spp.) that have been killed or injured during dam passage may be highly vulnerable or preferred prey of predators that aggregate below dams. Salmonid loss due to predation will be overestimated using gut content analysis if some prey were dead or moribund when consumed. To examine this issue, field experiments were conducted in the Bonneville Dam tailrace (Columbia River) to compare rates of capture of live and dead juvenile salmonids by northern squawfish (Ptychocheilus oregonensis). Known numbers of coded-wire-tagged live and dead chinook salmon (O. tshawytscha) were released into the tailrace on six nights. Northern squawfish were collected after each release and their gut contents were examined for tags. When 50% of salmon released were dead, northern squawfish consumed 62% dead salmon. When 10% of salmon released were dead, comparable with dam passage mortality, 22% of the tags found in northern squawfish digestive tracts were from dead salmon. These results indicate that predator feeding behavior and prey condition are important considerations when estimating the impact of predation on a prey population.
NASA Astrophysics Data System (ADS)
Addino, Mariana; Lomovasky, Betina J.; Cremonte, Florencia; Iribarne, Oscar
2010-02-01
Parasite life cycles are frequently completed in different hosts, thus the parasites have its life cycle overlapped to natural trophic webs. The family Gymnophallidae (Class: Trematoda; Subclass: Digenea) includes digenetic parasites whose larval stages occur on bivalves and may affect bivalve predation by the final host of these parasites. In this work we evaluated: (a) if individuals of the razor clam Tagelus plebeius with higher parasite intensity suffer higher predation by the oystercatcher Haematopus palliatus and, (b) if there is any effect of parasite intensity on burrowing and escape behaviours of these razor clams which may enhance exposure to predators. Field experiments (oystercatcher exclusion vs. open access) showed that clams with higher parasite intensity support higher predation by oystercatchers, which suggests a higher consumption of more parasitized clams and thus, a more successful reproduction of parasites linked to the intensity of infection. However, clam burrowing and escape behaviours did not show differences related to different parasite intensity, suggesting that the commonly believed mechanisms are not responsible in this case.
Ineffective crypsis in a crab spider: a prey community perspective
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-01-01
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator. PMID:19889699
Ineffective crypsis in a crab spider: a prey community perspective.
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-03-07
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator.
Richard M. DeGraaf; Thomas J. Maier; Todd K. Fuller
1999-01-01
After photographtc observations in the field and laboratory tests indicated that small rodents might be significant predators on small eggs, we conducted a field study in central Massachusetts to compare predation of House Sparrow (Passer domesticus) eggs in artificial nests near to (5-15 m) and far from (100-120 m) forest edges and between ground...
Field keys to predators of the balsam woolly aphid in North Carolina
Gene D. Amman
1970-01-01
These keys will be useful for field identification of immature insect, adult mite, and slug predators of the balsam woolly aphid. The keys include, in addition to native predators, the larvae of three species introduced to North Carolina.
Kobak, Jarosław
2017-01-01
Predators shape prey populations by elimination of individuals (consumptive effects) and by inducing modifications in prey behaviour, physiology or morphology (NCE—non-consumptive effects). Due to the resource allocation to defence, decreased feeding and higher stress, the costs of predator NCEs can be considerable. Therefore, the resistance to NCEs may be crucial for population growth and interspecific competition. We tested the resistance of Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides to NCEs imposed by their predator, the racer goby Babka gymnotrachelus. As D. villosus is often avoided by predators in the presence of alternative food, we hypothesised that it would bear lower behavioural and physiological costs of anti-predator responses. We tested gammarid feeding in short-time experiments (2–4 h) with food (chironomid larvae) located at various distances from the stony shelter (to enforce food searching, Experiment I) or in the direct gammarid proximity (no searching needed, Experiment II). Moreover, we checked the predator effect on gammarid growth in a 2-week Experiment III. Both gammarids exposed to predators reduced feeding efficiency outside the shelter (Experiment I). Contrary to our expectations, the response of D. villosus was stronger. When food was provided in their direct proximity (Experiment II), the feeding of both species was unaffected by predators, indicating that a shelter supplied with food can reduce predator NCEs. The growth of P. robustoides was reduced in the presence of predators (Experiment III), whereas that of D. villosus was unaffected. Although D. villosus has a more effective defence strategy than P. robustoides, it bears similar or even higher behavioural costs of NCEs. However, it exhibits the higher resistance to the long-term predator presence, sustaining its growth rate under such conditions. This may be one of the factors contributing to the great invasion success of D. villosus, currently taking place in European fresh waters. PMID:28771578
Jermacz, Łukasz; Kobak, Jarosław
2017-01-01
Predators shape prey populations by elimination of individuals (consumptive effects) and by inducing modifications in prey behaviour, physiology or morphology (NCE-non-consumptive effects). Due to the resource allocation to defence, decreased feeding and higher stress, the costs of predator NCEs can be considerable. Therefore, the resistance to NCEs may be crucial for population growth and interspecific competition. We tested the resistance of Ponto-Caspian gammarids Dikerogammarus villosus and Pontogammarus robustoides to NCEs imposed by their predator, the racer goby Babka gymnotrachelus. As D. villosus is often avoided by predators in the presence of alternative food, we hypothesised that it would bear lower behavioural and physiological costs of anti-predator responses. We tested gammarid feeding in short-time experiments (2-4 h) with food (chironomid larvae) located at various distances from the stony shelter (to enforce food searching, Experiment I) or in the direct gammarid proximity (no searching needed, Experiment II). Moreover, we checked the predator effect on gammarid growth in a 2-week Experiment III. Both gammarids exposed to predators reduced feeding efficiency outside the shelter (Experiment I). Contrary to our expectations, the response of D. villosus was stronger. When food was provided in their direct proximity (Experiment II), the feeding of both species was unaffected by predators, indicating that a shelter supplied with food can reduce predator NCEs. The growth of P. robustoides was reduced in the presence of predators (Experiment III), whereas that of D. villosus was unaffected. Although D. villosus has a more effective defence strategy than P. robustoides, it bears similar or even higher behavioural costs of NCEs. However, it exhibits the higher resistance to the long-term predator presence, sustaining its growth rate under such conditions. This may be one of the factors contributing to the great invasion success of D. villosus, currently taking place in European fresh waters.
Field vole ( Microtus agrestis) seasonal spacing behavior: the effect of predation risk by mustelids
NASA Astrophysics Data System (ADS)
Borowski, Zbigniew; Owadowska, Edyta
2010-05-01
There are numerous studies showing that predation risk may change different aspects of the behavior of prey, such as habitat use, activity pattern, and foraging. Prey should exhibit the strongest antipredatory response against their most deadly predator. Small mustelids are considered the most important mammalian predators of voles. Nevertheless, there is no general agreement as to whether strong antipredatory reactions exist in natural free-living populations of voles. Here, we studied the field vole Microtus agrestis spatial reaction to high predation risk from small mustelids in the breeding (August) and nonbreeding (October) seasons under natural conditions. Voles were exposed to a caged weasel ( Mustela nivalis) and a stoat ( Mustela erminea), as well as to the odors of these predators. The reactions of 30 field voles were monitored with radiotelemetry. The field voles were found to display antipredator reactions that varied with season. In the breeding period, in response to predation risk, voles reduced locomotory activity and daily-range size, whereas in the nonbreeding period they did not. Changes in home range position were similar for control and treatment voles, in both the breeding and nonbreeding periods. The results indicate that mustelid predators modify the spatial behavior of small rodents in natural conditions depending on season. This might be a reflection of differences in state-dependent responses to predation from sexually active or inactive individuals. This suggests that the basic antipredatory reaction of voles under high predation risk from small mustelids limits their locomotory activity.
Moore, Talia Y; Biewener, Andrew A
2015-12-01
Behavioral studies performed in natural habitats provide a context for the development of hypotheses and the design of experiments relevant both to biomechanics and to evolution. In particular, predator-prey interactions are a model system for integrative study because success or failure of predation has a direct effect on fitness and drives the evolution of specialized performance in both predator and prey. Although all predators share the goal of capturing prey, and all prey share the goal of survival, the behavior of predators and prey are diverse in nature. This article presents studies of some predator-prey interactions sharing common predation strategies that reveal general principles governing the behaviors of predator and prey, even in distantly related taxa. Studies of predator-prey interactions also reveal that maximal performance observed in a laboratory setting is not necessarily the performance that determines fitness. Thus, considering locomotion in the context of predation ecology can aid in evolutionarily relevant experimental design. Classification by strategy reveals that displaying unpredictable trajectories is a relevant anti-predator behavior in response to multiple predation strategies. A predator's perception and pursuit of prey can be affected indirectly by divergent locomotion of similar animals that share an ecosystem. Variation in speed and direction of locomotion that directly increases the unpredictability of a prey's trajectory can be increased through genetic mutation that affects locomotor patterns, musculoskeletal changes that affect maneuverability, and physical interactions between an animal and the environment. By considering the interconnectedness of ecology, physical constraints, and the evolutionary history of behavior, studies in biomechanics can be designed to inform each of these fields. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.
Webb, Sara L; Willson, Mary F
1985-08-01
We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.
Seasonal changes in predator community switch the direction of selection for prey defences
Mappes, Johanna; Kokko, Hanna; Ojala, Katja; Lindström, Leena
2014-01-01
Insect communities consist of aposematic species with efficient warning colours against predation, as well as abundant examples of crypsis. To understand such coexistence, we here report results from a field experiment where relative survival of artificial larvae, varying in conspicuousness, was estimated in natural bird communities over an entire season. This takes advantage of natural variation in the proportion of naive predators: naivety peaks when young birds have just fledged. We show that the relative benefit of warning signals and crypsis changes accordingly. When naive birds are rare (early and late in the season), conspicuous warning signals improve survival, but conspicuousness becomes a disadvantage near the fledging time of birds. Such temporal structuring of predator–prey relationships facilitates the coexistence of diverse antipredatory strategies and helps explain two patterns we found in a 688-species community of Lepidoterans: larval warning signals remain rare and occur disproportionately often in seasons when predators are educated. PMID:25247589
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, Luis; Martin, Thomas E
2010-09-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, L.; Martin, T.E.
2010-01-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Herczeg, Gábor; Herrero, Annika; Saarikivi, Jarmo; Gonda, Abigél; Jäntti, Maria; Merilä, Juha
2008-02-01
Huey and Slatkin's (Q Rev Biol 51:363-384, 1976) cost-benefit model of lizard thermoregulation predicts variation in thermoregulatory strategies (from active thermoregulation to thermoconformity) with respect to the costs and benefits of the thermoregulatory behaviour and the thermal quality of the environment. Although this framework has been widely employed in correlative field studies, experimental tests aiming to evaluate the model are scarce. We conducted laboratory experiments to see whether the common lizard Zootoca vivipara, an active and effective thermoregulator in the field, can alter its thermoregulatory behaviour in response to differences in perceived predation risk and food supply in a constant thermal environment. Predation risk and food supply were represented by chemical cues of a sympatric snake predator and the lizards' food in the laboratory, respectively. We also compared males and postpartum females, which have different preferred or "target" body temperatures. Both sexes thermoregulated actively in all treatments. We detected sex-specific differences in the way lizards adjusted their accuracy of thermoregulation to the treatments: males were less accurate in the predation treatment, while no such effects were detected in females. Neither sex reacted to the food treatment. With regard to the two main types of thermoregulatory behaviour (activity and microhabitat selection), the treatments had no significant effects. However, postpartum females were more active than males in all treatments. Our results further stress that increasing physiological performance by active thermoregulation has high priority in lizard behaviour, but also shows that lizards can indeed shift their accuracy of thermoregulation in response to costs with possible immediate negative fitness effects (i.e. predation-caused mortality).
Predator community composition is linked to soil carbon retention across a human land use gradient.
Schmitz, Oswald J; Buchkowski, Robert W; Smith, Jeffrey R; Telthorst, Mark; Rosenblatt, Adam E
2017-05-01
Soil carbon (C) storage is a major component of the carbon cycle. Consensus holds that soil C uptake and storage is regulated by plant-microbe-soil interactions. However, the contribution of animals in aboveground food webs to this process has been overlooked. Using insights from prior long-term experimentation in an old-field ecosystem and mathematical modeling, we predicted that the amount of soil C retention within a field should increase with the proportion of active hunting predators comprising the aboveground community of active hunting and sit-and-wait predators. This comes about because predators with different hunting modes have different cascading effects on plants. Our test of the prediction revealed that the composition of the arthropod predator community and associated cascading effects on the plant community explained 41% of variation in soil C retention among 15 old fields across a human land use gradient. We also evaluated the potential for several other candidate factors to explain variation in soil C retention among fields, independent of among-field variation in the predator community. These included live plant biomass, insect herbivore community composition, soil arthropod decomposer community composition, degree of land use development around the fields, field age, and soil texture. None of these candidate variables significantly explained soil C retention among the fields. The study offers a generalizable understanding of the pathways through which arthropod predator community composition can contribute to old-field ecosystem carbon storage. This insight helps support ongoing efforts to understand and manage the effects of anthropogenic land use change on soil C storage. © 2017 by the Ecological Society of America.
Petersen, J.H.; Ward, D.L.
1999-01-01
A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.
Stephenson, J F; van Oosterhout, C; Cable, J
2015-11-01
A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey. © 2015 The Author(s).
Top down and bottom up selection drives variations in frequency and form of a visual signal
Yeh, Chien-Wei; Blamires, Sean J.; Liao, Chen-Pan; Tso, I.-Min
2015-01-01
The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey, selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments. PMID:25828030
Naive Juveniles Are More Likely to Become Breeders after Witnessing Predator Mobbing.
Griesser, Michael; Suzuki, Toshitaka N
2017-01-01
Responding appropriately during the first predatory attack in life is often critical for survival. In many social species, naive juveniles acquire this skill from conspecifics, but its fitness consequences remain virtually unknown. Here we experimentally demonstrate how naive juvenile Siberian jays (Perisoreus infaustus) derive a long-term fitness benefit from witnessing knowledgeable adults mobbing their principal predator, the goshawk (Accipiter gentilis). Siberian jays live in family groups of two to six individuals that also can include unrelated nonbreeders. Field observations showed that Siberian jays encounter predators only rarely, and, indeed, naive juveniles do not respond to predator models when on their own but do when observing other individuals mobbing them. Predator exposure experiments demonstrated that naive juveniles had a substantially higher first-winter survival after observing knowledgeable group members mobbing a goshawk model, increasing their likelihood of acquiring a breeding position later in life. Previous research showed that naive individuals may learn from others how to respond to predators, care for offspring, or choose mates, generally assuming that social learning has long-term fitness consequences without empirical evidence. Our results demonstrate a long-term fitness benefit of vertical social learning for naive individuals in the wild, emphasizing its evolutionary importance in animals, including humans.
NASA Astrophysics Data System (ADS)
Ortmann, C.; Hellmann, C.; Benndorf, J.; Koop, J. H.
2005-05-01
Before prey is extinguished by its predator physiological stress increases. This is true for a single individual as well as on a population level. We prove this assumption for the first time in a field experiment. It is designed as a paired ecosystem study of two streams with benthivorous fish as predators. So far, top-down manipulation is well established in lentic habitats in order to improve water quality. However, there is hardly any physiological approach to be found within former projects. Behavioral changes to avoid predator encounters are well known concepts, nevertheless every organism is obliged to obtain food and energy for growth and reproduction, they cannot totally avoid their predators. Increased stress during fight or flight reactions will change the energy charge inside the cells (nucleotide composition). Certain metabolites like phosphagens will decrease while others like lactate may accumulate. On a long time scale increased stress will result in lower energy storage, mainly detectable as lower glycogen and triglyceride content compared to individuals without high predation risks. Together with the determination of species biomasses and abundances it should be possible to develop a comprehensive impression of sub lethal effects within the invertebrate community. (supported by German Research Foundation)
Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A
2014-08-01
Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.
Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M
2015-03-01
Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Brown, Caleb M; Henderson, Donald M; Vinther, Jakob; Fletcher, Ian; Sistiaga, Ainara; Herrera, Jorsua; Summons, Roger E
2017-08-21
Predator-prey dynamics are an important evolutionary driver of escalating predation mode and efficiency, and commensurate responses of prey [1-3]. Among these strategies, camouflage is important for visual concealment, with countershading the most universally observed [4-6]. Extant terrestrial herbivores free of significant predation pressure, due to large size or isolation, do not exhibit countershading. Modern predator-prey dynamics may not be directly applicable to those of the Mesozoic due to the dominance of very large, visually oriented theropod dinosaurs [7]. Despite thyreophoran dinosaurs' possessing extensive dermal armor, some of the most extreme examples of anti-predator structures [8, 9], little direct evidence of predation on these and other dinosaur megaherbivores has been documented. Here we describe a new, exquisitely three-dimensionally preserved nodosaurid ankylosaur, Borealopelta markmitchelli gen. et sp. nov., from the Early Cretaceous of Alberta, which preserves integumentary structures as organic layers, including continuous fields of epidermal scales and intact horn sheaths capping the body armor. We identify melanin in the organic residues through mass spectroscopic analyses and observe lighter pigmentation of the large parascapular spines, consistent with display, and a pattern of countershading across the body. With an estimated body mass exceeding 1,300 kg, B. markmitchelli was much larger than modern terrestrial mammals that either are countershaded or experience significant predation pressure as adults. Presence of countershading suggests predation pressure strong enough to select for concealment in this megaherbivore despite possession of massive dorsal and lateral armor, illustrating a significant dichotomy between Mesozoic predator-prey dynamics and those of modern terrestrial systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The effects of predator odors in mammalian prey species: a review of field and laboratory studies.
Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S
2005-01-01
Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.
Effects of experimental seaweed deposition on lizard and ant predation in an island food web.
Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W
2011-01-28
The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.
Ball, Rachel Emma; Oliver, Matthew Kenneth; Gill, Andrew Bruce
2016-07-01
Predator avoidance is fundamental for survival and it can be particularly challenging for prey animals if physical movement away from a predatory threat is restricted. Many sharks and rays begin life within an egg capsule that is attached to the sea bed. The vulnerability of this sedentary life stage is exacerbated in skates (Rajidae) as the compulsory ventilatory activity of embryos makes them conspicuous to potential predators. Embryos can reduce this risk by mediating ventilatory activity if they detect the presence of a predator using an acute electrosense. To determine how early in embryonic life predator elicited behavioral responses can occur, the reactions of three different age groups (1/3 developed, 2/3 developed, and near hatching) of embryonic thornback rays Raja clavata were tested using predator-type electric field stimuli. Egg capsules were exposed to continuous or intermittent stimuli in order to assess varying predator-type encounter scenarios on the ventilatory behavior of different developmental stages. All embryos reacted with a "freeze response" following initial electric field (E-field) exposure, ceasing ventilatory behavior in response to predator presence, demonstrating electroreceptive functionality for the first time at the earliest possible stage in ontogeny. This ability coincided with the onset of egg ventilatory behavior and may represent an effective means to enhance survival. A continuous application of stimuli over time revealed that embryos can adapt their behavior and resume normal activity, whereas when presented intermittently, the E-field resulted in a significant reduction in overall ventilatory activity across all ages. Recovery from stimuli was significantly quicker in older embryos, potentially indicative of the trade-off between avoiding predation and adequate respiration. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 721-729, 2016. © 2015 Wiley Periodicals, Inc.
Testing Honey Bees' Avoidance of Predators
ERIC Educational Resources Information Center
Robinson, Jesse Wade; Nieh, James C.; Goodale, Eben
2012-01-01
Many high school science students do not encounter opportunities for authentic science inquiry in their formal coursework. Ecological field studies can provide such opportunities. The purpose of this project was to teach students about the process of science by designing and conducting experiments on whether and how honey bees (Apis mellifera)…
Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold.
Gomez-Mestre, Ivan; Touchon, Justin C; Warkentin, Karen M
2006-10-01
Water molds attack aquatic eggs worldwide and have been associated with major mortality events in some cases, but typically only in association with additional stressors. We combined field observations and laboratory experiments to study egg stage defenses against pathogenic water mold in three temperate amphibians. Spotted salamanders (Ambystoma maculatum) wrap their eggs in a protective jelly layer that prevents mold from reaching the embryos. Wood frog (Rana sylvatica) egg masses have less jelly but are laid while ponds are still cold and mold growth is slow. American toad (Bufo americanus) eggs experience the highest infection levels. They are surrounded by thin jelly and are laid when ponds have warmed and mold grows rapidly. Eggs of all three species hatched early when infected, yielding smaller and less developed hatchlings. This response was strongest in B. americanus. Precocious hatching increased vulnerability of wood frog hatchlings to invertebrate predators. Finally, despite being potential toad hatchling predators, R. sylvatica tadpoles can have a positive effect on B. americanus eggs. They eat water mold off infected toad clutches, increasing their hatching success.
Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L
2013-05-01
The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.
Social learning improves survivorship at a life-history transition.
Manassa, R P; McCormick, M I
2013-04-01
During settlement, one of the main threats faced by individuals relates to their ability to detect and avoid predators. Information on predator identities can be gained either through direct experience or from the observation and/or interaction with others, a process known as social learning. In this form of predator recognition, less experienced individuals learn from experienced members within the social group, without having to directly interact with a predator. In this study, we examined the role of social learning in predator recognition in relation to the survival benefits for the damselfish, Pomacentrus wardi, during their settlement transition. Specifically, our experiments aimed to determine if P. wardi are capable of transmitting the recognition of the odour of a predator, Pseudochromis fuscus, to conspecifics. The experiment also examined whether there was a difference in the rate of survival between individuals that directly learnt the predator odour and those which acquired the information through social learning compared to naïve individuals. Results show that naïve P. wardi are able to learn a predator's identity from experienced individuals via social learning. Furthermore, survival between individuals that directly learnt the predator's identity and those that learnt through social learning did not significantly differ, with fish from both treatments surviving at least five times better than controls. These results demonstrate that experience may play a vital role in determining the outcome of predator-prey interactions, highlighting that social learning improves the ability of prey to avoid and/or escape predation at a life-history transition.
Induced defences in an endangered amphibian in response to an introduced snake predator.
Moore, Robin D; Griffiths, Richard A; O'Brien, Cliona M; Murphy, Adam; Jay, David
2004-09-01
Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes ( Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca ( Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.
Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.
Gvoždík, Lumír; Smolinský, Radovan
2015-11-02
Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.
Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark
2018-05-08
Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Risk of spider predation alters food web structure and reduces local herbivory in the field.
Bucher, Roman; Menzel, Florian; Entling, Martin H
2015-06-01
Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.
Rabus, Max; Söllradl, Thomas; Clausen-Schaumann, Hauke; Laforsch, Christian
2013-01-01
The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triopscancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D . magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator’s mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research. PMID:23776711
Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?
Duffield, Callum; Ioannou, Christos C
2017-01-01
Marginal predation, also known as the edge effect, occurs when aggregations of prey are preferentially targeted on their periphery by predators and has long been established in many taxa. Two main processes have been used to explain this phenomenon, the confusion effect and the encounter rate between predators and prey group edges. However, it is unknown at what size a prey group needs to be before marginal predation is detectable and to what extent each mechanism drives the effect. We conducted 2 experiments using groups of virtual prey being preyed upon by 3-spined sticklebacks ( Gasterosteus aculeatus ) to address these questions. In Experiment 1, we show that group sizes do not need to be large for marginal predation to occur, with this being detectable in groups of 16 or more. In Experiment 2, we find that encounter rate is a more likely explanation for marginal predation than the confusion effect in this system. We find that while confusion does affect predatory behaviors (whether or not predators make an attack), it does not affect marginal predation. Our results suggest that marginal predation is a more common phenomenon than originally thought as it also applies to relatively small groups. Similarly, as marginal predation does not need the confusion effect to occur, it may occur in a wider range of predator-prey species pairings, for example those where the predators search for prey using nonvisual sensory modalities.
Zhang, Gui Fen; Lövei, Gábor L; Wu, Xia; Wan, Fang Hao
2016-01-01
In China, two invasive pests, Bemisia tabaci MEAM1 (Gennadius) and Frankliniella occidentalis (Pergande), often co-occur with the native pest, Aphis gossypii (Glover), on plants of Malvaceae and Cucurbitaceae. All three are preyed on by the native ladybird, Harmonia axyridis (Pallas); however, the native predator might be expected to prefer native prey to the exotic ones due to a shared evolutionary past. In order to clarify whether the presence of native prey affected the consumption of these two invasive species by the native predator, field-cage experiments were conducted. A duplex qPCR was used to simultaneously detect both non-native pests within the gut of the predator. H. axyridis readily accepted both invasive prey species, but preferred B. tabaci. With all three prey species available, H. axyridis consumption of B. tabaci was 39.3±2.2% greater than consumption of F. occidentalis. The presence of A. gossypii reduced (by 59.9% on B. tabaci, and by 60.6% on F. occidentalis), but did not stop predation on the two exotic prey when all three were present. The consumption of B. tabaci was similar whether it was alone or together with A. gossypii. However, the presence of aphids reduced predation on the invasive thrips. Thus, some invasive prey may be incorporated into the prey range of a native generalist predator even in the presence of preferred native prey. PMID:27391468
Walzer, Andreas; Schausberger, Peter
2011-01-01
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey. PMID:21317973
Walzer, Andreas; Schausberger, Peter
2011-01-01
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.
Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias
2017-06-01
The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to conventionally managed fields. Our study documents that predation by generalist predator communities on aphid pests increases with pest numbers independently of their generally widespread consumption of alternative, non-pest prey. Therefore, conservation strategies in agricultural fields could promote biological control services by promoting high levels of alternative non-pest prey for generalist predator communities. © 2017 by the Ecological Society of America.
Influence of predators and parisitoids on bark beetle productivity
Jan Weslien
1991-01-01
In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....
Low levels of copper reduce the reproductive success of a mobile invertebrate predator.
Lee, Ka-Man; Johnston, Emma L
2007-09-01
Marine organisms that occur in urbanised bays can be exposed to low-level chronic pollution that results in sublethal changes to behavior or reproduction. The effects of low levels of copper on the reproductive success of a mobile invertebrate were assessed. Free living flatworms are common predators of bivalves and barnacles. Flatworms (Stylochus pygmaeus) were exposed to low levels of copper ranging from 0 to 25 microg L(-1) in the presence and absence of their barnacle prey (Balanus variegatus). Flatworms laid fewer egg batches when exposed to copper and the hatching success of the eggs was also reduced. Exposure to 25 microg L(-1) copper for 10 d reduced the reproductive success of flatworms by up to 80%. Results were consistent regardless of the presence or absence of prey (barnacles). Barnacles were only moderately affected by copper but exhibited major avoidance behavior (feeding inhibition) in the presence of flatworm predators. This is the first ecotoxicological study on marine flatworms. Experiments are required to quantify the effects of flatworm predator populations on sessile invertebrate community structure in the field.
ERIC Educational Resources Information Center
Curtis, Rachel; Klemens, Jeffrey A.; Agosta, Salvatore J.; Bartlow, Andrew W.; Wood, Steve; Carlson, Jason A.; Stratford, Jeffrey A.; Steele, Michael A.
2013-01-01
Predator-prey dynamics are an important concept in ecology, often serving as an introduction to the field of community ecology. However, these dynamics are difficult for students to observe directly. We describe a methodology that employs model caterpillars made of clay to estimate rates of predator attack on a prey species. This approach can be…
Selective habituation shapes acoustic predator recognition in harbour seals.
Deecke, Volker B; Slater, Peter J B; Ford, John K B
2002-11-14
Predation is a major force in shaping the behaviour of animals, so that precise identification of predators will confer substantial selective advantages on animals that serve as food to others. Because experience with a predator can be lethal, early researchers studying birds suggested that predator recognition does not require learning. However, a predator image that can be modified by learning and experience will be advantageous in situations where cues associated with the predator are highly variable or change over time. In this study, we investigated the response of harbour seals (Phoca vitulina) to the underwater calls of different populations of killer whales (Orcinus orca). We found that the seals responded strongly to the calls of mammal-eating killer whales and unfamiliar fish-eating killer whales but not to the familiar calls of the local fish-eating population. This demonstrates that wild harbour seals are capable of complex acoustic discrimination and that they modify their predator image by selectively habituating to the calls of harmless killer whales. Fear in these animals is therefore focused on local threats by learning and experience.
Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.
2012-01-01
By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at an intermediate turbidity. Together, our theoretical and empirical findings show how the environmental context can govern the strength of TMIEs by influencing consumer sensory performance and how these effects can become realized in nature over wide environmental gradients. Additionally, our hump-shaped foraging curve represents an important departure from the conventional view of turbidity's effect on planktivorous fishes, thus potentially requiring a reconceptualization of turbidity's impact on aquatic food-web interactions.
Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping.
Marçalo, A; Araújo, J; Pousão-Ferreira, P; Pierce, G J; Stratoudakis, Y; Erzini, K
2013-09-01
The behavioural effects of confinement of sardine Sardina pilchardus in a purse seine were evaluated through three laboratory experiments simulating the final stages of purse seining; the process of slipping (deliberately allowing fishes to escape) and subsequent exposure to potential predators. Effects of holding time (the time S. pilchardus were held or entangled in the simulation apparatus) and S. pilchardus density were investigated. Experiment 1 compared the effect of a mild fishing stressor (20 min in the net and low S. pilchardus density) with a control (fishing not simulated) while the second and third experiments compared the mild stressor with a severe stressor (40 min in the net and high S. pilchardus density). In all cases, sea bass Dicentrarchus labrax were used as potential predators. Results indicated a significant effect of crowding time and density on the survival and behaviour of slipped S. pilchardus. After simulated fishing, S. pilchardus showed significant behavioural changes including lower swimming speed, closer approaches to predators and higher nearest-neighbour distances (wider school area) than controls, regardless of stressor severity. These results suggest that, in addition to the delayed and unobserved mortality caused by factors related to fishing operations, slipped pelagic fishes can suffer behavioural impairments that may increase vulnerability to predation. Possible sub-lethal effects of behavioural impairment on fitness are discussed, with suggestions on how stock assessment might be modified to account for both unobserved mortality and sub-lethal effects, and possible approaches to provide better estimates of unobserved mortality in the field are provided. © 2013 The Fisheries Society of the British Isles.
Miles, Jesse C.; Hua, Jessica; Sepulveda, Maria S.; Krupke, Christian H.
2017-01-01
The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental exposures including concentrations that are representative of what invertebrates experience in the field. In laboratory toxicity experiments, LC50 values ranged from 0.002 ppm to 1.2 ppm for aquatic invertebrates exposed to clothianidin. However, freshwater snails and amphibian larvae showed high tolerance to the chemical with no mortality observed at the highest dissolvable concentration of the insecticide. We also observed behavioral effects of clothianidin. Water bugs, Belostoma flumineum, displayed a dose-dependent reduction in feeding rate following exposure to clothianidin. Similarly, crayfish, Orconectes propinquus, exhibited reduced responsiveness to stimulus with increasing clothianidin concentration. Using a semi-natural mesocosm experiment, we manipulated clothianidin concentration (0.6, 5, and 352 ppb) and the presence of predatory invertebrates to explore community-level effects. We observed high invertebrate predator mortality with increases in clothianidin concentration. With increased predator mortality, prey survival increased by 50% at the highest clothianidin concentration. Thus, clothianidin contamination can result in a top-down trophic cascade in a community dominated by invertebrate predators. In our Indiana field study, we detected clothianidin (max = 176 ppb), imidacloprid (max = 141 ppb), and acetamiprid (max = 7 ppb) in soil samples. In water samples, we detected clothianidin (max = 0.67 ppb), imidacloprid (max = 0.18 ppb), and thiamethoxam (max = 2,568 ppb). Neonicotinoids were detected in >56% of soil samples and >90% of the water samples, which reflects a growing understanding that neonicotinoids are ubiquitous environmental contaminants. Collectively, our results underscore the need for additional research into the effects of neonicotinoids on aquatic communities and ecosystems. PMID:28334022
Bird productivity and nest predation in agricultural grasslands
Ribic, Christine; Guzy, Michael J.; Anderson, Travis J.; Sample, David W.; Nack, Jamie L.
2012-01-01
Effective conservation strategies for grassland birds in agricultural landscapes require understanding how nesting success varies among different grassland habitats. A key component to this is identifying nest predators and how these predators vary by habitat. We quantified nesting activity of obligate grassland birds in three habitats [remnant prairie, cool-season grass Conservation Reserve Program (CRP) fields, and pastures) in southwest Wisconsin, 2002-2004. We determined nest predators using video cameras and examined predator activity using track stations. Bobolink (Dolichonyx oryzivorus) and Henslow's Sparrow (Ammodramus henslowii) nested primarily in CRP fields, and Grasshopper Sparrow (A. savannarum) in remnant prairies. Eastern Meadowlark (Sturnella magna) nested evenly across all three habitats. Daily nest survival rate for Eastern Meadowlark varied by nesting stage alone. Daily nest survival rate for Grasshopper Sparrow varied by nest vegetation and distance to the nearest woody edge; nest survival was higher near woody edges. In CRP fields, most predators were grassland-associated, primarily thirteen-lined ground squirrels (Ictidomys tridecemlineatus). In pastures, one-third of the nest predators were grassland-associated (primarily thirteen-lined ground squirrels) and 56% were associated with woody habitats (primarily raccoons, Procyon lotor). Raccoon activity was greatest around pastures and lowest around prairies; regardless of habitat, raccoon activity along woody edges was twice that along non-woody edges. Thirteen-lined ground squirrel activity was greater along prairie edges than pastures and was greater along nonwoody edges compared to woody edges. In CRP fields, raccoon activity was greater along edges compared to the interiors; for ground squirrels these relationships were reversed. Using video camera technology to identify nest predators was indispensable in furthering our understanding of the grassland system. The challenge is to use that knowledge to develop management actions for both birds and predators.
Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.
2009-01-01
The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.
Dark side of predation: Blind side in biocontrol research
USDA-ARS?s Scientific Manuscript database
Predation of pests by arthopod predators (insects and spiders) occurs around the clock. Yet little effort has been made to characterize the 24-hour pattern of predation on insect pests in the field, particularly events that occur nocturnally. The few round-the-clock observations in various ecosyst...
USDA-ARS?s Scientific Manuscript database
The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a global pest on numerous crops, including vegetables. Weekly inundative releases of a coccinellid predator (Coccinella undecimpunctata L.), a mirid predator [Macrophillus caliginosus (Wagner)] and a neuropteran predator [Chrysoperla carnea S...
Experimental evidence that livestock grazing intensity affects the activity of a generalist predator
NASA Astrophysics Data System (ADS)
Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve
2013-05-01
Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.
In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.
Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A
2015-09-22
Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems. © 2015 The Author(s).
Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish
Flinders, C.A.; Magoulick, D.D.
2007-01-01
We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.
Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors
Thompson, Kevin A.; Hill, Jeffrey E.; Nico, Leo G.
2012-01-01
Florida is a hotspot for nonindigenous fishes with over 30 species established, although few of these are small-bodied species. One hypothesis for this pattern is that biotic resistance of native species is reducing the success of small-bodied, introduced fishes. The eastern mosquitofish Gambusia holbrooki is common in many freshwater habitats in Florida and although small-bodied (<50 mm), it is a predator and aggressive competitor. We conducted four mesocosm experiments to examine the potential for biotic resistance by eastern mosquitofish to two small-bodied nonindigenous fishes, variable platyfish (Xiphophorus variatus) and swordtail (X. hellerii). Experiments tested: (1) effect of eastern mosquitofish density on adult survival, (2) effect of eastern mosquitofish on a stage-structured population, (3) role of habitat structural complexity on nonindigenous adult survival, and (4) behavioral effects of eastern mosquitofish presence and habitat complexity. Eastern mosquitofish attacked and killed non-native poeciliids with especially strong effects on juveniles of both species. Higher eastern mosquitofish density resulted in greater effects. Predation on swordtails increased with increasing habitat complexity. Eastern mosquitofish also actively drove swordtails from cover, which could expose non-native fish to other predators under field conditions. Our results suggest that eastern mosquitofish may limit invasion success.
Does corticosterone mediate predator-induced responses of larval Hylarana indica?
Joshi, A M; Wadekar, N V; Gramapurohit, N P
2017-09-15
Prey-predator interactions have been studied extensively in terms of morphological and behavioural responses of prey to predation risk using diverse model systems. However, the underlying physiological changes associated with morphological, behavioural or life historical responses have been rarely investigated. Herein, we studied the effect of chronic predation risk on larval growth and metamorphosis of Hylarana indica and the underlying physiological changes in prey tadpoles. In the first experiment, tadpoles were exposed to a caged predator from Gosner stage 25-42 to record growth and metamorphosis. Further, whole body corticosterone (CORT) was measured to determine the physiological changes underlying morphological and life historical responses of these prey tadpoles. Surprisingly, tadpoles experiencing continuous predation risk grew and developed faster and metamorphosed at a larger size. Interestingly, these tadpoles had significantly lower CORT levels. In the second experiment, tadpoles were exposed to predation risk (PR) or PR+CORT from stage 25-42 to determine the role of CORT in mediating predator-induced responses of H. indica. Tadpoles facing continuous predation risk grew and developed faster and metamorphosed at a larger size reinforcing the results of the first experiment. However, when CORT was administered along with predation risk, tadpoles grew and developed slowly leading to delayed metamorphosis. Interestingly, growth and metamorphic traits of tadpoles exposed to PR+CORT were comparable to those of the control group indicating that exogenous CORT nullified the positive effect of predation risk. Apparently, CORT mediates predator-induced morphological responses of H. indica tadpoles by regulating their physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Ecological Interactions Shape the Dynamics of Seed Predation in Acrocomia aculeata (Arecaceae)
Pereira, Anielle C. F.; Fonseca, Francine S. A.; Mota, Gleicielle R.; Fernandes, Ane K. C.; Fagundes, Marcílio; Reis-Júnior, Ronaldo; Faria, Maurício L.
2014-01-01
Background The complex network of direct and indirect relationships determines not only the species abundances but also the community characteristics such as diversity and stability. In this context, seed predation is a direct interaction that affects the reproductive success of the plant. For Acrocomia aculeata, the seed predation by Pachymerus cardo and Speciomerus revoili in post-dispersal may destroy more than 70% of the propagules and is influenced by the herbivory of the fruits during pre-dispersal. Fruits of plants with a higher level of herbivory during pre-dispersal are less attacked by predators in post-dispersal. We proposed a hypothesis that describes this interaction as an indirect defense mediated by fungi in a multitrophic interaction. As explanations, we proposed the predictions: i) injuries caused by herbivores in the fruits of A. aculeata favor fungal colonization and ii) the colonization of A. acuelata fruit by decomposing fungi reduces the selection of the egg-laying site by predator. Methodology/Principal Findings For prediction (i), differences in the fungal colonization in fruits with an intact or damaged epicarp were evaluated in fruits exposed in the field. For prediction (ii), we performed fruit observations in the field to determine the number of eggs of P. cardo and/or S. revoili per fruit and the amount of fungal colonization in the fruits. In another experiment, in the laboratory, we use P. cardo females in a triple-choice protocol. Each insect to choose one of the three options: healthy fruits, fruits with fungus, or an empty pot. The proposed hypothesis was corroborated. Fruits with injuries in the epicarp had a higher fungal colonization, and fruits colonized by fungi were less attractive for egg-laying by seed predators. Conclusion/Significance This study emphasizes the importance of exploring the networks of interactions between multitrophic systems to understand the dynamics and maintenance of natural populations. PMID:24875386
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
Of lemmings and snowshoe hares: the ecology of northern Canada
Krebs, Charles J.
2011-01-01
Two population oscillations dominate terrestrial community dynamics in northern Canada. In the boreal forest, the snowshoe hare (Lepus americanus) fluctuates in cycles with an 8–10 year periodicity and in tundra regions lemmings typically fluctuate in cycles with a 3–4 year periodicity. I review 60 years of research that has uncovered many of the causes of these population cycles, outline areas of controversy that remain and suggest key questions to address. Lemmings are keystone herbivores in tundra ecosystems because they are a key food resource for many avian and mammalian predators and are a major consumer of plant production. There remains much controversy over the role of predation, food shortage and social interactions in causing lemming cycles. Predation is well documented as a significant mortality factor limiting numbers. Food shortage is less likely to be a major limiting factor on population growth in lemmings. Social interactions might play a critical role in reducing the rate of population growth as lemming density rises. Snowshoe hares across the boreal forest are a key food for many predators and their cycles have been the subject of large-scale field experiments that have pinpointed predation as the key limiting factor causing these fluctuations. Predators kill hares directly and indirectly stress them by unsuccessful pursuits. Stress reduces the reproductive rate of female hares and is transmitted to their offspring who also suffer reduced reproductive rates. The maternal effects produced by predation risk induce a time lag in the response of hare reproductive rate to density, aiding the cyclic dynamics. PMID:20980307
Central-place foraging and ecological effects of an invasive predator across multiple habitats.
Benkwitt, Cassandra E
2016-10-01
Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.
Survival of the stillest: predator avoidance in shark embryos.
Kempster, Ryan M; Hart, Nathan S; Collin, Shaun P
2013-01-01
Sharks use highly sensitive electroreceptors to detect the electric fields emitted by potential prey. However, it is not known whether prey animals are able to modulate their own bioelectrical signals to reduce predation risk. Here, we show that some shark (Chiloscyllium punctatum) embryos can detect predator-mimicking electric fields and respond by ceasing their respiratory gill movements. Despite being confined to the small space within the egg case, where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response. Knowledge of such behaviours, may inform the development of effective shark repellents.
NASA Astrophysics Data System (ADS)
Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar
2016-10-01
An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.
Leonardsson, Kjell
1994-02-01
Possible mechanisms for differences in population densities and dynamics were investigated in the amphipod Monoporeia affinis at two deep sites in the northern Bothnian Sea. The two sites were sampled yearly for 10 years. Average sizes, growth and mortality of the different age-classes were estimated from the cohort structure of the two populations. Laboratory experiments also investigated the ability of the common predatory isopod Saduria entomon to cause densitydependent (DD) mortality of the prey M. affinis. At site A, 43 m depth, the average density of M. affinis was twice as high as at site B, 81 m depth. The fluctuations in density were asynchronous between the two sites. Recruitment and subadult sizes of Monoporeia affinis were density dependent at both sites. The main functional difference between the two populations seemed to be the DD mortality of the 1 + cohort that occurred only at the low-density site B. A corresponding DD mortality was found in the predation experiments at densities of 1 + m. affinis corresponding to those found at site B. The potential importance of the predator was also indicated by a significant negative correlation between the biomass of S. entomon and the rate of change in M. affinis density in the field. The similarities in the abiotic factors between the two sites suggested that differences in carrying capacity should be small. The results could be explained by the predation regulation hypothesis for the low-density population at site B, while at site A M. affinis seemed to be regulated by intra-specific competition and limited by predation. It is suggested that in this simple predator-prey system there is potential for the existence of alternative equilibria.
Predator community structure and trophic linkage strength to a focal prey.
Lundgren, Jonathan G; Fergen, Janet K
2014-08-01
Predator abundance and community structure can affect the suppression of lower trophic levels, although studies of these interactions under field conditions are relatively few. We investigated how the frequency of consumption (measured using PCR-based gut content analysis) is affected by predator abundance, community diversity and evenness under realistic conditions. Soil arthropod communities in sixteen maize fields were measured (number of predators, diversity [Shannon H] and evenness [J]), and predator guts were searched for DNA of the focal subterranean herbivore, the corn rootworm (Diabrotica virgifera). Predator abundance and diversity were positively correlated with trophic linkage strength (the proportion positive for rootworm DNA), although the latter characteristic was not significantly so. The diversity and evenness of the predator community with chewing mouthparts were strongly correlated with their linkage strength to rootworms, whereas the linkage strength of fluid-feeding predators was unaffected by their community characteristics. Within this community, chewing predators are more affected by the rootworm's hemolymph defence. This research clearly shows that predator abundance and diversity influence the strength of a community's trophic linkage to a focal pest and that these community characteristics may be particularly important for less palatable or protected prey species. We also make the case for conserving diverse and abundant predator communities within agroecosystems as a form of pest management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Consumer co-evolution as an important component of the eco-evolutionary feedback.
Hiltunen, Teppo; Becks, Lutz
2014-10-22
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.
Silence is not golden: the hissing calls of tits affect the behaviour of a nest predator.
Zub, Karol; Czeszczewik, Dorota; Ruczyński, Ireneusz; Kapusta, Anna; Walankiewicz, Wiesław
2017-01-01
Nest predation is one of the most important mortality factors of birds. Field observations showed that tits (Paridae) produce hissing calls and, usually, have lower breeding losses than nesting Ficedula flycatchers, which do not make such calls. We hypothesise that differences in fledgling success can be directly attributed to the vocal reaction of tits. We tested experimentally whether the hissing calls can affect the behaviour of a potential predator, analysing the response of the Yellow-necked Mouse Apodemus flavicollis to playback of calls of three Parid species. The number of visits by mice to two types of cavities (with playback and control) was not significantly different, but the average time spent by mice in cavities with playback (3.9 s) was significantly shorter than in cavities without playback (26.3 s). This suggests that hissing behaviour of tits significantly changes the exploration activity of predators, which may ultimately increase the breeding success of this group of birds relative to the flycatchers. Nest predation is one of the most important mortality factors of small land birds, but some anti-predatory mechanisms are still poorly recognised. Numerous studies demonstrate that incubating tits make hissing sounds, when a predator is near, but despite almost a century of research, there is little evidence these calls indeed affect behaviour of predators. By using a simple laboratory experiment, we demonstrated that the hissing acoustic signals used by tits may change the behaviour of yellow-necked mice, which are an important predator of cavity-nesting birds in temperate forests. Intruding mice withdrew from cavities where hissing sounds were played back. Our results suggest that the hissing behaviour of tits can change the exploration activity of potential predators and may increase breeding success of this group of birds relative to the flycatchers, which stay silent when their nest is threatened.
Money, David A; Ingley, Spencer J; Johnson, Jerald B
2017-03-01
Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as ‘time to emerge’ from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditions. As predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between ‘sex’ and ‘species’ as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior.
Marino, Nicholas A C; Srivastava, Diane S; MacDonald, A Andrew M; Leal, Juliana S; Campos, Alice B A; Farjalla, Vinicius F
2017-02-01
Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation [a non-consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change. © 2016 John Wiley & Sons Ltd.
Perspective: the evolution of warning coloration is not paradoxical.
Marples, Nicola M; Kelly, David J; Thomas, Robert J
2005-05-01
Animals that are brightly colored have intrigued scientists since the time of Darwin, because it seems surprising that prey should have evolved to be clearly visible to predators. Often this self-advertisement is explained by the prey being unprofitable in some way, with the conspicuous warning coloration helping to protect the prey because it signals to potential predators that the prey is unprofitable. However, such signals only work in this way once predators have learned to associate the conspicuous color with the unprofitability of the prey. The evolution of warning coloration is still widely considered to be a paradox, because it has traditionally been assumed that the very first brightly colored individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naive to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous color morph could ever avoid extinction for long enough for predators to become educated about the signal. Thus, the traditional view that the evolution of warning coloration is difficult to explain rests entirely on assumptions about the foraging behavior of predators. However, we review recent evidence from a range of studies of predator foraging decisions, which refute these established assumptions. These studies show that: (1) Many predators are so conservative in their food preferences that even very conspicuous novel prey morphs are not necessarily at a selective disadvantage. (2) The survival and spread of novel color morphs can be simulated in field and aviary experiments using real predators (birds) foraging on successive generations of artificial prey populations. This work demonstrates that the foraging preferences of predators can regularly (though not always) result in the increase to fixation of a novel morph appearing in a population of familiar-colored prey. Such fixation events occur even if both novel and familiar prey are fully palatable and despite the novel food being much more conspicuous than the familiar prey. These studies therefore provide strong empirical evidence that conspicuous coloration can evolve readily, and repeatedly, as a result of the conservative foraging decisions of predators.
Cyclic dynamics in a simple vertebrate predator-prey community.
Gilg, Olivier; Hanski, Ilkka; Sittler, Benoît
2003-10-31
The collared lemming in the high-Arctic tundra in Greenland is preyed upon by four species of predators that show marked differences in the numbers of lemmings each consumes and in the dependence of their dynamics on lemming density. A predator prey model based on the field-estimated predator responses robustly predicts 4-year periodicity in lemming dynamics, in agreement with long-term empirical data. There is no indication in the field that food or space limits lemming population growth, nor is there need in the model to consider those factors. The cyclic dynamics are driven by a 1-year delay in the numerical response of the stoat and stabilized by strongly density-dependent predation by the arctic fox, the snowy owl, and the long-tailed skua.
Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.
2018-01-01
Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663
Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C
2018-04-01
Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.
Selective predation for low body condition at the larval-juvenile transition of a coral reef fish.
Hoey, Andrew S; McCormick, Mark I
2004-03-01
Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fulton's K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.
Pérez-Sayas, Consuelo; Aguilar-Fenollosa, Ernestina; Hurtado, Mónica A; Jaques, Josep A; Pina, Tatiana
2017-06-16
Predatory mites of the Phytoseiidae family are considered one of the most important groups of natural enemies used in biological control. The behavioral patterns of arthropods can differ greatly daily and seasonally; however, there is a lack of literature related to Phytoseiidae diel and seasonal predation patterns. The predatory activity of three phytoseiid species (two Tetranychidae-specialists, Phytoseiulus persimilis and Neoseiulus californicus, and one omnivore, Euseius stipulatus) that occur naturally in Spanish citrus orchards was observed under laboratory conditions in winter and summer. The temperature and photoperiod of the climatic chamber where the mites were reared did not change during the experiment. Our study demonstrates that phytoseiids can exhibit diel and seasonal predatory patterns when feeding on Tetranychus urticae (Acari: Tetranychidae). Neoseiulus californicus was revealed to be a nocturnal predator in summer but diurnal in winter. In contrast, P. persimilis activity was maximal during the daytime, and E. stipulatus showed no clear daily predation patterns. The predatory patterns described in this study should be taken into account when designing laboratory studies and also in field samplings, especially when applying molecular techniques to unveil trophic relationships. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Ruscoe, Wendy A; Ramsey, David S L; Pech, Roger P; Sweetapple, Peter J; Yockney, Ivor; Barron, Mandy C; Perry, Mike; Nugent, Graham; Carran, Roger; Warne, Rodney; Brausch, Chris; Duncan, Richard P
2011-10-01
Invasive species are frequently the target of eradication or control programmes to mitigate their impacts. However, manipulating single species in isolation can lead to unexpected consequences for other species, with outcomes such as mesopredator release demonstrated both theoretically and empirically in vertebrate assemblages with at least two trophic levels. Less is known about the consequences of species removal in more complex assemblages where a greater number of interacting invaders increases the potential for selective species removal to result in unexpected changes in community structure. Using a replicated Before-After Control-Impact field experiment with a four-species assemblage of invasive mammals we show that species interactions in the community are dominated by competition rather than predation. There was no measurable response of two mesopredators (rats and mice) following control of the top predator (stoats), but there was competitive release of rats following removal of a herbivore (possums), and competitive release of mice following removal of rats. © 2011 Blackwell Publishing Ltd/CNRS.
McMahon, Jordan D; Lashley, Marcus A; Brooks, Christopher P; Barton, Brandon T
2018-04-26
Giving-up density (GUD) experiments have been a foundational method to evaluate perceived predation risk, but rely on the assumption that food preferences are absolute, so that areas with higher GUDs can be interpreted as having higher risk. However, nutritional preferences are context dependent and can change with risk. We used spiders and grasshoppers to test the hypothesis that covariance in nutritional preferences and risk may confound the interpretation of GUD experiments. We presented grasshoppers with carbohydrate-rich and protein-rich diets, in the presence and absence of spider predators. Predators reduced grasshopper preference for the protein-rich food, but increased their preference for the carbohydrate-rich food. We then measured GUDs with both food types under different levels of risk (spider density, 0 - 5). As expected, GUDs increased with spider density indicating increasing risk, but only when using protein-rich food. With carbohydrate-rich food, GUD was independent of predation risk. Our results demonstrate that predation risk and nutritional preferences covary and can confound interpretation of GUD experiments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics
Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant
2011-01-01
Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...
Krebs, Charles J; Boonstra, Rudy; Boutin, Stan
2018-01-01
Population cycles have long fascinated ecologists from the time of Charles Elton in the 1920s. The discovery of large population fluctuations in undisturbed ecosystems challenged the idea that pristine nature was in a state of balance. The 10-year cycle of snowshoe hares (Lepus americanus Erxleben) across the boreal forests of Canada and Alaska is a classic cycle, recognized by fur traders for more than 300 years. Since the 1930s, ecologists have investigated the mechanisms that might cause these cycles. Proposed causal mechanisms have varied from sunspots to food supplies, parasites, diseases, predation and social behaviour. Both the birth rate and the death rate change dramatically over the cycle. Social behaviour was eliminated as a possible cause because snowshoe hares are not territorial and do not commit infanticide. Since the 1960s, large-scale manipulative experiments have been used to discover the major limiting factors. Food supply and predation quickly became recognized as potential key factors causing the cycle. Experiments adding food and restricting predator access to field populations have been decisive in pinpointing predation as the key mechanism causing these fluctuations. The immediate cause of death of most snowshoe hares is predation by a variety of predators, including the Canada lynx (Lynx canadensis Kerr). The collapse in the reproductive rate is not due to food shortage as was originally thought, but is a result of chronic stress from predator chases. Five major issues remain unresolved. First, what is the nature of the predator-induced memory that results in the prolonged low phase of the cycle? Second, why do hare cycles form a travelling wave, starting in the centre of the boreal forest in Saskatchewan and travelling across western Canada and Alaska? Third, why does the amplitude of the cycle vary greatly from one cycle to the next in the same area? Fourth, do the same mechanisms of population limitation apply to snowshoe hares in eastern North American or in similar ecosystems across Siberia? Finally, what effect will climatic warming have on all the above issues? The answers to these questions remain for future generations of biologists to determine. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Sparrevik, Erik; Leonardsson, Kjell
1995-02-01
We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.
Parasite-mediated predation between native and invasive amphipods.
MacNeil, Calum; Dick, Jaimie T A; Hatcher, Melanie J; Terry, Rebecca S; Smith, Judith E; Dunn, Alison M
2003-01-01
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions. PMID:12816645
Pinpointing Predation Events: A different molecular approach.
USDA-ARS?s Scientific Manuscript database
A glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, protien marking system has been developed as a diagnostic tool for quantifying predation rates via gut content analysis. A field study was conducted to quantify predation rates on each of the GWSS lifestages. Specifically, two GWSS nymp...
Evolution of a predator-induced, nonlinear reaction norm.
Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P
2017-08-30
Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.
Persistent Females and Compliant Males Coordinate Alarm Calling in Diana Monkeys.
Stephan, Claudia; Zuberbühler, Klaus
2016-11-07
Sexual dimorphisms in animal vocal behavior have been successfully explained by sexual selection theory (e.g., mammals [1-5]; birds [6, 7]; anurans [8, 9]), but this does not usually include alarm calls, which are thought to be the product of kin or individual selection (e.g., [10, 11]). Here, we present the results of playback experiments with wild Diana monkeys, a species with highly dimorphic predator-specific alarms, to investigate the communication strategies of males and females during predator encounters. First, we simulated predator presence by broadcasting vocalizations of their main predators, leopards or eagles. We found that males only produced predator-specific alarms after the females had produced theirs, in response to which the females ceased alarm calling. In a second experiment, we created congruent and incongruent situations, so that the calls of a predator were followed by playbacks of male or female alarms with a matching or mismatching referent. For congruent conditions, results were the same as in the first experiment. For incongruent conditions, however, the males always gave predator-specific alarms that referentially matched the females' calls, regardless of the previously displayed predator. In contrast, females always gave predator-specific alarms that matched the predator type, regardless of their own male's subsequent calls. Moreover, the females persistently continued to alarm call until their own male produced calls with the matching referent. Results show that males and females attend to the informational content of each other's alarm calls but prioritize them differently relative to an experienced external event, a likely reflection of different underlying selection pressures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of predators on fish and crayfish survival in intermittent streams
Dekar, Matthew P.; Magoulick, Daniel D.
2013-01-01
Predation from aquatic and terrestrial predators arc important factors structuring the size and depth distribution of aquatic prey. We conducted mesocosm and tethering experiments on Little Mulberry Creek in northwest Arkansas during low flows to examine the effects of predators on fish and crayfish survival in intermittent streams Using shallow artificial pools (10 cm deep) and predator exclusions, we tested the hypothesis that large-bodied fish are at greater risk from terrestrial predators in shallow habitats compared to small-bodied individuals. Twenty-four circular pools (12 open top. 12 closed top) were stocked with two size classes of Campostoma anomalum (Central Stonerller) and deployed systematically in a single stream pool. In addition, we used a crayfish tethering experiment to test the hypothesis that the survival of small and large crayfish is greater in shallow and deep habitats, respectively. We tethered two size classes of Orconectes meeki meeki (Meek's Crayfish) along shallow and deep transects in two adjacent stream pools and measured survival for 15 days. During both experiments, we monitored the presence or absence of predators by visual observation and from scat surveys. We demonstrated a negative effect of terrestrial predators on Central Stonerller survival in the artificial pools, and larger individuals were more susceptible to predation. In contrast, small crayfish experienced low survival at all depths and large crayfish were preyed upon much less intensively during the tethering study, particularly in the pool with larger substrate. More studies are needed to understand how stream drying and environmental heterogeneity influence the complex interactions between predator and prey populations in intermittent streams.
Effects of introduced crayfish on selected native fishes of Arizona
Carpenter, J.
2000-01-01
The virile crayfish (Orconectes virilis), an aggressive polytrophic species, has been introduced into many Arizona streams. I investigated competition and predation between this crayfish and several native Arizona fishes. I conducted field experiments to assess competition for food between crayfish and fish, and laboratory experiments to examine competition for shelter and food, and predation. In Sabino Creek, I manipulated crayfish densities in isolated pools to examine effects of crayfish on growth, mortality, and recruitment of Gila chub (Gila intermedia). Regardless of crayfish density, Gila chub declined slightly in weight and condition. Mortality and recruitment did not differ between densities of crayfish. I examined crayfish effects on benthic macroinvertebrates, a submerged aquatic macrophyte and associated invertebrates, and three fish species in a small stream in the White Mountains by fencing eight stream sections to prevent movement. The three fishes were speckled dace (Rhinichthys osculus), Sonora sucker (Catostomus insignis), and desert sucker (C. clarki). Molluscs > 10 mm and macrophytes were less abundant at sites with a high density of crayfish than at sites with low crayfish densities. Insect diversity was lower in high- vs. low-density sites. No treatment effect was observed on growth or condition of individually marked fish. Short-term laboratory experiments demonstrated predatory interactions and competition for shelter between crayfish and Gila chub, desert sucker, and speckled dace. Crayfish used shelter more than fish, displaced fish from shelter, and frequently attacked fish. Fish never attacked crayfish, and only once displaced crayfish from shelter. In predation experiments, crayfish preyed upon all species, but preyed most heavily upon desert suckers. Fish never altered use of the water column in the presence of crayfish. Density manipulation experiments in a laboratory measured food competition between crayfish and two native fishes. Growth of Gila chub was less affected by crayfish than by increased density of Gila chub. Thus crayfish are not strong competitors with Gila chub for food. However, growth of flannelmouth sucker (Catostomus latipinnis) was negatively impacted by presence of crayfish. These laboratory experiments provide evidence that introduced crayfish can reduce fish growth by competition for food, and that native fishes are vulnerable to crayfish predation.
2013-01-01
Introduction Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Result Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade. Conclusions These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control. PMID:23842144
Allen, Benjamin L; Allen, Lee R; Engeman, Richard M; Leung, Luke K-P
2013-07-10
Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade. These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.
Burns-Cusato, Melissa; Glueck, Amanda C; Merchak, Andrea R; Palmer, Cristin L; Rieskamp, Joshua D; Duggan, Ivy S; Hinds, Rebecca T; Cusato, Brian
2016-05-01
Ability to recognize and differentiate between predators and non-predators is a crucial component of successful anti-predator behavior. While there is evidence that both genetic and experiential mechanisms mediate anti-predator behaviors in various animal species, it is unknown to what extent each of these two mechanisms are utilized by the green monkey (Chlorocebus sabaeus). Green monkeys on the West Indies island of Barbados offer a unique opportunity to investigate the underpinnings of anti-predator behaviors in a species that has been isolated from ancestral predators for over 350 years. In the first experiment, monkeys in two free-ranging troops were presented with photographs of an ancestral predator (leopard, Panthera pardus) and a non-predator (African Buffalo, Syncerus caffer). Relative to non-predator stimuli, images of a leopard elicited less approach, more alarm calls, and more escape responses. Subsequent experiments were conducted to determine whether the monkeys were responding to a leopard-specific feature (spotted fur) or a general predator feature (forward facing eyes). The monkeys showed similar approach to images of an unfamiliar non-predator regardless of whether the image had forward facing predator eyes or side facing non-predator eyes. However, once near the images, the monkeys were less likely to reach for peanuts near the predator eyes than the non-predator eyes. The monkeys avoided an image of spotted leopard fur but approached the same image of fur when the dark spots had been removed. Taken together, the results suggest that green monkey anti-predator behavior is at least partially mediated by genetic factors. Copyright © 2016 Elsevier B.V. All rights reserved.
Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?
David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier
1999-01-01
Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...
Avoiding the nest : responses of field sparrows to the threat of nest predation
Dirk E. Burhans
2000-01-01
Nest predation is a major source of reproductive failure in birds (Ricklefs 1969, Martin 1992). Birds confronted with an enemy near the nest may use behaviors to deter the prospect of nest predation. The benefits of nest defense have been shown for many agressive species (Martin 1992), but smaller birds that cannot deter predators may need to resort to other behaviors...
Evolution mediates the effects of apex predation on aquatic food webs
Urban, Mark C.
2013-01-01
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548
Evolution mediates the effects of apex predation on aquatic food webs.
Urban, Mark C
2013-07-22
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.
Light-mediated predation by northern squawfish on juvenile Chinook salmon
Petersen, James H.; Gadomski, Dena M.
1994-01-01
Northern squawfish Ptychocheilus oregonensis cause significant mortality of juvenile salmon in the lower Columbia River Basin (U.S.A.). The effects of light intensity on this predator-prey interaction were examined with laboratory experiments and modelling studies. In laboratory experiments, the rate of capture of subyearling chinook salmon Oncorhynchus tshawytscha by northern squawfish was inversely related to light intensity. In a large raceway, about five times more salmon were captured during 4 h periods of relative darkness (0–03 Ix) than during periods with high light intensity (160 Ix). The rate of predation could be manipulated by increasing or decreasing light intensity.A simulation model was developed for visual predators that encounter, attack, and capture juvenile salmon, whose schooling behaviour was light-sensitive. The model was fitted to laboratory results using a Monte Carlo filtering procedure. Model-predicted predation rate was especially sensitive to the visual range of predators at low light intensity and to predator search speed at high light. Modelling results also suggested that predation by northern squawfish on juvenile salmon may be highest across a narrow window of fight intensity.
Greco, Nancy M; Sánchez, Norma E; Liljesthröm, Gerardo G
2005-01-01
Neoseiulus californicus (McGregor) is a promising agent for successful Tetranychus urticae Koch control through conservation techniques, in strawberry crops in La Plata (Buenos Aires, Argentina). In prey-predator interaction, initial relative densities have an important effect on system dynamics. The economic threshold level (ETL) used for this pest in the present study was 50 active mites per leaflet. In our laboratory experiments, initial T. urticae to N. californicus ratio had a significant effect on the population abundance of T. urticae at a 7-day period. When pest/predator ratio was 5/1 (at initial pest densities from 5 to 15 females/leaflet) the final number of active T. urticae/leaflet was significantly lower than the ETL, while at 20 females/leaflet this number did not differ from the ETL. At 7.5/1 ratio, the final number of active T. urticae/leaflet, at initial pest densities from 5 to 15 females/leaflet, reached the ETL without surpassing it. At 10/1 and 15/1 ratios, pest densities exceeded the ETL only at 15 initial T. urticae/leaflet. Most greenhouse and field observations were consistent with the predictions of a graphical model based on experimental results. This predator was very effective in limiting pest densities at a 7-day period and within the range of pest-predator ratios and absolute densities used in this study. Conservation of N. californicus promoting favorable pest/predator ratios may result in early control of T. urticae.
Latorre, Lucía; Larrinaga, Asier R; Santamaría, Luis
2013-01-01
Seabirds nesting on islands are threatened by invasive rodents, such as mice and rats, which may attack eggs, chicks and even adults. The low feasibility of rat eradications on many islands makes the development of alternate control plans necessary. We used a combination of field experiments on a Mediterranean island invaded by black rats (Rattusrattus) to evaluate (1) the predation risk posed to different-sized seabird eggs and (2), the potential of two deterrent methods (electronic and chemical) to reduce its impact. Rats were able to consume eggs of all sizes (12 to 68 g), but survival increased 13 times from the smallest to the largest eggs (which also had more resistant eggshells). Extrapolation to seabird eggs suggests that the smallest species (Hydrobatespelagicus) suffer the most severe predation risk, but even the largest (Larusmichahellis) could suffer >60% mortality. Nest attack was not reduced by the deterrents. However, chemical deterrence (conditioned taste aversion by lithium chloride) slowed the increase in predation rate over time, which resulted in a three-fold increase in egg survival to predation as compared to both control and electronic deterrence. At the end of the experimental period, this effect was confirmed by a treatment swap, which showed that conferred protection remains at least 15 days after cessation of the treatment. Results indicate that small seabird species are likely to suffer severe rates of nest predation by rats and that conditioned taste aversion, but not electronic repellents, may represent a suitable method to protect colonies when eradication or control is not feasible or cost-effective.
Vertical visual features have a strong influence on cuttlefish camouflage.
Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T
2013-04-01
Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.
Biodiversity effects of the predation gauntlet
NASA Astrophysics Data System (ADS)
Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.
2017-06-01
The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.
Lagrue, C; Güvenatam, A; Bollache, L
2013-02-01
Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.
Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I
2015-07-01
Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of trophic manipulations on community structure are the result of distinct and often indirect responses of herbivore species. These results underscore the importance of understanding herbivore-herbivore interactions in a system commonly subjected to both eutrophication and overfishing. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Big-Eyed Bugs Have Big Appetite for Pests
USDA-ARS?s Scientific Manuscript database
Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Geocoris spp., commonly known as big-eyed bugs, are among the most abundant insect predators in field c...
Annual post-dispersal weed seed predation in contrasting field environments
USDA-ARS?s Scientific Manuscript database
Interest in weed seed predation as an ecological weed management tactic has led to a growing number of investigations of agronomic and environmental effects on predation rates. Whereas the measurements in most of these studies have taken place at very short time scales, from days to weeks, measureme...
Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite
Walzer, Andreas; Schausberger, Peter
2012-01-01
In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692
NASA Astrophysics Data System (ADS)
Trisnawati, Indah; Azis, Abdul
2017-06-01
Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field. Three specific predator species were found on habitat modification field, i.e.: Crocothemis servilia, Orthetrum sabina and Paratrechina sp., as well as specific parasitoid species, i.e.: Polistes sp. (vegetative stage), Chloromyia sp., Theronia sp., Sarcophaga sp. and Cletus sp (generative stage), Condylodtylus sp., Trichogramma sp. (reproductive stage). Trends in predator abundance toward parasitoid insects were indicated a positive linear trend, with the abundance of predator on habitat modification field has an influence on the level of 67.1% parasitoid.
Mommer, Brett C; Bell, Alison M
2013-10-02
Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.
Chalfoun, A.D.; Martin, T.E.
2010-01-01
Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.
Bauer, Jessica
2016-01-01
Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313
Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles
Gunzburger, M.S.; Travis, J.
2005-01-01
Prey species that occur across a range of habitats may be exposed to variable communities of multiple predator species across habitats. Predicting the combined effects of multiple predators can be complex. Many experiments evaluating the effects of multiple predators on prey confound either variation in predator density with predator identity or variation in relative predator frequency with overall predation rates. We develop a new experimental design of factorial predator combinations that maintains a constant expected predation rate, under the null hypothesis of additive predator effects. We implement this design to evaluate the combined effects of three predator species (bass, aeshnid and libellulid odonate naiads) on mortality rate of a prey species, Hyla cinerea (Schneider, 1799) tadpoles, that occurs across a range of aquatic habitats. Two predator treatments (libellulid and aeshnid + libellulid) resulted in lower tadpole mortality than any of the other predator treatments. Variation in tadpole mortality across treatments was not related to coarse variation in microhabitat use, but was likely due to intraguild predation, which occurred in all predator treatments. Hyla cinerea tadpoles have constant, low survival values when exposed to many different combinations of predator species, and predation rate probably increases linearly with predator density.
Adams, Jesse B.; Bollens, Stephen M.; Bishop, John G.
2015-01-01
Invasive planktonic crustaceans have become a prominent feature of aquatic communities worldwide, yet their effects on food webs are not well known. The Asian calanoid copepod, Pseudodiaptomus forbesi, introduced to the Columbia River Estuary approximately 15 years ago, now dominates the late-summer zooplankton community, but its use by native aquatic predators is unknown. We investigated whether three species of planktivorous fishes (chinook salmon, three-spined stickleback, and northern pikeminnow) and one species of mysid exhibited higher feeding rates on native copepods and cladocerans relative to P. forbesi by conducting `single-prey’ feeding experiments and, additionally, examined selectivity for prey types with `two-prey’ feeding experiments. In single-prey experiments individual predator species showed no difference in feeding rates on native cyclopoid copepods (Cyclopidae spp.) relative to invasive P. forbesi, though wild-collected predators exhibited higher feeding rates on cyclopoids when considered in aggregate. In two-prey experiments, chinook salmon and northern pikeminnow both strongly selected native cladocerans (Daphnia retrocurva) over P. forbesi, and moreover, northern pikeminnow selected native Cyclopidae spp. over P. forbesi. On the other hand, in two-prey experiments, chinook salmon, three-spined stickleback and mysids were non- selective with respect to feeding on native cyclopoid copepods versus P. forbesi. Our results indicate that all four native predators in the Columbia River Estuary can consume the invasive copepod, P. forbesi, but that some predators select for native zooplankton over P. forbesi, most likely due to one (or both) of two possible underlying casual mechanisms: 1) differential taxon-specific prey motility and escape responses (calanoids > cyclopoids > daphnids) or 2) the invasive status of the zooplankton prey resulting in naivety, and thus lower feeding rates, of native predators feeding on invasive prey. PMID:26618851
Targeted predation of extrafloral nectaries by insects despite localized chemical defences
Gish, Moshe; Mescher, Mark C.; De Moraes, Consuelo M.
2015-01-01
Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary. PMID:26446809
Griffis-Kyle, Kerry L; Ritchie, Mark E
2007-07-01
Mineral nitrogen (N) has been suggested as a potential factor causing declines in amphibian populations, especially in agricultural landscapes; however, there is a question as to whether it remains in the water column long enough to be toxic. We explored the hypothesis that mineral N can cause both lethal and sublethal toxic effects in amphibian embryos and larvae in a manipulative field experiment. We sampled 12 ponds, fertilizing half with ammonium nitrate fertilizer early in the spring, and measured hatching, survival, development, growth, and the incidence of deformities in native populations of wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and larvae held in in situ enclosures. We found that higher ammonium concentrations negatively affect R. sylvatica more strongly than A. tigrinum. R. sylvatica tended to have lower survival as embryos and young tadpoles, slowed embryonic development, and an increased proportion of hatchlings with deformities at experimentally elevated ammonium. A. tigrinum did not experience significantly reduced survival, but their larval development was slowed in response to elevated ammonium and the abundance of large invertebrate predators. Variable species susceptibility, such as that shown by R sylvatica and A. tigrinum, could have large indirect effects on aquatic community structure through modification of competitive or predator-prey relationships. Ammonium and nitrate + nitrite concentrations were not correlated with other measures that might have affected amphibians, such as pH, pond area, depth, or vegetation. Our results highlight the potential importance of elevated ammonium on the growth, development and survival of amphibians, especially those that breed in surface waters receiving anthropogenic N inputs.
NASA Astrophysics Data System (ADS)
Geburzi, Jonas C.; Brandis, Dirk; Buschbaum, Christian
2018-01-01
Life-history traits and interactions with native species play an important role for the successful establishment of non-native species in new habitats. We investigated the recent successful invasion of the Pacific crabs Hemigrapsus takanoi and H. sanguineus to the southeastern North Sea coast with respect to their recruitment patterns, as well as interactions of juvenile with sub-adult individuals among the Pacific crabs and with native shore crabs Carcinus maenas. A field survey of juvenile native and introduced crab abundances (carapace width 1.4-10 mm) was conducted in the northern Wadden Sea, spanning 24 months from 2014 to 2016. The survey revealed different seasonal recruitment patterns of native C. maenas and both introduced Hemigrapsus species. Native shore crabs showed a single recruitment peak from June to July, while Hemigrapsus spp. mainly recruited from August to early September, but recruits occurred in low densities throughout the winter until the end of the following spring season. Field experiments on the effects of larger crabs on the recruitment intensity showed that recruitment of H. takanoi was enhanced by the presence of larger congeners, but remained unaffected by larger C. maenas. Recruitment of juvenile C. maenas, by contrast, was reduced by the presence of larger Hemigrapsus spp. Additional laboratory experiments revealed high rates of cannibalism on newly recruited C. maenas by subadult conspecifics as well as strong predation by larger Hemigrapsus spp. In contrast, newly recruited Hemigrapsus spp. had a much lower risk of being preyed on by subadult conspecifics and native shore crabs. Our results suggest that the timing of recruitment in combination with low intraspecific competition and reduced predation pressure by native shore crabs are crucial for the rapid and ongoing establishment of Hemigrapsus spp. in the Wadden Sea.
How much Dillenia indica seed predation occurs from Asian elephant dung?
NASA Astrophysics Data System (ADS)
Sekar, Nitin; Giam, Xingli; Sharma, Netra Prasad; Sukumar, Raman
2016-01-01
Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<3 mm wide) for 1-4 months, and c) made available to all seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat.
Habitat quality mediates personality through differences in social context.
Belgrad, Benjamin A; Griffen, Blaine D
2017-06-01
Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m -2 ). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
Crying wolf to a predator: deceptive vocal mimicry by a bird protecting young
Igic, Branislav; McLachlan, Jessica; Lehtinen, Inkeri; Magrath, Robert D.
2015-01-01
Animals often mimic dangerous or toxic species to deter predators; however, mimicry of such species may not always be possible and mimicry of benign species seems unlikely to confer anti-predator benefits. We reveal a system in which a bird mimics the alarm calls of harmless species to fool a predator 40 times its size and protect its offspring against attack. Our experiments revealed that brown thornbills (Acanthiza pusilla) mimic a chorus of other species' aerial alarm calls, a cue of an Accipiter hawk in flight, when predators attack their nest. The absence of any flying predators in this context implies that these alarms convey deceptive information about the type of danger present. Experiments on the primary nest predators of thornbills, pied currawongs (Strepera graculina), revealed that the predators treat these alarms as if they themselves are threatened by flying hawks, either by scanning the sky for danger or fleeing, confirming a deceptive function. In turn, these distractions delay attack and provide thornbill nestlings with an opportunity to escape. This sophisticated defence strategy exploits the complex web of interactions among multiple species across several trophic levels, and in particular exploits a predator's ability to eavesdrop on and respond appropriately to heterospecific alarm calls. Our findings demonstrate that prey can fool predators by deceptively mimicking alarm calls of harmless species, suggesting that defensive mimicry could be more widespread because of indirect effects on predators within a web of eavesdropping. PMID:26041353
ERIC Educational Resources Information Center
Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel
2011-01-01
In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…
Dean Pearson
1999-01-01
Field observations made in 1993 suggested that rodents were preying on spotted knapweed (Centaurea maculosa) seedheads, possibly targeting the gall fly larvae (Urophora spp.) which overwinter within them. I conducted a brief study to determine the cause of seedhead predation and quantify gall fly predation. Stomachs were examined...
Gut content analysis of arthropod predators of codling moth in Washington apple orchards
USDA-ARS?s Scientific Manuscript database
More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...
Juvenile exposure to predator cues induces a larger egg size in fish
Segers, Francisca H. I. D.; Taborsky, Barbara
2012-01-01
When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring. PMID:21976689
Mommer, Brett C; Bell, Alison M
2014-01-01
There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.
Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse.
Furey, Nathan B; Hinch, Scott G; Mesa, Matthew G; Beauchamp, David A
2016-09-01
Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested. We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise 'topping off' based on sustainable digestion rates). One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by ˜1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic. Simulations demonstrated the ability to binge-feed increased cumulative consumption (16-32%) and cumulative growth (19-110%) relative to only feeding at bioenergetically sustainable rates during the ˜1-month smolt outmigration period. Our results indicate the ability for predators to maximize short-term consumption when prey are available can be extreme and is limited primarily by gut volume, then mediated by temperature; thus, predator-prey relationships may be more dependent upon prey availability than traditional bioenergetic models suggest. Binge-feeding has important implications for energy budgets of consumers as well as acute predation impacts on prey. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
French, William E.; Graeb, Brian D. S.; Chipps, Steven R.; Klumb, Robert A.
2014-01-01
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α = 0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α = 0.44, neutral selection), but low for large pallid sturgeon (α = 0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.
Wu, Xinwei; Griffin, John N; Sun, Shucun
2014-05-01
Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these indirect interactions depend not just on the relative habitat domains of predators and prey, but also on environmental conditions that can predictably constrain the behavioural response of detritivores to predation risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Experience during development triggers between-individual variation in behavioural plasticity.
Urszán, Tamás János; Garamszegi, László Zsolt; Nagy, Gergely; Hettyey, Attila; Török, János; Herczeg, Gábor
2018-05-12
1.Behavioural consistency within and across behaviours (animal personality and behavioural syndrome, respectively) have been vigorously studied in the last decade, leading to the emergence of 'animal personality' research. It has been proposed recently that not only mean behaviour (behavioural type), but the environmentally induced behavioural change (behavioural plasticity) might also differ between individuals within populations. 2.While case studies presenting between-individual variation in behavioural plasticity have started to accumulate, the mechanisms behind its emergence are virtually unknown. We have recently demonstrated that ecologically relevant environmental stimuli during ontogeny are necessary for the development of animal personality and behavioural syndromes. However, it is unknown whether between-individual variation in behavioural plasticity is hard-wired or induced. 3.Here, we tested whether experience with predation during development affected predator-induced behavioural plasticity in Rana dalmatina tadpoles. We ran a common garden experiment with two ontogenetic predation treatments: tadpoles developed from hatching in either the presence or absence of olfactory predator stimuli. Then, we assayed all tadpoles repeatedly for activity and risk-taking both in the absence and presence of olfactory predator stimuli. 4. We found that (i) between-individual variation in predator-induced behavioural plasticity was present only in the group that developed in the presence of olfactory stimuli from predators and (ii) previous experience with predatory stimuli resulted in lower plastic response at the group-level. The latter pattern resulted from increased between-individual variation and not from universally lower individual responses. We also found that experience with predation during development increased the predictability (i.e. decreased the within-individual variation unrelated to environmental change) of activity, but not risk-taking. In line with this, tadpoles developing under perceived predatory risk expressed their activity with higher repeatability. 5. We suggest that ecologically relevant environmental stimuli are not only fundamental for the development of animal personality and behavioural syndromes, but also for individual variation in behavioural plasticity. Thus, experience is of central importance for the emergence of individual behavioural variation at many levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Stowasser, Annette; Buschbeck, Elke K
2014-11-01
A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.
Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto
2015-01-01
Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397
Mitchell, Matthew D; Chivers, Douglas P; McCormick, Mark I; Ferrari, Maud C O
2015-09-11
It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge.
Mitchell, Matthew D.; Chivers, Douglas P.; McCormick, Mark I.; Ferrari, Maud C.O.
2015-01-01
It is critical for prey to recognise predators and distinguish predators from non-threatening species. Yet, we have little understanding of how prey develop effective predator recognition templates. Recent studies suggest that prey may actually learn key predator features which can be used to recognise novel species with similar characteristics. However, non-predators are sometimes mislabelled as predators when generalising recognition. Here, we conduct the first comprehensive investigation of how prey integrate information on predator odours and predator diet cues in generalisation, allowing them to discriminate between predators and non-predators. We taught lemon damselfish to recognise a predator fed a fish diet, and tested them for their response to the known predator and a series of novel predators (fed fish diet) and non-predators (fed squid diet) distributed across a phylogenetic gradient. Our findings show that damselfish distinguish between predators and non-predators when generalising recognition. Additional experiments revealed that generalised recognition did not result from recognition of predator odours or diet cues, but that damselfish based recognition on what they learned during the initial conditioning. Incorporating multiple sources of information enables prey to develop highly plastic and accurate recognition templates that will increase survival in patchy environments where they have little prior knowledge. PMID:26358861
Zappalorti, Robert T.; Tutterow, Annalee M.; Pittman, Shannon E.; Lovich, Jeffrey E.
2017-01-01
Nest-site selection by most turtles affects the survival of females and their offspring. Although bog turtles (Glyptemys muhlenbergii) do not typically leave their wetlands for nesting, nest-site selection can impact hatching success and hatchling survival. Between 1974 and 2012, we monitored the fates of 258 bog turtle eggs incubated in the field and 91 eggs incubated under laboratory conditions from 11 different bogs, fens, or wetland complexes in New Jersey and Pennsylvania. Laboratory-incubated eggs exhibited the greatest hatching success (81%), but we did not detect a significant difference in hatching success between nests protected with predator excluder cages (43%) and unprotected nests (33%). However, we found significantly lower predation rates in protected nests, suggesting that while predator excluder cages successfully reduced predation, other environmental factors persisted to reduce egg survival in the field. Natural hatching success was potentially reduced by poor weather conditions, which may have resulted in embryo developmental problems, dehydration, or embryos drowning in the egg. Our results suggest that egg depredation, coupled with embryo developmental problems and infertility, are limiting factors to hatching success in our study populations. Using predator excluder cages to protect bog turtle eggs in the field, or incubating eggs in the laboratory and releasing hatchlings at original nesting areas, may be an effective conservation tool for recovering populations of this federally threatened species.
Gregarious pupation act as a defensive mechanism against cannibalism and intraguild predation.
Roberge, Claudia; Fréchette, Bruno; Labrie, Geneviève; Dumont, François; Lucas, Eric
2016-08-01
Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2-5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for H. axyridis pupae. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Mismatched anti-predator behavioral responses in predator-naïve larval anurans.
Albecker, Molly; Vance-Chalcraft, Heather D
2015-01-01
Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles.
Mismatched anti-predator behavioral responses in predator-naïve larval anurans
Vance-Chalcraft, Heather D.
2015-01-01
Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805
A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.
Altieri, Andrew H; Bertness, Mark D; Coverdale, Tyler C; Herrmann, Nicholas C; Angelini, Christine
2012-06-01
Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.
The Role of Natural Enemy Foraging Guilds in Controlling Cereal Aphids in Michigan Wheat
Safarzoda, Shahlo; Bahlai, Christine A.; Fox, Aaron F.; Landis, Douglas A.
2014-01-01
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies. PMID:25473951
Predator confusion is sufficient to evolve swarming behaviour.
Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph
2013-08-06
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.
John L. Maron; Dean E. Pearson
2011-01-01
The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...
USDA-ARS?s Scientific Manuscript database
Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly ...
Tan, Eunice J; Li, Daiqin
2009-06-01
Many species of the orb-web spider genus Cyclosa often adorn their webs with decorations of prey remains, egg sacs and/or plant detritus, termed ;detritus decorations'. These detritus decorations have been hypothesised to camouflage the spider from predators or prey and thus reduce predation risk or increase foraging success. In the present study, we tested these two alternative hypotheses simultaneously using two types of detritus decorations (prey remain and egg sac) built by Cyclosa mulmeinensis (Thorell). By monitoring the possible responses of predators to spiders on their webs with and without decorations in the field, we tested whether web decorations would reduce the mortality of spiders. Wasp predators were observed to fly in the vicinity of webs with decorations slightly more often than in the vicinity of webs without decorations but there were very few attacks on spiders by wasps. By comparing the insect interception rates of webs with and without decorations in the field, we tested whether web decorations would increase the foraging success. Webs decorated with prey remains or egg sacs intercepted more insects than those without in the field. By calculating colour contrasts of both prey-remain and egg-sac decorations against spiders viewed by bird (blue tits) and hymenopteran (e.g. wasps) predators as well as hymenopteran (bees) prey, we showed that C. mulmeinensis spiders on webs with egg-sac decorations were invisible to both hymenopteran prey and predators and bird predators over short and long distances. While spiders on webs with prey-remain decorations were invisible to both hymenopterans and birds over short distances, spiders on webs with prey-remain decorations were visible to both predators and prey over long distances. Our results thus suggest that decorating webs with prey remains and egg sacs in C. mulmeinensis may primarily function as camouflage to conceal the spider from insects rather than as prey attractants, possibly contributing to the interception of more insect prey. However, the detritus decorations exhibit varying success as camouflage against predators, depending on whether predators are jumping spiders, wasps or birds, as well as on the decoration type.
Factors affecting predation at songbird nests in old fields
Dirk E. Burhans; Donald Dearborn; Frank R. III Thompson; John Faaborg
2002-01-01
We determined the effects of microhabitat, year, weather, time of season, stage of the nesting cycle, and brood parasitism on nest predation from a 7-year dataset on field sparrows (Spizella pusilla) and indigo buntings (Passerina cyanea) in central Missouri, USA. Year, site, and the interaction of species and 2-week interval of the season were important factors...
Cooperation under predation risk: experiments on costs and benefits
Milinski, M.; Lüthi, J. H.; Eggler, R.; Parker, G. A.
1997-01-01
Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks of the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.
Cooperation under Predation Risk: Experiments on Costs and Benefits
NASA Astrophysics Data System (ADS)
Milinski, Manfred; Luthi, Jean H.; Eggler, Rolf; Parker, Geoffrey A.
1997-06-01
Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks to the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.
Dunlap, Kent D; Keane, Geoffrey; Ragazzi, Michael; Lasky, Elise; Salazar, Vielka L
2017-07-01
The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish ( Brachyhypopomus occidentalis ) naturally exposed to high predator ( Rhamdia quelen ) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus , cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio , tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus , tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear. © 2017. Published by The Company of Biologists Ltd.
Field Assessment of the Predation Risk - Food Availability Trade-Off in Crab Megalopae Settlement
Tapia-Lewin, Sebastián; Pardo, Luis Miguel
2014-01-01
Settlement is a key process for meroplanktonic organisms as it determines distribution of adult populations. Starvation and predation are two of the main mortality causes during this period; therefore, settlement tends to be optimized in microhabitats with high food availability and low predator density. Furthermore, brachyuran megalopae actively select favorable habitats for settlement, via chemical, visual and/or tactile cues. The main objective in this study was to assess the settlement of Metacarcinus edwardsii and Cancer plebejus under different combinations of food availability levels and predator presence. We determined, in the field, which factor is of greater relative importance when choosing a suitable microhabitat for settling. Passive larval collectors were deployed, crossing different scenarios of food availability and predator presence. We also explore if megalopae actively choose predator-free substrates in response to visual and/or chemical cues. We tested the response to combined visual and chemical cues and to each individually. Data was tested using a two-way factorial design ANOVA. In both species, food did not cause significant effect on settlement success, but predator presence did, therefore there was not trade-off in this case and megalopae respond strongly to predation risk by active aversion. Larvae of M. edwardsii responded to chemical and visual cues simultaneously, but there was no response to either cue by itself. Statistically, C. plebejus did not exhibit a differential response to cues, but reacted with a strong similar tendency as M. edwardsii. We concluded that crab megalopae actively select predator-free microhabitat, independently of food availability, using chemical and visual cues combined. The findings in this study highlight the great relevance of predation on the settlement process and recruitment of marine invertebrates with complex life cycles. PMID:24748151
Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.
2010-01-01
Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.
A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm
Klinger, R.; Rejmanek, M.
2010-01-01
Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.
Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M
2009-06-28
The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk by measuring different endpoints over a wider range of pesticide concentrations.
Predicting Predator Recognition in a Changing World.
Carthey, Alexandra J R; Blumstein, Daniel T
2018-02-01
Through natural as well as anthropogenic processes, prey can lose historically important predators and gain novel ones. Both predator gain and loss frequently have deleterious consequences. While numerous hypotheses explain the response of individuals to novel and familiar predators, we lack a unifying conceptual model that predicts the fate of prey following the introduction of a novel or a familiar (reintroduced) predator. Using the concept of eco-evolutionary experience, we create a new framework that allows us to predict whether prey will recognize and be able to discriminate predator cues from non-predator cues and, moreover, the likely persistence outcomes for 11 different predator-prey interaction scenarios. This framework generates useful and testable predictions for ecologists, conservation scientists, and decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M
2004-04-07
Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.
Predator interference and stability of predator-prey dynamics.
Přibylová, Lenka; Berec, Luděk
2015-08-01
Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.
Darr, M N; McAvoy, T J; Brewster, C C; Salom, S M
2016-12-01
The hemlock woolly adelgid, Adelges tsugae Annand, is an invasive pest of eastern (Tsuga canadensis (L.) Carrière) and Carolina hemlock (Tsuga caroliniana Engelmann) forests in the eastern United States. Scymnus (Pullus) coniferarum Crotch (Coleoptera: Coccinellidae) is a lady beetle that preys on A. tsugae in the western United States, where A. tsugae infestations on western hemlocks are not lethal. It is thought that S. coniferarum could be an important predator that helps keep A. tsugae populations from reaching damaging levels in this region. This study assesses the potential of this predator as a biological control agent for A. tsugae in the eastern United States. S. coniferarum predation, reproductive potential, and survival were evaluated in field-cages on adelgid-infested T. canadensis at two sites in southwestern Virginia. Sampling was conducted between December 2012 and June 2014 to evaluate the impact of S. coniferarum on both generations of A. tsuage (sistens and progrediens). Adult S. coniferarum fed on both generations and all life stages of A. tsugae during both field trials at rates comparable to other adelgid-specific predators. Evidence of S. coniferarum oviposition was minimal, and may be attributed to low temperatures and prey availability. S. coniferarum mortality was greatest when exposed to winter temperatures at the higher elevation site in 2013, and least throughout the 2014 spring sample period. S. coniferarum demonstrated a high predation rate on A. tsugae and survived for extended periods of time at sites in southwest Virginia, indicating that this species could be an effective predator of hemlock woolly adelgid in similar climates. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Experimental evidence for olfactory predator recognition in wild mouse lemurs.
Kappel, Philipp; Hohenbrink, Sarah; Radespiel, Ute
2011-09-01
Although primates have remarkable olfactory capabilities, their ability for olfactory predator recognition is still understudied. We investigated this cognitive ability in wild gray and golden-brown mouse lemurs (Microcebus murinus and M. ravelobensis) that were confronted with four different olfactory stimuli, derived from two Malagasy predators (fossa and barn owl) and two local nonpredator species (brown lemur and sifaka). The predator response was tested (1) in a systematic cage setup and (2) in a two-way choice experiment with two Sherman traps on platforms in the forest (stimulus trap vs. nonstimulus trap). For part 1, the study animals were housed in cages during habituation and 5 days of experiments. One stimulus was tested per night and was presented underneath a drinking bottle. The changes in the time spent close to the stimulus and the drinking time at the bottle were used as indicators of predator recognition. A timidity score was established by classifying the strength of the antipredator response during the experiment. The study animals spent significantly less time drinking and less time in the stimulus area when confronted with fossa odor compared with the other stimuli. The timidity score was significantly higher during the fossa stimulus compared with the nonpredator and the control stimuli. The two-way choice experiments revealed a complete avoidance of the fossa odor, which was not found with the other stimuli. Thus, wild mouse lemurs showed clear signs of olfactory predator recognition in the case of the fossa in both experiments, but no signs of avoidance to the other presented stimuli. The lack of owl avoidance may be explained by less or no aversive metabolites in the owl stimulus or by lower significance for olfactory recognition of aerial predators. Furthermore, the results showed slight differences between the two mouse lemur species that may be linked to differences in their ecology. © 2011 Wiley-Liss, Inc.
Limbu, Samita; Cassidy, Katie; Keena, Melody; Tobin, Patrick; Hoover, Kelli
2016-02-01
Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) was brought to the United States from China as a potential biological control agent for hemlock woolly adelgid (Adelges tsugae Annand) (Hemiptera: Adelgidae). Scymnus camptodromus phenology is closely synchronized with that of A. tsugae and has several characteristics of a promising biological control agent. As a prerequisite to field release, S. camptodromus was evaluated for potential nontarget impacts. In host range studies, the predator was given the choice of sympatric adelgid and nonadelgid prey items. Nontarget testing showed that S. camptodromus will feed to some degree on other adelgid species, but highly prefers A. tsugae. We also evaluated larval development of S. camptodromus on pine bark adelgid (Pineus strobi (Hartig)) (Hemiptera: Adelgidae) and larch adelgid (Adelges laricis Vallot) (Hemiptera: Adelgidae); a small proportion of predator larvae was able to develop to adulthood on P. strobi or A. laricis alone. Scymnus camptodromus showed no interest in feeding on woolly alder aphid (Paraprociphilus tessellatus Fitch) (Hemiptera: Aphididae) or woolly apple aphid (Eriosoma lanigerum (Hausmann)) (Hemiptera: Aphididae), and minimal interest in cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) in choice and no-choice experiments. Scymnus camptodromus females did not oviposit on any host material other than A. tsugae-infested hemlock. Under the circumstances of the study, S. camptodromus appears to be a specific predator of A. tsugae, with minimal risk to nontarget species. Although the predator can develop on P. strobi, the likelihood that S. camptodromus would oviposit on pine hosts of this adelgid is small.
Recovery of a top predator mediates negative eutrophic effects on seagrass
Hughes, Brent B.; Eby, Ron; Van Dyke, Eric; Tinker, M. Tim; Marks, Corina I.; Johnson, Kenneth S.; Wasson, Kerstin
2013-01-01
A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of “bottom-up” forces such as the role of nutrients and “top-down” forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass.
Recovery of a top predator mediates negative eutrophic effects on seagrass
Hughes, Brent B.; Eby, Ron; Van Dyke, Eric; Tinker, M. Tim; Marks, Corina I.; Johnson, Kenneth S.; Wasson, Kerstin
2013-01-01
A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of “bottom-up” forces such as the role of nutrients and “top-down” forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass. PMID:23983266
Bernstein, C
1984-01-01
Some of the processes that influence the emigration of prey and predatory mites from bean plants were investigated experimentally. The emigration of the prey depends on the damage they cause to the plants and on predator density. The predator's emigration rate is a decreasing function of prey density, and does not change (or it slightly decreases) when prey and predator numbers are increased maintaining the same prey/predator ratio. The probability of emigration of the predators is independent of their own density when prey are absent and density dependent when prey density is kep constant. Forty three per cent of the variability in the predator's instantaneous rate of emigration in the different experiments is accounted for by a two parameter negative exponential function of capture rate (number of prey eaten per predator and per unit of time).
Parental risk management in relation to offspring defence: bad news for kids.
Mahr, Katharina; Riegler, Georg; Hoi, Herbert
2015-01-07
Do parents defend their offspring whenever necessary, and do self-sacrificing parents really exist? Studies recognized that parent defence is dynamic, mainly depending on the threat predators pose. In this context, parental risk management should consider the threat to themselves and to their offspring. Consequently, the observed defence should be a composite of both risk components. Surprisingly, no study so far has determined the influence of these two threat components on parental decision rules. In a field experiment, we investigated parental risk taking in relation to the threat posed to themselves and their offspring. To disentangle the two threat components, we examined defence behaviours of parent blue tits Cyanistes caeruleus towards three different predators and during different nestling developmental stages. Nest defence strategies in terms of alarm call intensity and nearest predator approach differed between the three predators. Defence intensity was only partly explained by threat level. Most importantly, parental risk management varied in relation to their own, but not offspring risk. Parent defence investment was independent of nestling risk when parents followed a high-risk strategy. However, parents considered nestling as well as parental risk when following a low-risk strategy. Our findings could have general implications for the economy of risk management and decision-making strategies in living beings, including humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Both Geography and Ecology Contribute to Mating Isolation in Guppies
Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.
2010-01-01
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541
Predator confusion is sufficient to evolve swarming behaviour
Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph
2013-01-01
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485
Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.
Ohba, S Y; Matsuo, T; Takagi, M
2013-03-01
Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.
Predator experience overrides learned aversion to heterospecifics in stickleback species pairs
Kozak, Genevieve M.; Boughman, Janette W.
2015-01-01
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887
Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado
NASA Astrophysics Data System (ADS)
Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina
2017-08-01
Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement conduits, for example powerline openings, may have even stronger effects, demanding further studies.
Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L
2007-05-01
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.
Predation of Notiophilus (Coleoptera: Carabidae) on Collembola as a Predator-Prey Teaching Model.
ERIC Educational Resources Information Center
Higgins, R. C.
1982-01-01
The carabid beetle (Notiophilus) preys readily on an easily-cultured collembolan in simple experimental conditions. Some features of this predator-prey system are outlined to emphasize its use in biology instruction. Experiments with another potential collembolan are described in the context of developing the method for more advanced studies.…
Estimating ladybird predation of aphids in the presence of foraging ants in lab bioassays
USDA-ARS?s Scientific Manuscript database
Foraging or tending ants often disrupt ladybird beetle predation of aphids on crop plants. In this study, we assessed the foraging behavior of the red imported fire ant (Solenopsis invicta) and tested the hypothesis that foraging ants disrupt ladybird predation. We setup experiments in the laborator...
Geographic variation in prey preference in bark beetle predators
John D. Reeve; Brian L. Strom; Lynne K. Rieske; Bruce D. Ayers; Arnaud Costa
2009-01-01
1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response todifferent pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic...
Nest predation research: Recent findings and future perspectives
Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.
2016-01-01
Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.
High duck nesting success in a predator-reduced environment
Duebbert, H.F.; Lokemoen, J.T.
1980-01-01
Duck nesting and production were studied during 1969-74 on a 51-ha field of undisturbed grass-legume cover and a surrounding 8.13-km2 area in north-central South Dakota. The principal mammalian predators of ducks were reduced within a 259-km2 zone from May 1969 through August 1971. Dabbling duck nest densities, hatching success, and breeding populations attained high levels. Seven duck species produced 1,062 nests on the 51-ha field during 6 years, 864 (81%) hatched, 146 (14%) were destroyed, and 52 (5%) had other fates. During 1970-72, when predator reduction was most effective, the hatching success for 756 nests was 94%. The number of mallard (Anas platyrhynchos) nests increased from 37 (0.7/ha) in 1969 to 181 (3.5/ha) in 1972. Mallard pairs increased from 2.8/km2 to 16.8/km2 on the 8.13-km2 area during the same period. A minimum of 7,250 ducklings hatched on the 51-ha field during the 6 years, including 2,342 ducklings in 1972. Exceptionally high duck nesting densities and hatching rates occurred when predators were controlled.
Simkins, Richard M; Belk, Mark C
2017-08-01
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.
Olfactory predator recognition in predator-naïve gray mouse lemurs (Microcebus murinus).
Sündermann, Dina; Scheumann, Marina; Zimmermann, Elke
2008-05-01
Olfactory cues of predators, such as feces, are known to elicit antipredator responses in animals (e.g., avoidance, activity). To date, however, there is little information on olfactory predator recognition in primates. We tested whether the odor of feces of different predator categories (historical Malagasy predators and introduced predators) and of Malagasy nonpredators (control) induces antipredator behavior in captive born, predator-naïve gray mouse lemurs. In an olfactory predator experiment a mouse lemur was exposed to a particular odor, fixed at a preferred location, where the animal was trained to get a reward. The behavior of the mouse lemur toward the respective stimulus category was videotaped and quantified. Results showed that mouse lemurs avoided the place of odor presentation when the odor belonged to a predator. They reacted with a significantly enhanced activity when exposed to odors of carnivores compared to those of nonpredatory controls. These findings are in favor of a genetic predisposition of olfactory predator recognition that might be based on the perception of metabolites from meat digestion. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Taylor, R.C.; Trexler, J.C.; Loftus, W.F.
2001-01-01
We documented patterns of age-structured biotic interactions in four mesocosm experiments with an assemblage of three species of co-occurring fishes from the Florida Everglades, the eastern mosquitofish (Gambusia holbrooki), sailfin molly (Poecilia latipinna), and bluefin killifish (Lucania goodei). These species were chosen based on their high abundance and overlapping diets. Juvenile mosquitofish and sailfin mollies, at a range of densities matching field estimates, were maintained in the presence of adult mosquitofish, sailfin mollies, and bluefin killifish to test for effects of competition and predation on juvenile survival and growth. The mesocosms held 1,200 1 of water and all conditions were set to simulate those in Shark River Slough, Everglades National Park (ENP), USA. We placed floating mats of periphyton and bladderwort in each tank in standard volumes that matched field values to provide cover and to introduce invertebrate prey. Of 15 possible intra- and interspecific age-structured interactions, we found 7 to be present at the densities of these fish found in Shark River Slough marshes. Predation by adult mosquitofish on juvenile fish, including conspecifics, was the strongest effect observed. We also observed growth limitation in mosquitofish and sailfin molly juveniles from intra- and interspecific competition. When maintained at high densities, juvenile mosquitofish changed their diets to include more cladocerans and fewer chironomid larvae relative to low densities. We estimated size-specific gape limitation by adult mosquitofish when consuming juvenile mosquitofish and sailfin mollies. At high field densities, intraspecific competition might prolong the time period when juveniles are vulnerable to predation by adult mosquitofish. These results suggest that path analysis, or other techniques used to document food-web interactions, must include age-specific roles of these fishes.
Complex emergence patterns in a bark beetle predator
John D. Reeve
2000-01-01
The emergence pattern of Thanasimus dubius (F.) (Coleoptera: Cleridae), a common predator of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), was studied under field conditions across different seasons. A simple statistical model was then developed...
How Corridors Reduce Indigo Bunting Nest Success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee, J.
2006-08-01
Abstract: Corridors are a popular strategy to conserve biodiversity and promote gene flow in fragmented landscapes. Corridor effectiveness has been bolstered by the fact that no empirical field studies have shown negative effects on populations or communities. I tested the hypothesis that corridors increase nest predation in connected habitat fragments relative to unconnected fragments. I evaluated this hypothesis in a large-scale experimental system of open-habitat fragments that varied in shape and connectivity. Corridors increased nest predation rates in connected fragments relative to unconnected fragments with lower edge:area ratios. Nest predation rates were similar between connected and unconnected fragments with highermore » edge:area ratios. These results suggest that the increase in predator activity is largely attributable to edge effects incurred through the addition of a corridor. This is the first field study to demonstrate that corridors can negatively impact animal populations occupying connected fragments.« less
NASA Astrophysics Data System (ADS)
Daan, Rogier
In laboratory tests food intake by the hydromedusa Sarsia tubulosa, which feeds on copepods, was quantified. Estimates of maximum predation are presented for 10 size classes of Sarsia. Growth rates, too, were determined in the laboratory, at 12°C under ad libitum food conditions. Mean gross food conversion for all size classes averaged 12%. From the results of a frequent sampling programme, carried out in the Texelstroom (a tidal inlet of the Dutch Wadden Sea) in 1983, growth rates of Sarsia in the field equalled maximum growth under experimental conditions, which suggests that Sarsia in situ can feed at an optimum level. Two estimates of predation pressure in the field matched very closely and lead to the conclusion that the impact of Sarsia predation on copepod standing stocks in the Dutch coastal area, including the Wadden Sea, is generally negligible.
NASA Astrophysics Data System (ADS)
Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea
2017-04-01
Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.
Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.
Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi
2016-03-01
Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.
Parent birds assess nest predation risk and adjust their reproductive strategies
Fontaine, J.J.; Martin, T.E.
2006-01-01
Avian life history theory has long assumed that nest predation plays a minor role in shaping reproductive strategies. Yet, this assumption remains conspicuously untested by broad experiments that alter environmental risk of nest predation, despite the fact that nest predation is a major source of reproductive failure. Here, we examined whether parents can assess experimentally reduced nest predation risk and alter their reproductive strategies. We experimentally reduced nest predation risk and show that in safer environments parents increased investment in young through increased egg size, clutch mass, and the rate they fed nestlings. Parents also increased investment in female condition by increasing the rates that males fed incubating females at the nest, and decreasing the time that females spent incubating. These results demonstrate that birds can assess nest predation risk at large and that nest predation plays a key role in the expression of avian reproductive strategies. ?? 2006 Blackwell Publishing Ltd/CNRS.
Ord, Terry J; Summers, Thomas C; Noble, Mae M; Fulton, Christopher J
2017-05-01
An ecological release from competition or predation is a frequent adaptive explanation for the colonization of novel environments, but empirical data are limited. On the island of Rarotonga, several blenny fish species appear to be in the process of colonizing land. Anecdotal observations have implied that aquatic predation is an important factor in prompting such amphibious fish behavior. We provide evidence supporting this hypothesis by demonstrating that amphibious blennies shift their abundance up and down the shoreline to remain above predatory fishes that periodically move into intertidal areas during high tide. A predation experiment using blenny mimics confirmed a high risk of aquatic predation for blennies, significantly higher than predation experienced on land. These data suggest that predation has played an active role in promoting terrestrial activity in amphibious blennies and provide a rare example of how ecological release from predation could drive the colonization of a novel environment.
Do mammalian nest predators follow human scent trails in the shortgrass prairie?
Skagen, S.K.; Stanley, T.R.; Dillon, M.B.
1999-01-01
Nest predation, the major cause of nest failure in passerines, has exerted a strong influence on the evolution of life history traits of birds. Because human disturbance during nest monitoring may alter predation rates, we investigated whether human scent affected the survival of artificial ground nests in shortgrass prairie. Our experiment consisted of two treatments, one in which there was no attempt to mask human scent along travel routes between artificial nests, and one in which we masked human scent with cow manure, a scent familiar to mammalian predators in the study area. We found no evidence that human scent influenced predation rates, nor that mammalian predators followed human trails between nests. We conclude that scent trails made by investigators do not result in lower nesting success of passerines of the shortgrass prairie where vegetation trampling is minimal, mammalian predators predominate, and avian predators are rare.
Wilby, Andrew; Anglin, Linda Anderson; Nesbit, Christopher M
2013-01-01
The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture) on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by plant species composition, mediated, in this case, by the provision of extra-floral nectar by one of the plant species.
Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent
2014-01-01
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
The role of multiple partners in a digestive mutualism with a protocarnivorous plant.
Nishi, Aline Hiroko; Vasconcellos-Neto, João; Romero, Gustavo Quevedo
2013-01-01
The protocarnivorous plant Paepalanthus bromelioides (Eriocaulaceae) is similar to bromeliads in that this plant has a rosette-like structure that allows rainwater to accumulate in leaf axils (i.e. phytotelmata). Although the rosettes of P. bromelioides are commonly inhabited by predators (e.g. spiders), their roots are wrapped by a cylindrical termite mound that grows beneath the rosette. In this study it is predicted that these plants can derive nutrients from recycling processes carried out by termites and from predation events that take place inside the rosette. It is also predicted that bacteria living in phytotelmata can accelerate nutrient cycling derived from predators. The predictions were tested by surveying plants and animals, and also by performing field experiments in rocky fields from Serra do Cipó, Brazil, using natural abundance and enriched isotopes of (15)N. Laboratory bioassays were also conducted to test proteolytic activities of bacteria from P. bromelioides rosettes. Analyses of (15)N in natural nitrogen abundances showed that the isotopic signature of P. bromelioides is similar to that of carnivorous plants and higher than that of non-carnivorous plants in the study area. Linear mixing models showed that predatory activities on the rosettes (i.e. spider faeces and prey carcass) resulted in overall nitrogen contributions of 26·5 % (a top-down flux). Although nitrogen flux was not detected from termites to plants via decomposition of labelled cardboard, the data on (15)N in natural nitrogen abundance indicated that 67 % of nitrogen from P. bromelioides is derived from termites (a bottom-up flux). Bacteria did not affect nutrient cycling or nitrogen uptake from prey carcasses and spider faeces. The results suggest that P. bromelioides derive nitrogen from associated predators and termites, despite differences in nitrogen cycling velocities, which seem to have been higher in nitrogen derived from predators (leaves) than from termites (roots). This is the first study that demonstrates partitioning effects from multiple partners in a digestion-based mutualism. Despite most of the nitrogen being absorbed through their roots (via termites), P. bromelioides has all the attributes necessary to be considered as a carnivorous plant in the context of digestive mutualism.
Roubinet, Eve; Jonsson, Tomas; Malsher, Gerard; Staudacher, Karin; Traugott, Michael; Ekbom, Barbara; Jonsson, Mattias
2018-05-23
Food web structure influences ecosystem functioning and the strength and stability of associated ecosystem services. With their broad diet, generalist predators represent key nodes in the structure of many food webs and they contribute substantially to ecosystem services such as biological pest control. However, until recently it has been difficult to empirically assess food web structure with generalist predators. We utilized DNA-based molecular gut-content analyses to assess the prey use of a set of generalist invertebrate predator species common in temperate agricultural fields. We investigated the degree of specialization of predator-prey food webs at two key stages of the cropping season and analysed the link temperature of different trophic links, to identify non-random predation. We found a low level of specialization in our food webs, and identified warm and cool links which may result from active prey choice or avoidance. We also found a within-season variation in interaction strength between predators and aphid pests which differed among predator species. Our results show a high time-specific functional redundancy of the predator community, but also suggest temporally complementary prey choice due to within-season succession of some predator species.
Senses & Sensibility: Predator-Prey Experiments Reveal How Fish Perceive & Respond to Threats
ERIC Educational Resources Information Center
Jones, Jason; Holloway, Barbara; Ketcham, Elizabeth; Long, John
2008-01-01
The predator-prey relationship is one of the most recognizable and well-studied animal relationships. One of the more striking aspects of this relationship is the differential natural selection pressure placed on predators and their prey. This differential pressure results from differing costs of failure, the so-called life-dinner principle. If a…
Petersen, James H.; Barfoot, Craig A.; Sheer, Mindi B.
2001-01-01
Predation by resident fish is known to be a substantial cause of juvenile salmonid mortality, especially in dam tailraces and outfall locations. Conditions in The Dalles Dam tailrace are unique compared to other projects on the Columbia or Snake rivers, having a complex basin with a series of downriver islands where predators are known to reside. In May-June of 1999, northern pikeminnow and smallmouth bass were sampled in the tailrace of The Dalles Dam during periods immediately following the release of PIT-tagged juvenile salmonids for survival studies. Over twice as many smallmouth bass (N = 101) were collected as northern pikeminnow (N = 40), but none of the predators had PIT tags within their gut. A laboratory study was conducted to estimate the time required for PIT tags in juvenile salmonids to be evacuated from the gut of northern pikeminnow after consuming a tagged preyfish. Evacuation rate was sensitive to temperature, with median evacuation time being 21 h at 18 oC and 30 h at 14 oC. These results suggest that field studies to estimate predator population sizes, feeding rates, or predation on specific release groups would require considerably more effort than we allocated during 1999.
Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.
2012-01-01
Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.
A private ultraviolet channel in visual communication.
Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J
2003-01-01
Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system. PMID:12803903
A private ultraviolet channel in visual communication.
Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J
2003-05-07
Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system.
Replenishment of fish populations is threatened by ocean acidification
Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.
2010-01-01
There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968
Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.
2012-01-01
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316
Learning Temporal Patterns of Risk in a Predator-Diverse Environment
Bosiger, Yoland J.; Lonnstedt, Oona M.; McCormick, Mark I.; Ferrari, Maud C. O.
2012-01-01
Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. “Morning risk” treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). “Evening risk” treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk. PMID:22493699
Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa
2017-01-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831
Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa
2017-03-01
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.
Are antipredator behaviours of hatchery Salmo salar juveniles similar to wild juveniles?
Salvanes, A G V
2017-05-01
This study explores how antipredator behaviour of juvenile Atlantic salmon Salmo salar developed during conventional hatchery rearing of eggs from wild brood stock, compared with the behaviour of wild-caught juveniles from the same population. Juveniles aged 1+ years were tested in two unfamiliar environments; in one S. salar were presented with simulated predator attacks and in the other they were given the opportunity to explore an open-field arena. No difference was found in their spontaneous escape responses or ventilation rate (reflex responses) after simulated predator attacks. Hatchery-reared juveniles were more risk-prone in their behaviours than wild-caught individuals. Hatchery juveniles stayed less time in association with shelter. In the open-field arena, hatchery juveniles were more active than wild juveniles. Hatchery juveniles were also immobile for less time and spent a shorter amount of time than wild juveniles in the fringe of the open-field arena. Salmo salar size had no effect on the observed behaviour. Overall, this study provides empirical evidence that one generation of hatchery rearing does not change reflex responses associated with threats, whereas antipredator behaviour, typically associated with prior experience, was less developed in hatchery-reared than in wild individuals. © 2017 The Fisheries Society of the British Isles.
Traffic noise drowns out great tit alarm calls.
Templeton, Christopher N; Zollinger, Sue Anne; Brumm, Henrik
2016-11-21
Anthropogenic noise is one of the fastest growing and most ubiquitous types of environmental pollution and can impair acoustic communication in a variety of animals [1]. Recent research has shown that birds can adjust acoustic parameters of their sexual signals (songs) in noisy environments [2,3], yet we know little about other types of vocalizations. Anti-predator signals contain subtle information that is critical for avoiding predation [4,5], and failure to detect these calls [6,7] as a result of anthropogenic noise pollution could have large fitness consequences by negatively impacting survival. We investigated whether traffic noise impacts both the production and perception of avian alarm calls using a combination of lab and field experiments with great tits (Parus major), a songbird that frequently inhabits noise-polluted environments. In response to experimental noise manipulation in controlled laboratory conditions, great tits increased the amplitude, but not the frequency parameters, of their mobbing alarm calls (hereafter 'alarm calls'). Playback experiments conducted in the wild indicate that current levels of road traffic noise mask alarm calls, impeding the ability of great tits to perceive these critical signals. These results show that, despite the vocal adjustments used to compensate for anthropogenic noise, great tits are not able to restore the active space of their calls in even moderately noisy environments. Consequently, birds are likely to suffer from increased predation risk under noise, with likely effects on their behaviour, populations, and community dynamics in noise-polluted areas. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Predatory mites double the economic injury level of Frankliniella occidentalis in strawberry.
Sampson, Clare; Kirk, William D J
2016-01-01
The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) causes bronzing to strawberry fruit. Management of insecticide-resistant strains relies on the integration of predators with carefully timed use of the few insecticides available. Effective management requires better understanding of economic injury levels (EILs) and the factors that affect them. The densities of F. occidentalis and the predatory mite Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) were manipulated in field experiments. All stages of flower and fruit were susceptible to thrips damage, but larvae caused nearly twice as much damage as adults per individual. The EIL was about four adult thrips per flower in the absence of predators, but increased to over eight at densities of N. cucumeris typical of good establishment in crops. The EIL could be increased by about 0.7 adult thrips per flower for every N. cucumeris per flower. The results were supported by measurements of EILs in commercial crops.
Shaltiel-Harpaz, Liora; Gerling, Dan; Graph, Shaul; Kedoshim, Hendrika; Azolay, Lotem; Rozenberg, Tamir; Nachache, Yaakov; Steinberg, Shimon; Allouche, Arnon; Alon, Tamar
2016-02-01
The tomato leafminer, Tuta absoluta (Meyrick), had established in Israel by 2010, attacking both open-field tomatoes and greenhouse crops.We searched for its natural enemies in open-field tomatoes, and tried to determine their potential for controlling this pest. We surveyed the local natural enemies in open tomato fields and measured their impact on pest populations in an unsprayed field. We assessed the suppressive ability of the dominant hemipteran predator, Nesidiocoris tenuis Reuter, against T. absoluta under controlled laboratory conditions and evaluated the impact of its augmentation on T. absoluta control in open-field tomatoes. We found five natural enemy species:the predator, N. tenuis, two braconids, and two eulophids. Predation accounted for 64.5±9.2% (mean ± SE) of T. absoluta larval mortality, whereas parasitism accounted for 20.96±7.5%. Together, they eliminated the pest population at tomato harvest time. Under controlled conditions, predation by N. tenuis rose from 58 to 72% with increased density of T. absoluta, suggesting positive density dependence. The reduction of T. absoluta (83%) by N. tenuis was higher than that of Bemisia tabaci (32%), suggesting a preference of N. tenuis for T. absoluta. Augmentation of N.tenuis was as effective as conventional treatment insecticide treatment, and plant damage was low and did not seem to affect yield. Results indicate that reduced pesticide use enables indigenous natural enemies, particularly N.tenuis, to successfully control T. absoluta and prevent crop damage in open-field tomatoes.
Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction
Marshall, Kristin N.; Hobbs, N. Thompson; Cooper, David J.
2013-01-01
Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems. PMID:23390108
Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.
Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J
2013-04-07
Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.
Predation of intertidal infauna on juveniles of the bivalve Macoma balthica
NASA Astrophysics Data System (ADS)
Hiddink, J. G.; ter Hofstede, R.; Wolff, W. J.
2002-03-01
Juveniles of the bivalve Macoma balthica live on tidal flats in the Wadden Sea. This study examined the interaction of Macoma with the infaunal polychaetes Arenicola marina and Nereis diversicolor and the gastropod Retusa obtusa. The distribution of M. balthica spat on the flats, shortly after settlement in April, showed a positive correlation with the Arenicola distribution and a negative correlation with Nereis distribution. There were no locations where Macoma spat and Retusa occurred together. In August, Macoma spat had grown too large for predation by intertidal infauna. Small individuals of Macoma spat were found in stomachs of Arenicola (0.14 worm -1) and Nereis (0.05 worm -1). Laboratory experiments showed that Nereis and Retusa could reduce Macoma spat abundance, both in the absence and presence of sediment and alternative prey. Arenicola reduced the abundance of small Macoma (<1 mm) in sediment without, but not with, alternative prey. In field experiments, we manipulated the density of Arenicola in 0.25-1 m 2 plots and of Nereis in 0.03 m 2 cages and examined the effect on Macoma density several weeks later. We found a significant negative relation between densities of polychaetes and Macoma spat for both polychaete species in these experimental plots. Peculiarly, we found a significant positive relation between manipulated Nereis density and adult Macoma density in the cages; we cannot explain this. Consumption rates, calculated both from stomach contents and from field experiments, were 45 to 102 Macoma m -2 d -1 for Arenicola and 5 to 116 Macoma m -2 d -1 for Nereis. These values are higher than recorded consumption rates by epibenthic predators in the same area. Nevertheless, between-year differences in year-class strength could not be explained by differential abundance of these polychaetes. In conclusion, Arenicola and Nereis had a negative effect on the abundance of Macoma <1.5 mm, which was at least partly caused by direct consumption. Retusa obtusa can eat juvenile Macoma, but probably did not so in the study area, because there were no locations where Retusa and Macoma spat occurred together in the period that Macoma was <2 mm.
Dynamics of prey moving through a predator field: a model of migrating juvenile salmon
Petersen, J.H.; DeAngelis, D.L.
2000-01-01
The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.
Flexible architecture of inducible morphological plasticity.
Kishida, Osamu; Nishimura, Kinya
2006-05-01
1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.
Effects of a Synthetic Predator Odor (TMT) on Freezing, Analgesia, Stereotypy, and Spatial Memory.
ERIC Educational Resources Information Center
Williams, Jon L.; Baez, Catherine; Hladky, Katherine J.; Camacho, Cheri A.
2005-01-01
Exposing rats to the predator odor of trimethylthiazoline (TMT), obtained from the red fox, was compared to exposure to the novel control odor of citronella. In Experiment 1, TMT produced defensive freezing and an analgesic reaction that was reversed by an opiate antagonist. In Experiment 2, TMT augmented response stereotypy induced by an…
Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P
2014-01-01
Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.
Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.
2011-01-01
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156
Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.
Pearson, Dean E
2009-03-01
As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer linkages.
Informed renesting decisions: the effect of nest predation risk.
Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari
2014-04-01
Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.
Karen L. Pope; Jonah Piovia-Scott; Sharon P. Lawler
2009-01-01
1.âInsects emerging from mountain lakes provide an important food source for many terrestrial predators. The amount of insect subsidy that emerges from lakes is influenced by predator composition, but predator effects could be ameliorated by greater habitat complexity. We conducted a replicated whole-lake experiment to test the effects of introduced fish...
Walls, S.C.; Taylor, D.G.; Wilson, C.M.
2002-01-01
Fundamental issues in the study of predator-prey interactions include addressing how prey coexist with their predators and, moreover, whether predators promote coexistence among competing prey. We conducted a series of laboratory experiments with a freshwater assemblage consisting of two predators that differed in their foraging modes (a crayfish, Procambarus sp., and the western mosquitofish, Gambusia affinis) and their prospective anuran prey (tadpoles of the narrow-mouthed toad, Gastrophryne carolinensis, and the squirrel treefrog, Hyla squirella). We examined whether competition occurs within and between these two prey species and, if so, whether the non-lethal presence of predators alters the outcome of competitive interactions. We also asked whether the two species of prey differ in their susceptibility to the two types of predators and whether interspecific differences in predator avoidance behavior might account for this variation. Our results indicated that Gastrophryne was a stronger competitor than Hyla; at high densities, Gastrophryne reduced the body size of both congeners and conspecifics, as well as the proportion of surviving conspecifics that metamorphosed. However, the presence of mosquitofish did not alter the outcome of this competition, nor did either type of predator affect the density-dependent responses of Gastrophryne. In laboratory foraging trials, the number of tadpoles of each prey species that was killed, but not completely consumed by mosquitofish, was similar for Gastrophryne and Hyla. Yet, significantly more individuals of Gastrophryne than of Hyla were the first prey eaten by mosquitofish; there was no difference in the number of individuals of each species eaten by crayfish. Overall, more individuals of Gastrophryne than of Hyla were killed and completely eaten by mosquitofish at the end of the experiment. The two species of prey did not differ in their spatial avoidance of either type of predator, suggesting that this behavior did not play a significant role in the differential vulnerability of the prey to predation. By reducing the abundance of G. carolinensis, the potential exists for predators, such as mosquitofish, to ameliorate this species' competitive impact on other species. In this way, predators may promote coexistence of species within some assemblages of amphibians.
Signal Cloaking by Electric Fish
STODDARD, PHILIP K.; MARKHAM, MICHAEL R.
2010-01-01
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish. PMID:20209064
Reciprocal cooperation in avian mobbing: playing nice pays.
Wheatcroft, David J; Price, Trevor D
2008-08-01
Unrelated passerine birds often join together while mobbing, a widespread antipredator behavior during which birds harass a predator. Although previous analyses concluded that mobbing could not have evolved via reciprocity, Krams and colleagues' field experiments show that birds preferentially join mobs with neighbors that have aided them previously, suggesting that these birds utilize reciprocity-based strategies involving individual recognition and recollection of previous interactions with others. This implies a level of sophistication in bird communities greater than had previously been realized.
Population and behavioural responses of native prey to alien predation.
Kovacs, Eszter Krasznai; Crowther, Mathew S; Webb, Jonathan K; Dickman, Christopher R
2012-04-01
The introduction of invasive alien predators often has catastrophic effects on populations of naïve native prey, but in situations where prey survive the initial impact a predator may act as a strong selective agent for prey that can discriminate and avoid it. Using two common species of Australian small mammals that have persisted in the presence of an alien predator, the European red fox Vulpes vulpes, for over a century, we hypothesised that populations of both would perform better where the activity of the predator was low than where it was high and that prey individuals would avoid signs of the predator's presence. We found no difference in prey abundance in sites with high and low fox activity, but survival of one species-the bush rat Rattus fuscipes-was almost twofold higher where fox activity was low. Juvenile, but not adult rats, avoided fox odour on traps, as did individuals of the second prey species, the brown antechinus, Antechinus stuartii. Both species also showed reduced activity at foraging trays bearing fox odour in giving-up density (GUD) experiments, although GUDs and avoidance of fox odour declined over time. Young rats avoided fox odour more strongly where fox activity was high than where it was low, but neither adult R. fuscipes nor A. stuartii responded differently to different levels of fox activity. Conservation managers often attempt to eliminate alien predators or to protect predator-naïve prey in protected reserves. Our results suggest that, if predator pressure can be reduced, otherwise susceptible prey may survive the initial impact of an alien predator, and experience selection to discriminate cues to its presence and avoid it over the longer term. Although predator reduction is often feasible, identifying the level of reduction that will conserve prey and allow selection for avoidance remains an important challenge.
Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L
2017-07-01
To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.
O'Connor, Constance M; Reddon, Adam R; Odetunde, Aderinsola; Jindal, Shagun; Balshine, Sigal
2015-12-01
Predation is one of the primary drivers of fitness for prey species. Therefore, there should be strong selection for accurate assessment of predation risk, and whenever possible, individuals should use all available information to fine-tune their response to the current threat of predation. Here, we used a controlled laboratory experiment to assess the responses of individual Neolamprologus pulcher, a social cichlid fish, to a live predator stimulus, to the odour of damaged conspecifics, or to both indicators of predation risk combined. We found that fish in the presence of the visual predator stimulus showed typical antipredator behaviour. Namely, these fish decreased activity and exploration, spent more time seeking shelter, and more time near conspecifics. Surprisingly, there was no effect of the chemical cue alone, and fish showed a reduced response to the combination of the visual predator stimulus and the odour of damaged conspecifics relative to the visual predator stimulus alone. These results demonstrate that N. pulcher adjust their anti-predator behaviour to the information available about current predation risk, and we suggest a possible role for the use of social information in the assessment of predation risk in a cooperatively breeding fish. Copyright © 2015. Published by Elsevier B.V.
Predation of freshwater fish in environments with elevated carbon dioxide
Midway, Stephen R.; Hasler, Caleb T.; Wagner, Tyler; Suski, Cory D.
2017-01-01
Carbon dioxide (CO2) in fresh-water environments is poorly understood, yet in marine environments CO2 can affect fish behaviour, including predator–prey relationships. To examine changes in predator success in elevated CO2, we experimented with predatory Micropterus salmoides and Pimephales promelas prey. We used a two-factor fully crossed experimental design; one factor was 4-day (acclimation) CO2 concentration and the second factor CO2 concentration during 20-min predation experiments. Both factors had three treatment levels, including ambient partial pressure of CO2(pCO2; 0–1000 μatm), low pCO2 (4000–5000 μatm) and high pCO2 (8000–10 000 μatm). Micropterus salmoides was exposed to both factors, whereas P. promelas was not exposed to the acclimation factor. In total, 83 of the 96 P. promelas were consumed (n = 96 trials) and we saw no discernible effect of CO2 on predator success or time to predation. Failed strikes and time between failed strikes were too infrequent to model. Compared with marine systems, our findings are unique in that we not only saw no changes in prey capture success with increasing CO2, but we also used CO2 treatments that were substantially higher than those in past experiments. Our work demonstrated a pronounced resiliency of freshwater predators to elevated CO2 exposure, and a starting point for future work in this area.
NASA Astrophysics Data System (ADS)
Perdikis, Dionyssios; Favas, Charalampos; Lykouressis, Dionyssios; Fantinou, Argyro
2007-05-01
Species of the genus Macrolophus (Hemiptera: Miridae) are thought to be effective predators in reducing the numbers of several pests in vegetable crops. These predators are omnivorous as in addition to prey they also utilize plant sap for growth and development. Populations of these predators build in non-crop host plants and provide inoculum that augments natural control of insect pests in adjacent crops. However, to enhance their effectiveness in crops requires knowledge of their trophic relationships with host plants. In this study, the ecological relationships between the predator Macrolophus melanotoma (Costa) ( = M. caliginosus Wagner) and its most important natural host plant Dittrichia viscosa L. (W. Greuter) (Asteraceae) were investigated in the laboratory and in field studies. A 2-year field study of M. melanotoma populations on D. viscosa was made using the percentage of plants infested by C. inulae as a measure of aphid prey abundance. The field studies revealed that M. melanotoma populations were present throughout the year on D. viscosa reaching highest numbers in June and July despite very low levels of aphid infested plants. Laboratory life table studies were used to compare the survival and reproduction of the predator on D. viscosa leaves alone and leaves plus aphid prey ( Capitophorus inulae (Passerini)). Predators reared on D. viscosa leaves plus aphid prey had an average developmental time of 16.73 days, fecundity was 69.55 eggs/female and the intrinsic rate of population increase was 0.0614/day. When fed only leaves, the developmental time was 21.13 days, fecundity was 10.80 eggs/female and the intrinsic rate of population increase was 0.0229/day. The results of the two studies suggest an important role for D. viscosa in conserving and augmenting M. melanotoma in agro ecosystems, and in the development of natural control augmentation strategies in vegetable crops.
Predators of Greater Sage-Grouse nests identified by video monitoring
Coates, P.S.; Connelly, J.W.; Delehanty, D.J.
2008-01-01
Nest predation is the primary cause of nest failure for Greater Sage-Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage-Grouse nests (camera, N = 55; no camera, N = 32) in northeastern Nevada and south-central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage-Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage-Grouse nest failure in the face of land-use changes in the Intermountain West. ?? 2008 Association of Field Ornithologists.
Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S
2017-04-01
Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.
Insectivorous birds eavesdrop on the pheromones of their prey.
Saavedra, Irene; Amo, Luisa
2018-01-01
Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.
NASA Astrophysics Data System (ADS)
Ory, Nicolas C.; Dudgeon, David; Duprey, Nicolas; Thiel, Martin
2014-09-01
Nonlethal effects of predators on prey behaviour are still poorly understood, although they may have cascading effects through food webs. Underwater observations and experiments were conducted on a shallow fringing coral reef in Malaysia to examine whether predation risks affect diel activity, habitat use, and survival of the rhynchocinetid shrimp Cinetorhynchus hendersoni. The study site was within a protected area where predatory fish were abundant. Visual surveys and tethering experiments were conducted in April-May 2010 to compare the abundance of shrimps and predatory fishes and the relative predation intensity on shrimps during day and night. Shrimps were not seen during the day but came out of refuges at night, when the risk of being eaten was reduced. Shrimp preferences for substrata of different complexities and types were examined at night when they could be seen on the reef; complex substrata were preferred, while simple substrata were avoided. Shrimps were abundant on high-complexity columnar-foliate Porites rus, but tended to make little use of branching Acropora spp. Subsequent tethering experiments, conducted during daytime in June 2013, compared the relative mortality of shrimps on simple (sand-rubble, massive Porites spp.) and complex ( P. rus, branching Acropora spp.) substrata under different predation risk scenarios (i.e., different tether lengths and exposure durations). The mortality of shrimps with short tethers (high risk) was high on all substrata while, under low and intermediate predation risks (long tethers), shrimp mortality was reduced on complex corals relative to that on sand-rubble or massive Porites spp. Overall, mortality was lowest on P. rus. Our study indicates that predation risks constrain shrimp activity and habitat choice, forcing them to hide deep inside complex substrata during the day. Such behavioural responses to predation risks and their consequences for the trophic role of invertebrate mesoconsumers warrant further investigation, especially in areas where predatory fishes have been overexploited.
Peters, Joseph R; Granek, Elise F; de Rivera, Catherine E; Rollins, Matthew
2017-11-01
Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus . We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.
Hare, J Daniel
1980-01-01
Burr size is the major factor affecting variation in the intensity of predation by two species of insect on the seeds of the cocklebur, Xanthium strumarium. Mean burr size varied among 10 adjacent local populations studied over three years, as did intensity of seed predation. Seed predation was more intense in populations with low mean burr length and declined linearly with increasing burr length under field and experimental conditions. Seed predation thus is a selective factor influencing the evolution of both burr size and correlated protective characteristics such as burr spine length and wall thickness. As in some other plants, morphological rather than chemical features appear to pose the major barrier to attack by host-specific seed predators. The advantage of more highly developed tissues protecting seeds may occur at the expense of total seed production.
Predators Are Attracted to the Olfactory Signals of Prey
Hughes, Nelika K.; Price, Catherine J.; Banks, Peter B.
2010-01-01
Background Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking. Methodology/Principal Findings To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals. Conclusions/Significance This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not. PMID:20927352
Evaluating prey switching in wolf-ungulate systems.
Garrott, Robert A; Bruggeman, Jason E; Becker, Matthew S; Kalinowski, Steven T; White, P J
2007-09-01
Wolf restoration has become a widely accepted conservation and management practice throughout North America and Europe, though the ecosystem effects of returning top carnivores remain both scientific and societal controversies. Mathematical models predicting and describing wolf-ungulate interactions are typically limited to the wolves' primary prey, with the potential for prey switching in wolf-multiple-ungulate systems only suggested or assumed by a number of investigators. We used insights gained from experiments on small taxa and field data from ongoing wolf-ungulate studies to construct a model of predator diet composition for a wolf-elk-bison system in Yellowstone National Park, Wyoming, USA. The model explicitly incorporates differential vulnerability of the ungulate prey types to predation, predator preference, differences in prey biomass, and the possibility of prey switching. Our model demonstrates wolf diet shifts with changes in relative abundance of the two prey, with the dynamics of this shift dependent on the combined influences of preference, differential vulnerability, relative abundances of prey, and whether or not switching occurs. Differences in vulnerability between elk and bison, and strong wolf preference for elk, result in an abrupt dietary shift occurring only when elk are very rare relative to bison, whereas incorporating switching initiates the dietary shift more gradually and at higher bison-elk ratios. We demonstrate how researchers can apply these equations in newly restored wolf-two-prey systems to empirically evaluate whether prey switching is occurring. Each coefficient in the model has a biological interpretation, and most can be directly estimated from empirical data collected from field studies. Given the potential for switching to dramatically influence predator-prey dynamics and the wide range of expected prey types and abundances in some systems where wolves are present and/or being restored, we suggest that this is an important and productive line of research that should be pursued by ecologists working in wolf-ungulate systems.
Ouyang, Fang; Men, Xingyuan; Yang, Bing; Su, Jianwei; Zhang, Yongsheng; Zhao, Zihua; Ge, Feng
2012-01-01
Background Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. Methodology The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010. Principal Finding Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C4 resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C3-based resource in June, July and August, while approximately 80% of the diet originated from a C4-based resource in September. Conclusion/Significance Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton. PMID:22984499
Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J
2012-05-01
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.
Predator-induced reduction of freshwater carbon dioxide emissions
NASA Astrophysics Data System (ADS)
Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.
2013-03-01
Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.
Sharks modulate their escape behavior in response to predator size, speed and approach orientation.
Seamone, Scott; Blaine, Tristan; Higham, Timothy E
2014-12-01
Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.
Avey, Marc T; Hoeschele, Marisa; Moscicki, Michele K; Bloomfield, Laurie L; Sturdy, Christopher B
2011-01-01
Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.
Heather A. Lumpkin; Scott M. Pearson; Monica G. Turner
2012-01-01
In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to...
Elizabeth Butin; Montgomery Montgomery; Nathan Havill; Joseph Elkinton
2002-01-01
There are few regulations for the release of parasitoids and predators, compared to herbivorous arthropods and pathogens, used as classical biological control agents in the United States. The types of tests conducted prior to release of the predator or parasitoid into the environment are often up to the individual wishing to introduce the new agent. Ethical researchers...
Quantifying fear effects on prey demography in nature.
Peers, Michael J L; Majchrzak, Yasmine N; Neilson, Eric; Lamb, Clayton T; Hämäläinen, Anni; Haines, Jessica A; Garland, Laura; Doran-Myers, Darcy; Broadley, Kate; Boonstra, Rudy; Boutin, Stan
2018-06-13
In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities. © 2018 by the Ecological Society of America.
Predation of schistosomiasis vector snails by ostracoda (crustacea)
Sohn, I.G.; Kornicker, L.S.
1972-01-01
An ostracod species of Cypretta is an effective predator in laboratory experiments on 1- to 3-day-old Biomphalaria glabrata, a vector snail of the blood fluke that causes the tropical and subtropical disease schistosomiasis.
Assessment of predation risk through referential communication in incubating birds
NASA Astrophysics Data System (ADS)
Suzuki, Toshitaka N.
2015-05-01
Parents of many bird species produce alarm calls when they approach and deter a nest predator in order to defend their offspring. Alarm calls have been shown to warn nestlings about predatory threats, but parents also face a similar risk of predation when incubating eggs in their nests. Here, I show that incubating female Japanese great tits, Parus minor, assess predation risk by conspecific alarm calls given outside the nest cavity. Tits produce acoustically discrete alarm calls for different nest predators: “jar” calls for snakes and “chicka” calls for other predators such as crows and martens. Playback experiments revealed that incubating females responded to “jar” calls by leaving their nest, whereas they responded to “chicka” calls by looking out of the nest entrance. Since snakes invade the nest cavity, escaping from the nest helps females avoid snake predation. In contrast, “chicka” calls are used for a variety of predator types, and therefore, looking out of the nest entrance helps females gather information about the type and location of approaching predators. These results show that incubating females derive information about predator type from different types of alarm calls, providing a novel example of functionally referential communication.
Assessment of predation risk through referential communication in incubating birds.
Suzuki, Toshitaka N
2015-05-18
Parents of many bird species produce alarm calls when they approach and deter a nest predator in order to defend their offspring. Alarm calls have been shown to warn nestlings about predatory threats, but parents also face a similar risk of predation when incubating eggs in their nests. Here, I show that incubating female Japanese great tits, Parus minor, assess predation risk by conspecific alarm calls given outside the nest cavity. Tits produce acoustically discrete alarm calls for different nest predators: "jar" calls for snakes and "chicka" calls for other predators such as crows and martens. Playback experiments revealed that incubating females responded to "jar" calls by leaving their nest, whereas they responded to "chicka" calls by looking out of the nest entrance. Since snakes invade the nest cavity, escaping from the nest helps females avoid snake predation. In contrast, "chicka" calls are used for a variety of predator types, and therefore, looking out of the nest entrance helps females gather information about the type and location of approaching predators. These results show that incubating females derive information about predator type from different types of alarm calls, providing a novel example of functionally referential communication.
Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.
Kindinger, Tye L
2018-04-01
The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in populations where competition was experimentally reduced. Thus, an invasive marine predator altered the outcome of interspecific competition via differential predation, which tipped the balance of competition between native prey species from symmetrical to asymmetrical effects on juveniles. This study reveals a newly demonstrated context in which predation can indirectly facilitate prey, further broadening our understanding of the interactive effects of predation and competition in the context of invasive species. © 2018 by the Ecological Society of America.
Combes, S A; Crall, J D; Mukherjee, S
2010-06-23
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.
Observer visitation frequency and success of mourning dove nests: A field experiment
Nichols, J.D.; Percival, H.F.; Coon, R.A.; Conroy, M.J.; Hensler, G.L.; Hines, J.E.
1984-01-01
Field studies of nesting success generally require visits by the investigator to the nests under study. Such visits may themselves influence nesting success, however, and this possibility has been discussed and investigated by a number of workers with a variety of bird species. Livezey (1980) reviewed the relevant literature for duck nests and noted that most studies failed to demonstrate differences in nesting success between visited nests and those not visited. Livezey (1980) found in his own work that nest abandonment may have occurred as a result of disturbance by observers but that nest predation was not related to time spent by observers at nests or number of observers approaching nests. Various components of nesting and breeding success in seabirds are thought to be adversely affected by human disturbance and nest visitation (Gillett et al. 1975, Robert and Ralph 1975, Ollason and Dunnet 1980). Upland, ground-nesting species have also been studied (e.g. Stoddard 1931, Evans and Wolfe 1967, Henry 1969, Roseberry and Klimstra 1970, Klimstra and Roseberry 1975), and, although conclusions have varied, a number of these workers found no effect of observers on nest-predation rates.
Predator pursuit strategies: how do falcons and hawks chase prey?
NASA Astrophysics Data System (ADS)
Kane, Suzanne Amador; Zamani, Marjon; Fulton, Andrew; Rosenthal, Lee
2014-03-01
This study reports on experiments on falcons, goshawks and red-tailed hawks wearing miniature videocameras mounted on their backs or heads while pursuing flying or ground-based prey. Videos of hunts recorded by the raptors were analyzed to determine apparent prey positions on their visual fields during pursuits. These video data then were interpreted using computer simulations of pursuit steering laws observed in insects and mammals. A comparison of the empirical and modeling data indicates that falcons use cues due to the apparent motion of prey on the falcon's visual field to track and capture flying prey via a form of motion camouflage. The falcons also were found to maintain their prey's image at visual angles consistent with using their shallow fovea. Results for goshawks and red-tailed hawks were analyzed for a comparative study of how pursuits of ground-based prey by accipeters and buteos differ from those used by falcons chasing flying prey. These results should prove relevant for understanding the coevolution of pursuit and evasion, as well as the development of computer models of predation on flocks,and the integration of sensory and locomotion systems in biomimetic robots.
Torres-Dowdall, Julián; Golcher-Benavides, Jimena; Machado-Schiaffino, Gonzalo; Meyer, Axel
2017-09-01
Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Effect of Inherited Genetic Information on Stochastic Predator-Prey Model
NASA Astrophysics Data System (ADS)
Duda, Artur; Dyś, Paweł; Nowicka, Alekandra; Dudek, Mirosław R.
We discuss the Lotka-Volterra dynamics of two populations, preys and predators, in the case when the predators posses a genetic information. The genetic information is inherited according to the rules of the Penna model of genetic evolution. Each individual of the predator population is uniquely determined by sex, genotype and phenotype. In our case, the genes are represented by 8-bit integers and the phenotypes are defined with the help of the 8-state Potts model Hamiltonian. We showed that during time evolution, the population of the predators can experience a series of dynamical phase transitions which are connected with the different types of the dominant phenotypes present in the population.
Keystone nonconsumptive effects within a diverse predator community.
Meadows, Amanda J; Owen, Jeb P; Snyder, William E
2017-12-01
The number of prey killed by diverse predator communities is determined by complementarity and interference among predators, and by traits of particular predator species. However, it is less clear how predators' nonconsumptive effects (NCEs) scale with increasing predator biodiversity. We examined NCEs exerted on Culex mosquitoes by a diverse community of aquatic predators. In the field, mosquito larvae co-occurred with differing densities and species compositions of mesopredator insects; top predator dragonfly naiads were present in roughly half of surveyed water bodies. We reproduced these predator community features in artificial ponds, exposing mosquito larvae to predator cues and measuring resulting effects on mosquito traits throughout development. Nonconsumptive effects of various combinations of mesopredator species reduced the survival of mosquito larvae to pupation, and reduced the size and longevity of adult mosquitoes that later emerged from the water. Intriguingly, adding single dragonfly naiads to ponds restored survivorship of larval mosquitoes to levels seen in the absence of predators, and further decreased adult mosquito longevity compared with mosquitoes emerging from mesopredator treatments. Behavioral observations revealed that mosquito larvae regularly deployed "diving" escape behavior in the presence of the mesopredators, but not when a dragonfly naiad was also present. This suggests that dragonflies may have relaxed NCEs of the mesopredators by causing mosquitoes to abandon energetically costly diving. Our study demonstrates that adding one individual of a functionally unique species can substantially alter community-wide NCEs of predators on prey. For pathogen vectors like mosquitoes, this could in turn influence disease dynamics.
Wang, Xue-Qin; Wang, Guang-Hua; Zhu, Zeng-Rong; Tang, Qi-Yi; Hu, Yang; Qiao, Fei; Heong, Kong Luen; Cheng, Jia-An
2017-06-01
Spiders are effective biological control agents in rice ecosystems, but the comparative study of predations among main spider species under field conditions has not been fully explored owing to a lack of practical methodology. In this study, more than 6000 spiders of dominant species were collected from subtropical rice ecosystems to compare their predations on Sogatella furcifera (Horváth) (white-backed planthopper, WBPH) using DNA-based gut content analysis. The positive rates for all spider taxa were closely related to prey densities, as well as their behaviors and niches. The relationships of positive rates to prey planthopper densities for Pardosa pseudoannulata (Böes. et Str.), Coleosoma octomaculata (Böes. et Str.), Tetragnatha maxillosa Thorell and Ummeliata insecticeps (Böes. et Str.) under field conditions could be described using saturated response curves. Quantitative comparisons of predations among the four spider species confirmed that P. pseudoannulata and C. octomaculata were more rapacious than U. insecticeps and T. maxillosa under field conditions. A comparison of ratio of spiders to WBPH and positive rates between fields revealed that biological control by spiders could be effectively integrated with variety resistance. Generalist spiders could follow up WBPH population timely, and assemblages of spiders coupled with variety resistance could effectively suppress WBPH population. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Penn, Hannah J; Dale, Andrew M
2017-08-01
Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Carlson, Nora V; Pargeter, Helen M; Templeton, Christopher N
2017-01-01
Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator's own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator's state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator-beyond its presence or absence-and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli-those featuring simple head movements and audio playback of vocalizations-changes how prey respond to the predator; these 'robo-raptor' models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators' state and behavior.
Fatal Attraction? Intraguild Facilitation and Suppression among Predators.
Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R
2017-11-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Predator avoidance in extremophile fish.
Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin
2013-02-06
Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.
Predator Avoidance in Extremophile Fish
Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin
2013-01-01
Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337
Fatal attraction? Intraguild facilitation and suppression among predators
Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.
2017-01-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.
2011-01-01
Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.
The spined soldier bug Podisus: an important commercial and natural predator
USDA-ARS?s Scientific Manuscript database
The spined soldier bug, Podisus maculiventris is an important generalist predator of many species of insect pests in different horticultural crops. We studied the effects of temperature, prey preference, reproduction in laboratory and field studies, and population dynamics. We found the following ge...
Giesing, Eric R.; Suski, Cory D.; Warner, Richard E.; Bell, Alison M.
2011-01-01
There is growing evidence that maternal experience influences offspring via non-genetic mechanisms. When female three-spined sticklebacks (Gasterosteus aculeatus) were exposed to the threat of predation, they produced larger eggs with higher cortisol content, which consumed more oxygen shortly after fertilization compared with a control group. As juveniles, the offspring of predator-exposed mothers exhibited tighter shoaling behaviour, an antipredator defence. We did not detect an effect of maternal exposure to predation risk on the somatic growth of fry. Altogether, we found that exposure to an ecologically relevant stressor during egg formation had several long-lasting consequences for offspring, some of which might be mediated by exposure to maternally derived cortisol. These results support the hypothesis that female sticklebacks might influence the development, growth and behaviour of their offspring via eggs to match their future environment. PMID:21068041
Tollrian, Ralph
1995-02-01
Juvenile Daphnia pulex form neckteeth in reponse to chemicals released by predatory Chaoborus crystallinus larvae. Formation of neckteeth is strongest in the second instar followed by the third instar, whereas only small neckteeth are found in the first and fourth instar of experimental clones. Predation experiments showed that body-size-dependent vulnerability of animals without neckteeth to fourth instar C. crystallinus larvae matched the pattern of neckteeth formation over the four juvenile instars. Predation experiments on D. pulex of the same clone with neckteeth showed that vulnerability to C. crystallinus predation is reduced, and that the induced protection is correlated with the degree of neckteeth formation. The pattern of neckteeth formation in successive instars is probably adaptive, and it can be concluded that neckteeth are formed to different degrees in successive instars as an evolutionary compromise to balance prediation risk and protective costs.
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole
McIntyre, P.B.; Baldwin, S.; Flecker, A.S.
2004-01-01
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.
Guo, Jing; Martín, Pablo R.; Zhang, Chunxia
2017-01-01
The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey. PMID:29136660
Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T
2017-03-01
It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.
Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K
2012-11-01
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W
2006-01-01
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.
A predator equalizes rate of capture of a schooling prey in a patchy environment.
Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika
2017-05-01
Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Maoz, Yonatan; Gal, Shira; Argov, Yael; Domeratzky, Sylvie; Coll, Moshe; Palevsky, Eric
2016-05-01
Antagonistic interactions among predators with shared prey are thought to hamper their ability to suppress herbivores. Our aim was to quantify intraguild interactions in omnivorous predatory mite assemblages in the presence of pollen, and assess their effect on pest populations. We focused on the following naturally occurring phytoseiid species in Israeli citrus orchards and their ability to suppress a key pest, the citrus rust mite (CRM) Phyllocoptruta oleivora (Eriophyidae): the generalists Amblyseius swirskii and Typhlodromus athiasae and the specialised pollen feeders Iphiseius degenerans, Euseius scutalis, E. stipulatus and E. victoriensis. Evaluations were performed on two spatial scales, tree seedlings and leaf discs. On seedlings, experiments were conducted to quantify the interactions between predators in the presence of pollen and its effects on CRM suppression. On leaf discs, intraguild interactions were studied between pairs of phytoseiid species in the presence of pollen without CRM. On seedlings, the specialised pollen predators were more effective at suppressing CRM populations than the generalist predators. In most cases, the more aggressive intraguild predator was the specialised pollen feeder. Similarly, leaf-disc experiments suggest that in these interactions the specialised pollen feeders tend to be the intraguild predators more often than the intraguild prey. © 2015 Society of Chemical Industry.
Optimal background matching camouflage.
Michalis, Constantine; Scott-Samuel, Nicholas E; Gibson, David P; Cuthill, Innes C
2017-07-12
Background matching is the most familiar and widespread camouflage strategy: avoiding detection by having a similar colour and pattern to the background. Optimizing background matching is straightforward in a homogeneous environment, or when the habitat has very distinct sub-types and there is divergent selection leading to polymorphism. However, most backgrounds have continuous variation in colour and texture, so what is the best solution? Not all samples of the background are likely to be equally inconspicuous, and laboratory experiments on birds and humans support this view. Theory suggests that the most probable background sample (in the statistical sense), at the size of the prey, would, on average, be the most cryptic. We present an analysis, based on realistic assumptions about low-level vision, that estimates the distribution of background colours and visual textures, and predicts the best camouflage. We present data from a field experiment that tests and supports our predictions, using artificial moth-like targets under bird predation. Additionally, we present analogous data for humans, under tightly controlled viewing conditions, searching for targets on a computer screen. These data show that, in the absence of predator learning, the best single camouflage pattern for heterogeneous backgrounds is the most probable sample. © 2017 The Authors.
Influence of cover crops on insect pests and predators in conservation tillage cotton.
Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn
2004-08-01
In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.
Predator Dispersal Determines the Effect of Connectivity on Prey Diversity
Limberger, Romana; Wickham, Stephen A.
2011-01-01
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation. PMID:22194992
Predators modify biogeographic constraints on species distributions in an insect metacommunity.
Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin
2017-03-01
Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.
Field assessment of hybridization between Laricobius nigrinus and L. rubidus, predators of Adelgidae
Melissa J. Fischer; Nathan P. Havill; Carlyle C. Brewster; Gina A. Davis; Scott M. Salom; Loke T. Kok
2015-01-01
Two adelgid predators, Laricobius nigrinus Fender and Laricobius rubidus LeConte, were recently discovered to produce hybrid progeny in the eastern United States. L. rubidus is native to eastern North America where it feeds on pine bark adelgid (Pineus strobi Hartig) and L. nigrinus...
ERIC Educational Resources Information Center
Pratt, Carl R.
1994-01-01
Describes an experiment that uses the cobra lily (Darlingtonia californica) and fruit flies (Drosophila virilis) to investigate predator-prey relationships in a classroom laboratory. Suggestions for classroom extension of this experimental system are provided. (ZWH)
Stynoski, Jennifer L; Shelton, Georgia; Stynoski, Peter
2014-05-01
Parents defend their young in many ways, including provisioning chemical defences. Recent work in a poison frog system offers the first example of an animal that provisions its young with alkaloids after hatching or birth rather than before. But it is not yet known whether maternally derived alkaloids are an effective defence against offspring predators. We identified the predators of Oophaga pumilio tadpoles and conducted laboratory and field choice tests to determine whether predators are deterred by alkaloids in tadpoles. We found that snakes, spiders and beetle larvae are common predators of O. pumilio tadpoles. Snakes were not deterred by alkaloids in tadpoles. However, spiders were less likely to consume mother-fed O. pumilio tadpoles than either alkaloid-free tadpoles of the red-eyed treefrog, Agalychnis callidryas, or alkaloid-free O. pumilio tadpoles that had been hand-fed with A. callidryas eggs. Thus, maternally derived alkaloids reduce the risk of predation for tadpoles, but only against some predators. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
MacNeil, Calum; Dick, Jaimie T A
2014-08-01
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the 'enemy' of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E
2016-01-01
Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.
Climate change is affecting mortality of weasels due to camouflage mismatch.
Atmeh, Kamal; Andruszkiewicz, Anna; Zub, Karol
2018-05-24
Direct phenological mismatch caused by climate change can occur in mammals that moult seasonally. Two colour morphs of the weasel Mustela nivalis (M. n.) occur sympatrically in Białowieża Forest (NE Poland) and differ in their winter pelage colour: white in M. n. nivalis and brown in M. n. vulgaris. Due to their small body size, weasels are vulnerable to attacks by a range of different predators; thus cryptic coat colour may increase their winter survival. By analysing trapping data, we found that the share of white subspecies in the weasel population inhabiting Białowieża Forest decreases with decreasing numbers of days with snow cover. This led us to hypothesise that selective predation pressure should favour one of the two phenotypes, according to the prevailing weather conditions in winter. A simple field experiment with weasel models (white and brown), exposed against different background colours, revealed that contrasting models faced significantly higher detection by predators. Our observations also confirmed earlier findings that the plasticity of moult in M. n. nivalis is very limited. This means that climate change will strongly influence the mortality of the nivalis-type due to prolonged camouflage mismatch, which will directly affect the abundance and geographical distribution of this subspecies.
Canter, Erin J; Cuellar-Gempeler, Catalina; Pastore, Abigail I; Miller, Thomas E; Mason, Olivia U
2018-03-01
The importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey. Using this system, we sought to determine whether different predators target distinct microorganisms, how interactions among protozoans affect resource (microorganism) use, and how predator diversity affects prey community diversity. In particular, we endeavored to determine if protozoa followed known ecological patterns such as keystone predation or generalist predation. For these experiments, replicate inquiline microbial communities were maintained for seven days with five protozoan species. Microbial community structure was determined by 16S rRNA gene amplicon sequencing (iTag) and analysis. Compared to the control (no protozoa), two ciliates followed patterns of keystone predation by increasing microbial evenness. In pairwise competition treatments with a generalist flagellate, prey communities resembled the microbial communities of the respective keystone predator in monoculture. The relative abundance of the most common bacterial Operational Taxonomic Unit (OTU) in our system decreased compared to the control in the presence of these ciliates. This OTU was 98% similar to a known chitin degrader and nitrate reducer, important functions for the microbial community and the plant host. Collectively, the data demonstrated that predator identity had a greater effect on prey diversity and composition than overall predator diversity. © 2018 by the Ecological Society of America.
Pereira, Jardel L; Galdino, Tarcísio V S; Silva, Geverson A R; Picanço, Marcelo C; Silva, Antônio A; Corrêa, Alberto S; Martins, Júlio C
2018-04-06
This study aimed to assess the glyphosate application effects on the Cerotoma arcuata Oliver (Coleoptera: Chrysomelidae) population in glyphosate-resistant soybean crops. Field studies were conducted with glyphosate and the insecticide endosulfan to observe the effects of these pesticides on C. arcuata, on its damages in the crop and on the populations of natural enemies in glyphosate-resistant soybean crops. Moreover, the lethal and behavioral sublethal response of C. arcuata to glyphosate and endosulfan was conducted in the laboratory. The results of the field and laboratory experiments showed that glyphosate caused moderate toxicity and high irritability in C. arcuata and that endosulfan caused high toxicity and irritability. Therefore, the direct effect of glyphosate on C. arcuata was negative and does not explain the population increases of this pest in glyphosate-resistant soybean. However, the glyphosate also decreased the density of predators. Thus, the negative effect of glyphosate on the predators may be related to population increases of C. arcuata in glyphosate-resistant soybean crops, however, more studies are needed to better evidence this relationship. This study suggests that glyphosate can impact other non-target organisms, such as herbivorous insects and natural enemies and that the use of this herbicide will need to be carefully stewarded to prevent potential disturbances in beneficial insect communities in agricultural systems.
Dawson, Erika H.; Chittka, Lars
2014-01-01
Avoiding predation is one of the most important challenges that an animal faces. Several anti-predation behaviours can be employed, yet simply using the presence of conspecifics can be a good signal of safety in an environment with potential predation hazards. Here, we show, for the first time, that past experience of predation causes bumblebees (Bombus terrestris) to aggregate with conspecifics, facilitating the identification of safe foraging patches. Bees were trained to differentiate between flowers that harboured predators and flowers that were predator free. When test subjects were subsequently presented solely with the previously predator-infested flower species, there was a significant preference to only land on flowers occupied by other feeding conspecifics. Yet, when safe flowers were made available to subjects previously entrained to discriminate safe from predator-occupied flowers, subjects ignored other bees and the social information potentially provided by them, demonstrating that attraction towards conspecifics is confined to dangerous situations. Our findings demonstrate a previously unknown social interaction in pollinators which may have important implications for plant–pollinator interactions. PMID:24789891
Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours.
Baldauf, Sebastian A; Thünken, Timo; Frommen, Joachim G; Bakker, Theo C M; Heupel, Oliver; Kullmann, Harald
2007-01-01
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.
Fear of the human 'super predator' reduces feeding time in large carnivores.
Smith, Justine A; Suraci, Justin P; Clinchy, Michael; Crawford, Ayana; Roberts, Devin; Zanette, Liana Y; Wilmers, Christopher C
2017-06-28
Large carnivores' fear of the human 'super predator' has the potential to alter their feeding behaviour and result in human-induced trophic cascades. However, it has yet to be experimentally tested if large carnivores perceive humans as predators and react strongly enough to have cascading effects on their prey. We conducted a predator playback experiment exposing pumas to predator (human) and non-predator control (frog) sounds at puma feeding sites to measure immediate fear responses to humans and the subsequent impacts on feeding. We found that pumas fled more frequently, took longer to return, and reduced their overall feeding time by more than half in response to hearing the human 'super predator'. Combined with our previous work showing higher kill rates of deer in more urbanized landscapes, this study reveals that fear is the mechanism driving an ecological cascade from humans to increased puma predation on deer. By demonstrating that the fear of humans can cause a strong reduction in feeding by pumas, our results support that non-consumptive forms of human disturbance may alter the ecological role of large carnivores. © 2017 The Author(s).
Dodrill, Michael J.; Yard, Mike; Pine, William E.
2016-01-01
This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.
Modelling the fear effect in predator-prey interactions.
Wang, Xiaoying; Zanette, Liana; Zou, Xingfu
2016-11-01
A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator-prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator-prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator-prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator-prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.
A comparative analysis of experimental selection on the stickleback pelvis.
Miller, S E; Barrueto, M; Schluter, D
2017-06-01
Mechanisms of natural selection can be identified using experimental approaches. However, such experiments often yield nonsignificant effects and imprecise estimates of selection due to low power and small sample sizes. Combining results from multiple experimental studies might produce an aggregate estimate of selection that is more revealing than individual studies. For example, bony pelvic armour varies conspicuously among stickleback populations, and predation by vertebrate and insect predators has been hypothesized to be the main driver of this variation. Yet experimental selection studies testing these hypotheses frequently fail to find a significant effect. We experimentally manipulated length of threespine stickleback (Gasterosteus aculeatus) pelvic spines in a mesocosm experiment to test whether prickly sculpin (Cottus asper), an intraguild predator of stickleback, favours longer spines. The probability of survival was greater for stickleback with unclipped pelvic spines, but this effect was noisy and not significant. We used meta-analysis to combine the results of our mesocosm experiment with previously published experimental studies of selection on pelvic armour. We found evidence that fish predation indeed favours increased pelvic armour, with a moderate effect size. The same approach found little evidence that insect predation favours reduced pelvic armour. The causes of reduced pelvic armour in many stickleback populations remain uncertain. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Contrasting effects of aquatic subsidies on a terrestrial trophic cascade
Bucher, Roman; Schäfer, Ralf B.; Entling, Martin H.
2017-01-01
Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. PMID:28539461
Pintar, Matthew R; Resetarits, William J
2017-08-01
Trophic interactions are critical determinants of community structure and ecosystem function. In freshwater habitats, top predators are traditionally viewed as drivers of ecosystem structure, shaping populations of consumers and primary producers. The temporary nature of small water bodies makes them dependent on colonization by many organisms, particularly insects that form highly diverse predator assemblages. We conducted mesocosm experiments with naturally colonizing populations of aquatic beetles to assess how prey (zooplankton) abundances influenced colonization and assemblages of natural populations of aquatic beetles. We experimentally demonstrate that zooplankton populations can be proximate regulators of predator populations and assemblages via prey-density-dependent predator recruitment. Our results provide support for the importance of prey populations in structuring predator populations and the role of habitat selection in structuring communities. We indicate that traditional views of predators as drivers of ecosystem structure in many systems may not provide a comprehensive picture, particularly in the context of highly disturbed or ephemeral habitats. © 2017 by the Ecological Society of America.
Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.
Graf, Nadin; Bucher, Roman; Schäfer, Ralf B; Entling, Martin H
2017-05-01
Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. © 2017 The Author(s).
Responses of beaver (Castor canadensis Kuhl) to predator chemicals.
Engelhart, A; Müller-Schwarze, D
1995-09-01
Free-ranging beaver (Castor canadensis) in two different beaver populations in New York State were exposed to predator chemicals to test feeding inhibition. Solvent extracts of feces were applied to stem sections of aspen, the preferred food tree of beavers, permitting smelling and tasting the samples. Predator odors were from wolf (Canis lupus), coyote (Canis latrans), dog (Canis familiaris), black bear (Ursus americanus), river otter (Lutra canadensis), lynx (Lynx canadensis), and African lion (Panthera leo). The experiment was repeated. The predator odors reduced feeding compared to untreated or solvent-treated controls. One population consumed 17.0% of the samples with predator odor and 27.0% of the controls in summer, and 48.4% and 60.0%, respectively, in autumn. The other population accepted 3.15% of the predator odor samples and 11.05% of the controls in summer. Coyote, lynx, and river otter odors had the strongest effects. Diesel oil and bitter-tasting neem extract had weaker effects. Predator odors are promising as feeding repellents for beaver.
Response of predators to Western Sandpiper nest exclosures
Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.
2004-01-01
In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.
Mobbing calls signal predator category in a kin group-living bird species
Griesser, Michael
2009-01-01
Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls. PMID:19474047
Mobbing calls signal predator category in a kin group-living bird species.
Griesser, Michael
2009-08-22
Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls.
Foraging theory predicts predator-prey energy fluxes.
Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S
2008-09-01
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.
Coping with shifting nest predation refuges by European reed Warblers Acrocephalus scirpaceus.
Halupka, Lucyna; Halupka, Konrad; Klimczuk, Ewelina; Sztwiertnia, Hanna
2014-01-01
Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable.
Coping with Shifting Nest Predation Refuges by European Reed Warblers Acrocephalus scirpaceus
Halupka, Lucyna; Halupka, Konrad; Klimczuk, Ewelina; Sztwiertnia, Hanna
2014-01-01
Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable. PMID:25522327
Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S
2017-08-01
Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Landscape-moderated bird nest predation in hedges and forest edges
NASA Astrophysics Data System (ADS)
Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter
2012-11-01
Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.
Petersen, James H.; DeAngelis, Donald L.
1992-01-01
The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.
Williams, Gary E.; Wood, P.B.
2002-01-01
We used miniature infrared video cameras to monitor Wood Thrush (Hylocichla mustelina) nests during 1998–2000. We documented nest predators and examined whether evidence at nests can be used to predict predator identities and nest fates. Fifty-six nests were monitored; 26 failed, with 3 abandoned and 23 depredated. We predicted predator class (avian, mammalian, snake) prior to review of video footage and were incorrect 57% of the time. Birds and mammals were underrepresented whereas snakes were over-represented in our predictions. We documented ≥9 nest-predator species, with the southern flying squirrel (Glaucomys volans) taking the most nests (n = 8). During 2000, we predicted fate (fledge or fail) of 27 nests; 23 were classified correctly. Traditional methods of monitoring nests appear to be effective for classifying success or failure of nests, but ineffective at classifying nest predators.
The role of multiple partners in a digestive mutualism with a protocarnivorous plant
Nishi, Aline Hiroko; Vasconcellos-Neto, João; Romero, Gustavo Quevedo
2013-01-01
Background and aims The protocarnivorous plant Paepalanthus bromelioides (Eriocaulaceae) is similar to bromeliads in that this plant has a rosette-like structure that allows rainwater to accumulate in leaf axils (i.e. phytotelmata). Although the rosettes of P. bromelioides are commonly inhabited by predators (e.g. spiders), their roots are wrapped by a cylindrical termite mound that grows beneath the rosette. In this study it is predicted that these plants can derive nutrients from recycling processes carried out by termites and from predation events that take place inside the rosette. It is also predicted that bacteria living in phytotelmata can accelerate nutrient cycling derived from predators. Methods The predictions were tested by surveying plants and animals, and also by performing field experiments in rocky fields from Serra do Cipó, Brazil, using natural abundance and enriched isotopes of 15N. Laboratory bioassays were also conducted to test proteolytic activities of bacteria from P. bromelioides rosettes. Key Results Analyses of 15N in natural nitrogen abundances showed that the isotopic signature of P. bromelioides is similar to that of carnivorous plants and higher than that of non-carnivorous plants in the study area. Linear mixing models showed that predatory activities on the rosettes (i.e. spider faeces and prey carcass) resulted in overall nitrogen contributions of 26·5 % (a top-down flux). Although nitrogen flux was not detected from termites to plants via decomposition of labelled cardboard, the data on 15N in natural nitrogen abundance indicated that 67 % of nitrogen from P. bromelioides is derived from termites (a bottom-up flux). Bacteria did not affect nutrient cycling or nitrogen uptake from prey carcasses and spider faeces. Conclusions The results suggest that P. bromelioides derive nitrogen from associated predators and termites, despite differences in nitrogen cycling velocities, which seem to have been higher in nitrogen derived from predators (leaves) than from termites (roots). This is the first study that demonstrates partitioning effects from multiple partners in a digestion-based mutualism. Despite most of the nitrogen being absorbed through their roots (via termites), P. bromelioides has all the attributes necessary to be considered as a carnivorous plant in the context of digestive mutualism. PMID:23131297
Tran, Anh K; Koch, Robert L
2017-06-01
The soybean aphid, Aphis glycines Matsumura, is an economically important soybean pest. Many studies have demonstrated that predatory insects are important in suppressing A. glycines population growth. However, to improve the utilization of predators in A. glycines management, sampling plans need to be developed and validated for predators. Aphid predators were sampled in soybean fields near Rosemount, Minnesota, from 2006-2007 and 2013-2015 with sample sizes of 20-80 plants. Sampling plans were developed for Orius insidiosus (Say), Harmonia axyridis (Pallas), and all aphidophagous Coccinellidae species combined. Taylor's power law parameters from the regression of log variance versus log mean suggested aggregated spatial patterns for immature and adult stages combined for O. insidiosus, H. axyridis, and Coccinellidae in soybean fields. Using the parameters from Taylor's power law and Green's method, sequential fixed-precision sampling plans were developed to estimate the density for each predator taxon at desired precision levels of 0.10 and 0.25. To achieve a desired precision of 0.10 and 0.25, the average sample number (ASN) ranged from 398-713 and 64-108 soybean plants, respectively, for all species. Resulting ASNs were relatively large and assumed impractical for most purposes; therefore, the desired precision levels were adjusted to determine the level of precision associated with a more practical ASN. Final analysis indicated an ASN of 38 soybean plants provided precision of 0.32-0.40 for the predators. Development of sampling plans should provide guidance for improved estimation of predator densities for A. glycines pest management programs and for research purposes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems. PMID:23894650
Murugan, Kadarkarai; Venus, Joseph Selvaraj Eugine; Panneerselvam, Chellasamy; Bedini, Stefano; Conti, Barbara; Nicoletti, Marcello; Sarkar, Santosh Kumar; Hwang, Jiang-Shiou; Subramaniam, Jayapal; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Suresh, Udaiyan; Benelli, Giovanni
2015-11-01
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV-vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25-30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC50 ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.
Zander, Axel; Gravel, Dominique; Bersier, Louis-Félix; Gray, Sarah M
2016-02-01
Introduced top predators have the potential to disrupt community dynamics when prey species are naive to predation. The impact of introduced predators may also vary depending on the stage of community development. Early-succession communities are likely to have small-bodied and fast-growing species, but are not necessarily good at defending against predators. In contrast, late-succession communities are typically composed of larger-bodied species that are more predator resistant relative to small-bodied species. Yet, these aspects are greatly neglected in invasion studies. We therefore tested the effect of top predator presence on early- and late-succession communities that were either naive or non-naive to top predators. We used the aquatic community held within the leaves of Sarracenia purpurea. In North America, communities have experienced the S. purpurea top predator and are therefore non-naive. In Europe, this predator is not present and its niche has not been filled, making these communities top-predator naive. We collected early- and late-succession communities from two non-naive and two naive sites, which are climatically similar. We then conducted a common-garden experiment, with and without the presence of the top predator, in which we recorded changes in community composition, body size spectra, bacterial density, and respiration. We found that the top predator had no statistical effect on global measures of community structure and functioning. However, it significantly altered protist composition, but only in naive, early-succession communities, highlighting that the state of community development is important for understanding the impact of invasion.
Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.
2012-01-01
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.
Ranåker, Lynn; Persson, Jens; Jönsson, Mikael; Nilsson, P Anders; Brönmark, Christer
2014-01-01
Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on piscivore-prey interaction strength and thereby ecosystem responses to brownification of waters.
B. Staffan Lindgren; Daniel R. Miller
2002-01-01
The response of bark beetle predators and woodboring beetles to the bark beetle anti-aggregation pheromone, verbenone, was tested in the field with multiple-funnel traps baited with attractant kairomones. Catches of the predators Thanasimus undatulus (Say), Enoclerus sphegeus (F.), Enocleris lecontei (Wolcott) (...
USDA-ARS?s Scientific Manuscript database
Wolf spiders (Araneae: Lycosidae) are abundant soil-dwelling predators found in cotton fields and can contribute important pest management services. These spiders can kill and consume larvae of the cotton bollworm Helicoverpa spp. (Lepidoptera: Noctuidae) that survive foraging on Bt cotton and desce...
Beyond diversity: how nested predator effects control ecosystem functions.
Schneider, Florian Dirk; Brose, Ulrich
2013-01-01
The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator diversity on lower trophic level prey is often driven by the increasing chance of including the most influential species. Furthermore, intraguild predation can cause trophic cascades with net positive effects on basal prey. As a consequence, the effects of losing a predator species appear to be idiosyncratic and it becomes unpredictable how the community's net effect on lower trophic levels changes when species number is declining. We performed a full factorial microcosm experiment with litter layer arthropods to measure the effects of predator diversity and context-dependent identity effects on a detritivore population and microbial biomass. We show that major parts of the observed diversity effect can be assigned to the increasing likelihood of including the most influential predator. Further, the presence of a second predator feeding on the first predator dampens this dominant effect. Including this intraguild predator on top of the first predator is more likely with increasing predator diversity as well. Thus, the overall pattern can be explained by a second identity effect, which is nested into the first. When losing a predator from the community, the response of the lower trophic level is highly dependent on the remaining predator species. We mechanistically explain the net effects of the predator community on lower trophic levels by nested effects of predator identities. These identity effects become predictable when taking the species' body masses into account. This provides a new mechanistic perspective describing ecosystem functioning as a consequence of species composition and yields an understanding beyond simple effects of biodiversity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Rudolf, Volker H W
2008-06-01
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.
Manzur, Tatiana; Vidal, Francisco; Pantoja, José F; Fernández, Miriam; Navarrete, Sergio A
2014-07-01
Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress, which can lead to negative effects on abundance of the lower trophic level. We suggest that in order to understand the total non-consumptive effect of predators in natural communities, it is necessary to evaluate not only short-term behavioural responses, but also the costs associated with the multiple interdependent pathways triggered by predator-induced stress, and determine how individuals cope with these costs in the long term. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Schofield, P.J.
2003-01-01
Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum likely result from a synthesis of various biotic and abiotic filters, including physiological tolerances to environmental factors, dispersal ability of larvae, and availability of food. Selection for structural complexity, competition, and presence of predators may further define the resulting pattern of distribution observed in the field.
Social-bond strength influences vocally mediated recruitment to mobbing
2016-01-01
Strong social bonds form between individuals in many group-living species, and these relationships can have important fitness benefits. When responding to vocalizations produced by groupmates, receivers are expected to adjust their behaviour depending on the nature of the bond they share with the signaller. Here we investigate whether the strength of the signaller–receiver social bond affects response to calls that attract others to help mob a predator. Using field-based playback experiments on a habituated population of wild dwarf mongooses (Helogale parvula), we first demonstrate that a particular vocalization given on detecting predatory snakes does act as a recruitment call; receivers were more likely to look, approach and engage in mobbing behaviour than in response to control close calls. We then show that individuals respond more strongly to these recruitment calls if they are from groupmates with whom they are more strongly bonded (those with whom they preferentially groom and forage). Our study, therefore, provides novel evidence about the anti-predator benefits of close bonds within social groups. PMID:27903776
A Waterborne Pursuit-Deterrent Signal Deployed by a Sea Urchin.
Sheppard-Brennand, Hannah; Poore, Alistair G B; Dworjanyn, Symon A
2017-06-01
Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover.
Montserrat, M; de la Peña, F; Hormaza, J I; González-Fernández, J J
2008-02-01
The persea mite Oligonychus perseae is a pest of avocado trees that builds extremely dense webbed nests that protect them against natural enemies, including phytoseiid mites. Nests have one or two marginal entrances that are small and flattened. The predatory mite Neoseiulus californicus co-occurs with O. perseae in the avocado orchards of the south-east of Spain. Penetration inside nests through the entrances by this predator is thought to be hindered by its size and its globular-shaped body. However, in the field it has repeatedly been found inside nests that were clearly ripped. Perhaps penetration of the nests has been facilitated by nest wall ripping caused by some other species or by unfavourable abiotic factors. However, to assess whether N. californicus is also able to enter the nest of O. perseae by itself, we carried out laboratory experiments and made a short film. They show how this predator manages to overcome the webbed wall, and that it can penetrate and forage inside nests of O. perseae.
Kariyat, Rupesh R; Mauck, Kerry E; De Moraes, Consuelo M; Stephenson, Andrew G; Mescher, Mark C
2012-04-01
The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants. © 2012 Blackwell Publishing Ltd/CNRS.
Combes, S. A.; Crall, J. D.; Mukherjee, S.
2010-01-01
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival. PMID:20236968
Olfactory systems and neural circuits that modulate predator odor fear
Takahashi, Lorey K.
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685
Olfactory systems and neural circuits that modulate predator odor fear.
Takahashi, Lorey K
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Avey, Marc T.; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.
2011-01-01
Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise [1]–[2]. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators [3]. Mobbing calls produced in response to smaller, higher-threat predators contain more “D” notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators [4]. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned. PMID:21909363
Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.
2015-01-01
Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger trout, a hybrid derived from brown trout and brook trout, showed generalization of recognition of several unknown trout odours. Interestingly, the tadpoles showed stronger responses to odours of brown trout than brook trout. In a second experiment, we found that tadpoles trained to recognize brown trout showed stronger responses to tiger trout than those tadpoles trained to recognize brook trout. Given that tiger trout always have a brown trout mother and a brook trout father, these results suggest a strong maternal signature in trout odours. Tadpoles that were trained to recognize both brown trout and brook trout showed stronger response to novel tiger trout than those trained to recognize only brown trout or only brook trout. This is consistent with a peak shift in recognition, whereby cues that are intermediate between two known cues evoke stronger responses than either known cue. Given that our woodfrog tadpoles have no evolutionary or individual experience with trout, they have no way of knowing whether or not brook trout, brown trout or tiger trout are more dangerous. The differential intensity of responses that we observed to hybrid trout cues and each of the parental species indicates that there is a likely mismatch between risk and anti-predator response intensity. Future work needs to address the critical role of prey naivety on responses to invasive and introduced hybrid predators. PMID:26041358
Suppression of soybean aphid by generalist predators results in a trophic cascade in soybeans.
Costamagna, Alejandro C; Landis, Douglas A; Difonzo, Christina D
2007-03-01
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.
Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.
2016-01-01
Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278
Higher predation risk for insect prey at low latitudes and elevations.
Roslin, Tomas; Hardwick, Bess; Novotny, Vojtech; Petry, William K; Andrew, Nigel R; Asmus, Ashley; Barrio, Isabel C; Basset, Yves; Boesing, Andrea Larissa; Bonebrake, Timothy C; Cameron, Erin K; Dáttilo, Wesley; Donoso, David A; Drozd, Pavel; Gray, Claudia L; Hik, David S; Hill, Sarah J; Hopkins, Tapani; Huang, Shuyin; Koane, Bonny; Laird-Hopkins, Benita; Laukkanen, Liisa; Lewis, Owen T; Milne, Sol; Mwesige, Isaiah; Nakamura, Akihiro; Nell, Colleen S; Nichols, Elizabeth; Prokurat, Alena; Sam, Katerina; Schmidt, Niels M; Slade, Alison; Slade, Victor; Suchanková, Alžběta; Teder, Tiit; van Nouhuys, Saskya; Vandvik, Vigdis; Weissflog, Anita; Zhukovich, Vital; Slade, Eleanor M
2017-05-19
Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution. Copyright © 2017, American Association for the Advancement of Science.
Safety in numbers: extinction arising from predator-driven Allee effects.
Gregory, Stephen D; Courchamp, Franck
2010-05-01
Experimental evidence of extinction via an Allee effect (AE) is a priority as more species become threatened by human activity. Kramer & Drake (2010) begin the International Year of Biodiversity with the important--but double-edged--demonstration that predators can induce an AE in their prey. The good news is that their experiments help bridge the knowledge gap between theoretical and empirical AEs. The bad news is that this predator-driven AE precipitates the prey extinction via a demographic AE. Although their findings will be sensitive to departures from their experimental protocol, this link between predation and population extinction could have important consequences for many prey species.
Predatory fish depletion and recovery potential on Caribbean reefs.
Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis
2017-03-01
The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions.
Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.
2002-01-01
Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.
Reliability of risk assessment measures used in sexually violent predator proceedings.
Miller, Cailey S; Kimonis, Eva R; Otto, Randy K; Kline, Suzonne M; Wasserman, Adam L
2012-12-01
The field interrater reliability of three assessment tools frequently used by mental health professionals when evaluating sex offenders' risk for reoffending--the Psychopathy Checklist-Revised (PCL-R), the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R) and the Static-99-was examined within the context of sexually violent predator program proceedings. Rater agreement was highest for the Static--99 (intraclass correlation coefficient [ICC₁] = .78) and lowest for the PCL-R (ICC₁ = .60; MnSOST-R ICC₁ = .74), although all instruments demonstrated lower field reliability than that reported in their test manuals. Findings raise concerns about the reliability of risk assessment tools that are used to inform judgments of risk in high-stake sexually violent predator proceedings. Implications for future research and suggestions for improving evaluator training to increase accuracy when informing legal decision making are discussed.
Importance of the predator's ecological neighborhood in modeling predation on migrating prey
DeAngelis, Donald L.; Petersen, James H.
2001-01-01
Most mathematical descriptions of predator-prey interactions fail to take into account the spatio-temporal structures of the populations, which can lead to errors or misinterpretations. For example, a compact pulse of prey migrating through a field of quasi-stationary predators may not be well described by standard predator-prey models, because the predators and prey are unlikely to be well mixed; that is, the prey may be exposed to only a fraction of the predator population at a time. This underscores the importance of properly accounting for the ecological neighborhood, or effective feeding range, of predators in models. We illustrate this situation with a series of models of salmon smolts migrating through a reservoir arrayed with predators. The reservoir is divided into a number of longitudinal compartments or spatial cells, the length of each cell representing the upstream-downstream range over which predators can forage. In this series of models a 100-km-long reservoir is divided, successively into 2, 5, 10, 25, 50, 100, 200, and 400 cells, with respective cell lengths of 50, 20, 10, 4, 2, 1, 0.5, and 0.25 km. We used a detailed individual-based simulation model at first, but to ensure robustness of results we supplemented this with a simple analytic model. Both models showed sharp differences in the predicted mortality to a compact pulse of smolt prey moving through the reservoir, depending on the number of spatial cells in the model. In particular, models with fewer than about 10 cells vastly overpredicted the amount of mortality due to predators with activity ranges of not more than a few kilometers. These results corroborate recent theoretical and simulation studies on the importance of spatial scale and behavior in modeling predator-prey dynamics.
Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Barea-Azcón, José M; Ballesteros-Duperón, Elena; Virgós, Emilio
2011-01-01
Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5%) for both prey and seasons. The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish) have a null theoretical basis in most of this area.
Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.
1994-01-01
Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.
Moleón, Marcos; Sánchez-Zapata, José A.; Gil-Sánchez, José M.; Barea-Azcón, José M.; Ballesteros-Duperón, Elena; Virgós, Emilio
2011-01-01
Background Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable –in conservation terms– Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. Methodology/Principal Findings We estimated the predation impact (‘kill rate’ and ‘predation rate’, i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3–2.5%) for both prey and seasons. Conclusions/Significance The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the ‘partridge-eating eagle’ in Spanish) have a null theoretical basis in most of this area. PMID:21818399
Main predators of insect pests: screening and evaluation through comprehensive indices.
Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian
2017-11-01
Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Owl predation on snowshoe hares: consequences of antipredator behaviour.
Rohner, Christoph; Krebs, Charles J
1996-10-01
We show evidence of differential predation on snowshoe hares (Lepus americanus) by great horned owls (Bubo virginianus) and ask whether predation mortality is related to antipredator behaviour in prey. We predicted higher predation on (1) young and inexperienced hares, (2) hares in open habitats lacking cover to protect from owl predation, and (3) hares in above average condition assuming that rich food patches are under highest risk of predation. Information on killed hares was obtained at nest sites of owls and by monitoring hares using radio-telemetry. The availability of age classes within the hare population was established from live-trapping and field data on reproduction and survival. Great horned owls preferred juvenile over adult hares. Juveniles were more vulnerable to owl predation before rather than after dispersal, suggesting that displacement or increased mobility were not causes for this increased mortality. Owls killed ratio-collared hares more often in open than in closed forest types, and they avoided or had less hunting success in habitats with dense shrub cover. Also, owls took hares in above average condition, although it is unclear whether samples from early spring are representative for other seasons. In conclusion, these results are consistent with the hypothesis that variation in antipredator behaviours of snowshoe hares leads to differential predation by great horned owls.
Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse
Furey, Nathan B.; Hinch, Scott G.; Mesa, Matthew G.; Beauchamp, David A.
2016-01-01
Understanding the limits of consumption is important for determining trophic influences on ecosystems and predator adaptations to inconsistent prey availability. Fishes have been observed to consume beyond what is sustainable (i.e. digested on a daily basis), but this phenomenon of hyperphagia (or binge-feeding) is largely overlooked. We expect hyperphagia to be a short-term (1-day) event that is facilitated by gut volume providing capacity to store consumed food during periods of high prey availability to be later digested.We define how temperature, body size and food availability influence the degree of binge-feeding by comparing field observations with laboratory experiments of bull trout (Salvelinus confluentus), a large freshwater piscivore that experiences highly variable prey pulses. We also simulated bull trout consumption and growth during salmon smolt outmigrations under two scenarios: 1) daily consumption being dependent upon bioenergetically sustainable rates and 2) daily consumption being dependent upon available gut volume (i.e. consumption is equal to gut volume when empty and otherwise ‘topping off’ based on sustainable digestion rates).One-day consumption by laboratory-held bull trout during the first day of feeding experiments after fasting exceeded bioenergetically sustainable rates by 12- to 87-fold at low temperatures (3 °C) and by ˜1·3-fold at 20 °C. The degree of binge-feeding by bull trout in the field was slightly reduced but largely in agreement with laboratory estimates, especially when prey availability was extremely high [during a sockeye salmon (Oncorhynchus nerka) smolt outmigration and at a counting fence where smolts are funnelled into high densities]. Consumption by bull trout at other settings were lower and more variable, but still regularly hyperphagic.Simulations demonstrated the ability to binge-feed increased cumulative consumption (16–32%) and cumulative growth (19–110%) relative to only feeding at bioenergetically sustainable rates during the ˜1-month smolt outmigration period.Our results indicate the ability for predators to maximize short-term consumption when prey are available can be extreme and is limited primarily by gut volume, then mediated by temperature; thus, predator–prey relationships may be more dependent upon prey availability than traditional bioenergetic models suggest. Binge-feeding has important implications for energy budgets of consumers as well as acute predation impacts on prey.
Experimental climate change weakens the insurance effect of biodiversity.
Eklöf, Johan S; Alsterberg, Christian; Havenhand, Jonathan N; Sundbäck, Kristina; Wood, Hannah L; Gamfeldt, Lars
2012-08-01
Ecosystems are simultaneously affected by biodiversity loss and climate change, but we know little about how these factors interact. We predicted that climate warming and CO (2) -enrichment should strengthen trophic cascades by reducing the relative efficiency of predation-resistant herbivores, if herbivore consumption rate trades off with predation resistance. This weakens the insurance effect of herbivore diversity. We tested this prediction using experimental ocean warming and acidification in seagrass mesocosms. Meta-analyses of published experiments first indicated that consumption rate trades off with predation resistance. The experiment then showed that three common herbivores together controlled macroalgae and facilitated seagrass dominance, regardless of climate change. When the predation-vulnerable herbivore was excluded in normal conditions, the two resistant herbivores maintained top-down control. Under warming, however, increased algal growth outstripped control by herbivores and the system became algal-dominated. Consequently, climate change can reduce the relative efficiency of resistant herbivores and weaken the insurance effect of biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.
Comparative analysis of marine ecosystems: workshop on predator-prey interactions.
Bailey, Kevin M; Ciannelli, Lorenzo; Hunsicker, Mary; Rindorf, Anna; Neuenfeldt, Stefan; Möllmann, Christian; Guichard, Frederic; Huse, Geir
2010-10-23
Climate and human influences on marine ecosystems are largely manifested by changes in predator-prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator-prey interactions in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16-18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling. The goals of the workshop were to critically examine the methods of scaling-up predator-prey interactions from local observations to systems, the role of shifting ecological processes with scale changes, and the complexity and organizational structure in trophic interactions.
Glucocorticoid stress hormones and the effect of predation risk on elk reproduction.
Creel, Scott; Winnie, John A; Christianson, David
2009-07-28
Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations.
Glucocorticoid stress hormones and the effect of predation risk on elk reproduction
Creel, Scott; Winnie, John A.; Christianson, David
2009-01-01
Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations. PMID:19617549
Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett
2018-01-01
Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.
Hettyey, Attila; Tóth, Zoltán; Thonhauser, Kerstin E; Frommen, Joachim G; Penn, Dustin J; Van Buskirk, Josh
2015-11-01
Chemical cues that evoke anti-predator developmental changes have received considerable attention, but it is not known to what extent prey use information from the smell of predators and from cues released through digestion. We conducted an experiment to determine the importance of various types of cues for the adjustment of anti-predator defences. We exposed tadpoles (common frog, Rana temporaria) to water originating from predators (caged dragonfly larvae, Aeshna cyanea) that were fed different types and quantities of prey outside of tadpole-rearing containers. Variation among treatments in the magnitude of morphological and behavioural responses was highly consistent. Our results demonstrate that tadpoles can assess the threat posed by predators through digestion-released, prey-borne cues and continually released predator-borne cues. These cues may play an important role in the fine-tuning of anti-predator responses and significantly affect the outcome of interactions between predators and prey in aquatic ecosystems. There has been much confusion regards terminology used in the literature, and therefore we also propose a more precise and consistent binomial nomenclature based on the timing of chemical cue release (stress-, attack-, capture-, digestion- or continually released cues) and the origin of cues (prey-borne or predator-borne cues). We hope that this new nomenclature will improve comparisons among studies on this topic.
Gupta, Shilpi; Lemenze, Alexander; Donnelly, Robert J; Connell, Nancy D; Kadouri, Daniel E
2018-05-08
The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators B. bacteriovorus and M. aeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Corridors and olfactory predator cues affect small mammal behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.
2005-03-30
Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connectedmore » by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.« less
Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J
2014-01-01
Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Predation on stocked Atlantic salmon (Salmo salar) fry
Henderson, J.N.; Letcher, B.H.
2003-01-01
We studied predator-prey interactions between juvenile Atlantic salmon (Salmo salar) and trout in three Massachusetts, U.S.A., streams and in artificial streams. We sampled stomach contents of age-1+ and older salmon and trout (Salvelinus fontinalis, Salmo trutta) following salmon fry stocking in the spring of 1997 and 1998. Between 4.3 and 48.6% of the stocked fry were consumed within the first 2 days after stocking, and total fry mortality from predation varied from 4.3 to 60.7%. No significant differences were found between stomach weights of predators (without fry weight) that consumed fry and those that did not. Artificial stream experiments testing effects of habitat complexity and predator species on predator consumption rates revealed that consumption rates were not different between brook (S. fontinalis) and brown (S. trutta) trout (p = 0.59). Predation rate tended to decrease as the percentage of riffle habitat increased but the decrease was not significant (p = 0.22). Our results indicate that predation on stocked Atlantic salmon fry can be substantial (up to 60%), appears to be short lived (2 days), and is not related in a simple way to abiotic and biotic factors.
Rondoni, Gabriele; Ielo, Fulvio; Ricci, Carlo; Conti, Eric
2014-12-08
(1) Intraguild predation (IGP) can occur among aphidophagous predators thus reducing their effectiveness in controlling crop pests. Among ladybirds, Coccinella septempunctata L. and Hippodamia variegata Goeze are the most effective predators upon Aphis gossypii Glov., which is an economically important pest of melon. Understanding their likelihood to engage in reciprocal predation is a key point for conservation of biological control. Here, we aim to investigate, under laboratory conditions, the level of IGP between the two above mentioned aphidophagous species. (2) Fourth-instars of the two species were isolated in petri dishes with combinations of different stages of the heterospecific ladybird and different densities of A. gossypii. The occurrence of IGP events was recorded after six hours. (3) C. septempunctata predated H. variegata at a higher rate than vice versa (70% vs. 43% overall). Higher density of the aphid or older juvenile stage of the IG-prey (22% of fourth instars vs. 74% of eggs and second instars) reduces the likelihood of predation. (4) To our knowledge, IGP between C. septempunctata and H. variegata was investigated for the first time. Results represent a baseline, necessary to predict the likelihood of IGP occurrence in the field.
Plasticity as Phenotype: G x E Interaction in a Freshwater Snail
NASA Astrophysics Data System (ADS)
Brunkow, P. E.; Calloway, S. A.
2005-05-01
Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.
Book, D L; Freeberg, Todd M
2015-09-01
Although anti-predator behavior systems have been studied in diverse taxa, less is known about how prey species detect and assess the immediate threat posed by a predator based on its behavior. In this study, we evaluated a potential cue that some species may utilize when assessing predation threat-the predator's body and head orientation. We tested the effect of this orientation cue on signaling and predation-risk-sensitive foraging of a prey species, tufted titmice (Baeolophus bicolor). Earlier work revealed sensitivity of titmice and related species to the presence of predator stimuli. Here, we manipulated cat models to face either toward or away from a food source preferred by titmice and then measured titmouse calling and seed-taking behavior. Titmice showed greater feeder avoidance when the cat predator models faced the feeder, compared to when the models faced away from the feeder or when titmice were exposed to control stimuli. Titmouse calling was also sensitive to predator head/body orientation, depending upon whether titmice were from sites where real cats had been observed or not. This study experimentally demonstrated that both calling and foraging of prey species can be affected by the head and body orientation of an important terrestrial predator. Prey species may therefore signal in strategic ways to conspecifics not just about predator presence, but also urgency of threat related to the more subtle cue of the head and body orientation of the predator. These findings hold potential implications for understanding animal cognition and learning processes.
Patch use in time and space for a meso-predator in a risky world.
Mukherjee, Shomen; Zelcer, Michal; Kotler, Burt P
2009-03-01
Predator-prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.
Local adaptation to temperature conserves top-down control in a grassland food web.
Barton, Brandon T
2011-10-22
A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.; Sih, Andrew; Loughman, Daniel L.; Yarris, Gregory S.; Oldenburger, Shaun L.; McLandress, M. Robert
2017-01-01
Many avian species are behaviorally-plastic in selecting nest sites, and may shift to new locations or habitats following an unsuccessful breeding attempt. If there is predictable spatial variation in predation risk, the process of many individuals using prior experience to adaptively change nest sites may scale up to create shifting patterns of nest density at a population level. We used 18 years of waterfowl nesting data to assess whether there were areas of consistently high or low predation risk, and whether low-risk areas increased, and high-risk areas decreased in nest density the following year. We created kernel density maps of successful and unsuccessful nests in consecutive years and found no correlation in predation risk and no evidence for adaptive shifts, although nest density was correlated between years. We also examined between-year correlations in nest density and nest success at three smaller spatial scales: individual nesting fields (10–28 ha), 16-ha grid cells and 4-ha grid cells. Here, results were similar across all scales: we found no evidence for year-to-year correlation in nest success but found strong evidence that nest density was correlated between years, and areas of high nest success increased in nest density the following year. Prior research in this system has demonstrated that areas of high nest density have higher nest success, and taken together, our results suggest that ducks may adaptively select nest sites based on the local density of conspecifics, rather than the physical location of last year's nest. In unpredictable environments, current cues, such as the presence of active conspecific nests, may be especially useful in selecting nest sites. The cues birds use to select breeding locations and successfully avoid predators deserve continued attention, especially in systems of conservation concern.
Berger, J
1999-01-01
The recent extinction of grizzly bears (Ursus arctos) and wolves (Canis lupus) by humans from 95-99% of the contiguous USA and Mexico in less than 100 years has resulted in dramatically altered and expanded prey communities. Such rampant ecological change and putative ecological instability has not occurred in North American northern boreal zones. This geographical variation in the loss of large carnivores as a consequence of anthropogenic disturbance offers opportunities for examining the potential consequences of extinction on subtle but important ecological patterns involving behaviour and interspecific ecological interactions. In Alaska, where scavengers and large carnivores are associated with carcasses, field experiments involving sound playback simulations have demonstrated that at least one prey species, moose (Alces alces), is sensitive to the vocalizations of ravens (Corvus corax) and may rely on their cues to avoid predation. However, a similar relationship is absent on a predator-free island in Alaska's Cook Inlet and at two sites in the Jackson Hole region of the Rocky Mountains (USA) where grizzly bears and wolves have been extinct for 50-70 years. While prior study of birds and mammals has demonstrated that prey may retain predator recognition capabilities for thousands of years even after predation as a selective force has been relaxed, the results presented here establish that a desensitization in interspecific responsiveness can also occur in less than ten generations. These results affirm (i) a rapid decoupling in behaviour involving prey and scavengers as a consequence of anthropogenic-caused predator-prey disequilibriums, and (ii) subtle, community-level modifications in terrestrial ecosystems where large carnivores no longer exist. If knowledge about ecological and behavioural processes in extant systems is to be enhanced, the potential effects of recently extinct carnivores must be incorporated into current programmes. PMID:10629976
Does juvenile competition explain displacement of a native crayfish by an introduced crayfish?
Larson, E.R.; Magoulick, D.D.
2009-01-01
The coldwater crayfish Orconectes eupunctus is endemic to the Spring and Eleven Point Rivers of Arkansas and Missouri, and appears to have been displaced from a portion of its range by the recently introduced ringed crayfish Orconectes neglectus. We examined competition among juveniles as a potential mechanism for this crayfish species displacement through laboratory and field experiments. Orconectes eupunctus juveniles survived and grew in stream cages in their former range, implicating biotic interactions rather than habitat degradation in the displacement. Laboratory experiments revealed O. neglectus juveniles were dominant in the presence of limited food, whereas size rather than species determined occupancy of limited shelter. In a field competition experiment using stream cages, O. neglectus juveniles did not inhibit growth or reduce survival of O. eupunctus juveniles. Consequently, laboratory evidence of O. neglectus dominance did not correspond with competition under field conditions. Combined with previous studies examining the effects of O. neglectus on O. eupunctus, these results suggest that competition may not be a factor in this crayfish species displacement. Alternate mechanisms for the apparent displacement of O. eupunctus by O. neglectus, such as differential predation or reproductive interference, should be investigated. ?? 2008 Springer Science+Business Media B.V.
Saboory, Ehsan; Ahmadzadeh, Ramin; Roshan-Milani, Shiva
2011-12-01
Exposure to stress is known to change synaptic plasticity and results in long-term depression; further, this stress precipitates seizures. In the study described here, the prenatal restraint and predator stress models were used to test the hypothesis that indirect prenatal stresses influence hippocampal synaptic potentiation and may affect seizures susceptibility in infant rats. Pregnant female Wistar rats were divided into 3 groups: control, restraint-stressed, and predator-stressed groups. Both stressed groups were exposed to the stressor on gestation days 15, 16, and 17. The restraint stress involved 1-h sessions twice daily in a Plexiglas tube and the predator stress involved 2-h sessions once daily in a cage placed within the visual range of a caged cat. Blood corticosterone (COS) levels were measured in different time points. Hippocampal slices were prepared and field excitatory postsynaptic potentials (fEPSP) were studied on postnatal day 15. Pilocarpine was administered on postnatal day 25 and mortality rates were measured after 2 and 24h. Restraint and predator stresses resulted in significantly elevated COS blood levels in dams and pups. Both the amplitude and slope of fEPSP in the CA1 area decreased significantly in the stressed groups as compared to the control. Prenatal restraint and predator stresses significantly increased the fatal effect of pilocarpine at 24h after injection. Exposure to prenatal stresses and COS blood levels elevation reduce hippocampal synaptic potentiation and increase mortality rate of seizure in infant rats and may affect on later seizure susceptibility and prognosis. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotta, Jonne; Orav-Kotta, Helen; Herkül, Kristjan
2010-10-01
The North-American amphipod Gammarus tigrinus was observed for the first time in the northern Baltic Sea in 2003. The invasive amphipod has been particularly successful in some habitats (e.g. on pebbles) where it has become one of the most abundant gammarid species. We studied experimentally if the dominant fish Gasterosteus aculeatus preyed differentially on the exotic G. tigrinus and the native Gammarus salinus, if predation differed among habitats, and if one gammarid species facilitated predation on the other. The experiment demonstrated that (1) fish preyed more on the exotic G. tigrinus than the native G. salinus. (2) Predation did not differ among habitats. (3) Gammarus tigrinus facilitated the predation on G. salinus and this facilitation varied among habitats with significant effects on pebbles. Thus, the combined effect of habitat-specific fish predation and competition between gammarid amphipods is a possible explanation of the current range of G. tigrinus in the northern Baltic Sea. G. tigrinus seems to establish in habitats where it can significantly increase fish predation on the native gammarids.
2008-03-01
wearing eyeglasses or contacts to achieve 20/20 vision would not constitute an automatic rejection to operate a UAV. Therefore, the reduced medical...Current selection methods may in fact not provide the fit for Predator needs because they do not really test what the Predator pilot really requires to do...but more importantly, how the information fits into what we already know-- our knowledge which has been previously obtained based on our experiences
The Macaroni Lab: A Directed Inquiry Project on Predator-Prey Relationships.
ERIC Educational Resources Information Center
Oyler, Michelle; Rivera, John; Roffol, Melanie; Gibson, David J.; Middleton, Beth A.; Mathis, Marilyn
1999-01-01
Presents a directed-inquiry activity to take students one step beyond observation of how living organisms capture prey. Uses a field lab based upon predator-prey relationships to enliven the teaching of food web concepts to non-science-major freshman undergraduates. Can also be used in teaching high school biology students through college science…
USDA-ARS?s Scientific Manuscript database
Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is an important predator of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Orius sauteri would be directly exposed to the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin in the field should the fu...
Space-time clusters for early detection of grizzly bear predation.
Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco
2018-01-01
Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based on space-time probability models allows for prompt visits to predation sites. This enables accurate identification of the carcass size and increases fieldwork efficiency in predation studies.
Santini, Bianca A; Martorell, Carlos
2013-02-01
Serotinous plants retain their seeds for a long time. In deserts, retained seeds undergo hydration-dehydration cycles and thus may become primed. Priming enhances germination and seedling vigor. We test the hypothesis that serotiny evolves because it provides a site protected from predators in which seeds can become primed. Rainfall-cued dispersal of primed seeds may enhance this effect. We tested this hypothesis with Mammillaria hernandezii through protein-content analyses; field and laboratory germination experiments with primed, unprimed, and retained seeds; and fitness estimations from demographic models. Hydration-dehydration cycles induced priming, enhancing germination. Artificial priming and retention in the parent plant for 1 yr induced similar changes in seed protein patterns, suggesting that priming occurs naturally while seeds are retained. Under field conditions, germination of seeds retained for 1 yr more than doubled that of seeds of the same cohort that were not primed or that remained buried for 1 yr. The first seeds to germinate died rapidly. Serotinous plants whose seeds underwent priming had higher fitness than those whose seeds were in the soil seed bank or that did not experience priming. Priming in soil seed banks may be costly because of high predation, so seed protection during priming is sufficient to promote the evolution of serotiny. Bet hedging contributes to this process. Rapid germination of primed seeds that respond to brief rainfall events is disadvantageous because such rainfall is insufficient for seedling survival. Serotinous species counteract this cost by cueing dispersal with heavy precipitation.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.
2014-01-01
Laboratory and in-stream enclosure experiments were used to determine whether rainbow trout Oncorhynchus mykiss influence survival of longnose dace Rhinichthys cataractae. In the laboratory, adult rainbow trout preyed on longnose dace in 42% of trials and juvenile rainbow trout did not prey on longnose dace during the first 6 h after rainbow trout introduction. Survival of longnose dace did not differ in the presence of adult rainbow trout previously exposed to active prey and those not previously exposed to active prey ( = 0.28, P = 0.60). In field enclosures, the number of longnose dace decreased at a faster rate in the presence of rainbow trout relative to controls within the first 72 h, but did not differ between moderate and high densities of rainbow trout (F2,258.9 = 3.73, P = 0.03). Additionally, longnose dace were found in 7% of rainbow trout stomachs after 72 h in enclosures. Rainbow trout acclimated to the stream for longer periods had a greater initial influence on the number of longnose dace remaining in enclosures relative to those acclimated for shorter periods regardless of rainbow trout density treatment (F4,148.5 = 2.50, P = 0.04). More research is needed to determine how predation rates will change in natural environments, under differing amounts of habitat and food resources and in the context of whole assemblages. However, if rainbow trout are introduced into the habitat of longnose dace, some predation on longnose dace is expected, even when rainbow trout have no previous experience with active prey.
The evolution of Müllerian mimicry
2008-01-01
It is now 130 years since Fritz Müller proposed an evolutionary explanation for the close similarity of co-existing unpalatable prey species, a phenomenon now known as Müllerian mimicry. Müller’s hypothesis was that unpalatable species evolve a similar appearance to reduce the mortality involved in training predators to avoid them, and he backed up his arguments with a mathematical model in which predators attack a fixed number (n) of each distinct unpalatable type in a given season before avoiding them. Here, I review what has since been discovered about Müllerian mimicry and consider in particular its relationship to other forms of mimicry. Müller’s specific model of associative learning involving a “fixed n” in a given season has not been supported, and several experiments now suggest that two distinct unpalatable prey types may be just as easy to learn to avoid as one. Nevertheless, Müller’s general insight that novel unpalatable forms have higher mortality than common unpalatable forms as a result of predation has been well supported by field experiments. From its inception, there has been a heated debate over the nature of the relationship between Müllerian co-mimics that differ in their level of defence. There is now a growing awareness that this relationship can be mediated by many factors, including synergistic effects between co-mimics that differ in their mode of defence, rates of generalisation among warning signals and concomitant changes in prey density as mimicry evolves. I highlight areas for future enquiry, including the possibility of Müllerian mimicry systems based on profitability rather than unprofitability and the co-evolution of defence. PMID:18542902
The evolution of Müllerian mimicry
NASA Astrophysics Data System (ADS)
Sherratt, Thomas N.
2008-08-01
It is now 130 years since Fritz Müller proposed an evolutionary explanation for the close similarity of co-existing unpalatable prey species, a phenomenon now known as Müllerian mimicry. Müller’s hypothesis was that unpalatable species evolve a similar appearance to reduce the mortality involved in training predators to avoid them, and he backed up his arguments with a mathematical model in which predators attack a fixed number ( n) of each distinct unpalatable type in a given season before avoiding them. Here, I review what has since been discovered about Müllerian mimicry and consider in particular its relationship to other forms of mimicry. Müller’s specific model of associative learning involving a “fixed n” in a given season has not been supported, and several experiments now suggest that two distinct unpalatable prey types may be just as easy to learn to avoid as one. Nevertheless, Müller’s general insight that novel unpalatable forms have higher mortality than common unpalatable forms as a result of predation has been well supported by field experiments. From its inception, there has been a heated debate over the nature of the relationship between Müllerian co-mimics that differ in their level of defence. There is now a growing awareness that this relationship can be mediated by many factors, including synergistic effects between co-mimics that differ in their mode of defence, rates of generalisation among warning signals and concomitant changes in prey density as mimicry evolves. I highlight areas for future enquiry, including the possibility of Müllerian mimicry systems based on profitability rather than unprofitability and the co-evolution of defence.
Dual-guild herbivory disrupts predator-prey interactions in the field.
Blubaugh, Carmen K; Asplund, Jacob S; Eigenbrode, Sanford D; Morra, Matthew J; Philips, Christopher R; Popova, Inna E; Reganold, John P; Snyder, William E
2018-05-01
Plant defenses often mediate whether competing chewing and sucking herbivores indirectly benefit or harm one another. Dual-guild herbivory also can muddle plant signals used by specialist natural enemies to locate prey, further complicating the net impact of herbivore-herbivore interactions in naturally diverse settings. While dual-guild herbivore communities are common in nature, consequences for top-down processes are unclear, as chemically mediated tri-trophic interactions are rarely evaluated in field environments. Combining observational and experimental approaches in the open field, we test a prediction that chewing herbivores interfere with top-down suppression of phloem feeders on Brassica oleracea across broad landscapes. In a two-year survey of 52 working farm sites, we found that parasitoid and aphid densities on broccoli plants positively correlated at farms where aphids and caterpillars rarely co-occurred, but this relationship disappeared at farms where caterpillars commonly co-occurred. In a follow-up experiment, we compared single and dual-guild herbivore communities at four local farm sites and found that caterpillars (P. rapae) caused a 30% reduction in aphid parasitism (primarily by Diaeretiella rapae), and increased aphid colony (Brevicoryne brassicae) growth at some sites. Notably, in the absence of predators, caterpillars indirectly suppressed, rather than enhanced, aphid growth. Amid considerable ecological noise, our study reveals a pattern of apparent commensalism: herbivore-herbivore facilitation via relaxed top-down suppression. This work suggests that enemy-mediated apparent commensalism may override constraints to growth induced by competing herbivores in field environments, and emphasizes the value of placing chemically mediated interactions within their broader environmental and community contexts. © 2018 by the Ecological Society of America.
Gao, Feng; Men, XingYuan; Ge, Feng
2014-09-01
Biodiversity research has shown that primary productivity increases with plant species number, especially in many experimental grassland systems. Here, we assessed the correlation between productivity and diversity of phytophages and natural enemy assemblages associated with planting date and intercropping in four cotton agroecosystems. Twenty-one pairs of data were used to determine Pearson correlations between species richness, total number of individuals, diversity indices and productivity for each assemblage every five days from 5 June to 15 September 2012. At the same trophic level, the productivity exhibited a significant positive correlation with species richness of the phytophage or predator assemblage. A significant correlation was found between productivity and total number of individuals in most cotton fields. However, no significant correlations were observed between productivity and diversity indices (including indices of energy flow diversity and numerical diversity) in most cotton fields for either the phytophage or the predator assemblages. Species richness of phytophage assemblage and total individual numbers were significantly correlated with primary productivity. Also, species richness of natural enemy assemblage and total number of individuals correlated with phytophage assemblage productivity. A negative but not significant correlation occurred between the indices of numerical diversity and energy flow diversity and lower trophic-level productivity in the cotton-phytophage and phytophage-predator assemblages for most intercropped cotton agroecosystems. Our results clearly showed that there were no correlations between diversity indices and productivity within the same or lower trophic levels within the phytophage and predator assemblages in cotton agroecosystems, and inter-cropped cotton fields had a stronger ability to support the natural enemy assemblage and potentially to reduce phytophages.
Zamora, Regino; Matías, Luis
2014-01-01
In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees. PMID:25233342
Ahrenstorff, Tyler D.; Diana, James S.; Fetzer, William W.; Jones, Thomas S.; Lawson, Zach J.; McInerny, Michael C.; Santucci, Victor J.; Vander Zanden, M. Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10–20% and 32–46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9–2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey. PMID:29543856
Gaeta, Jereme W; Ahrenstorff, Tyler D; Diana, James S; Fetzer, William W; Jones, Thomas S; Lawson, Zach J; McInerny, Michael C; Santucci, Victor J; Vander Zanden, M Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10-20% and 32-46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9-2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey.
Schofield, Pamela J.; Slone, Daniel H.; Gregoire, Denise R.; Loftus, William F.
2014-01-01
In an 8-month mesocosm experiment, we examined how a simulated Everglades aquatic community of small native fishes, snails, and shrimp changed with the addition of either a native predator (dollar sunfish Lepomis marginatus) or a non-native predator (African jewelfish Hemichromis letourneuxi) compared to a no-predator control. Two snail species (Planorbella duryi, Physella cubensis) and the shrimp (Palaemonetes paludosus) displayed the strongest predator-treatment effects, with significantly lower biomasses in tanks with Hemichromis. One small native fish (Heterandria formosa) was significantly less abundant in Hemichromis tanks, but there were no significant treatment effects for Gambusia holbrooki, Jordanella floridae, or Pomacea paludosa (applesnail). Overall, there were few treatment differences between native predator and no-predator control tanks. The results suggest that the potential of Hemichromis to affect basal food-web species that link primary producers with higher-level consumers in the aquatic food web, with unknown consequences for Florida waters.
The role of predators in maintaining the geographic organization of aposematic signals.
Chouteau, Mathieu; Angers, Bernard
2011-12-01
Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison dart frog Ranitomeya imitator and a nonconspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph experienced up to four times more attacks than the local one and two times more than the nonconspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals.
Effect of Culverts on Predator-Prey Interactions in a Tropical Stream.
NASA Astrophysics Data System (ADS)
Hein, C. L.; Kikkert, D. A.; Crowl, T. A.
2005-05-01
As part of a biocomplexity project in Puerto Rico, we use river and road networks as a platform to understand the interactions between stream biota, the physical environment, and human activity. Specifically, we ask if humans affect aquatic organisms through road building and recreational activities. Culverts have been documented to impede or slow migration of aquatic biota. This is especially important in these streams because all of the freshwater, stream species have diadramous life cycles. If culverts do act as bottlenecks to shrimp migrations, we expect altered predator-prey interactions downstream through density-dependent predation dynamics. In order to determine how roads may affect predation rates on upstream migrating shrimp, we parameterized functional response curves for mountain mullet (Agonostomus monticola) consuming shrimp (Xiphocaris sp.) using artificial mesocosm experiments. We then used data obtained from underwater videography to determine how culverts decrease the rate and number of shrimp moving upstream. These data were combined in a predator-prey model to quantify the effects of culverts on localized shrimp densities and fish predation.
Rank, Nathan Egan
1994-04-01
Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist predators that were unaffected by the host-derived defensive secretion. One specialist predator, Symmorphus cristatus (Hymenoptera: Eumenidae), probably caused much of the mortality observed in this study. I discuss the importance of other specialist predators to salicin-using leaf beetles.
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, J.H.
1990-07-01
Three aspects of predation upon juvenile salmonids in the Columbia River are addressed in this report: (1) Indexing predator consumption. During 1989--1990, two indices of northern squawfish consumption upon juvenile salmonids were developed for use throughout the Columbia River Basin. The direct Consumption Index (CI) is based upon the concept of meal turnover time and takes into account number of salmonids, temperature, total gut content weight and predator weight. A Bioenergetics Index (BI) for consumption indexing was also developed to complement the direct CI. In the BI, growth, consumption, excretion/evacuation and respiration processes are modeled to predict the consumption requiredmore » to produce an observed growth increment. (2) Studies on predator-smolt dynamics. Northern squawfish consumption data were collected in the McNary Dam tailrace during nine days in July 1988 to improve our understanding of the predator-smolt functional response. (3) Selective predation by northern squawfish. Laboratory and field protocols were developed to evaluate northern squawfish selection and prey vulnerability. Results from laboratory studies suggest that northern squawfish prefer dead over live prey and that descaled prey may be more vulnerable to predation than non-descaled prey. Stressed and unstressed prey were consumed in equal proportions when predation occurred for 6 or 24 h. Physiological and behavioral effects of stress on juvenile salmon are presented. 100 refs., 13 figs., 12 tabs.« less
Stability of an intraguild predation system with mutual predation
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; DeAngelis, Donald L.
2016-04-01
We examine intraguild predation (IGP), in which species both compete for resources or space and prey on each other. The IGP system is modeled here by a lattice gas model of the mean-field theory. First, we consider the IGP system of one species in which individuals of the same species cannibalize each other. The dynamical behavior of the model demonstrates a mechanism by which the intraspecific predation promotes persistence of the species. Then we consider the IGP system of two species with mutual predation. Global dynamics of the model exhibit basic properties of IGP: (i) When both species' efficiencies in converting the consumptions into fitness are large, the outcome of their interaction is mutualistic in form and the IGP promotes persistence of both species. (ii) When one species' efficiency is large but the other's is small, the interaction outcomes become parasitic in nature, in which an obligate species can survive through the mutual predation with a facultative one. (iii) When both species' efficiencies are small, the interaction outcomes are competitive in nature and the IGP leads to extinction of one of the species. A novel result of this work is that varying one parameter or population density of the species can lead to transition of interaction outcomes between mutualism, parasitism and competition. On the other hand, dynamics of the models demonstrate that over-predation or under-predation will result in extinction of one/both species, while intermediate predation is favorable under certain parameter ranges.
Predatory fish depletion and recovery potential on Caribbean reefs
Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis
2017-01-01
The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions. PMID:28275730
Predation on larval Atlantic herring (Clupea harengus) in inshore waters of the Baltic Sea
NASA Astrophysics Data System (ADS)
Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena; Peck, Myron A.; Oesterwind, Daniel; Polte, Patrick
2017-11-01
In fishery science, early life-stage survival and development are regarded as major factors driving the population dynamics of marine fishes. During the last century, the main research focus has been on the spatio-temporal match of larval fish and appropriate food (bottom-up processes). However, these field studies are often criticised for their limited capability to disentangle their results from mortality caused by predation since these top-down mechanisms are rarely studied. We examined the predation on herring (Clupea harengus) larvae in a Baltic inshore lagoon by investigating the spatio-temporal overlap of larval herring and their potential predators such as the dominant threespine stickleback (Gasterosteus aculeatus) in distinct habitats (sublittoral and littoral areas) using a set of different gears and sampling techniques. Despite significant spatial and temporal predator-prey overlap, stomach analyses suggested that very few larvae were consumed by sticklebacks, even if projected to the entire study area and season. Other well-known predators of clupeid larvae such as gelatinous plankton occur later in the year after young herring have migrated out of the system. The observed predation on herring larvae was much less than expected and appears being a minor factor in determining herring reproduction success in our study area, particularly if compared to other causes of mortality such as egg predation. Providing a relatively good shelter from predation might be a key element making transitional waters valuable nursery grounds for the offspring of migrating marine fish species.
Disentangling mite predator-prey relationships by multiplex PCR.
Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A
2015-11-01
Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.
Equilibriumizing all food chain chaos through reproductive efficiency.
Deng, Bo
2006-12-01
The intraspecific interference of a top-predator is incorporated into a classical mathematical model for three-trophic food chains. All chaos types known to the classical model are shown to exist for this comprehensive model. It is further demonstrated that if the top-predator reproduces at high efficiency, then all chaotic dynamics will change to a stable coexisting equilibrium, a novel property not found in the classical model. This finding gives a mechanistic explanation to the question of why food chain chaos is rare in the field. It also suggests that high reproductive efficiency of top-predators tends to stabilize food chains.
Costs and benefits of larval jumping behaviour of Bathyplectes anurus.
Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami
2016-02-01
Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.
Kimbro, David L
2012-02-01
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.
Ohata, R; Masuda, R; Yamashita, Y
2011-12-01
Laboratory experiments revealed distinct effects of turbidity on the survival of Japanese anchovy Engraulis japonicus larvae when exposed to either visual (jack mackerel Trachurus japonicus) or tactile (moon jellyfish Aurelia aurita) predators. The experiments were conducted in 30 l tanks with three levels of turbidity obtained by dissolving 0, 50 or 300 mg l(-1) of kaolin. Predators were introduced to experimental tanks followed by larvae of E. japonicus ranging from 5 to 25 mm standard lengths (L(s) ). When exposed to T. japonicus, the mean survival rate of larvae was significantly higher in 300 mg l(-1) treatments compared to the other turbidity levels. When exposed to A. aurita, however, there was no difference in the survival rates among different turbidity treatments. The survival rates when exposed to either predator improved with larval growth. The logistic survivorship models for E. japonicus larvae when exposed to A. aurita had an inflection point at c. 12 mm L(s) , suggesting that their size refuge from A. aurita is close to this value. Comparison to a previous study suggests a high vulnerability of shirasu (long and transparent) fish larvae to jellyfish predation under turbidity. This study indicates that anthropogenic increases of turbidity in coastal waters may increase the relative effect of jellyfish predation on fish larvae. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems
Pearsons, Kirsten A.
2017-01-01
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators. PMID:28783074
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems.
Pearsons, Kirsten A; Tooker, John F
2017-08-05
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.
Gazzola, Andrea; Brandalise, Federico; Rubolini, Diego; Rossi, Paola; Galeotti, Paolo
2015-12-01
Neurophysiological modifications associated to phenotypic plasticity in response to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus the control group after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience contributes to shaping the phenotype at later life stages. © 2015. Published by The Company of Biologists Ltd.
Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena
2015-01-01
Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953
Muiruri, Evalyne W; Rainio, Kalle; Koricheva, Julia
2016-03-01
The enemies hypothesis states that reduced insect herbivory in mixed-species stands can be attributed to more effective top-down control by predators with increasing plant diversity. Although evidence for this mechanism exists for invertebrate predators, studies on avian predation are comparatively rare and have not explicitly tested the effects of diversity at different spatial scales, even though heterogeneity at macro- and micro-scales can influence bird foraging selection. We studied bird predation in an established forest diversity experiment in SW Finland, using artificial larvae installed on birch, alder and pine trees. Effects of tree species diversity and densities on bird predation were tested at two different scales: between plots and within the neighbourhood around focal trees. At the neighbourhood scale, birds preferentially foraged on focal trees surrounded by a higher diversity of neighbours. However, predation rates did not increase with tree species richness at the plot level and were instead negatively affected by tree height variation within the plot. The highest probability of predation was observed on pine, and rates of predation increased with the density of pine regardless of scale. Strong tree species preferences observed may be due to a combination of innate bird species preferences and opportunistic foraging on profitable-looking artificial prey. This study therefore finds partial support for the enemies hypothesis and highlights the importance of spatial scale and focal tree species in modifying trophic interactions between avian predators and insect herbivores in forest ecosystems.
Predator-prey trophic relationships in response to organic management practices.
Schmidt, Jason M; Barney, Sarah K; Williams, Mark A; Bessin, Ricardo T; Coolong, Timothy W; Harwood, James D
2014-08-01
A broad range of environmental conditions likely regulate predator-prey population dynamics and impact the structure of these communities. Central to understanding the interplay between predator and prey populations and their importance is characterizing the corresponding trophic interactions. Here, we use a well-documented molecular approach to examine the structure of the community of natural enemies preying upon the squash bug, Anasa tristis, a herbivorous cucurbit pest that severely hinders organic squash and pumpkin production in the United States. Primer pairs were designed to examine the effects of organic management practices on the strength of these trophic connections and link this metric to measures of the arthropod predator complex density and diversity within an experimental open-field context. Replicated plots of butternut squash were randomly assigned to three treatments and were sampled throughout a growing season. Row-cover treatments had significant negative effects on squash bug and predator communities. In total, 640 predators were tested for squash bug molecular gut-content, of which 11% were found to have preyed on squash bugs, but predation varied over the season between predator groups (coccinellids, geocorids, nabids, web-building spiders and hunting spiders). Through the linking of molecular gut-content analysis to changes in diversity and abundance, these data delineate the complexity of interaction pathways on a pest that limits the profitability of organic squash production. © 2014 John Wiley & Sons Ltd.
Tinzaara, W; Gold, C S; Dicke, M; van Huis, A
2005-07-01
As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey.
Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community
NASA Astrophysics Data System (ADS)
Hiltunen, Teppo; Friman, Ville-Petri; Kaitala, Veijo; Mappes, Johanna; Laakso, Jouni
2012-01-01
Predation and temporal resource availability are among the most important factors determining prey community dynamics and composition. Both factors have been shown to affect prey diversity, but less is known about their interactive effects, especially in rapidly evolving prey communities. In a laboratory microcosm experiment, we manipulated the presence of the predatory protozoan Tetrahymena thermophila and the temporal patterns in the availability of resources for a bacterial prey community. We found that both predation and temporal fluctuations in prey resources resulted in a more even prey community, and these factors also interacted so that the effect of predation was only seen in a fluctuating environment. One possible explanation for this finding could be differences in prey species grazing resistance and resource use abilities, which likely had the greatest effect on prey community structure in fluctuating environments with periodical resource limitation. We also found that prey communities evolved to be more grazing-resistant during the experiment, and that this effect was due to a clear increase in the grazing resistance of the bacterium Serratia marcescens. Our results demonstrate that temporal variability in prey resources and predation can promote more even prey species proportions by allowing the existence of both defensive and competitive prey life-history strategies.
Beston, Shannon M; Wostl, Elijah; Walsh, Matthew R
2017-08-01
Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores ("high predation" sites), and no predators ("Rivulus-only" sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Transient recovery dynamics of a predator-prey system under press and pulse disturbances.
Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis
2017-04-04
Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.
Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H
2015-12-01
Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. © 2015. Published by The Company of Biologists Ltd.
Sleeping birds do not respond to predator odour.
Amo, Luisa; Caro, Samuel P; Visser, Marcel E
2011-01-01
During sleep animals are relatively unresponsive and unaware of their environment, and therefore, more exposed to predation risk than alert and awake animals. This vulnerability might influence when, where and how animals sleep depending on the risk of predation perceived before going to sleep. Less clear is whether animals remain sensitive to predation cues when already asleep. We experimentally tested whether great tits are able to detect the chemical cues of a common nocturnal predator while sleeping. We predicted that birds exposed to the scent of a mammalian predator (mustelid) twice during the night would not go into torpor (which reduces their vigilance) and hence would not reduce their body temperature as much as control birds, exposed to the scent of another mammal that does not represent a danger for the birds (rabbit). As a consequence of the higher body temperature birds exposed to the scent of a predator are predicted to have a higher resting metabolic rate (RMR) and to lose more body mass. In the experiment, all birds decreased their body temperature during the night, but we did not find any influence of the treatment on body temperature, RMR, or body mass. Our results suggest that birds are not able to detect predator chemical cues while sleeping. As a consequence, antipredatory strategies taken before sleep, such as roosting sites inspection, may be crucial to cope with the vulnerability to predation risk while sleeping.
Anti-predator behaviour changes following an aggressive encounter in the lizard Tropidurus hispidus
Diaz-Uriarte, R
1999-01-01
Avoiding predators may conflict with territorial defence because a hiding territorial resident is unable to monitor its territory or defend it from conspecific intrusions. With persistent intruders, the presence of an intruder in the near past can indicate an increased probability of future intrusions. Therefore, following a conspecific-intrusion, territorial residents should minimize costs from future intrusions at the cost of higher predation risks. I conducted experiments with males of the territorial lizard Tropidurus hispidus recording approach distance (distance between predator and prey when the prey escapes) and time to re-emergence from a refuge after hiding. Past aggressive interactions affected anti-predator behaviour: lizards re-emerged sooner (compared to a control) when the predator attacked 5 min after an aggressive encounter. If the predator attacked while an aggressive encounter was ongoing, there was also a reduction in approach distance. The results are consistent with an economic hypothesis which predicts that T. hispidus incur greater predation risks to minimize future territorial intrusion; additionally they show that the effects of past and ongoing aggressive interactions are different, consistent with the minimization of present intrusion costs. These results are relevant for studies of the changes in aggressive behaviour due to changes in the social environment and for studies of the costs and (co) evolution of aggressive and anti-predator strategies. PMID:10693815
Vulnerability of age-0 pallid sturgeon Scaphirhynchus albus to fish predation
French, William E.; Graeb, B.D.S.; Chipps, S.R.; Bertrand, K.N.; Selch, T.M.; Klumb, Robert A.
2010-01-01
Stocking is a commonly employed conservation strategy for endangered species such as the pallid sturgeon, Scaphirhynchus albus. However, decisions about when, where and at what size pallid sturgeon should be stocked are hindered because vulnerability of pallid sturgeon to fish predation is not known. The objective of this study was to evaluate the vulnerability of age-0 pallid sturgeon to predation by two Missouri River predators under different flow regimes, and in combination with alternative prey. To document vulnerability, age-0 pallid sturgeon (<100 mm) were offered to channel catfish Ictalurus punctatus and smallmouth bass Micropterus dolomieu in laboratory experiments. Selection of pallid sturgeon by both predators was measured by offering pallid sturgeon and an alternative prey, fathead minnows Pimephales promelas, in varying prey densities. Smallmouth bass consumed more age-0 pallid sturgeon (0.95 h-1) than did channel catfish (0.13 h-1), and predation rates did not differ between water velocities supporting sustained (0 m s-1) or prolonged swimming speeds (0.15 m s-1). Neither predator positively selected pallid sturgeon when alternative prey was available. Both predator species consumed more fathead minnows than pallid sturgeon across all prey density combinations. Results indicate that the vulnerability of age-0 pallid sturgeon to predation by channel catfish and smallmouth bass is low, especially in the presence of an alternative fish prey. ?? 2009 Blackwell Verlag GmbH.
Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.
Hines, Jes; Gessner, Mark O
2012-11-01
1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Marion, Zachary H.; Hay, Mark E.
2011-01-01
Amphibian secondary metabolites are well known chemically, but their ecological functions are poorly understood—even for well-studied species. For example, the eastern newt (Notophthalmus viridescens) is a well known secretor of tetrodotoxin (TTX), with this compound hypothesized to facilitate this salamander's coexistence with a variety of aquatic consumers across the eastern United States. However, this assumption of chemical defense is primarily based on observational data with low replication against only a few predator types. Therefore, we tested the hypothesis that N. viridescens is chemically defended against co-occurring fishes, invertebrates, and amphibian generalist predators and that this defense confers high survivorship when newts are transplanted into both fish-containing and fishless habitats. We found that adult eastern newts were unpalatable to predatory fishes (Micropterus salmoides, Lepomis macrochirus) and a crayfish (Procambarus clarkii), but were readily consumed by bullfrogs (Lithobates catesbeianus). The eggs and neonate larvae were also unpalatable to fish (L. macrochirus). Bioassay-guided fractionation confirmed that deterrence is chemical and that ecologically relevant concentrations of TTX would deter feeding. Despite predatory fishes rejecting eastern newts in laboratory assays, field experiments demonstrated that tethered newts suffered high rates of predation in fish-containing ponds. We suggest that this may be due to predation by amphibians (frogs) and reptiles (turtles) that co-occur with fishes rather than from fishes directly. Fishes suppress invertebrate consumers that prey on bullfrog larvae, leading to higher bullfrog densities in fish containing ponds and thus considerable consumption of newts due to bullfrog tolerance of newt chemical defenses. Amphibian chemical defenses, and consumer responses to them, may be more complex and indirect than previously appreciated. PMID:22164212
L.C. Viera; S.M. Salom; M.E. Montgomery; L.T. Kok
2013-01-01
The hemlock woolly adelgid, Adelges tsugae Annand, is a serious, non-native pest of hemlock in eastern North America. Laricobius osakensis Montgomery and Shiyake was identified as a key predator in Japan, where A. tsugae is native. Performance of adult and immature stages of L. osakensis was...
USDA-ARS?s Scientific Manuscript database
Seasonal changes in egg predation and parasitism rates on sentinel and naturally occurring (wild) egg masses of the squash bug, Anasa tristis (DeGeer), were evaluated in squash fields in Maryland from June through September in 2013 and 2014. Rates of egg predation and parasitism were significantly...
Predator cannibalism can intensify negative impacts on heterospecific prey.
Takatsu, Kunio; Kishida, Osamu
2015-07-01
Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.
Pyrazine odour makes visually conspicuous prey aversive.
Lindström, L; Rowe, C; Guilford, T
2001-01-22
Unpalatable insects frequently adopt multimodal signals to ward off predators, incorporating sounds and odours into their colourful displays. Pyrazine is an odour commonly used in insect warning displays, and has previously been shown to elicit unlearned biases against common warning colours, e.g. yellow and red in naive predators. We designed two experiments to test for similar effects of pyrazine on the conspicuousness of prey, perhaps the most ubiquitous aspect of aposematic coloration. In the first experiment, we offered predators (Gallus gallus domesticus) a choice between conspicuous crumbs and cryptic crumbs in the presence or absence of pyrazine. In the second experiment, we manipulated the birds' experience of conspicuous prey during an initial training phase. Only in the presence of pyrazine did birds show a bias against conspicuously coloured food, and this occurred whether or not they had previously experienced food that contrasted with the background. This emergent behaviour relied upon the visual and odorous signal components being presented together. These unlearned, yet hidden, responses against conspicuousness demonstrate that there are initial benefits to prey being conspicuous when the multimodal nature of warning signals is accounted for.
Social deprivation affects cooperative predator inspection in a cichlid fish
Hesse, Saskia; Anaya-Rojas, Jaime M.; Frommen, Joachim G.; Thünken, Timo
2015-01-01
The social environment individuals are exposed to during ontogeny shapes social skills and social competence in group-living animals. Consequently, social deprivation has serious effects on behaviour and development in animals but little is known about its impact on cooperation. In this study, we examined the effect of social environment on cooperative predator inspection. Predator inspection behaviour is a complex behaviour, which is present in a variety of shoaling fish species. Often, two fish leave the safety of the group and inspect a potentially dangerous predator in order to gather information about the current predation risk. As predator inspection is highly risky, it is prone to conflicts and cheating. However, cooperation among individuals may reduce the individual predation risk. We investigated this complex social behaviour in juveniles of the cichlid fish Pelvicachromis taeniatus that were reared in two different social environments throughout development. Fish reared in a group inspected more often than isolation-reared fish and were more likely to cooperate, i.e. they conducted conjoint inspection of a predator. By contrast, isolation-reared fish were more likely to perform a single inspection without a companion. These results suggest an impairment of cooperative behaviour in isolation-reared fish most probably due to lack of social experience and resulting in lowered social skills needed in coordinated behaviour. PMID:26064616
Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model
Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul
2013-01-01
Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175
Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.
2013-01-01
Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk.
Fitness and community consequences of avoiding multiple predators.
Peckarsky, Barbara L; McIntosh, Angus R
1998-02-01
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.
Egg-laying butterflies distinguish predaceous ants by sight.
Sendoya, Sebastián F; Freitas, André V L; Oliveira, Paulo S
2009-07-01
Information about predation risks is critical for herbivorous insects, and natural selection favors their ability to detect predators before oviposition and to select enemy-free foliage when offspring mortality risk is high. Food plants are selected by ovipositing butterflies, and offspring survival frequently varies among plants because of variation in the presence of predators. Eunica bechina butterflies oviposit on Caryocar brasiliense, an ant-defended plant. Experiments with dried Camponotus and Cephalotes ants pinned to leaves revealed that butterflies use ant size and form as visual cues to avoid ovipositing on plant parts occupied by ants more likely to kill larval offspring. Presence of sap-sucking bugs did not affect butterfly oviposition. This is the first demonstration that visual recognition of predators can mediate egg-laying decisions by an insect herbivore and that an insect will discriminate among different species of potential predators. This unusual behavioral capability permits specialization on a risky, ant-defended food plant.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
Attack risk for butterflies changes with eyespot number and size
Ho, Sebastian; Schachat, Sandra R.; Piel, William H.; Monteiro, Antónia
2016-01-01
Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size. PMID:26909190
Griffen, Blaine D; Guy, Travis; Buck, Julia C
2008-01-01
1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.
Bunnell, David B.; Mychek-Londer, Justin G.; Diana, James S.; Stott, Wendylee; Madenjian, Charles P.
2012-01-01
As the only extant deepwater cisco in Lake Michigan, bloater is currently at record low levels of abundance. Several mechanisms to regulate their recruitment have been proposed, including skewed sex ratios, predation on their larvae by adult alewife, and climatic factors during early life history stages, but none has unequivocal support. In this research, we evaluated an alternative mechanism of egg predation that was supported by an inverse relationship between bloater recruitment and biomass of slimy sculpin, which are known to be effective egg predators. To that end, we used a combination of field sampling, laboratory experiments, and modeling to estimate the proportion of bloater eggs consumed by sculpins each year between 1973 and 2008. Monthly field sampling between January through May 2009-2010 (when bloater eggs were incubating) offshore of Frankfort (Michigan), Sturgeon Bay (Wisconsin), Two Rivers (Wisconsin), and Muskegon (Michigan) provided benthivore diets for subsequent laboratory processing. Identification and enumeration of stomach contents and subsequent genetic analyses of eggs revealed that the mean proportion of bloater eggs in slimy sculpin diets (N = 1016) equaled 0.04. Bloater eggs also were consumed by deepwater sculpins (N = 699) at a slightly lower mean proportion (0.02), and only one round goby diet among 552 enumerated revealed a bloater egg. Based on the diet results, we developed daily ration models to estimate consumption for both deepwater and slimy sculpins. We conducted feeding experiments to estimate gastric evacuation (GEVAC) for water temperatures ranging 2-5 °C, similar to those observed during egg incubation. GEVAC rates equaled 0.0115/ h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin. Index of fullness [(g prey/g fish weight)100%] was estimated from sculpins sampled in bottom trawls in the same seasons and years as the diets, and varied with fish size (averaging 1.93% and 1.85% for slimy and deepwater sculpins, respectively). Estimates of daily consumption ranged from 0.2-0.8% of sculpin body weight. Annual estimates of bloater egg consumption predicted higher values for deepwater sculpin than slimy sculpin between 1973 and 2005. This pattern was reversed in 2006, 2008, 2009, 2010 as slimy sculpin abundance increased while that of deepwater sculpin declined. The sum of sculpin consumption of bloater eggs exceeded 25% of bloater population egg production early (1975-1980) and late (2008-2010) in the time series. Despite the strong field pattern implicating egg predation by slimy sculpin, our consumption models failed to fully support this hypothesis. In particular, our results were unable to explain why bloater recruitment was relatively poor during 1995-2005 when the proportion of bloater eggs consumed was very low (< 0.06). The results did, however, demonstrate that bloater recruitment was consistently poor when the proportion of eggs consumed was relatively high. In conclusion, consumption by native benthivores can be a contributing factor to poor recruitment of bloater, especially when slimy sculpin reach high levels of abundance. This result exemplifies the importance of ecosystem-based fishery management, given that the maintenance of healthy lake trout populations in the Great Lakes should control the abundance of slimy sculpin egg predators. In addition, future research will be required to fully understand the primary bottleneck to bloater recruitment in Lake Michigan so that efforts to stock and restore bloater in Lake Ontario have a greater probability of resulting in naturalized and sustainable populations.
Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C
2013-10-01
Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.
Yin, Jun; Ding, Xiaowei; Zhou, Jifan; Shui, Rende; Li, Xinyu; Shen, Mowei
2013-10-01
Historically, perceptual grouping is associated with physical principles. This article reports a novel finding that social information-cooperative but not competitive relationships-can drive perceptual grouping of objects in dynamic chase. Particularly, each relationship was constructed with human-generated chasing motions (i.e., two predators and one prey), and its role on perceptual grouping was examined by grouping-induced effect-attentional consequences. The results showed that: (1) Predators can be perceived as a group due to their cooperative relationship, causing attention to automatically spread within grouped predators, thus the response to target appearing on uncued predator is also facilitated; and (2) The attentional effect on competitive predators has no difference from any condition which controls low-level motion patterns, even including the random-motion condition wherein no grouping factor was contained. These findings extend perceptual grouping into the social field, implying that social information gets involved in visual cognition at an early perceptual stage. Copyright © 2013 Elsevier B.V. All rights reserved.
Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps.
Oberst, Sebastian; Bann, Glen; Lai, Joseph C S; Evans, Theodore A
2017-02-01
Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships. © 2017 John Wiley & Sons Ltd/CNRS.
Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.
Smith, R A; Mooney, K A; Agrawal, A A
2008-08-01
Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in preferentially suppressing competitively dominant A. nerii. Nonetheless, A. asclepiadis benefits from ants, and A. asclepiadis and M. asclepiadis may escape competitive exclusion by A. nerii on select milkweed genotypes. Taken as a whole, the coexistence of three host-specific aphid species sharing the same resource was promoted by the dual action of ants as antagonists and mutualists and by genetic diversity in the plant population itself.
NASA Astrophysics Data System (ADS)
Cook, Perry
This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.). Although most people would think that analog synthesizers and electronic music substantially predate the use of computers in music, many experiments and complete computer music systems were being constructed and used as early as the 1950s.
Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott
2011-01-01
Conclusions: The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications: Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons.