USDA-ARS?s Scientific Manuscript database
The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...
This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...
This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...
Determination of selection criteria for spray drift reduction from atomization data
USDA-ARS?s Scientific Manuscript database
When testing and evaluating drift reduction technologies (DRT), there are different metrics that can be used to determine if the technology reduces drift as compared to a reference system. These metrics can include reduction in percent of fine drops, measured spray drift from a field trial, or comp...
This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Karin; DeGeorge, Elise
2016-04-13
The objectives of this framework are to facilitate the study design and execution to test the effectiveness of bat and eagle impact-reduction strategies at wind energy sites. Through scientific field research, the wind industry and its partners can help determine if certain strategies are ready for operational deployment or require further development. This framework should be considered a living document to be improved upon as fatality-reduction technologies advance from the initial concepts to proven readiness (through project- and technology-specific testing) and as scientific field methods improve.
This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...
The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.
Field transportable beta spectrometer. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potentialmore » benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.« less
Analysis of Drag Reduction Methods and Mechanisms of Turbulent.
Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou
2017-01-01
Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.
Analysis of Drag Reduction Methods and Mechanisms of Turbulent
Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou
2017-01-01
Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425
A Summary of Research on Energy Saving and Emission Reduction of Transportation
NASA Astrophysics Data System (ADS)
Cheng, Dongxiang; Wu, Lufen
2017-12-01
Road transport is an important part of transportation, and road in the field of energy-saving emission reduction is a very important industry. According to the existing problems of road energy saving and emission reduction, this paper elaborates the domestic and international research on energy saving and emission reduction from three aspects: road network optimization, pavement material and pavement maintenance. Road network optimization may be overlooked, and the research content is still relatively preliminary; pavement materials mainly from the asphalt pavement temperature mixed asphalt technology research; pavement maintenance technology development is relatively comprehensive.
This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.
Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas
2010-09-01
Significant laboratory and field research has demonstrated that zero-valent metals will reductively dehalogenate dissolved chlorinated solvents such as...Eekert, Servé W. M. Kengen, Gosse Schraa, and Alfons J. M. Stams. 1999. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes...and T. Holdsworth. 2005. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environmental Science Technology, vol 39
Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Meyer, P. K.; Harbour, L.
1986-01-01
A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.
An assessment of propeller aircraft noise reduction technology
NASA Technical Reports Server (NTRS)
Metzger, F. Bruce
1995-01-01
This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.
The ITRD public/private partnership has conducted a pilot field demonstration of reductive anaerobic biological in-situ treatment technologies (RABITT) to evaluate its use as a standard remedial technology for chloroethene contamination. System design scenarios were evaluated wi...
Reductions in indoor black carbon concentrations from improved biomass stoves in rural India.
Patange, Omkar S; Ramanathan, Nithya; Rehman, I H; Tripathi, Sachi Nand; Misra, Amit; Kar, Abhishek; Graham, Eric; Singh, Lokendra; Bahadur, Ranjit; Ramanathan, V
2015-04-07
Deployment of improved biomass burning cookstoves is recognized as a black carbon (BC) mitigation measure that has the potential to achieve health benefits and climate cobenefits. Yet, few field based studies document BC concentration reductions (and resulting human exposure) resulting from improved stove usage. In this paper, data are presented from 277 real-world cooking sessions collected during two field studies to document the impacts on indoor BC concentrations inside village kitchens as a result of switching from traditional stoves to improved forced draft (FD) stoves. Data collection utilized new low-cost cellphone methods to monitor BC, cooking duration, and fuel consumption. A cross sectional study recorded a reduction of 36% in BC during cooking sessions. An independent paired sample study demonstrated a statistically significant reduction of 40% in 24 h BC concentrations when traditional stoves were replaced with FD stoves. Reductions observed in these field studies differ from emission factor reductions (up to 99%) observed under controlled conditions in laboratory studies. Other nonstove sources (e.g., kerosene lamps, ambient concentrations) likely offset the reductions. Health exposure studies should utilize reductions determined by field measurements inside village kitchens, in conjunction with laboratory data, to assess the health impacts of new cooking technologies.
The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...
Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...
Extreme depth-of-field intraocular lenses
NASA Astrophysics Data System (ADS)
Baker, Kenneth M.
1996-05-01
A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.
Status of silicon solar cell technology
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1976-01-01
Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.
PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline
NASA Technical Reports Server (NTRS)
Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine
2015-01-01
The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-01-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-03-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
Who should pay for biomedical-engineering technology development?
NASA Astrophysics Data System (ADS)
Varnado, Samuel G.
1994-12-01
It is an enigma that the introduction of technology has led to improvements in productivity in practically every area of endeavor except the field of medicine. This paper asserts that properly applied technology, based on a systems engineering approach, can help reduce the cost while maintaining the quality of health care delivery. Achieving this goal will require more cooperation and coordination at the Federal level to insure that a focused systems approach is used in applying and developing technology that will lead to cost reduction. It is further asserted that much of the technology that could help reduce costs resides in the DoD and the DOE and has not historically been of prime interest to the NIH. Several dual use applications are presented that show how defense related technology can benefit the field of medicine.
Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale
Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.
2016-01-01
The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285
NASA Astrophysics Data System (ADS)
Une, Hiroshi; Nakano, Takayuki
2018-05-01
Geographic location is one of the most fundamental and indispensable information elements in the field of disaster response and prevention. For example, in the case of the Tohoku Earthquake in 2011, aerial photos taken immediately after the earthquake greatly improved information sharing among different government offices and facilitated rescue and recovery operations, and maps prepared after the disaster assisted in the rapid reconstruction of affected local communities. Thanks to the recent development of geospatial information technology, this information has become more essential for disaster response activities. Advancements in web mapping technology allows us to better understand the situation by overlaying various location-specific data on base maps on the web and specifying the areas on which activities should be focused. Through 3-D modelling technology, we can have a more realistic understanding of the relationship between disaster and topography. Geospatial information technology can sup-port proper preparation and emergency responses against disasters by individuals and local communities through hazard mapping and other information services using mobile devices. Thus, geospatial information technology is playing a more vital role on all stages of disaster risk management and responses. In acknowledging geospatial information's vital role in disaster risk reduction, the Sendai Framework for Disaster Risk Reduction 2015-2030, adopted at the Third United Nations World Conference on Disaster Risk Reduction, repeatedly reveals the importance of utilizing geospatial information technology for disaster risk reduction. This presentation aims to report the recent practical applications of geospatial information technology for disaster risk management and responses.
Research and Construction of DC Energy Measurement Traceability Technology
NASA Astrophysics Data System (ADS)
Zhi, Wang; Maotao, Yang; Jing, Yang
2018-02-01
With the implementation of energy saving and emission reduction policies, DC energy metering has been widely used in many fields. In view of the lack of a DC energy measurementtraceability system, in combination with the process of downward measurement transfer in relation to the DC charger-based field calibration technology and DC energy meter and shunt calibration technologies, the paper proposed DC fast charging, high DC, small DC voltage output and measuring technologies, and built a time-based plan by converting high DC voltage into low voltage and high current into low current and then into low voltage, leaving DC energy traceable to national standards in terms of voltage, current and time and thus filling in the gap in DC energy measurement traceability.
Tomer, M D; Porter, S A; Boomer, K M B; James, D E; Kostel, J A; Helmers, M J; Isenhart, T M; McLellan, E
2015-05-01
Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging-derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa's Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO-N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO-N reduction as Iowa's target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO-N reduction but remove <5% of cropland from production were identified. Cover crops and nutrient removal wetlands were common to these scenarios. This approach provides an interim technology to assist local watershed planning and could provide planning scenarios to evaluate using watershed simulation models. A set of ArcGIS tools is being released to enable transfer of this mapping technology. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Improvement on RCS reduction using flat lossy focusing reflectors.
Chin, Cheng-Yuan; Jou, Christina F
2013-12-30
In this paper, we propose a planar non-periodic subwavelength resistive grating (SWRG). The phase front of the scattered fields can be completely manipulated through non-periodic design of the grating while high absorptivity is preserved. The SWRG has an interesting property similar to a resistive concave reflecting lens. Scattered wave is focused in the near-field region, and spread out in the far-field. This feature of non-periodic resistive grating can improve the original radar cross section (RCS) reduction up to 22.86 dB in the boresight direction comparing to the periodic counterpart. Non-periodic design of SWRG could have a substantial impact on stealth technology, aerospace engineering, and microwave anechoic chamber.
Landmarks in the historical development of twenty first century food processing technologies.
Misra, N N; Koubaa, Mohamed; Roohinejad, Shahin; Juliano, Pablo; Alpas, Hami; Inácio, Rita S; Saraiva, Jorge A; Barba, Francisco J
2017-07-01
Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day. Copyright © 2017 Elsevier Ltd. All rights reserved.
ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS
Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...
ERIC Educational Resources Information Center
Notter, Kathryn Betz
2010-01-01
The decreasing number of women who are graduating in the Science, Technology, Engineering and Mathematics (STEM) fields continues to be a major concern. Despite national support in the form of grants provided by National Science Foundation, National Center for Information and Technology and legislation passed such as the Deficit Reduction Act of…
Mohamed, Hussein; Clasen, Thomas; Njee, Robert Mussa; Malebo, Hamisi M; Mbuligwe, Stephen; Brown, Joe
2016-01-01
To assess the microbiological effectiveness of several household water treatment and safe storage (HWTS) options in situ in Tanzania, before consideration for national scale-up of HWTS. Participating households received supplies and instructions for practicing six HWTS methods on a rotating 5-week basis. We analysed 1202 paired samples (source and treated) of drinking water from 390 households, across all technologies. Samples were analysed for thermotolerant (TTC) coliforms, an indicator of faecal contamination, to measure effectiveness of treatment in situ. All HWTS methods improved microbial water quality, with reductions in TTC of 99.3% for boiling, 99.4% for Waterguard ™ brand sodium hypochlorite solution, 99.5% for a ceramic pot filter, 99.5% for Aquatab ® sodium dichloroisocyanurate (NaDCC) tablets, 99.6% for P&G Purifier of Water ™ flocculent/disinfectant sachets, and 99.7% for a ceramic siphon filter. Microbiological performance was relatively high compared with other field studies and differences in microbial reductions between technologies were not statistically significant. Given that microbiological performance across technologies was comparable, decisions regarding scale-up should be based on other factors, including uptake in the target population and correct, consistent, and sustained use over time. © 2015 John Wiley & Sons Ltd.
Field-Scale Evaluation of Monitored Natural Attenuation for Dissolved Chlorinated Solvent Plumes
2009-04-01
biological in-situ treatment, an air sparging pilot study, and a phytoremediation study. The innovative technology studies were conducted within the source... phytoremediation (June to September 1997), reductive anaerobic biological in-situ treatment technology (RABITT; 1998), and groundwater recirculation wells...u g / L ) Measured Concentrations in 1381MWS09 Air Sparge Pilot Test (1996/1997) Phytoremediation Pilot Test (1997) RABITT Pilot Test (1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canty, M.
The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screenedmore » for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.« less
Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; King, Daniel J.; Herron, Andrew N.
2016-01-01
A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across amore » wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.« less
Gachango, F G; Pedersen, S M; Kjaergaard, C
2015-12-01
Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.
Chung, King; Nelson, Lance; Teske, Melissa
2012-09-01
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Bett, B; Randolph, T F; Irungu, P; Nyamwaro, S O; Kitala, P; Gathuma, J; Grace, D; Vale, G; Hargrove, J; McDermott, J
2010-12-01
We conducted a field trial among Maasai cattle-keepers in Nkuruman and Nkineji areas of Kenya to evaluate the effectiveness of a synthetic tsetse-repellent technology developed for the control of trypanosomosis in cattle. The technology was a repellent (2-methoxy 4-methylphenol) emitted from dispensers attached to collars worn by cattle. Treatment was allocated at the herd level to ensure adequate protection of all the animals in a herd, with measurements of effectiveness conducted at the individual-animal level. The trial began in April 2005 and ran for 16 months including a baseline phase of 4 months. We recruited 12 herds in each area using a restricted random-sampling technique and distributed them equally into intervention (repellent) and control groups. Sample size was determined using a formal power calculation. Effectiveness or minimal worthwhile difference was defined as a 50% reduction in the incidence of trypanosome infection in the treated versus control group (effectiveness below which the technology was considered by experts as not viable compared to existing control techniques). All the animals in the recruited herds were screened monthly (buffy-coat technique) for trypanosome infections. The analysis followed the principle of intention-to-treat by which subjects are analysed according to their initial treatment assignment, regardless of the mechanical performance of the device. Crude and adjusted effects of the technology were 23% (p<0.001) and 18% (p=0.08) reduction in the infection incidence in the treatment compared to the control groups, respectively. The impact of the technology estimated in this study did not achieve the threshold of 50% reduction in the trypanosome infection incidence set a priori to indicate effectiveness (p<0.001). We therefore concluded that the prototype repellent technology package was not sufficiently effective in reducing trypanosome infection incidence under natural tsetse challenge to merit commercial development. Copyright © 2010 Elsevier B.V. All rights reserved.
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-01
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-07
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
Both hexavalent chromium (Cr(VI)) and chlorinated ethenes such as tetrachloroethene (PCE) are common groundwater contaminants. A pump-and-treat approach to remedy them usually is not satisfactory with respect to effectiveness and cost. Effective treatment technologies generally...
Polymer-based composites for aerospace: An overview of IMAST results
NASA Astrophysics Data System (ADS)
Milella, Eva; Cammarano, Aniello
2016-05-01
This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).
Mass balance and swath displacement evaluations from agricultural application field trials
USDA-ARS?s Scientific Manuscript database
Spray drift is on an ongoing concern for any agricultural application and continues to be the focus for new developments and research efforts dealing with drift reduction technologies, best management application practices and the development of new decision support systems for applicators. Typical...
NASA Astrophysics Data System (ADS)
Suzuki, Takeyasu
For the purpose of reducing disaster damage by applying information sharing technologies, "the research on disaster reduction using crisis-adaptive information sharing technologies" was carried out from July, 2004 through March 2007, as a three year joint project composed of a government office and agency, national research institutes, universities, lifeline corporations, a NPO and a private company. In this project, the disaster mitigating information sharing platform which is effective to disaster response activities mainly for local governments was developed, as a framework which enables information sharing in disasters. A prototype of the platform was built by integrating an individual system and tool. Then, it was applied to actual local governments and proved to be effective to disaster responses. This paper summarizes the research project. It defines the platform as a framework of both information contents and information systems first and describes information sharing technologies developed for utilization of the platform. It also introduces fields tests in which a prototype of the platform was applied to local governments.
Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Levy; Dentz, J.; Ansanelli, E.
2016-03-01
Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.
2008-01-01
with many private sector companies to manufacture, field , and develop the products it acquires. As mentioned, the percentages of work outsourced ...been involved from the conceptual development all the way to operational testing and fielding of every major weapons system our Marines and Sailors...the ability to collaborate with contractors and assess the defense value of private sector technologi- cal developments . The inherently governmental
Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G
2009-05-15
We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months retained a strong stabilization capability to reduce aqueous equilibrium PCB concentrations by about 90%, which also supports the long-term effectiveness of AC in the field. Additional mixing during or after AC deployment, increasing AC dose, reducing AC-particle size, and sequential deployment of AC dose will likely improve AC-sediment contact and overall effectiveness. The reductions in PCB availability observed with slow mass transfer under field conditions calls for predictive models to assess the long-term trends in pore-water PCB concentrations and the benefits of alternative in-situ AC application and mixing strategies.
Coherent Doppler Wind Lidar Technology for Space Based Wind Measurements Including SPARCLE
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.
1999-01-01
It has been over 30 years since coherent lidar systems first measured wind velocity, and over 20 years since the "ultimate application" of measuring Earth's winds from space was conceived. Coherent or heterodyne optical detection involves the combination (or mixing) of the returned optical field with a local oscillator (LO) laser's optical field on the optical detector. This detection technique yields the benefits of dramatically improved signal-to-noise ratios; insensitivity to detector noise, background light and multiply scattered light; reduction of the returned signal's dynamic range; and preservation of the optical signal spectrum for electronic and computer processing. (Note that lidar systems are also referred to as optical radar, laser radar, and LADAR systems.) Many individuals, agencies, and countries have pursued the goal of space-based wind measurements through technology development, experiments, field campaigns and studies.
Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi
2012-06-01
This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.
Preparation Methods of Metal Organic Frameworks and Their Capture of CO2
NASA Astrophysics Data System (ADS)
Zhang, Linjian; Liand, Fangqin; Luo, Liangfei
2018-01-01
The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.
This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and atmore » lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.« less
ERIC Educational Resources Information Center
Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony
2015-01-01
Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead…
Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling
USDA-ARS?s Scientific Manuscript database
The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...
48 CFR 52.227-13 - Patent Rights-Ownership by the Government.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the conception or first actual reduction to practice of inventions in the same field of technology as... information regarding the status of development, date of first commercial sale or use, gross royalties received by the Contractor, and any other data and information as the agency may reasonably specify. The...
48 CFR 52.227-13 - Patent Rights-Ownership by the Government.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the conception or first actual reduction to practice of inventions in the same field of technology as... information regarding the status of development, date of first commercial sale or use, gross royalties received by the Contractor, and any other data and information as the agency may reasonably specify. The...
48 CFR 52.227-13 - Patent Rights-Ownership by the Government.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the conception or first actual reduction to practice of inventions in the same field of technology as... information regarding the status of development, date of first commercial sale or use, gross royalties received by the Contractor, and any other data and information as the agency may reasonably specify. The...
48 CFR 52.227-13 - Patent Rights-Ownership by the Government.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the conception or first actual reduction to practice of inventions in the same field of technology as... information regarding the status of development, date of first commercial sale or use, gross royalties received by the Contractor, and any other data and information as the agency may reasonably specify. The...
48 CFR 52.227-13 - Patent Rights-Ownership by the Government.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the conception or first actual reduction to practice of inventions in the same field of technology as... information regarding the status of development, date of first commercial sale or use, gross royalties received by the Contractor, and any other data and information as the agency may reasonably specify. The...
NASA Technical Reports Server (NTRS)
Marte, J. E.; Bryant, J. A.; Livingston, R.
1983-01-01
Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Rongli; Freyberger, Arne P.; Legg, Robert A.
Several new accelerator projects are adopting superconducting accelerator technology. When accelerating cavities maintain high RF gradients, field emission, the emission of electrons from cavity walls, can occur and may impact operational cavity gradient, radiological environment via activated components, and reliability. In this talk, we will discuss instrumented measurements of field emission from the two 1.1 GeV superconducting continuous wave (CW) linacs in CEBAF. The goal is to improve the understanding of field emission sources originating from cryomodule production, installation and operation. Such basic knowledge is needed in guiding field emission control, mitigation, and reduction toward high gradient and reliable operationmore » of superconducting accelerators.« less
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
Wang, Zhenjun; Xu, Yuanming
2017-07-01
With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. Copyright © 2017 Elsevier B.V. All rights reserved.
Preliminary Design Options for Meteor Burst Communications Systems Buoy Relays
1986-12-01
FIELDS BRAYTON OTTO ELECTROSTATIC FIELDS SUPERCRITICAL Figure 5.1. Structure of current power source technology for ocean applications. 32 L / P 9 t ~A...As in the sulphur dioxide cell, a low weight, high surface area, carbon positive elec- trode acts as a catalyst for the reduction of the cathode...Operating Transmit Power No. (Relay/Service) Type Covert Covert Mode Duty Cycle (watts) 2.1 Trans Ocean Relay Shore/Ship No Yes Remote 20 Msg/hr 0.9
Sun, Yuebing; Xu, Yi; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Li, Ye
2016-01-01
Long-term effectiveness and persistence are two important criterias to evaluate alternative remediation technology of heavy metal polluted soils. Pot and field studies showed addition of sepiolite was effective in immobilizing Cd in polluted soils, with significant reduction in TCLP extracts (0.6%-49.6% and 4.0%-32.5% reduction in pot and field experiments, respectively) and plant uptake (14.4%-84.1% and 22.8%-61.4% declines in pot and field studies, correspondingly). However, the applications of sepiolite offered a limited guarantee for the safety of edible vegetables in Cd-polluted soils, depending on the soil type, the Cd pollution type and level, and the dose and application frequency of chemical amendments. Bioassays, such as plant growth, soil enzymatic activities and microbial community diversity, indicated a certain degree of recovery of soil metabolic function. Therefore, sepiolite-assisted in situ remediation is cost-effective, environmentally friendly, and technically applicable, and can be successfully used to reduce Cd enter into the food chain on field scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Animal-cell culture media: History, characteristics, and current issues.
Yao, Tatsuma; Asayama, Yuta
2017-04-01
Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.
Spectral imaging spreads into new industrial and on-field applications
NASA Astrophysics Data System (ADS)
Bouyé, Clémentine; Robin, Thierry; d'Humières, Benoît
2018-02-01
Numerous recent innovative developments have led to a high reduction of hyperspectral and multispectral cameras cost and size. The achieved products - compact, reliable, low-cot, easy-to-use - meet end-user requirements in major fields: agriculture, food and beverages, pharmaceutics, machine vision, health. The booming of this technology in industrial and on-field applications is getting closer. Indeed, the Spectral Imaging market is at a turning point. A high growth rate of 20% is expected in the next 5 years. The number of cameras sold will increase from 3 600 in 2017 to more than 9 000 in 2022.
Superhydrophobic surfaces for applications in seawater.
Ferrari, Michele; Benedetti, Alessandro
2015-08-01
Technological fields in which seawater is implied are numerorus, working in seawater (shipping, oil industry, marine aquaculture,..), and exploiting seawater in plants (cooling heat-exchange, desalination, power plants,..). All suffer from detrimental effects induced by biofouling mainly enhancing material failures and limiting energetic efficiencies. Among the remediation solutions, technologies coniugating economical, green and efficiency criteria should represent the direction. With the aim to meet these criteria, superhydrophobic (SH) technology attracted many researches for the protection of materials operating in contact with seawater. In this work, the literature focusing on such technology for the protection of surfaces in contact with seawater has been reviewed, mainly focusing on boat and ship hull protection. Despite the growing interest around SH technology in seawater for fouling control and friction drag reduction of hulls, to date literature shows that superhydrophobicity in seawater is still limited if compared with a time window compatible with technological needs (set on years). An evaluation of the causes of early superhydrophobicity loss under operative conditions clearly indicates that, to the best of present knowledge, a SH surface cannot preserve this feature by itself alone (especially in real seawater). Hence, we have considered to highlight the behaviour of SH surfaces in seawater in relation to early stages of biocolonization (conditioning film and pioneering bioslime formation). Considering the annual costs sustained for the biofouling impact control, advantages coming from SH surfaces, in terms of foul control and friction drag reduction, would allow economical savings allowing to cover both the appliance of longevity keeping strategies of the SH surfaces and investments in green technologies of SH coating life cycle (production, storing). In addition a brief outlook is provided on technological fields exploiting seawater in pipelines (power and desalination plants), where the SH surface finishing finds potentially interesting application for fouling and corrosion prevention applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran
For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.
2015-12-14
A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.
Advances in shutter drive technology to enhance man-portable infrared cameras
NASA Astrophysics Data System (ADS)
Durfee, David
2012-06-01
With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.
Rapid prototyping-assisted maxillofacial reconstruction.
Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei
2015-05-01
Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.
Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Civinskas, Kestutis C.
2004-01-01
NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.
NASA Technical Reports Server (NTRS)
Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.
2017-01-01
Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.
Recent developments in radiation field control technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, C.J.
1995-03-01
The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for specialmore » maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.« less
Effect of Induced Pluripotent Stem Cell Technology in Blood Banking
Focosi, Daniele
2016-01-01
Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Thomas A.
Direct biomass combustion for the production of heat is a broad field of technology which ranges from residential wood stoves to commercial and industrial boilers and furnaces. Fuels typically include pellets, chips and cord wood. Over the past decade, as a result of fuel price advantages and other benefits, wood burning has seen a significant growth.
Templet Web: the use of volunteer computing approach in PaaS-style cloud
NASA Astrophysics Data System (ADS)
Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil
2018-03-01
This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.
Buda, Anthony R; Koopmans, Gerwin F; Bryant, Ray B; Chardon, Wim J
2012-01-01
Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be needed to address P transfers from soils and applied P sources. Innovative remediation practices are being developed to remove nonpoint P sources from surface water and groundwater using P sorbing materials (PSMs) derived from natural, synthetic, and industrial sources. A wide array of technologies has been conceived, ranging from amendments that immobilize P in soils and manures to filters that remove P from agricultural drainage waters. This collection of papers summarizes theoretical modeling, laboratory, field, and economic assessments of P removal technologies. Modeling and laboratory studies demonstrate the importance of evaluating P removal technologies under controlled conditions before field deployment, and field studies highlight several challenges to P removal that may be unanticipated in the laboratory, including limited P retention by filters during storms, as well as clogging of filters due to sedimentation. Despite the potential of P removal technologies to improve water quality, gaps in our knowledge remain, and additional studies are needed to characterize the long-term performance of these technologies, as well as to more fully understand their costs and benefits in the context of whole-farm- and watershed-scale P management. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Emerging photovoltaic module technologies at PVUSA: A five-year assessment
NASA Astrophysics Data System (ADS)
Townsend, Tim
1995-04-01
The Photovoltaics for Utility Scale Applications (PVUSA) project tests two types of photovoltaic systems: new modules fielded as 20-kW emerging module technology (EMT) arrays, and more mature technologies fielded as 20- to 500-kW turnkey utility scale (US) systems. This report summarizes experiences of the PVUSA project in operating the first six 20-kW EMT photovoltaic systems. Five systems are installed at Davis, California, and one at Kihei, Hawaii. Products selected for testing and demonstration were judged to have potential for significant technical advancement or reduction in manufacturing cost. Features leading to selection of each system and findings over the average 5 years of operation are compared in the report. Factory product qualification test experiences along with field acceptance test results are documented. Evaluation includes a broad range of performance parameters, including long-term efficiency, seasonal generation patterns, and maintenance. While some of the arrays have operated as well as any commercial system, others have fared poorly. Throughout the procurement and operation of these precommercial PV modules, PVUSA has provided feedback to vendors, critical for product improvement. The data and evaluations in this report will be of further benefit to manufacturers and provide general comparative information on a variety of technologies to researchers in utilities, government, and industry alike.
Development of a data reduction expert assistant
NASA Technical Reports Server (NTRS)
Miller, Glenn E.
1994-01-01
This report documents the development and deployment of the Data Reduction Expert Assistant (DRACO). The system was successfully applied to two astronomical research projects. The first was the removal of cosmic ray artifacts from Hubble Space Telescope (HST) Wide Field Planetary Camera data. The second was the reduction and calibration of low-dispersion CCD spectra taken from a ground-based telescope. This has validated our basic approach and demonstrated the applicability of this technology. This work has been made available to the scientific community in two ways. First, we have published the work in the scientific literature and presented papers at relevant conferences. Secondly, we have made the entire system (including documentation and source code) available to the community via the World Wide Web.
Control of Jet Noise Through Mixing Enhancement
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark; Brown, Cliff
2003-01-01
The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.
Evaluation of pulsed electric fields technology for liquid whole egg pasteurization.
Monfort, S; Gayán, E; Raso, J; Condón, S; Alvarez, I
2010-10-01
This investigation evaluated the lethal efficiency of pulsed electric fields (PEFs) to pasteurize liquid whole egg (LWE). To achieve this aim, we describe the inactivation of Salmonella Enteritidis and the heat resistant Salmonella Senftenberg 775 W in terms of treatment time and specific energy at electric field strengths ranging from 20 to 45 kV/cm. Based on our results, the target microorganism for this technology in LWE varied with intensity of the PEF treatment. For electric field strengths greater than 25 kV/cm, Salmonella Enteritidis was the most PEF-resistant strain. For this Salmonella serovar the level of inactivation depended only on the specific energy applied: i.e., 106, 272, and 472 kJ/kg for 1, 2, and 3 Log(10) reductions, respectively. The developed mathematical equations based on the Weibull distribution permit estimations of maximum inactivation level of 1.9 Log(10) cycles of the target Salmonella serovar in the best-case scenario: 250 kJ/kg and 25 kV/cm. This level of inactivation indicates that PEF technology by itself cannot guarantee the security of LWE based on USDA and European regulations. The occurrence of cell damage due to PEF in the Salmonella population opens the possibility of designing combined processes enabling increased microbial lethality in LWE. 2010 Elsevier Ltd. All rights reserved.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
González-Arenzana, Lucía; López-Alfaro, Isabel; Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar
2018-03-23
This study was performed with the aim of reducing the microbial communities of wines after alcoholic fermentation to improve the establishment of commercial Oenococcus oeni inoculum for developing the malolactic fermentation. Microbial community reduction was accomplished by applying Pulsed Electric Field (PEF) technology to four different wines. Overall, significant reductions in yeast population were observed. To a lesser extent, lactic acid bacteria were reduced while acetic acid bacteria were completely eliminated after the PEF treatment. In three out of the four tested wines, a decrease in the competitive pressure between microorganisms due to the detected reduction led to a general but slight shortening of the malolactic fermentation duration. In the wine with the most adverse conditions to commercial starter establishment, the shortest malolactic fermentation was reached after PEF treatment. Finally, the sensorial quality of three out of the four treated wines was considered better after the PEF treatment. Therefore, PEF technology meant an important tool for improving the malolactic fermentation performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Robotics in Orthopedics: A Brave New World.
Parsley, Brian S
2018-02-16
Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.
Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments.
Beckingham, Barbara; Ghosh, Upal
2011-12-15
Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.
Recent insights into cutaneous immunization: How to vaccinate via the skin.
Engelke, Laura; Winter, Gerhard; Hook, Sarah; Engert, Julia
2015-09-08
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.
2005-01-01
This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.
Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies
reduction technologies. Both DOE and the U.S. Environmental Protection Agency (EPA) provide information Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Hoeffner
2003-12-31
The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soilsmore » from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.« less
Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha
2017-01-01
With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.
Amyloid Beta and Tau as Alzheimer's Disease Blood Biomarkers: Promise From New Technologies.
Lue, Lih-Fen; Guerra, Andre; Walker, Douglas G
2017-07-01
The utility of the levels of amyloid beta (Aβ) peptide and tau in blood for diagnosis, drug development, and assessment of clinical trials for Alzheimer's disease (AD) has not been established. The lack of availability of ultra-sensitive assays is one critical issue that has impeded progress. The levels of Aβ species and tau in plasma and serum are much lower than levels in cerebrospinal fluid. Furthermore, plasma or serum contain high levels of assay-interfering factors, resulting in difficulties in the commonly used singulex or multiplex ELISA platforms. In this review, we focus on two modern immune-complex-based technologies that show promise to advance this field. These innovative technologies are immunomagnetic reduction technology and single molecule array technology. We describe the technologies and discuss the published studies using these technologies. Currently, the potential of utilizing these technologies to advance Aβ and tau as blood-based biomarkers for AD requires further validation using already collected large sets of samples, as well as new cohorts and population-based longitudinal studies.
Tropical field performance of dual-pass PV tray dryer
NASA Astrophysics Data System (ADS)
Iskandar, A. Noor; Ya'acob, M. E.; Anuar, M. S.
2017-09-01
Solar Photovoltaic technology has become the preferable solution in many countries around the globe to solve the ever increasing energy demand of the consumers. In line with the consumer need, food processing technology has huge potentials of integration with the renewable energy resources especially in drying process which consumes the highest electricity loads. Traditionally, the solar dryer technology was applied in agriculture and food industries utilizing the sun's energy for drying process, but this is highly dependable on the weather condition and surrounding factors. This work shares some field performance of the new design of portable dual-pass PV tray dryer for drying crops in an enclosed system. The dual-pass PV tray dryer encompass a lightweight aluminium box structure with dimensions of 1.1m (L) x 0.6m (W) x 0.2m (H) and can hold a load capacity of 300g - 3kg of crop depending on the types of the crops. Experiments of field performance monitoring were conducted in October -November 2016 which justifies a considerable reduction in time and crops quality improvement when using the dual-pass PV tray dryer as compared to direct-sun drying.
75 FR 80833 - Shipboard Air Emission Reduction Technology Report
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION: Notice and request for comments. SUMMARY: In... Protection Agency, on Ship Emission Reduction Technology for cargo and passenger vessels that operate in... will survey new technology and new applications of existing technology for reducing air emissions from...
D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E
2016-12-01
Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.
Smart and Green Energy (SAGE) for Base Camps Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.
2014-02-11
The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Hybrid metasurfaces for microwave reflection and infrared emission reduction.
Pang, Yongqiang; Li, Yongfeng; Yan, Mingbao; Liu, Dongqing; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo
2018-04-30
Controlling of electromagnetic wave radiation is of great importance in many fields. In this work, a hybrid metasurface (HMS) is designed to simultaneously reduce the microwave reflection and the infrared emission. The HMS is composed of the metal/dielectric/metal/dielectric/metal configuration. The reflection reduction at microwave frequencies mainly results from the phase cancellation technique, while the infrared emission reduction is due to the reflection of the metal with a high filling ration in the top layer. It has been analytically indicated that reflection reduction with an efficiency larger than 10 dB can be achieved in the frequency band of 8.2-18 GHz, and this has been well verified by the simulated and experimental results. Meanwhile, the designed HMS displays a low emission performance in the infrared band, with the emissivity less than 0.27 from 3 to 14 μm. It is believed that our proposal may find the application of multispectral stealth technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
New-generation radiofrequency technology.
Krueger, Nils; Sadick, Neil S
2013-01-01
Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.
2007-12-01
Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.
Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric
2010-01-01
A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945
Pathogen inactivation techniques.
Pelletier, J P R; Transue, S; Snyder, E L
2006-01-01
The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area of investigation. Clearly, regulatory agencies have a major role to play in the evaluation of these new technologies. This chapter will cover the several types of pathogen-reduction systems, mechanisms of action, the inactivation efficacy for specific types of pathogens, toxicology of the various systems and the published research and clinical trial data supporting their potential usefulness. Due to the nature of the field, pathogen reduction is a work in progress and this review should be considered as a snapshot in time rather than a clear picture of what the future will bring.
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Hurwitz, Paul; Mann, Richard; Qamar, Yasir; Chaudhry, Samir; Zwingman, Robert; Howard, David; Racanelli, Marco
2012-06-01
Increasingly complex specifications for next-generation focal plane arrays (FPAs) require smaller pixels, larger array sizes, reduced power consumption and lower cost. We have previously reported on the favorable features available in the commercially available TowerJazz CA18 0.18μm mixed-signal CMOS technology platform for advanced read-out integrated circuit (ROIC) applications. In his paper, new devices in development for commercial purposes and which may have applications in advanced ROICs are reported. First, results of buried-channel 3.3V field effect transistors (FETs) are detailed. The buried-channel pFETs show flicker (1/f) noise reductions of ~5X in comparison to surface-channel pFETs along with a significant reduction of the body constant parameter. The buried-channel nFETs show ~2X reduction of 1/f noise versus surface-channel nFETs. Additional reduced threshold voltage nFETs and pFETs are also described. Second, a high-density capacitor solution with a four-stacked linear (metal-insulator-metal) MIM capacitor having capacitance density of 8fF/μm2 is reported. Additional stacking with MOS capacitor in a 5V tolerant process results in >50fC/μm2 charge density. Finally, one-time programmable (OTP) and multi-time programmable (MTP) non-volatile memory options in the CA18 technology platform are outlined.
Airframe Noise Results from the QTD II Flight Test Program
NASA Technical Reports Server (NTRS)
Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.
2007-01-01
With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty).
NASA Astrophysics Data System (ADS)
Yan, Shi-Li; Xie, Zhi-Jian; Chen, Jian-Hao; Taniguchi, Takashi; Watanabe, Kenji
2017-03-01
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10V/nm to 0.83V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.
Induction coupled thermomagnetic processing: A disruptive technology
Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; ...
2016-06-01
Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.
RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-07-01
Current temporal gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) suffer from temporal aliasing errors due to undersampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean) and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high-resolution temporal gravity fields from future gravity missions such as GRACE Follow-On and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parametrize ocean tide parameters of the eight main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from 1 to 3 yr leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-04-01
Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... effluent reduction attainable by the application of the best available technology economically achievable... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... reduction attainable by the application of the best practicable control technology currently available (BPT...
The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... degree of effluent reduction attainable by the application of the best practicable control technology... degree of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... degree of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... degree of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... effluent reduction attainable by the application of the best available technology economically achievable... representing the degree of effluent reduction attainable by the application of the best available technology...
The potential of crowdsourcing and mobile technology to support flood disaster risk reduction
NASA Astrophysics Data System (ADS)
See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian
2016-04-01
The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.
Postma, P R; Cerezo-Chinarro, O; Akkerman, R J; Olivieri, G; Wijffels, R H; Brandenburg, W A; Eppink, M H M
2018-01-01
The effect of osmotic shock, enzymatic incubation, pulsed electric field, and high shear homogenization on the release of water-soluble proteins and carbohydrates from the green alga Ulva lactuca was investigated in this screening study. For osmotic shock, both temperature and incubation time had a significant influence on the release with an optimum at 30 °C for 24 h of incubation. For enzymatic incubation, pectinase demonstrated being the most promising enzyme for both protein and carbohydrate release. Pulsed electric field treatment was most optimal at an electric field strength of 7.5 kV cm -1 with 0.05 ms pulses and a specific energy input relative to the released protein as low as 6.6 kWh kg prot -1 . Regarding literature, this study reported the highest protein (~ 39%) and carbohydrate (~ 51%) yields of the four technologies using high shear homogenization. Additionally, an energy reduction up to 86% was achieved by applying a novel two-phase (macrostructure size reduction and cell disintegration) technique.
GIS technology transfer for use in private sector consulting
NASA Astrophysics Data System (ADS)
Gibas, Dawn R.; Davis, Roger J.
1996-03-01
Summit Envirosolutions, Inc. (Summit) is an EOCAP '93 company working in partnership with NASA's Commercial Remote Sensing Program to integrate the use of Geographic Information Systems (GIS) and Remote Sensing (RS) technology into our environmental consulting business. The EOCAP program has allowed us to obtain the hardware and software necessary for this technology that would have been difficult for a small company, such as Summit, to purchase outright. We are integrating GIS/RS into our consulting business in several areas including wellhead protection and environmental assessments. The major emphasis in the EOCAP project is to develop a system, termed RealFlowSM. The goals of RealFlowSM are to reduce client costs associated with environmental compliance (in particular preparation of EPA-mandated Wellhead Protection Plans), more accurately characterize aquifer parameters, provide a scientifically sound basis for delineating Wellhead Protection Areas, and readily assess changes in well field operations and potential impacts of environmental stresses. RealFlowSM utilizes real-time telemetric data, digital imagery, GIS, Global Positioning System (GPS), and field data to characterize a study area at a lower cost. In addition, we are applying this technology in other service areas and showing a reduction in the overall costs for large projects.
NASA Astrophysics Data System (ADS)
Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro
2017-11-01
New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.
Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven
2006-11-01
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less
A Virtual Aluminum Reduction Cell
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie
2013-11-01
The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.
Banwell, Nicola; Montoya, Jaime; Opeña, Merlita; IJsselmuiden, Carel; Law, Ronald; Balboa, Gloria J.; Rutherford, Shannon; Chu, Cordia; Murray, Virginia
2016-01-01
The recent Philippine National Health Research System (PNHRS) Week Celebration highlighted the growing commitment to Disaster Risk Reduction (DRR) in the Philippines. The event was lead by the Philippine Council for Health Research and Development of the Department of Science and Technology and the Department of Health, and saw the participation of national and international experts in DRR, and numerous research consortia from all over the Philippines. With a central focus on the Sendai Framework for Disaster Risk Reduction, the DRR related events recognised the significant disaster risks faced in the Philippines. They also illustrated the Philippine strengths and experience in DRR. Key innovations in science and technology showcased at the conference include the web-base hazard mapping applications ‘Project NOAH’ and ‘FaultFinder’. Other notable innovations include ‘Surveillance in Post Extreme Emergencies and Disasters’ (SPEED) which monitors potential outbreaks through a syndromic reporting system. Three areas noted for further development in DRR science and technology included: integrated national hazard assessment, strengthened collaboration, and improved documentation. Finally, the event saw the proposal to develop the Philippines into a global hub for DRR. The combination of the risk profile of the Philippines, established national structures and experience in DRR, as well as scientific and technological innovation in this field are potential factors that could position the Philippines as a future global leader in DRR. The purpose of this article is to formally document the key messages of the DRR-related events of the PNHRS Week Celebration. PMID:27867737
Banwell, Nicola; Montoya, Jaime; Opeña, Merlita; IJsselmuiden, Carel; Law, Ronald; Balboa, Gloria J; Rutherford, Shannon; Chu, Cordia; Murray, Virginia
2016-10-25
The recent Philippine National Health Research System (PNHRS) Week Celebration highlighted the growing commitment to Disaster Risk Reduction (DRR) in the Philippines. The event was lead by the Philippine Council for Health Research and Development of the Department of Science and Technology and the Department of Health, and saw the participation of national and international experts in DRR, and numerous research consortia from all over the Philippines. With a central focus on the Sendai Framework for Disaster Risk Reduction, the DRR related events recognised the significant disaster risks faced in the Philippines. They also illustrated the Philippine strengths and experience in DRR. Key innovations in science and technology showcased at the conference include the web-base hazard mapping applications 'Project NOAH' and 'FaultFinder'. Other notable innovations include 'Surveillance in Post Extreme Emergencies and Disasters' (SPEED) which monitors potential outbreaks through a syndromic reporting system. Three areas noted for further development in DRR science and technology included: integrated national hazard assessment, strengthened collaboration, and improved documentation. Finally, the event saw the proposal to develop the Philippines into a global hub for DRR. The combination of the risk profile of the Philippines, established national structures and experience in DRR, as well as scientific and technological innovation in this field are potential factors that could position the Philippines as a future global leader in DRR. The purpose of this article is to formally document the key messages of the DRR-related events of the PNHRS Week Celebration.
Technologies for Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2006-01-01
Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
Parker, Richard; Markov, Marko
2015-09-01
This article presents a novel modality for accelerating the repair of tendon and ligament lesions by means of a specifically designed electromagnetic field in an equine model. This novel therapeutic approach employs a delivery system that induces a specific electrical signal from an external magnetic field derived from Superconductive QUantum Interference Device (SQUID) measurements of injured vs. healthy tissue. Evaluation of this therapy technique is enabled by a proposed new technology described as Predictive Analytical Imagery (PAI™). This technique examines an ultrasound grayscale image and seeks to evaluate it by means of look-ahead predictive algorithms and digital signal processing. The net result is a significant reduction in background noise and the production of a high-resolution grayscale or digital image.
Attenello, Frank J; Lee, Brian; Yu, Cheng; Liu, Charles Y; Apuzzo, Michael L J
2014-01-01
A central concept of scientific advancement in the medical and surgical fields is the incorporation of successful emerging ideas and technologies throughout the scope of human endeavors. The field of automation and robotics is a pivotal representation of this concept. Arising in the mythology of Homer, the concept of automation and robotics grew exponentially over the millennia to provide the substrate for a paradigm shift in the current and future practice of neurosurgery. We trace the growth of this field from the seminal concepts of Homer and Aristotle to early incorporation into neurosurgical practice. Resulting changes provide drastic and welcome advances in areas of visualization, haptics, acoustics, dexterity, tremor reduction, motion scaling, and surgical precision. Published by Elsevier Inc.
Emerging Propulsion Technologies
NASA Astrophysics Data System (ADS)
Bonometti, J. A.
2004-11-01
The Emerging Propulsion Technologies (EPT) technology area is a branch of the In-Space Program that serves as a bridge to bring high-risk/high-payoff technologies to a higher level of maturity. Emerging technologies are innovative and, if successfully developed, could result in revolutionary science capabilities for NASA science missions. EPT is also charged with the responsibility of assessing the technology readiness level (TRL) of technologies under consideration for inclusion in the ISP portfolio. One such technology is the Momentum-eXchange/Electrodynamic Reboost (MXER) tether concept, which is the current, primary investment of EPT. The MXER tether is a long, rotating cable placed in an elliptical Earth orbit, whose rapid rotation allows its tip to catch a payload in a low Earth orbit and throw that payload to a high-energy orbit. Electrodynamic tether propulsion is used to restore the orbital energy transferred by the MXER tether to the payload and reboost the tether's orbit. This technique uses solar power to drive electrical current collected from the Earth's ionosphere through the tether, resulting in a magnetic interaction with the terrestrial field. Since the Earth itself serves as the reaction mass, the thrust force is generated without propellant and allows the MXER facility to be repeatedly reused without re-supply. Essentially, the MXER facility is a 'propellantless' upper stage that could assist nearly every mission going beyond low Earth orbit. Payloads to interplanetary destinations could especially benefit from the boost provided by the MXER facility, resulting in launch vehicle cost reductions, increased payload fractions and more frequent mission opportunities. Synergistic tether technologies resulting from MXER development could include science sampling in the upper atmosphere, remote probes or attached formation flying, artificial gravity experiments with low Coriolis forces, and other science needs that use long, ultra-light strength or conducting cables in space. Tether development additionally embraces the science investigation of ionospheric physics, micrometeorite and space particulates in LEO and precise earth environment knowledge of gravity fields, solar flux, .thermal environments and magnetic fields.
Evaluation of Equivalent Vision Technologies for Supersonic Aircraft Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan P.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
Twenty-four air transport-rated pilots participated as subjects in a fixed-based simulation experiment to evaluate the use of Synthetic/Enhanced Vision (S/EV) and eXternal Vision System (XVS) technologies as enabling technologies for future all-weather operations. Three head-up flight display concepts were evaluated a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of the display type and AOA condition being evaluated or whether or not there were peripheral cues in the side windows. Longitudinal touchdown and glideslope tracking were affected by the display concepts. Larger FOV display concepts showed improved longitudinal touchdown control, superior glideslope tracking, significant situation awareness improvements and workload reductions compared to smaller FOV display concepts.
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
Difilippo, Erica L; Brusseau, Mark L
2008-05-26
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.
Su, Hongyang; Zhou, Xuefei; Xia, Xuefen; Sun, Zhen; Zhang, Yalei
2011-09-01
Wastewater resources, CO2 emission reduction and microalgae biodiesel are considered as current frontier fields of energy and environmental researches. In this paper, we reviewed the progress in system of microalgae culture for biodiesel production by wastewater and stack gas. Multiple factors including microalgal species, nutrition, culture methods and photobioreactor, which were crucial to the cultivation of microalgae for biodiesel production, were discussed in detail. A valuable culture system of microalgae for biodiesel production or other high value products combined with the treatment of wastewater by microalgae was put forward through the optimizations of algal species and culture technology. The culture system coupled with the treatment of wastewater, the reduction of CO2 emission with the cultivation of microalgae for biodiesel production will reduce the production cost of microalgal biofuel production and the treatment cost of wastewater simultaneously. Therefore, it would be a promising technology with important environmental value, social value and economic value to combine the treatment of wastewater with the cultivation of microalgae for biodiesel production.
WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM
The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...
WASTE REDUCTION TECHNOLOGY EVALUATIONS AT THREE PRINTED WIRE BOARD MANUFACTURERS
Technologies at three printed wire board (PWB) manufacturers were evaluated for waste reduction, and costs were compared to existing operations. rom 1989 to 1993, these evaluations were conducted under US EPA's Waste Reduction Innovative Technology Evaluation (WRITE) Program, in ...
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
The Uses and Impacts of Mobile Computing Technology in Hot Spots Policing.
Koper, Christopher S; Lum, Cynthia; Hibdon, Julie
2015-12-01
Recent technological advances have much potential for improving police performance, but there has been little research testing whether they have made police more effective in reducing crime. To study the uses and crime control impacts of mobile computing technology in the context of geographically focused "hot spots" patrols. An experiment was conducted using 18 crime hot spots in a suburban jurisdiction. Nine of these locations were randomly selected to receive additional patrols over 11 weeks. Researchers studied officers' use of mobile information technology (IT) during the patrols using activity logs and interviews. Nonrandomized subgroup and multivariate analyses were employed to determine if and how the effects of the patrols varied based on these patterns. Officers used mobile computing technology primarily for surveillance and enforcement (e.g., checking automobile license plates and running checks on people during traffic stops and field interviews), and they noted both advantages and disadvantages to its use. Officers did not often use technology for strategic problem-solving and crime prevention. Given sufficient (but modest) dosages, the extra patrols reduced crime at the hot spots, but this effect was smaller in places where officers made greater use of technology. Basic applications of mobile computing may have little if any direct, measurable impact on officers' ability to reduce crime in the field. Greater training and emphasis on strategic uses of IT for problem-solving and crime prevention, and greater attention to its behavioral effects on officers, might enhance its application for crime reduction. © The Author(s) 2016.
DNA biosensing with 3D printing technology.
Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin
2017-01-16
3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.
Contributions of mobile technologies to addiction research.
Swendsen, Joel
2016-06-01
Mobile technologies are revolutionizing the field of mental health, and particular progress has been made in their application to addiction research and treatment. The use of smartphones and other mobile devices has been shown to be feasible with individuals addicted to any of a wide range of substances, with few biases being observed concerning the repeated monitoring of daily life experiences, craving, or substance use. From a methodological point of view, the use of mobile technologies overcomes longstanding limitations of traditional clinical research protocols, including the more accurate assessment of temporal relationships among variables, as well as the reduction in both contextual constraints and discipline-specific methodological isolation. The present article presents a conceptual review of these advances while using illustrations of research applications that are capable of overcoming specific methodological barriers. Finally, a brief review of both the benefits and risks of mobile technology use for the treatment of patients will be addressed.
"Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step
NASA Astrophysics Data System (ADS)
Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon
2013-04-01
During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.
Contributions of mobile technologies to addiction research
Swendsen, Joel
2016-01-01
Mobile technologies are revolutionizing the field of mental health, and particular progress has been made in their application to addiction research and treatment. The use of smartphones and other mobile devices has been shown to be feasible with individuals addicted to any of a wide range of substances, with few biases being observed concerning the repeated monitoring of daily life experiences, craving, or substance use. From a methodological point of view, the use of mobile technologies overcomes longstanding limitations of traditional clinical research protocols, including the more accurate assessment of temporal relationships among variables, as well as the reduction in both contextual constraints and discipline-specific methodological isolation. The present article presents a conceptual review of these advances while using illustrations of research applications that are capable of overcoming specific methodological barriers. Finally, a brief review of both the benefits and risks of mobile technology use for the treatment of patients will be addressed. PMID:27489461
Development of an YBCO coil with SSTC conductors for high field application
NASA Astrophysics Data System (ADS)
Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.
2018-07-01
With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.
Emerging Technologies for Enhanced In Situ Biodenitrification of Nitrate Contaminated Ground Water
NASA Astrophysics Data System (ADS)
Faris, B.; Faris, B.
2001-05-01
One of the most pervasive ground water contaminants in the U.S. is nitrate. Traditional technologies for the remediation of nitrate-contaminated ground water are generally costly, lengthy, and often only partly effective. Enhanced in situ biodenitrification (EISBD) is a developing technology for remediating nitrate contaminated ground water and protecting public and domestic supply wells through in situ reduction. Natural denitrification processes have been well understood for some time. However, managing these processes to effectively remediated contaminated ground water in a timely fashion is innovative. EISBD is a remediation technology through which a carbon source (electron donor) is introduced to a nitrate-contaminated aquifer. Since many aquifers are aerobic, indigenous aerobic bacteria utilize the introduced carbon as a food source and oxygen serves as an electron acceptor. Oxygen in the aquifer becomes depleted, forming an anaerobic aquifer. When this occurs and an abundant carbon source is present, indigenous denitrifying bacteria proliferate and reduce nitrate to nitrogen gas through anaerobic respiration. EISBD technology deployments are currently underway for either remediation of sizable nitrate plumes in ground water systems or the reduction of nitrate contaminated ground water around public and/or domestic well fields dedicated to the production of drinking water. Regulatory enforcement of nitrate plumes has been limited. Pollution prevention programs are in place to limit further nitrate contamination, however, once a site becomes contaminated with nitrates above standards, the deployment of remediation technologies is lacking. With the development and further deployment of EISBD technologies, a cost-effective short-term tool is available for nitrate remediation. A multi-disciplinary team of the Interstate Technology Regulatory Cooperation published a Technology Overview guidance document on the emerging technology of EISBD. ITRC is a state-led, national coalition of personnel from the regulatory and technology programs from 40 states and the District of Columbia; federal agencies; and tribal, public, and industry stakeholders. ITRC is devoted to reducing barriers and speeding interstate deployment of better, more cost-effective, innovative environmental technologies.
Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2012-01-01
There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... reduction attainable by the application of the best practicable control technology currently available (BPT... effluent reduction attainable after application of the best practicable control technology currently...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... reduction attainable by the application of the best practicable control technology currently available (BPT... effluent reduction attainable after application of the best practicable control technology currently...
Code of Federal Regulations, 2012 CFR
2012-07-01
... new technology components or process modifications and identifying critical path relationships within... degree of effluent reduction attainable by the application of best available technology economically... effluent reduction attainable by the application of best available technology economically achievable (BAT...
Yang, Fuxia; Xu, Jiangchuan
2018-01-01
Low economic profit usually reduces the incentive of producers to operate their wastewater treatment technologies effectively. It is necessary to investigate the performance of environmentally friendly production technologies that reduce wastewater discharges and generate economic outputs simultaneously (EPTWs) in China over the past decade. In this paper, we apply the Malmquist-Luenberger productivity index widely used in the field of economics to evaluate the productivity change of EPTWs for 30 administrative provinces in China during 2003–2015. The pathways of the productivity change are further identified by decomposing the productivity index into two components: technological change and technical efficiency change. The results show that China's environmental productivity index associated with wastewater reduction had undergone a downward trend, and evident spatial disparities are observed among the 30 provincial regions. Moreover, the changes of China's environmental productivity over the whole studied period can mainly be attributed to technological progress, while the technical efficiency component has contributed little, although its annual contributing rate is in an increasing trend. PMID:29789803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halvorsen, T.
The next generation subsea developments will be facing a number of new challenges which have to be solved to maintain a cost-efficient solution for production of oil and gas: (1) Smaller fields, i.e. cost reduction through volume will no longer be valid. (2) Freedom in configuration of subsea development. The current idea of standardization will not be directly applicable for cost reduction. (3) Various water depth. The same technology should be applicable for both guideline- and guideline less water depth. (4) Development in new areas of the world where drilling rig deployable system is a must. (5) Various types ofmore » fluid processing may be required as an integral part of a subsea production system. The next generation subsea production system should be universal and applicable to any subsea field development. Kongsberg Offshore a.s. (KOS) have gained extensive experience in supplying standardized total subsea systems. The paper presents the approach taken by KOS to develop the next generation subsea system, and discussed the challenges associated with this.« less
NASA Astrophysics Data System (ADS)
Varma, R. A. Raveendra
Magnetic fields of naval vessels are widely used all over the world for detection and localization of naval vessel. Magnetic Anomaly Detectors (MADs) installed on air borne vehicles are used to detect submarine operating in shallow waters. Underwater mines fitted with magnetic sensor are used for detection and destruction of naval vessels in the times of conflict. Reduction of magnetic signature of naval vessels is carried out by deperming and installation of degaussing system onboard the vessel. Present paper elaborates details of studies carried out at Magnetics Division of Naval Science and Technological Laboratory (NSTL) for minimizing the magnetic signature of naval vessels by designing a degaussing system. Magnetic fields of a small ship model are predicted and a degaussing system is designed for reducing magnetic detection. The details of the model, methodology used for estimation of magnetic signature of the vessel and design of degaussing system is brought out in this paper with details of experimental setup and results.
Space Technology 7 Disturbance Reduction System - precision control flight Validation
NASA Technical Reports Server (NTRS)
Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.;
2005-01-01
The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.432 Section 415.432 Protection of Environment ENVIRONMENTAL... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 418.72 Section 418.72 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.272 Section 415.272 Protection of Environment ENVIRONMENTAL... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... effluent reduction attainable by the application of the best available technology economically achievable... subpart after application of the best available technology economically achievable: There shall be no...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.292 Section 415.292 Protection of Environment ENVIRONMENTAL... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... attainable by the application of the best available technology economically achievable (BAT). Except as... reduction attainable by the application of the best available technology economically achievable (BAT): (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable after application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... attainable by the application of the best available technology economically achievable (BAT). Except as... reduction attainable by the application of the best available technology economically achievable (BAT): (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... representing the degree of effluent reduction attainable by the application of the best available technology... best available technology economically achievable (BAT). Non-continuous dischargers shall not be...
Transmission and Distribution Efficiency Improvement Rearch and Development Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.L.; Westinghouse Electric Corporation. Advanced Systems Technology.
Purpose of this study was to identify and quantify those technologies for improving transmission and distribution (T and D) system efficiency that could provide the greatest benefits for utility customers in the Pacific Northwest. Improving the efficiency of transmission and distribution systems offers a potential source of conservation within the utility sector. An extensive review of this field resulted in a list of 49 state-of-the-art technologies and 39 future technologies. Of these, 15 from the former list and 7 from the latter were chosen as the most promising and then submitted to an evaluative test - a modeled sample systemmore » for Benton County PUD, a utility with characteristics typical of a BPA customer system. Reducing end-use voltage on secondary distribution systems to decrease the energy consumption of electrical users when possible, called ''Conservation Voltage Reduction,'' was found to be the most cost effective state-of-the-art technology. Voltampere reactive (var) optimization is a similarly cost effective alternative. The most significant reduction in losses on the transmission and distribution system would be achieved through the replacement of standard transformers with high efficiency transformers, such as amorphous steel transformers. Of the future technologies assessed, the ''Distribution Static VAR Generator'' appears to have the greatest potential for technological breakthroughs and, therefore in time, commercialization. ''Improved Dielectric Materials,'' with a relatively low cost and high potential for efficiency improvement, warrant R and D consideration. ''Extruded Three-Conductor Cable'' and ''Six- and Twelve-Phase Transmission'' programs provide only limited gains in efficiency and applicability and are therefore the least cost effective.« less
Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staruch, M.; Bussmann, K.; Finkel, P.
2015-07-20
Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus furthermore » improve the limit of detection and advance development of magnetic field sensing technology.« less
About the Drift Reduction Technology Program
The new voluntary Drift Reduction Technology (DRT) Program will encourage the manufacture, marketing, and use of safer spray technology and equipment scientifically verified to reduce pesticide drift.
Advances in lipid-lowering therapy through gene-silencing technologies.
Nordestgaard, Børge G; Nicholls, Stephen J; Langsted, Anne; Ray, Kausik K; Tybjærg-Hansen, Anne
2018-05-01
New treatment opportunities are emerging in the field of lipid-lowering therapy through gene-silencing approaches. Both antisense oligonucleotide inhibition and small interfering RNA technology aim to degrade gene mRNA transcripts to reduce protein production and plasma lipoprotein levels. Elevated levels of LDL, remnant lipoproteins, and lipoprotein(a) all cause cardiovascular disease, whereas elevated levels of triglyceride-rich lipoproteins in some patients can cause acute pancreatitis. The levels of each of these lipoproteins can be reduced using gene-silencing therapies by targeting proteins that have an important role in lipoprotein production or removal (for example, the protein products of ANGPTL3, APOB, APOC3, LPA, and PCSK9). Using this technology, plasma levels of these lipoproteins can be reduced by 50-90% with 2-12 injections per year; such dramatic reductions are likely to reduce the incidence of cardiovascular disease or acute pancreatitis in at-risk patients. The reported adverse effects of these new therapies include injection-site reactions, flu-like symptoms, and low blood platelet counts. However, newer-generation drugs are more efficiently delivered to liver cells, requiring lower drug doses, which leads to fewer adverse effects. Although these findings are promising, robust evidence of cardiovascular disease reduction and long-term safety is needed before these gene-silencing technologies can have widespread implementation. Before the availability of such evidence, these drugs might have roles in patients with unmet medical needs through orphan indications.
OCCUPATIONAL EXPOSURE OF NMR SPECTROMETRISTS TO STATIC AND RADIOFREQUENCY FIELDS.
Berlana, Tania; Úbeda, Alejandro
2017-12-01
Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user's hand (B = 683.00 mT) and head-thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultrashield technology allows a 20-65-fold reduction of the field strength received by the operator. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reducing blood viscosity with magnetic fields
NASA Astrophysics Data System (ADS)
Tao, R.; Huang, K.
2011-07-01
Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.
Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton
2017-01-01
The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.
NASA Technical Reports Server (NTRS)
Sargent, Noel B.
2001-01-01
A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.
Gove, Benedict; Williams, Leah J.; Beresford, Alison E.; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H. W.; Bradbury, Richard B.
2016-01-01
Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential. PMID:27224050
Gove, Benedict; Williams, Leah J; Beresford, Alison E; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H W; Bradbury, Richard B
2016-01-01
Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential.
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Turbulence management: Application aspects
NASA Astrophysics Data System (ADS)
Hirschel, E. H.; Thiede, P.; Monnoyer, F.
1989-04-01
Turbulence management for the reduction of turbulent friction drag is an important topic. Numerous research programs in this field have demonstrated that valuable net drag reduction is obtainable by techniques which do not involve substantial, expensive modifications or redesign of existing aircraft. Hence, large projects aiming at short term introduction of turbulence management technology into airline service are presently under development. The various points that have to be investigated for this purpose are presented. Both design and operational aspects are considered, the first dealing with optimizing of turbulence management techniques at operating conditions, and the latter defining the technical problems involved by application of turbulence management to in-service aircraft. The cooperative activities of Airbus Industrie and its partners are cited as an example.
Fry, Lauren M; Cowden, Joshua R; Watkins, David W; Clasen, Thomas; Mihelcic, James R
2010-12-15
Knowledge of potential benefits resulting from technological interventions informs decision making and planning of water, sanitation, and hygiene programs. The public health field has built a body of literature showing health benefits from improvements in water quality. However, the connection between improvements in water quantity and health is not well documented. Understanding the connection between technological interventions and water use provides insight into this problem. We present a model predicting reductions in diarrhea disease burden when the water demands from hygiene and sanitation improvements are met by domestic rainwater harvesting (DRWH). The model is applied in a case study of 37 West African cities. For all cities, with a total population of over 10 million, we estimate that DRWH with 400 L storage capacity could result in a 9% reduction in disability-affected life years (DALYs). If DRWH is combined with point of use (POU) treatment, this potential impact is nearly doubled, to a 16% reduction in DALYs. Seasonal variability of diarrheal incidence may have a small to moderate effect on the effectiveness of DRWH, depending on the storage volume used. Similar predictions could be made for other interventions that improve water quantity in other locations where disease burden from diarrhea is known.
Controlling Fluid Flow in the Subsurface through Ureolysis-Controlled Mineral Precipitation
NASA Astrophysics Data System (ADS)
Gerlach, R.; Phillips, A. J.; Cunningham, A. B.; Spangler, L.
2016-12-01
In situ urea hydrolysis has been used by us successfully to manipulate the carbonate alkalinity and control the precipitation of carbonate minerals. Urea hydrolysis can be promoted using microbial cells, enzymes or thermal energy. This technology can be used to mitigate leakage pathways, seal fractures or control fluid transport in the subsurface in hydrocarbon production, enhanced geothermal energy storage, carbon sequestration, nuclear waste disposal, etc. We have completed two field demonstrations of the urea hydrolysis-controlled in situ mineral precipitation technology. The first demonstration showed fracture sealing was possible in a sandstone formation approx. 1120' below ground surface (bgs) and that the fracture had increased resistance to re-fracturing after mineralization treatment. The second field demonstration was performed in a well with an identified channel in the cement near the wellbore at approx. 1020' bgs. The in situ mineralization treatment resulted in reduced pressure decay during shut in periods and reduced injectivity. In addition, a noticeable difference was observed in the solids percentage in the ultrasonic imaging logs before and after biomineralization treatment. The presentation will summarize and put into context the field and our recent laboratory research focusing on permeability manipulation using the in situ ureolysis-driven mineralization technology under ambient and subsurface pressure conditions. We have demonstrated permeability reductions of 3-6 orders of magnitude in 100 µm to 4mm gaps between shale, sandstone and cement/steel interfaces.
Reimer, Bryan; Mehler, Bruce; Coughlin, Joseph F
2016-01-01
Drivers' reactions to a semi-autonomous technology for assisted parallel parking system were evaluated in a field experiment. A sample of 42 drivers balanced by gender and across three age groups (20-29, 40-49, 60-69) were given a comprehensive briefing, saw the technology demonstrated, practiced parallel parking 3 times each with and without the assistive technology, and then were assessed on an additional 3 parking events each with and without the technology. Anticipatory stress, as measured by heart rate, was significantly lower when drivers approached a parking space knowing that they would be using the assistive technology as opposed to manually parking. Self-reported stress levels following assisted parks were also lower. Thus, both subjective and objective data support the position that the assistive technology reduced stress levels in drivers who were given detailed training. It was observed that drivers decreased their use of turn signals when using the semi-autonomous technology, raising a caution concerning unintended lapses in safe driving behaviors that may occur when assistive technologies are used. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Asai, Hidehiro; Mori, Takahiro; Matsukawa, Takashi; Hattori, Junichi; Endo, Kazuhiko; Fukuda, Koichi
2018-04-01
The effect of a drain offset structure on the operation speed of a tunnel field-effect transistor (TFET) ring oscillator is investigated by technology computer-aided design (TCAD) simulation. We demonstrate that the reduction of gate-drain capacitance by the drain offset structure dramatically increases the operation speed of the ring oscillators. Interestingly, we find that this capacitance benefit to operation speed is enhanced by the increase in band-to-band tunneling probability. The “synergistic” speed enhancement by the drain offset structure and the tunneling rate increase will have promising application to the significant improvement of the operation speed of TFET circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, G.C.; Kwan, Y.; Payne, R.
1984-10-01
The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental studies. Test results are included for full-scale burner performance in an experimental test furnace, and in a field-operating steam generator which was subsequently retrofitted in a Kern County, California, oilfield. (NOTE: NOx control techniques including low-NOx burners, postflame NH/sub 3/ injection, or other postflame treatment methods--e.g., selective catalytic reduction--have been considered in order to comply with regulations. Themore » level of NOx control required to meet both growth and air quality goals has typically been difficult to achieve with available technology while maintaining acceptable CO and particulate emissions as well as practical flame conditions within the steamer.)« less
Yang, Jia Ji; Cheng, Yong Zhi; Ge, Chen Chen; Gong, Rong Zhou
2018-04-19
A class of linear polarization conversion coding metasurfaces (MSs) based on a metal cut-wire structure is proposed, which can be applied to the reduction properties of radar cross section (RCS). We firstly present a hypothesis based on the principle of planar array theory, and then verify the RCS reduction characteristics using linear polarization conversion coding MSs by simulations and experiments. The simulated results show that in the frequency range of 6⁻14 GHz, the linear polarization conversion ratio reaches a maximum value of 90%, which is in good agreement with the theoretical predictions. For normal incident x - and y -polarized waves, RCS reduction of designed coding MSs 01/01 and 01/10 is essentially more than 10 dB in the above-mentioned frequency range. We prepare and measure the 01/10 coding MS sample, and find that the experimental results in terms of reflectance and RCS reduction are in good agreement with the simulated ones under normal incidence. In addition, under oblique incidence, RCS reduction is suppressed as the angle of incidence increases, but still exhibits RCS reduction effects in a certain frequency range. The designed MS is expected to have valuable potential in applications for stealth field technology.
Voelker, Steven L.; Lachenbruch, Barbara; Meinzer, Frederick C.; Jourdes, Michael; Ki, Chanyoung; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.; Tuskan, Gerald A.; Gunter, Lee; Decker, Stephen R.; Selig, Michael J.; Sykes, Robert; Himmel, Michael E.; Kitin, Peter; Shevchenko, Olga; Strauss, Steven H.
2010-01-01
Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees. PMID:20729393
ESO imaging survey: infrared observations of CDF-S and HDF-S
NASA Astrophysics Data System (ADS)
Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Benoist, C.; Vandame, B.; Rengelink, R.; Rité, C.; Scodeggio, M.; Slijkhuis, R.; Wicenec, A.; Zaggia, S.
2006-06-01
This paper presents infrared data obtained from observations carried out at the ESO 3.5 m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79 arcsec to 1.22 arcsec and the median limiting magnitudes (AB system, 2'' aperture, 5σ detection limit) are J_AB˜23.0, H_AB˜22.8 and K_AB˜23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of ~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB˜23.6 and K_AB˜22.7 mag. For one CDF-S field H band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs together with the astrometrically and photometrically calibrated co-added images are available at CDS.
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products
Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.
2016-01-01
Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350
Some aspects of using ultrasounds to improve sulfurous mineral flotation technology
NASA Technical Reports Server (NTRS)
Mihu, V. P.; Pop, I.
1974-01-01
The results are discussed which were obtained with a new method of desorption of collector reagents connected with improving the selectivity of the flotation of copper and lead concentrate through the action of ultrasounds. Analysis of the results obtained by treating copper and lead concentrate in an ultraacoustic field indicates an increase in the copper content of the copper concentrate, of the lead content in the lead concentrate and, at the same time, a reduction in the lead of the copper concentrate.
NASA Technical Reports Server (NTRS)
1976-01-01
The Nimbus and other weather satellites are helping determine why and how tornadoes form their structure and dynamics and ultimately how they can be prevented or artificially dissipated. NASA's Marshall Space Flight Center is also planning a cooperative research program later this year with the University of Arkansas to investigate how tornado damage occurs, and to develop tornado resistant building designs. Hardware and field-data collection are funded by the Technology Utilization Office while data reduction is being performed by the National Oceanic and Atmospheric Administration.
Advanced instrumentation for aeronautical propulsion research
NASA Technical Reports Server (NTRS)
Hartmann, M. J.
1986-01-01
The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.
Historical Review of Astro-Geodetic Observations in Serbia
NASA Astrophysics Data System (ADS)
Ogrizovic, V.; Delcev, S.; Vasilic, V.; Gucevic, J.
2008-10-01
Astro-geodetic determinations of vertical deflections in Serbia began during the first years of 20th century. The first field works were led by S. Bo\\vsković. After the 2nd World War, Military Geographic Institute, Department of Geodesy from the Faculty of Civil Engineering, and Federal Geodetic Directorate continued the determinations, needed for reductions of terrestrial geodetic measurements and the astro-geodetic geoid determination. Last years improvements of the astro-geodetic methods are carried out in the area of implementing modern measurement equipment and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... representing the degree of effluent reduction attainable by the application of the best practicable control... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... representing the degree of effluent reduction attainable by the application of the best practicable control... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best practicable control... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2013 CFR
2013-07-01
... representing the degree of effluent reduction attainable by the application of the best practicable control... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by the application of the best practicable control... degree of effluent reduction attainable by the application of the best practicable control technology... reduction attainable by the application of the best practicable control technology currently available (BPT...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Francis
A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less
Barcelona, M J; Xie, G
2001-08-15
Permeable reactive barriers (PRB) are being used to engineer favorable field conditions for in-situ remediation efforts. Two redox adjustment barriers were installed to facilitate a 10-month research effort on the fate and transport of MTBE (methyl tert-butyl ether) at a site called the Michigan Integrated Remediation Technology Laboratory (MIRTL). Thirty kilograms of whey were injected as a slurry into an unconfined aquifer to establish an upgradient reductive zone to reduce O2 concentration in the vicinity of a contaminant injection source. To minimize the impact of contaminant release, 363 kg of oxygen release compound (ORC) were placed in the aquifer as a downgradient oxidative barrier. Dissolved oxygen and other chemical species were monitored in the field to evaluate the effectiveness of this technology. A transient one-dimensional advective-dispersive-reaction (ADR) model was proposed to simulate the dissolved oxygen transport. The equations were solved with commonly encountered PRB initial and constant/variable boundary conditions. No similar previous solution was found in the literature. The in-situ lifetimes, based on variable source loading, were estimated to be 1,661 and 514 days for the whey barrier and ORC barrier, respectively. Estimates based on either maximum O2 consumption/production or measured O2 curves were found to under- or overestimate the lifetime of the barriers. The pseudo-first-order rate constant of whey depletion was estimated to be 0.303/d with a dissolution rate of 0.04/d. The oxygen release rate constant in the ORC barrier was estimated to be 0.03/d. This paper provides a means to design and predict the performance of reactive redox barriers, especially when only limited field data are available.
NASA Astrophysics Data System (ADS)
Marcelino, Edgar; de Assis, Thiago A.; de Castilho, Caio M. C.
2018-03-01
It is well known that sufficiently strong electrostatic fields are able to change the morphology of Large Area Field Emitters (LAFEs). This phenomenon affects the electrostatic interactions between adjacent sites on a LAFE during field emission and may lead to several consequences, such as: the emitter's degradation, diffusion of absorbed particles on the emitter's surface, deflection due to electrostatic forces, and mechanical stress. These consequences are undesirable for technological applications, since they may significantly affect the macroscopic current density on the LAFE. Despite the technological importance, these processes are not completely understood yet. Moreover, the electrostatic effects due to the proximity between emitters on a LAFE may compete with the morphological ones. The balance between these effects may lead to a non trivial behavior in the apex-Field Enhancement Factor (FEF). The present work intends to study the interplay between proximity and morphological effects by studying a model amenable for an analytical treatment. In order to do that, a conducting system under an external electrostatic field, with a profile limited by two mirror-reflected triangular protrusions on an infinite line, is considered. The FEF near the apex of each emitter is obtained as a function of their shape and the distance between them via a Schwarz-Christoffel transformation. Our results suggest that a tradeoff between morphological and proximity effects on a LAFE may provide an explanation for the observed reduction of the local FEF and its variation at small distances between the emitter sites.
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
Low Power Near Field Communication Methods for RFID Applications of SIM Cards.
Chen, Yicheng; Zheng, Zhaoxia; Gong, Mingyang; Yu, Fengqi
2017-04-14
Power consumption and communication distance have become crucial challenges for SIM card RFID (radio frequency identification) applications. The combination of long distance 2.45 GHz radio frequency (RF) technology and low power 2 kHz near distance communication is a workable scheme. In this paper, an ultra-low frequency 2 kHz near field communication (NFC) method suitable for SIM cards is proposed and verified in silicon. The low frequency transmission model based on electromagnetic induction is discussed. Different transmission modes are introduced and compared, which show that the baseband transmit mode has a better performance. The low-pass filter circuit and programmable gain amplifiers are applied for noise reduction and signal amplitude amplification. Digital-to-analog converters and comparators are used to judge the card approach and departure. A novel differential Manchester decoder is proposed to deal with the internal clock drift in range-controlled communication applications. The chip has been fully implemented in 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology, with a 330 µA work current and a 45 µA idle current. The low frequency chip can be integrated into a radio frequency SIM card for near field RFID applications.
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
Error Reduction Analysis and Optimization of Varying GRACE-Type Micro-Satellite Constellations
NASA Astrophysics Data System (ADS)
Widner, M. V., IV; Bettadpur, S. V.; Wang, F.; Yunck, T. P.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) mission has been a principal contributor in the study and quantification of Earth's time-varying gravity field. Both GRACE and its successor, GRACE Follow-On, are limited by their paired satellite design which only provide a full map of Earth's gravity field approximately every thirty days and at large spatial resolutions of over 300 km. Micro-satellite technology has presented the feasibility of improving the architecture of future missions to address these issues with the implementation of a constellations of satellites having similar characteristics as GRACE. To optimize the constellation's architecture, several scenarios are evaluated to determine how implementing this configuration affects the resultant gravity field maps and characterize which instrument system errors improve, which do not, and how changes in constellation architecture affect these errors.
NASA Astrophysics Data System (ADS)
Ueda, T.; Zhai, H. F.; Ren, F.; Noda, N.-A.; Sano, Y.; Takase, Yasushi; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technology has drawn great attention due to their wide applications in various fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. This study focuses on the application to seafood long term storage. The nitrogen nanobubble water circulation may reduce the oxygen in water and slow the progressions of oxidation and spoilage. Our previous study showed the pressure reduction and shear stress are involved in nanobubble generation apparatus with honeycomb cells. In this work, the nanobubble generating performance is studied experimentally for honeycomb structures by varying the cell size and the flow velocity. Computational Fluid Dynamics analysis is also performed to simulate the experiment and find out the efficient nanobubble generation.
LWIR and VLWIR detectors development at SOFRADIR for space applications
NASA Astrophysics Data System (ADS)
Terrier, Bertrand; Delannoy, Anne; Chorier, Philippe; Maillard, Magalie; Rubaldo, Laurent
2010-10-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors. Its offer covers the infrared spectrum from visible range (0.4 μm) up to very long wavelength range (15 μm). The need in this last field is driven by space activities, especially by meteorological instruments using imagery or spectrometry. In the frame of Meteosat Third Generation mission, ESA has launched pre-development activities to address the critical equipments for risk reduction. VLWIR detectors for FCI and IRS have been considered as challenging ones and thus SOFRADIR has been involved for manufacturing and testing 2D arrays with long cut-off wavelength (14.9μm at 50K) in order to evaluate their compliance to MTG requirements as far as dark current behaviour, quantum efficiency, photoresponse uniformity, spatial response, operability and reliability are concerned. In parallel, trends of space and tactical applications call for dark current reduction technology in order to improve systems performances in terms of operating temperature and signal to noise ratio. In the frame of its common laboratory DEFIR with CEA-LETI, Sofradir has developed a new MCT p on n technology to answer this need. First demonstrations were made with success (640x512, pitch 15μm and cut-off 9.5μm) and Sofradir is now industrializing this technology in particular for tactical application. Thanks to the communality between space and tactical activity at Sofradir, these results will benefit advantageously also to space activity. In this paper, we present a review of latest Sofradir results concerning LWIR and VLWIR technology. In particular, latest data, concerning development and characterization of generic VLWIR technology up to 15 μm cut-off wavelength, are presented as well as data concerning the promising p on n LWIR technology.
Operation and maintenance results from ISFOC CPV plants
NASA Astrophysics Data System (ADS)
Gil, Eduardo; Martinez, María; de la Rubia, Oscar
2017-09-01
The analysis of field operation and maintenance data collected during a period of over eight years, from CPV installations consisting of three different CPV technologies (including second generation of one of these technologies), has allowed us to get valuable information about the long-term degradation of the CPV systems. Through the study of the maintenance control ratio previously defined and by applying the root cause analysis methodology, the components responsible for the most unplanned interventions for each technology were identified. Focusing maintenance efforts on these components, a reduction of the unplanned interventions and the total cost of maintenance has been achieved over the years. Therefore, the deployment of an effective maintenance plan, identifying critical components, is essential to minimize the risk for investors and maximize the CPV power plants lifetime and energy output, increasing the availability of CPV installations, boosting market confidence in CPV systems.
International Agreement on Planetary Protection
NASA Technical Reports Server (NTRS)
2000-01-01
The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.
Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series
NASA Astrophysics Data System (ADS)
Wang, Weigang
2017-11-01
The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
GUIDE TO CLEANER TECHNOLOGIES: ORGANIC COATING REMOVAL
A cleaner technology is a source reduction or recycle method |applied to eliminate or significantly reduce hazardous waste generation. Source reduction includes product changes and source control. Source control can be further characterized as input material changes, technology...
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.
2009-12-01
Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of calcite in soil, the availability of competing electron acceptors (in particular dissolved sulfates) and the efficiency with which microbes utilize electron donor. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aimed to evaluate and improve enhanced bioremediation of chlorinated solvent source zones.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
Smith, R; Schwab, K; Day, A; Rockall, T; Ballard, K; Bailey, M; Jourdan, I
2014-10-01
Although the potential benefits of stereoscopic laparoscopy have been recognized for years, the technology has not been adopted because of poor operator tolerance. Passive polarizing projection systems, which have revolutionized three-dimensional (3D) cinema, are now being trialled in surgery. This study was designed to see whether this technology resulted in significant performance benefits for skilled laparoscopists. Four validated laparoscopic skills tasks, each with ten repetitions, were performed by 20 experienced laparoscopic surgeons, in both two-dimensional (2D) and 3D conditions. The primary outcome measure was the performance error rate; secondary outcome measures were time for task completion, 3D motion tracking (path length, motion smoothness and grasping frequency) and workload dimension ratings of the National Aeronautics and Space Administration (NASA) Task Load Index. Surgeons demonstrated a 62 per cent reduction in the median number of errors and a 35 per cent reduction in median performance time when using the passive polarizing 3D display compared with the 2D display. There was a significant 15 per cent reduction in median instrument path length, an enhancement of median motion smoothness, and a 15 per cent decrease in grasper frequency with the 3D display. Participants reported significant reductions in subjective workload dimension ratings of the NASA Task Load Index following use of the 3D displays. Passive polarizing 3D displays improved both the performance of experienced surgeons in a simulated setting and surgeon perception of the operative field. Although it has been argued that the experience of skilled laparoscopic surgeons compensates fully for the loss of stereopsis, this study indicates that this is not the case. Surgical relevance The potential benefits of stereoscopic laparoscopy have been known for years, but the technology has not been adopted because of poor operator tolerance. The first laparoscopic operation was carried out using a prototype passive polarizing laparoscopic system in 2010. This is new three-dimensional (3D) technology offers a real option for 3D laparoscopic surgery where previous systems have failed. This study is the first to have been carried out using this technology. It is essential that new technologies are adopted only when there is robust evidence to support their use. Currently, there are concerns about the use of robotic technologies and whether advantages exist for patient care. If there are advantages, 3D must be playing a significant role. If so, perhaps the technology under investigation here offers potential to a greater spectrum of surgeons, as well as being a more affordable option. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources "repel" or "attract" each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1-3 treatment sessions.
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources “repel” or “attract” each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1–3 treatment sessions. PMID:24155523
ADMET biosensors: up-to-date issues and strategies.
Fang, Yan; Offenhaeusser, Andrease
2004-12-01
This insight review introduces the new concepts, theories, technology, instruments, frontier issues, and key strategies of ADMET (absorption, distribution, metabolism, elimination, and toxicity) biosensors, from the fermi to the quantum levels. Information about ADMET, originating from one author's invention, a patented pharmacotherapy for rescuing cardio-cerebral vascular stunning and regulating vascular endothelial growth-factor signaling at the post-genomic level, can be detected by a new generation of ADMET biosensor. This is a single-cell/single-molecule field-effect transistor (FET) hybrid system, where single molecules or single cells are assembled at the FET surface in a high density array manner via complementary metal-oxide-semiconductor (CMOS)-compatible technologies. Within a given nanometer distance, ADMET-mediated oxidation-reduction (redox) potentials, electrochemistry responses, and electron transfer processes can be simultaneously and directly probed by the gates of field-effect transistor arrays. The nanometer details of the functional coupling principles and characterization technologies of DNA single-molecule/single-cell FETs, as well as the design of lab-on-a-chip instruments, are indicated. Four frontier issues and key strategies are elucidated in detail. This can lead to innovative technology for high-throughout screening of labs-on-chips to resolve the pharmaceutical industry's current bottleneck via novel, FET-based drug discovery and single-molecule/single-cell screening methods, which can bring about a pharmaceutical industry revolution in the 21st century.
Carbon Dioxide Reduction Technology Trade Study
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.
2011-01-01
For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development.
Electron delocalization and charge mobility as a function of reduction in a metal-organic framework.
Aubrey, Michael L; Wiers, Brian M; Andrews, Sean C; Sakurai, Tsuneaki; Reyes-Lillo, Sebastian E; Hamed, Samia M; Yu, Chung-Jui; Darago, Lucy E; Mason, Jarad A; Baeg, Jin-Ook; Grandjean, Fernande; Long, Gary J; Seki, Shu; Neaton, Jeffrey B; Yang, Peidong; Long, Jeffrey R
2018-06-04
Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe 2 (BDP) 3 (0 ≤ x ≤ 2; BDP 2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe 2 (BDP) 3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe 2 (BDP) 3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.
NASA Astrophysics Data System (ADS)
Chen, Y. C.; Chen, C. C.; Tu, W.; Cheng, Y. T.; Tseng, F. G.
2010-12-01
This paper presents a platform technology with experimental results that show the scientists and biologists a way to rapidly investigate and analyze the biological effects of localized extremely low frequency (ELF) electromagnetic field (EMF) on living cells. The proximity effect of the localized ELF-EMF on living cells is revealed using the bio-compatible microplatform on which an on-glass inductive coil array, the source of the localized ELF-EMF in micro scale, is designed, fabricated and operated with a field strength of 1.2 ± 0.1 mT at 60 Hz for cell culturing study. After a 72 h ELF-EMF exposure, HeLa (human cervical cancer) and PC-12 (rat pheochromocytoma) cells exhibit about 18.4% and 12.9% cell proliferation rate reduction, respectively. Furthermore, according to the presented dynamic model, the reduction of the proliferation can be attributed to the interference of signal transduction processes due to the tangential currents induced around the cells.
Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator
NASA Astrophysics Data System (ADS)
Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang
2016-05-01
The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.
2004-01-01
NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.
Genetically modified foods: safety, risks and public concerns-a review.
Bawa, A S; Anilakumar, K R
2013-12-01
Genetic modification is a special set of gene technology that alters the genetic machinery of such living organisms as animals, plants or microorganisms. Combining genes from different organisms is known as recombinant DNA technology and the resulting organism is said to be 'Genetically modified (GM)', 'Genetically engineered' or 'Transgenic'. The principal transgenic crops grown commercially in field are herbicide and insecticide resistant soybeans, corn, cotton and canola. Other crops grown commercially and/or field-tested are sweet potato resistant to a virus that could destroy most of the African harvest, rice with increased iron and vitamins that may alleviate chronic malnutrition in Asian countries and a variety of plants that are able to survive weather extremes. There are bananas that produce human vaccines against infectious diseases such as hepatitis B, fish that mature more quickly, fruit and nut trees that yield years earlier and plants that produce new plastics with unique properties. Technologies for genetically modifying foods offer dramatic promise for meeting some areas of greatest challenge for the 21st century. Like all new technologies, they also pose some risks, both known and unknown. Controversies and public concern surrounding GM foods and crops commonly focus on human and environmental safety, labelling and consumer choice, intellectual property rights, ethics, food security, poverty reduction and environmental conservation. With this new technology on gene manipulation what are the risks of "tampering with Mother Nature"?, what effects will this have on the environment?, what are the health concerns that consumers should be aware of? and is recombinant technology really beneficial? This review will also address some major concerns about the safety, environmental and ecological risks and health hazards involved with GM foods and recombinant technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti
The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomicsmore » technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic analyses, and gene expression studies to support the metaproteomics characterizations. Growth experiments of target microorganisms (Anaeromyxobacter, Shewanella, Geobacter) revealed tremendous respiratory versatility, as evidenced by the ability to utilize a range of electron donors (e.g. acetate, hydrogen, pyruvate, lactate, succinate, formate) and electron acceptors (e.g. nitrate, fumarate, halogenated phenols, ferric iron, nitrous oxide, etc.). In particular, the dissimilatory metabolic reduction of metals, including radionuclides, by target microorganisms spurred interest for in situ bioremediation of contaminated soils and sediments. Distinct c-type cytochrome expression patterns were observed in target microorganisms grown with the different electron acceptors. For each target microorganism, the core proteome covered almost all metabolic pathways represented by their corresponding pan-proteomes. Unique proteins were detected for each target microorganism, and their expression and possible functionalities were linked to specific growth conditions through proteomics measurements. Optimization of the proteomic tools included in-depth comprehensive metagenomic and metaproteomic analyses on a limited number of samples. The optimized metaproteomic analyses were then applied to Oak Ridge IFRC field samples from the slow-release substrate biostimulation. Metaproteomic analysis and pathway mapping results demonstrated the distinct effects of metal and non-metal growth conditions on the proteome expression. With these metaproteomic tools, we identified which previously hypothetical metabolic pathways were active during the analyzed time points of the slow release substrate biostimulation. Thus, we demonstrated the utility of these tools for site assessment, efficient implementation of bioremediation and long-term monitoring. This research of detailed protein analysis linked with metal reduction activity did (1) show that c-type cytochrome isoforms, previously associated with radionuclide reduction activity, are suitable biomarkers, (2) identify new biomarker targets for site assessment and bioremediation monitoring, and (3) provide new information about specific proteins and mechanisms involved in U(VI) reduction and immobilization. This expanded metagenomic and metaproteomic toolbox contributed to implementing science-driven site management with broad benefits to the DOE mission.« less
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.
2012-01-01
In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is,more » to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
NASA Astrophysics Data System (ADS)
Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.
2007-08-01
Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O2, or NF3 + O2 clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.
Suri, Navreet; Voordouw, Johanna; Voordouw, Gerrit
2017-01-01
The injection of nitrate is one of the most commonly used technologies to impact the sulfur cycle in subsurface oil fields. Nitrate injection enhances the activity of nitrate-reducing bacteria, which produce nitrite inhibiting sulfate-reducing bacteria (SRB). Subsequent reduction of nitrate to di-nitrogen (N2) alleviates the inhibition of SRB by nitrite. It has been shown for the Medicine Hat Glauconitic C (MHGC) field, that alkylbenzenes especially toluene are important electron donors for the reduction of nitrate to nitrite and N2. However, the rate and extent of reduction of nitrate to nitrite and of nitrite to nitrogen have not been studied for multiple oil fields. Samples of light oil (PNG, CPM, and Tundra), light/heavy oil (Gryphon and Obigbo), and of heavy oil (MHGC) were collected from locations around the world. The maximum concentration of nitrate in the aqueous phase, which could be reduced in microcosms inoculated with MHGC produced water, increased with the toluene concentration in the oil phase. PNG, Gryphon, CPM, Obigbo, MHGC, and Tundra oils had 77, 17, 5.9, 4.0, 2.6, and 0.8 mM toluene, respectively. In incubations with 49 ml of aqueous phase and 1 ml of oil these were able to reduce 22.2, 12.3, 7.9, 4.6, 4.0, and 1.4 mM of nitrate, respectively. Nitrate reduced increased to 35 ± 4 mM upon amendment of all these oils with 570 mM toluene prior to incubation. Souring control by nitrate injection requires that the nitrate is directed toward oxidation of sulfide, not toluene. Hence, the success of nitrate injections will be inversely proportional to the toluene content of the oil. Oil composition is therefore an important determinant of the success of nitrate injection to control souring in a particular field. PMID:28620357
COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS
The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...
An overview of spray drift reduction testing of spray nozzles
USDA-ARS?s Scientific Manuscript database
The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...
Growth mechanism of atomic-layer-deposited TiAlC metal gate based on TiCl4 and TMA precursors
NASA Astrophysics Data System (ADS)
Jinjuan, Xiang; Yuqiang, Ding; Liyong, Du; Junfeng, Li; Wenwu, Wang; Chao, Zhao
2016-03-01
TiAlC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atomic layer deposition method using TiCl4 and Al(CH3)3(TMA) as precursors. It is found that the major product of the TiCl4 and TMA reaction is TiAlC, and the components of C and Al are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCl4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TiCl4 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving Al into the TiC film and leading to TiAlC formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and Al in the TiAlC film. Thus, the film composition can be controlled by the growth temperature to a certain extent. Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China (Grant No. 2013ZX02303).
NASA's Subsonic Jet Transport Noise Reduction Research
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Preisser, John S.
2000-01-01
Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.
Tom, Asha P; Pawels, Renu; Haridas, Ajit
2016-03-01
Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Haller, William J.
2016-01-01
NASA's Environmentally Responsible Aviation (ERA) project has matured technologies to enable simultaneous reductions in fuel burn, noise, and nitrogen oxide (NOx) emissions for future subsonic commercial transport aircraft. The fuel burn reduction target was a 50% reduction in block fuel burn (relative to a 2005 best-in-class baseline aircraft), utilizing technologies with an estimated Technology Readiness Level (TRL) of 4-6 by 2020. Progress towards this fuel burn reduction target was measured through the conceptual design and analysis of advanced subsonic commercial transport concepts spanning vehicle size classes from regional jet (98 passengers) to very large twin aisle size (400 passengers). Both conventional tube-and-wing (T+W) concepts and unconventional (over-wing-nacelle (OWN), hybrid wing body (HWB), mid-fuselage nacelle (MFN)) concepts were developed. A set of propulsion and airframe technologies were defined and integrated onto these advanced concepts which were then sized to meet the baseline mission requirements. Block fuel burn performance was then estimated, resulting in reductions relative to the 2005 best-in-class baseline performance ranging from 39% to 49%. The advanced single-aisle and large twin aisle T+W concepts had reductions of 43% and 41%, respectively, relative to the 737-800 and 777-200LR aircraft. The single-aisle OWN concept and the large twin aisle class HWB concept had reductions of 45% and 47%, respectively. In addition to their estimated fuel burn reduction performance, these unconventional concepts have the potential to provide significant noise reductions due, in part, to engine shielding provided by the airframe. Finally, all of the advanced concepts also have the potential for significant NOx emissions reductions due to the use of advanced combustor technology. Noise and NOx emissions reduction estimates were also generated for these concepts as part of the ERA project.
Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...
An Updated Assessment of NASA Ultra-Efficient Engine Technologies
NASA Technical Reports Server (NTRS)
Tong Michael T.; Jones, Scott M.
2005-01-01
NASA's Ultra Efficient Engine Technology (UEET) project features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, and advanced fan containment technology. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft CO2 (or equivalent fuel burn) and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-lb) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the current UEET technology portfolio has very high probabilities of meeting the UEET minimum success criteria for CO2 reduction (-12% from the baseline) and LTO (landing and takeoff) NOx reductions (-65% relative to the 1996 International Civil Aviation Organization rule).
Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals
Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.
2014-01-01
Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191
Improvement in gold grade from iron-oxide mineral using reduction roasting and magnetic separation
NASA Astrophysics Data System (ADS)
Kim, Hyun-soo; On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Park, Cheon-young
2017-04-01
Microwave has a wide range of applications in mineral technology, metallurgy, etc. It is an established fact that microwave energy has potential for the speedy and efficient heating of minerals and in a commercial context may provide savings in both time and energy. Microwave heating is being developed as a potential thermal pre-treatment process, because of its unique advantages over the differences of ore minerals in absorbing microwaves. The aim of this study was to investigate the improvement in Au grade from iron-oxide mineral using reduction roasting and magnetic separation. The characteristics of iron-oxide mineral were analyzed using chemical, XRD and reflected light microscopy. The reduction roasting using microwave and magnetic separation experiments were examined under various conditions (reducing agent and chemical additive). The results of XRD and reflected light microscopy showed that the iron-oxide mineral mainly composed of illite, quartz and hematite. The iron-oxide mineral had an Au, Ag, Fe contents of 6.4, 35.1 and 155,441.1 mg/kg, respectively. The results demonstrated that the improvement in Au by reduction roasting using microwave (frequency of 2.45GHz, intensity of 5kW) and magnetic separation (magnetic field intensity of 9,000 Gauss) were effective processes. The Au content in iron-oxide mineral from 6.4 mg/kg to 14.2 mg/kg was achieved within microwave exposure time of 10min (reducing agent(PAC) ratio = 50 : 50, 5% of chemical additive(Soda ash)). Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"
A Concept for the One Degree Imager (ODI) Data Reduction Pipeline and Archiving System
NASA Astrophysics Data System (ADS)
Knezek, Patricia; Stobie, B.; Michael, S.; Valdes, F.; Marru, S.; Henschel, R.; Pierce, M.
2010-05-01
The One Degree Imager (ODI), currently being built by the WIYN Observatory, will provide tremendous possibilities for conducting diverse scientific programs. ODI will be a complex instrument, using non-conventional Orthogonal Transfer Array (OTA) detectors. Due to its large field of view, small pixel size, use of OTA technology, and expected frequent use, ODI will produce vast amounts of astronomical data. If ODI is to achieve its full potential, a data reduction pipeline must be developed. Long-term archiving must also be incorporated into the pipeline system to ensure the continued value of ODI data. This paper presents a concept for an ODI data reduction pipeline and archiving system. To limit costs and development time, our plan leverages existing software and hardware, including existing pipeline software, Science Gateways, Computational Grid & Cloud Technology, Indiana University's Data Capacitor and Massive Data Storage System, and TeraGrid compute resources. Existing pipeline software will be augmented to add functionality required to meet challenges specific to ODI, enhance end-user control, and enable the execution of the pipeline on grid resources including national grid resources such as the TeraGrid and Open Science Grid. The planned system offers consistent standard reductions and end-user flexibility when working with images beyond the initial instrument signature removal. It also gives end-users access to computational and storage resources far beyond what are typically available at most institutions. Overall, the proposed system provides a wide array of software tools and the necessary hardware resources to use them effectively.
Spray drift reduction evaluations of spray nozzles using a standardized testing protocol
USDA-ARS?s Scientific Manuscript database
The development and testing of drift reduction technologies has come to the forefront of application research in the past few years in the United States. Drift reduction technologies (DRTs) can be spray nozzles, sprayer modifications, spray delivery assistance, spray property modifiers (adjuvants),...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides... effluent reduction attainable by the application of the best available technology economically achievable...
COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS
The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
NASA Noise Reduction Program for Advanced Subsonic Transports
NASA Technical Reports Server (NTRS)
Stephens, David G.; Cazier, F. W., Jr.
1995-01-01
Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.
New aspects relating to the behaviour of composites and adhesives in space
NASA Technical Reports Server (NTRS)
Carpenter, A.
1991-01-01
Some of the specialized testing procedures performed at the JPL Molecular Contamination Investigation Facility for the WideField Planetary Camera II (WFPC II) program for the screening of polymeric materials for outgassing properties are described. For WFPC II, a science performance goal of 1-percent photometric accuracy at 1470 A over an extended time (at least 30 days) has been established. Utilization of the newest technology using CCD detectors poses even more stringent requirements. Test results are presented, and data reduction and modeling techniques are discussed.
Operating systems in the air transportation environment.
NASA Technical Reports Server (NTRS)
Cherry, G. W.
1971-01-01
Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.
2013-09-01
We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vijay; Denton, David; SHarma, Pradeep
The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less
Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less
Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less
Experimental Results from a Resonant Dielectric Laser Accelerator
NASA Astrophysics Data System (ADS)
Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran
2015-04-01
Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... achievable (BAT). 440.33 Section 440.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... reduction attainable by the application of the best available technology economically achievable (BAT... reduction attainable by the application of the best available technology economically achievable (BAT): (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Thermal Process Subcategory § 458.23 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Channel Process Subcategory § 458.33 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Furnace Process Subcategory § 458.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best control technology for... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... effluent reduction attainable by the application of the best control technology for conventional pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2012 CFR
2012-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2014 CFR
2014-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE... reduction attainable by the application of the best practicable control technology currently available (BPT...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact... effluent reduction attainable by the application of the best available technology economically achievable...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 436.32 Section 436.32 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available. (a... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available. (a... best practicable control technology currently available (BPT): (1) Discharges of process generated...
USDA-ARS?s Scientific Manuscript database
The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...
Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
Wolfe, Jace; Duke, Mila; Schafer, Erin; Jones, Christine; Rakita, Lori
2017-05-01
Children with hearing loss experience significant difficulty understanding speech in noisy and reverberant situations. Adaptive noise management technologies, such as fully adaptive directional microphones and digital noise reduction, have the potential to improve communication in noise for children with hearing aids. However, there are no published studies evaluating the potential benefits children receive from the use of adaptive noise management technologies in simulated real-world environments as well as in daily situations. The objective of this study was to compare speech recognition, speech intelligibility ratings (SIRs), and sound preferences of children using hearing aids equipped with and without adaptive noise management technologies. A single-group, repeated measures design was used to evaluate performance differences obtained in four simulated environments. In each simulated environment, participants were tested in a basic listening program with minimal noise management features, a manual program designed for that scene, and the hearing instruments' adaptive operating system that steered hearing instrument parameterization based on the characteristics of the environment. Twelve children with mild to moderately severe sensorineural hearing loss. Speech recognition and SIRs were evaluated in three hearing aid programs with and without noise management technologies across two different test sessions and various listening environments. Also, the participants' perceptual hearing performance in daily real-world listening situations with two of the hearing aid programs was evaluated during a four- to six-week field trial that took place between the two laboratory sessions. On average, the use of adaptive noise management technology improved sentence recognition in noise for speech presented in front of the participant but resulted in a decrement in performance for signals arriving from behind when the participant was facing forward. However, the improvement with adaptive noise management exceeded the decrement obtained when the signal arrived from behind. Most participants reported better subjective SIRs when using adaptive noise management technologies, particularly when the signal of interest arrived from in front of the listener. In addition, most participants reported a preference for the technology with an automatically switching, adaptive directional microphone and adaptive noise reduction in real-world listening situations when compared to conventional, omnidirectional microphone use with minimal noise reduction processing. Use of the adaptive noise management technologies evaluated in this study improves school-age children's speech recognition in noise for signals arriving from the front. Although a small decrement in speech recognition in noise was observed for signals arriving from behind the listener, most participants reported a preference for use of noise management technology both when the signal arrived from in front and from behind the child. The results of this study suggest that adaptive noise management technologies should be considered for use with school-age children when listening in academic and social situations. American Academy of Audiology
Code of Federal Regulations, 2010 CFR
2010-07-01
... best available technology economically achievable. (a) Electric arc furnace steelmaking—semi-wet. No... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...
Code of Federal Regulations, 2010 CFR
2010-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: there shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 418.62 Section 418.62 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... attainable by the application of the best practicable control technology currently available (BPT): There...
Code of Federal Regulations, 2010 CFR
2010-07-01
... conventional pollutant control technology: There shall be no discharge of process waste water pollutants to... control technology. 418.77 Section 418.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... effluent reduction attainable by the application of the best conventional pollutant control technology. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 436.322 Section 436.322 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available... application of the best practicable control technology currently available (BPT): For operations not employing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable: There shall be no discharge of process... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 436.112 Section 436.112 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available... application of the best practicable control technology currently available (BPT): For operations not employing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... application of the best available technology economically achievable. The following limitations establish the... subject to the provisions of this subpart after application of the best available technology economically...
Code of Federal Regulations, 2010 CFR
2010-07-01
... conventional pollutant control technology: There shall be no discharge of process waste water pollutants to... control technology. 424.57 Section 424.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... reduction attainable by the application of the best conventional pollutant control technology. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 436.102 Section 436.102 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available... application of the best practicable control technology currently available (BPT): For operations not employing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... practicable control technology currently available (BPT): There shall be no discharge of process waste water... technology currently available. 424.52 Section 424.52 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: there shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... application of the best available technology economically achievable. The following limitations establish the... subject to the provisions of this subpart after application of the best available technology economically...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 420.22 Section 420.22 Protection of Environment ENVIRONMENTAL... reduction attainable by the application of the best practicable control technology currently available (BPT... attainable by the application of the best practicable control technology currently available (BPT). (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... application of the best practicable control technology currently available (BPT). The concentration of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable by the application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable by the application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... attainable by the application of the best practicable control technology currently available (BPT). The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). The concentration of pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... application of the best practicable control technology currently available (BPT). The concentration of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). The concentration of pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable by the application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available. (a... practicable control technology currently available (BPT): (1) Discharges of process generated waste water and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). (a) The concentration of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable after application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... attainable by the application of the best practicable control technology currently available (BPT). The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable by the application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best practicable control technology currently available. (a... practicable control technology currently available (BPT): (1) Discharges of process generated waste water and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). The concentration of pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). The concentration of pollutants...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT). (a) The concentration of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in... attainable after application of the best practicable control technology currently available (BPT): (a) The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... attainable by the application of the best practicable control technology currently available (BPT). Except as... attainable by the application of the best practicable control technology currently available (BPT). The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 436.42 Section 436.42 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) With the exception of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in subpart L of... application of the best available technology economically achievable (BAT): (a) The concentration of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... best practicable control technology currently available. (a) Electric arc furnace steelmaking—semi-wet... degree of effluent reduction attainable by the application of the best practicable control technology... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... best available technology economically achievable. (a) Electric arc furnace steelmaking—semi-wet. No... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
NASA Astrophysics Data System (ADS)
Bai, Bingdong; Chen, Jing; Wang, Mei; Yao, Jingjing
2017-06-01
In the context of big data age, the energy conservation and emission reduction of transportation is a natural big data industry. The planning, management, decision-making of energy conservation and emission reduction of transportation and other aspects should be supported by the analysis and forecasting of large amounts of data. Now, with the development of information technology, such as intelligent city, sensor road and so on, information collection technology in the direction of the Internet of things gradually become popular. The 3G/4G network transmission technology develop rapidly, and a large number of energy conservation and emission reduction of transportation data is growing into a series with different ways. The government not only should be able to make good use of big data to solve the problem of energy conservation and emission reduction of transportation, but also to explore and use a large amount of data behind the hidden value. Based on the analysis of the basic characteristics and application technology of energy conservation and emission reduction of transportation data, this paper carries out its application research in energy conservation and emission reduction of transportation industry, so as to provide theoretical basis and reference value for low carbon management.
pounds to compensate for the additional weight of the idle reduction technology. Upon request, vehicle operators must provide proof that the idle reduction technology is fully functional. (Reference Alaska
NASA Technical Reports Server (NTRS)
Hughes, Christoper E.; Gazzaniga, John A.
2013-01-01
A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.
GREEN AND SUSTAINABLE REMEDIATION BEST MANAGEMENT PRACTICES
2016-09-07
adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive dechlorination (ERD), in situ...RPM Remedial Project Manager SCR selective catalytic reduction SEE steam enhanced extraction SVE soil vapor extraction TCE trichloroethene...further promote their adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive
Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...
Proceedings of the 1998 diesel engine emissions reduction workshop [DEER
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.
Combined Delivery of Consolidating Pulps to the Remote Sites of Deposits
NASA Astrophysics Data System (ADS)
Golik, V. I.; Efremenkov, A. B.
2017-07-01
The problems of modern mining production include limitation of the scope of application of environmental and resource-saving technologies with application of consolidating pulps when developing the sites of the ore field remote from the stowing complexes which leads to the significant reduction of the performance indicators of underground mining of metallic ores. Experimental approach to the problem solution is characterized by the proof of technological capability and efficiency of the combined vibration-pneumatic-gravity-flowing method of pulps delivery at the distance exceeding the capacity of current delivery methods as it studies the vibration phenomenon in industrial special structure pipeline. The results of the full-scale experiment confirm the theoretical calculations of the capability of consolidating stowing delivery of common composition at the distance exceeding the capacity of usual pneumatic-gravity-flowing delivery method due to reduction of the friction-induced resistance of the consolidating stowing to the movement along the pipeline. The parameters of the interaction of the consolidating stowing components improve in the process of its delivery via the pipeline resulting in the stowing strength increase, completeness of subsurface use improves, the land is saved for agricultural application and the environmental stress is relieved.
Regulating emission of air pollutants for near-term relief from global warming
NASA Astrophysics Data System (ADS)
Ramanathan, V.; Xu, Y.
2011-12-01
The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.
Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall’Asta, Chiara; Suman, Michele
2015-01-01
In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range. PMID:26213969
Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall'Asta, Chiara; Suman, Michele
2015-07-24
In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.
Analysis of dual-frequency MEMS antenna using H-MRTD method
NASA Astrophysics Data System (ADS)
Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong
2004-10-01
For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.
NASA Astrophysics Data System (ADS)
Steber, Amanda; Pate, Brooks
2014-06-01
Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1995-12-01
IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.
Adhikari, B; Verhoeven, R; Troch, P
2009-01-01
This paper studies primary canals of three traditional irrigation systems in the southern plains of Nepal. It offers a scientific interpretation of the indigenous technology applied to the systems, which facilitates to use the same channel network for irrigation, drainage and flood management. The flood management technology of the farmers by diverting as much discharge as possible to the field channels results in the reduction of discharge towards the downstream part of the main channel. It is depicted in the simulation study that uses the river analysis program HEC-RAS 4.0. A cascade of weirs is found to be the most cost effective and user-friendly option to upgrade these systems preserving the existing irrigation, drainage as well as flood management functions. This study suggests that the conventional irrigation design principles should be applied very cautiously with full knowledge of the existing socio-institutional setting, hydro-ecological regime and indigenous technology for upgrading any traditional irrigation system successfully. The indigenous flood management technology strengthens the emerging concept that the floods in the Ganges plain are to be managed, not controlled.
Brown, Steven D.; Utturkar, Sagar M.; Magnuson, Timothy S.; ...
2014-09-04
Pelosinus fermentans strain R7 was isolated from Russian kaolin clays as the type strain and it can reduce Fe(III) during fermentative growth (1). Draft genome sequences for P. fermentans R7 and four strains from Hanford, Washington, USA, have been published (2–4). The P. fermentans 16S rRNA sequence dominated the lactate-based enrichment cultures from three geochemically contrasting soils from the Melton Branch Watershed, Oak Ridge, Tennessee, USA (5) and also at another stimulated, uraniumcontaminated field site near Oak Ridge (6). For the current work, strain UFO1 was isolated from pristine sediments at a background field site in Oak Ridge and characterizedmore » as facilitating U(VI) reduction and precipitation with phosphate (7).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littleton, Harry; Griffin, John
2011-07-31
This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less
Evaluation of barrier treatments on native vegetation in a southern California desert habitat.
Britch, Seth C; Linthicum, Kenneth J; Wynn, Wayne W; Walker, Todd W; Farooq, Muhammad; Smith, Vincent L; Robinson, Cathy A; Lothrop, Branka B; Snelling, Melissa; Gutierrez, Arturo; Lothrop, Hugh D
2009-06-01
Treating perimeters with residual insecticides for protection from mosquito vectors has shown promise. These barrier treatments are typically evaluated in temperate or tropical areas using abundant vegetation as a substrate. However, there is an emerging interest to develop this technology to protect deployed US troops in extreme desert environments with sparse vegetation. We used a remote desert area in the Coachella Valley, California, to 1) evaluate bifenthrin barrier treatments on native xeric vegetation and 2) compare treatments applied with electrostatic and conventional spray technologies. Through a combination of laboratory bioassays on treated and control vegetation sampled at specific intervals over 63 days, synchronized with field surveillance of mosquitoes, we measured the temporal pattern of bioactivity of bifenthrin barriers under natural hot, dry, and dusty desert conditions. Regardless of spray technology, mosquito catch in treated plots was about 80% lower than the catch in control plots 1 day after treatment. This reduction in mosquito numbers in treated plots declined each week after treatment but remained at about 40% lower than control plots after 28 days. Field data were corroborated by results from bioassays that showed significantly higher mosquito mortality on treated vegetation over controls out to 28 days postspray. We concluded that barrier treatments in desert environments, when implemented as part of a suite of integrated control measures, may offer a significant level of protection from mosquitoes for deployed troops. Given the comparable performance of the tested spray technologies, we discuss considerations for choosing a barrier treatment sprayer for military scenarios.
technology may exceed the state's gross vehicle weight limits by up to 400 pounds to compensate for the additional weight of the idle reduction technology. To be eligible for the weight exemption, the vehicle operator must be able to provide proof that the idle reduction technology is fully functional. (Reference
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.352 Section 415.352 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.382 Section 415.382 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.122 Section 415.122 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.412 Section 415.412 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.442 Section 415.442 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.112 Section 415.112 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.312 Section 415.312 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.142 Section 415.142 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.632 Section 415.632 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.32 Section 415.32 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.402 Section 415.402 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 415.602 Section 415.602 Protection of Environment ENVIRONMENTAL... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 422.57 Section 422.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... reduction attainable by the application of the best conventional pollutant control technology. The following... conventional pollutant control technology: (a) Subject to the provisions of paragraphs (b), (c) and (d) of this...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 422.47 Section 422.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... reduction attainable by the application of the best conventional pollutant control technology. The following... conventional pollutant control technology: (a) Subject to the provisions of paragraphs (b), (c) and (d) of this...
Chung, King
2004-01-01
This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225
NASA Astrophysics Data System (ADS)
Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko
2015-06-01
Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.
Comparison of sidestream treatment technologies: post aerobic digestion and Anammox.
Bauer, Heidi; Johnson, Thomas D; Johnson, Bruce R; Oerke, David; Graziano, Steven
2016-01-01
Post aerobic digestion (PAD) and anaerobic ammonium oxidation (Anammox) are sidestream treatment technologies which are both excellent options for the reduction of nitrogen recycled back to the liquid stream without the need for supplemental carbon or alkalinity. However, the achievement of this goal is where the similarities between the two technologies end. PAD is an advanced digestion process where aerobic digestion is designed to follow anaerobic digestion. Other benefits of PAD include volatile solids reduction, odor reduction, and struvite formation reduction. Anammox harnesses a specific species of autotrophic bacteria that can help achieve partial nitritation/deammonification. Other benefits of Anammox include lower energy consumption due to requiring less oxygen compared with conventional nitrification. This manuscript describes the unique benefits and challenges of each technology. Example installations are presented with a narrative of how and why the technology was selected. A whole plant simulator is used to compare and contrast the mass balances and net present value costs on an 'apples to apples' basis. The discussion includes descriptions of conditions under which each technology would potentially be the most beneficial and cost-effective against a baseline facility without sidestream treatment.
Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla
2014-12-18
Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.
Electrorheology for energy production and conservation
NASA Astrophysics Data System (ADS)
Huang, Ke
Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalak, S.
1995-12-31
The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong tomore » a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.« less
Waiting for Disasters: A Risk Reduction Assessment of Technological Disasters
NASA Astrophysics Data System (ADS)
Rovins, Jane; Winningham, Sam
2010-05-01
This session provides a risk reduction/mitigation assessment of natural hazards causation of technological disasters and possible solution. People use technology in an attempt to not only control their environment but nature itself in order to make them feel safe and productive. Most strategies for managing hazards followed a traditional planning model i.e. study the problem, identify and implement a solution, and move on to the next problem. This approach is often viewed as static model and risk reduction is more of an upward, positive, linear trend. However, technological disasters do not allow risk reduction action to neatly fit this upward, positive, linear trend with actual or potential threats to the environment and society. There are different types of technological disasters, including industrial accidents; pipeline ruptures; accidents at power, water and heat supply systems and other lines of communication; sudden collapse of buildings and mines; air crashes; shipwrecks; automobile and railway accidents to name a few. Natural factors can play an essential role in triggering or magnifying technological disasters. They can result from the direct destruction of given technical objects by a hazardous natural process such as the destruction of an atomic power plant or chemical plant due to an earthquake. Other examples would include the destruction of communications or infrastructure systems by heavy snowfalls, strong winds, avalanches. Events in the past ten years clearly demonstrate that natural disasters and the technological disasters that accompany them are not problems that can be solved in isolation and risk reduction can play an important part. Risk reduction was designed to head off the continuing rising financial and structural tolls from disasters. All Hazard Risk Reduction planning was supposed to include not only natural, but technological, and human-made disasters as well. The subsequent disaster risk reduction (DRR) indicators were to provide the corner stone to sustained risk reduction. We are able to look at the ongoing work by UNISDR and other partners to develop DRR indicators to track progress toward the goals outlined in the Hyogo Framework for Action adopted by 168 countries in Kobe, Japan in January 2005. In addition, we can look at various global examples. Therefore the true question we shall address is whether or not the DRR indicators form a virtuous circle was created with risk reduction with a series of positive events triggering a self-perpetuating pattern of other positive occurrences or a vicious circle.
Advanced Subsonic Airplane Design and Economic Studies
NASA Technical Reports Server (NTRS)
Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.
1995-01-01
A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology (BTC). [Reserved] 440.115 Section 440.115 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology (BTC...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology (BTC). [Reserved] 440.115 Section 440.115 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology (BTC...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology (BTC). [Reserved] 440.115 Section 440.115 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology (BTC...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. [Reserved] 464.17 Section 464.17 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology. [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. [Reserved] 464.27 Section 464.27 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology. [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. [Reserved] 463.27 Section 463.27 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology. [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. [Reserved] 463.37 Section 463.37 Protection of Environment ENVIRONMENTAL PROTECTION... reduction attainable by the application of the best conventional pollutant control technology. [Reserved] ...
Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil.
Omoto, Celso; Bernardi, Oderlei; Salmeron, Eloisa; Sorgatto, Rodrigo J; Dourado, Patrick M; Crivellari, Augusto; Carvalho, Renato A; Willse, Alan; Martinelli, Samuel; Head, Graham P
2016-09-01
The first Bt maize in Brazil was launched in 2008 and contained the MON 810 event, which expresses Cry1Ab protein. Although the Cry1Ab dose in MON 810 is not high against fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), MON 810 provided commercial levels of control. To support insect resistance management in Brazil, the baseline and ongoing susceptibility of FAW was examined using protein bioassays, and the level of control and life history parameters of FAW were evaluated on MON 810 maize. Baseline diet overlay assays with Cry1Ab (16 µg cm(-2) ) caused 76.3% mortality to field FAW populations sampled in 2009. Moderate mortality (48.8%) and significant growth inhibition (88.4%) were verified in leaf-disc bioassays. In greenhouse trials, MON 810 had significantly less damage than non-Bt maize. The surviving FAW larvae on MON 810 (22.4%) had a 5.5 day increase in life cycle time and a 24% reduction in population growth rate. Resistance monitoring (2010-2015) showed a significant reduction in Cry1Ab susceptibility of FAW over time. Additionally, a significant reduction in the field efficacy of MON 810 maize against FAW was observed in different regions from crop season 2009 to 2013. The decrease in susceptibility to Cry1Ab was expected, but the specific contributions to this resistance by MON 810 maize cannot be distinguished from cross-resistance to Cry1Ab caused by exposure to Cry1F maize. Technologies combining multiple novel insecticidal traits with no cross-resistance to the current Cry1 proteins and high activity against the same target pests should be pursued in Brazil and similar environments. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabinmore » cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, John P; Kreutzer, Cory J; Scott, Matthew
Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less
Performance Evaluation of a Thermal Load Reduction System in a Hyundai Sonata PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P; Titov, Eugene V
Increased adoption of electric-drive vehicles (EDVs) requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much or more energy as propulsion. As part of an ongoing project, NREL and project partners Hyundai America Technical Center, Inc. (HATCI), Gentherm , Pittsburgh Glass Works (PGW), PPG Industries, Sekisui, 3M, and Hanon Systems developed a thermal load reduction system in order to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle (PHEV). Cold weather field-testing was conducted in Fairbanks, Alaska while warm weather testing was conducted in Death Valley, California to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less
Role of microextraction sampling procedures in forensic toxicology.
Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia
2012-07-01
The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.
Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions andmore » cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less
Recent advances in the front-end sources of the LMJ fusion laser
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud
2011-03-01
LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.
Novel CFB Boiler Technology with Reconstruction of its Fluidization State
NASA Astrophysics Data System (ADS)
Yang, H. R.; Zhang, H.; Lu, J. F.; Lfu, Q.; Wu, Y. X.; Yuet, G. X.; Su, J.; Fu, Z. P.
Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed service power is 1-2% higher. The solution of these problems is the key research topic for researchers and manufacturers of CFB boilers. Based on the State Specification Design Theory of CFB boilers, Tsinghua University proposed a novel CFB technology by reconstruction of the fluidization state in the furnace by adjusting the bed inventory and bed quality. Theoretical analyses show that there is an optimal bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan power consumption. The proposed novel process was implemented in a 75t/h CFB boiler. The results of field tests on this boiler validated the theoretical analyses.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
40 CFR 86.1869-12 - CO2 credits for off-cycle CO2-reducing technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... where the CO2 reduction benefit of the technology is not adequately captured on the Federal Test Procedure and/or the Highway Fuel Economy Test. These technologies must have a measurable, demonstrable, and verifiable real-world CO2 reduction that occurs outside the conditions of the Federal Test Procedure and the...
NASA Astrophysics Data System (ADS)
Etheridge, Michael L.
The current work focused on the ability of magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field. Magnetic nanoparticle hyperthermia applications utilize this behavior to treat cancer and this approach has received clinical approval in the European Union, but significant developments are necessary for this technology to have a chance for wider-spread acceptance. Here then we begin by investigating some of the important limitations of the current technology. By characterizing the ability of superparamagnetic and ferromagnetic nanoparticles to heat under a range of applied fields, we are able to determine the optimal field settings for clinical application and make recommendations on the highest impact strategies to increase heating. In addition, we apply these experimentally determined limits to heating in a series of heat transfer models, to demonstrate the therapeutic impact of nanoparticle concentration, target volume, and delivery strategy. Next, we attempt to address one of the key questions facing the field- what is the impact of biological aggregation on heating? Controlled aggregate populations are produced and characterized in ionic and protein solutions and their heating is compared with nanoparticles incubated in cellular suspensions. Through this investigation we are able to demonstrate that aggregation is responsible for up to a 50% decrease in heating. However, more importantly, we are able to demonstrate that the observed reductions in heating correlate with reductions in longitudinal relaxation (T1) measured by sweep imaging with Fourier transformation (SWIFT) magnetic resonance imaging (MRI), providing a potential platform to account for these aggregation effects and directly predict heating in a clinical setting. Finally, we present a new application for magnetic nanoparticle heating, in the thawing of cryopreserved biomaterials. A number of groups have demonstrated the ability to rapidly cool and preserve tissues in the vitreous state, but crystallization and cracking failures occur upon the subsequent thaw. Magnetic nanoparticles offer a potential solution to these issues, through their ability to provide rapid, uniform heating, and we illustrate this through heating in several cryoprotectant solutions and by modeling the effects of heating at the bulk and micro-scales.
3D body scanning technology for fashion and apparel industry
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2007-01-01
This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. A special interest is given to practical examples of the commercial exploitation of human body digitization with applications to the fashion and apparel industry.
Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.
2010-01-01
The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.
The Characterization of Military Aircraft Jet Noise Using Near-Field Acoustical Holography Methods
NASA Astrophysics Data System (ADS)
Wall, Alan Thomas
The noise emissions of jets from full-scale engines installed on military aircraft pose a significant hearing loss risk to military personnel. Noise reduction technologies and the development of operational procedures that minimize noise exposure to personnel are enhanced by the accurate characterization of noise sources within a jet. Hence, more than six decades of research have gone into jet noise measurement and prediction. In the past decade, the noise-source visualization tool near-field acoustical holography (NAH) has been applied to jets. NAH fits a weighted set of expansion wave functions, typically planar, cylindrical, or spherical, to measured sound pressures in the field. NAH measurements were made of a jet from an installed engine on a military aircraft. In the present study, the algorithm of statistically optimized NAH (SONAH) is modified to account for the presence of acoustic reflections from the concrete surface over which the jet was measured. The three dimensional field in the jet vicinity is reconstructed, and information about sources is inferred from reconstructions at the boundary of the turbulent jet flow. Then, a partial field decomposition (PFD) is performed, which represents the total field as the superposition of multiple, independent partial fields. This is the most direct attempt to equate partial fields with independent sources in a jet to date.
Minimization of nanosatellite low frequency magnetic fields.
Belyayev, S M; Dudkin, F L
2016-03-01
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.
The art and science of flow control
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.
Demonstration of relativistic electron beam focusing by a laser-plasma lens
Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.
2015-01-01
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791
Demonstration of relativistic electron beam focusing by a laser-plasma lens.
Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V
2015-04-16
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
A new drilling method—Earthworm-like vibration drilling
Wang, Peng; Wang, Ruihe
2018-01-01
The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615
A new drilling method-Earthworm-like vibration drilling.
Wang, Peng; Ni, Hongjian; Wang, Ruihe
2018-01-01
The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution
NASA Astrophysics Data System (ADS)
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav
2016-12-01
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav
2016-01-01
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous. PMID:27910924
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution.
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J; Meyer, Jannik C; Kromka, Alexander; Rezek, Bohuslav
2016-12-02
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.
Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.
2017-04-01
The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.
Fan Noise Reduction: An Overview
NASA Technical Reports Server (NTRS)
Envia, Edmane
2001-01-01
Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.
An Assessment of NASA Aeropropulsion Technologies: A System Study
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.
2007-01-01
Aviation industry s robust growth rate has given rise to growing concerns about the contribution that aviation emissions will make to local air quality and global climate change. Over the last several years, NASA has been engaged in the development of aeropropulsion technologies with specific objectives to reduce aircraft emissions. A system analysis was performed to evaluate the potential impact of these propulsion technologies on aircraft CO2 (directly proportional to fuel burn) and NOx reductions. A large subsonic aircraft, with two 396-kN thrust (85,000-pound) engines was chosen for the study. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of these technologies. The results show that NASA s aeropropulsion technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decision-making on the development of aeropropulsion technology portfolio for CO2 and NO(x) reductions.
NASA Astrophysics Data System (ADS)
Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo
2016-09-01
Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.
Progress in magnetic sensor technology for sea mine detection
NASA Astrophysics Data System (ADS)
Clem, Ted R.
1997-07-01
A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.
Field Testing of Environmentally Friendly Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett
2009-05-31
The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less
Routh reduction and Cartan mechanics
NASA Astrophysics Data System (ADS)
Capriotti, S.
2017-04-01
In the present work a Cartan mechanics version for Routh reduction is considered, as an intermediate step towards Routh reduction in field theory. Motivation for this generalization comes from a scheme for integrable systems (Fehér and Gábor, 2002), used for understanding the occurrence of Toda field theories in so called Hamiltonian reduction of WZNW field theories (Fehér et al., 1992). As a way to accomplish with this intermediate aim, this article also contains a formulation of the Lagrangian Adler-Kostant-Symes systems discussed in Fehér and Gábor (2002) in terms of Routh reduction.
Adaptive Engine Technologies for Aviation CO2 Emissions Reduction
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.
2006-01-01
Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.
Emissions control for ground power gas turbines
NASA Technical Reports Server (NTRS)
Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.
1977-01-01
The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.
Continuities in stone flaking technology at Liang Bua, Flores, Indonesia.
Moore, M W; Sutikna, T; Jatmiko; Morwood, M J; Brumm, A
2009-11-01
This study examines trends in stone tool reduction technology at Liang Bua, Flores, Indonesia, where excavations have revealed a stratified artifact sequence spanning 95k.yr. The reduction sequence practiced throughout the Pleistocene was straightforward and unchanging. Large flakes were produced off-site and carried into the cave where they were reduced centripetally and bifacially by four techniques: freehand, burination, truncation, and bipolar. The locus of technological complexity at Liang Bua was not in knapping products, but in the way techniques were integrated. This reduction sequence persisted across the Pleistocene/Holocene boundary with a minor shift favoring unifacial flaking after 11ka. Other stone-related changes occurred at the same time, including the first appearance of edge-glossed flakes, a change in raw material selection, and more frequent fire-induced damage to stone artifacts. Later in the Holocene, technological complexity was generated by "adding-on" rectangular-sectioned stone adzes to the reduction sequence. The Pleistocene pattern is directly associated with Homo floresiensis skeletal remains and the Holocene changes correlate with the appearance of Homo sapiens. The one reduction sequence continues across this hominin replacement.
Optical 3D printing: bridging the gaps in the mesoscale
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas
2018-05-01
Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial-scale production.
Advanced ROICs design for cooled IR detectors
NASA Astrophysics Data System (ADS)
Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent
2008-04-01
The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.
Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies
NASA Technical Reports Server (NTRS)
Lieber, Lysbeth
2003-01-01
This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.
Coal without carbon: an investment plan for federal action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettus, A.; Tatsutani, M.
2009-09-15
This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technologymore » from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.« less
Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M
2004-12-01
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.
Pina-Pérez, M C; Silva-Angulo, A B; Rodrigo, D; Martínez-López, A
2009-04-15
With a view to extending the shelf-life and enhancing the safety of liquid whole egg/skim milk (LWE-SM) mixed beverages, a study was conducted with Bacillus cereus vegetative cells inoculated in skim milk (SM) and LWE-SM beverages, with or without antimicrobial cocoa powder. The beverages were treated with Pulsed Electric Field (PEF) technology and then stored at 5 degrees C for 15 days. The kinetic results were modeled with the Bigelow model, Weibull distribution function, modified Gompertz equation, and Log-logistic models. Maximum inactivation registered a reduction of around 3 log cycles at 40 kV/cm, 360 micros, 20 degrees C in both the SM and LWE-SM beverages. By contrast, in the beverages supplemented with the aforementioned antimicrobial compound, higher inactivation levels were obtained under the same treatment conditions, reaching a 3.30 log(10) cycle reduction. The model affording the best fit for all four beverages was the four-parameter Log-logistic model. After 15 days of storage, the antimicrobial compound lowered Bacillus cereus survival rates in the samples supplemented with CocoanOX 12% by a 4 log cycle reduction, as compared to the untreated samples without CocoanOX 12%. This could indicate that the PEF-antimicrobial combination has a synergistic effect on the bacterial cells under study, increasing their sensitivity to subsequent refrigerated storage.
Electric field around a dielectric elastomer actuator in proximity to the human body
NASA Astrophysics Data System (ADS)
McKenzie, Anita C.; Calius, Emilio P.; Anderson, Iain A.
2008-03-01
Dielectric elastomer actuators (DEAs) are a promising artificial muscle technology that will enable new kinds of prostheses and wearable rehabilitation devices. DEAs are driven by electric fields in the MV/m range and the dielectric elastomer itself is typically 30μm in thickness or more. Large operating voltages, in the order of several kilovolts, are then required to produce useful strains and these large voltages and the resulting electric fields could potentially pose problems when DEAs are used in close proximity to the human body. The fringing electric fields of a DEA in close association with the skin were modelled using finite element methods. The model was verified against a known analytic solution describing the electric field surrounding a capacitor in air. The agreement between the two is good, as the difference is less than 10% unless within 4.5mm of the DEA's lateral edges. As expected, it was found that for a DEA constructed with thinner dielectric layers, the fringe field strength dropped in direct proportion to the reduction in applied voltage, despite the internal field being maintained at the same level. More interestingly, modelling the electric field around stacked DEAs showed that for an even number of layers the electric field is an order of magnitude less than for an odd number of layers, due to the cancelling of opposing electric fields.
Quantum Coherence and Random Fields at Mesoscopic Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Thomas F.
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less
Sustainability in Ironmaking: The Rise of Direct Reduction
NASA Astrophysics Data System (ADS)
Battle, Thomas P.
Modern-day direct reduction of iron first developed as a small-scale, low capital and operating cost alternative to the blast furnace. Since commercialization of continuous DR technology in the late 1960s, the market for the products of direct reduction has grown to more than 74 million tonnes in 2012. The initial advantages of DR plants over BF facilities have grown over the years, for several reasons, including the increased size of DR modules, lower energy and emissions (particularly CO2), along with the flexibility to use a number of different reductants. The development of DR technology over the past forty years will be emphasized in this presentation, including recent developments that allow for even more direct sustainability comparisons with the iron blast furnace — and even combine the two technologies for improved synergies. Also briefly discussed will be the possibilities of using direct reduction for non-ferrous ores.
Further weight reduction of applications in long glass reinforced polymers
NASA Astrophysics Data System (ADS)
Yanev, A.; Schijve, W.; Martin, C.; Brands, D.
2014-05-01
Long glass reinforced materials are broadly used in the automotive industry due to their good mechanical performance, competitive price and options for functional integration in order to reduce weight. With rapidly changing environmental requirements, a demand for further weight reduction is growing constantly. Designs in LGF-PP can bring light weight solutions in combination with system cost improvement. There are quite some possibilities for applying weight reduction technologies nowadays. These technologies have to be evaluated based on weight reduction potential, but also on mechanical performance of the end application, where the latter is often the key to success. Different weight reduction technologies are applied to SABIC®STAMAX{trade mark, serif} material, a long glass fiber reinforced polypropylene (LGF-PP), in order to investigate and define best application performance. These techniques include: chemical foaming, physical foaming and thin wall applications. Results from this research will be presented, giving a guideline for your development.
Singh, Surendra; Datta, Pallavi
2006-01-01
Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan
2012-01-01
A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.
Lecourt, Julien; Bishop, Gerard
2018-01-01
Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre- and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshouse) assessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed. PMID:29320410
NASA Astrophysics Data System (ADS)
Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika
2014-05-01
Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).
NASA Astrophysics Data System (ADS)
Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.
2017-07-01
The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Smith, Sarah J.; Sohn, Michael D.
Technology learning rates can be dynamic quantities as a technology moves from early development to piloting and from low volume manufacturing to high volume manufacturing. This work describes a generalizable technology analysis approach for disaggregating observed technology cost reductions and presents results of this approach for one specific case study (micro-combined heat and power fuel cell systems in Japan). We build upon earlier reports that combine discussion of fuel cell experience curves and qualitative discussion of cost components by providing greater detail on the contributing mechanisms to observed cost reductions, which were not quantified in earlier reports. Greater standardization ismore » added to the analysis approach, which can be applied to other technologies. This paper thus provides a key linkage that has been missing from earlier literature on energy-related technologies by integrating the output of earlier manufacturing cost studies with observed learning rates to quantitatively estimate the different components of cost reduction including economies of scale and cost reductions due to product performance and product design improvements. This work also provides updated fuel cell technology price versus volume trends from the California Self-Generation Incentive Program, including extensive data for solid-oxide fuel cells (SOFC) reported here for the first time. The Japanese micro-CHP market is found to have a learning rate of 18% from 2005 to 2015, while larger SOFC fuel cell systems (200 kW and above) in the California market are found to have a flat (near-zero) learning rate, and these are attributed to a combination of exogenous, market, and policy factors.« less
Progress on EUV mask fabrication for 32-nm technology node and beyond
NASA Astrophysics Data System (ADS)
Zhang, Guojing; Yan, Pei-Yang; Liang, Ted; Park, Seh-jin; Sanchez, Peter; Shu, Emily Y.; Ultanir, Erdem A.; Henrichs, Sven; Stivers, Alan; Vandentop, Gilroy; Lieberman, Barry; Qu, Ping
2007-05-01
Extreme ultraviolet lithography (EUVL) tool development achieved a big milestone last year as two full-field Alpha Demo Tools (ADT) were shipped to customers by ASML. In the future horizon, a full field "EUV1" exposure tool from Nikon will be available by the end of 20071 and the pre-production EUV exposure tools from ASML are targeted for 20092. It is essential that high quality EUVL masks can be made and delivered to the EUVL tool users to support the technology development. In the past year, we have demonstrated mask fabrication with low stress absorber deposition and good etch process control yielding a vertical etch profile and a mask CD control of 5.7 nm for 32 nm (1x) space and 7.4 nm for 32 nm (1x) lines. Mask pattern resolution of 15 nm (1x) dense lines was achieved. Full field reflective mask die-to-die inspection at a 125nm pixel size was demonstrated after low defect multilayer blanks became available. In this paper, we will present details of the Intel EUVL Mask Pilot Line progress in EUVL mask defect reduction, pattern CD performance, program defect mask design and inspection, in-house absorber film development and its performance, and EUVL metrology tool development. We will demonstrate an overall improvement in EUV mask manufacturing readiness due to our Pilot Line activities.
Local and System Level Considerations for Plasma-Based Techniques in Hypersonic Flight
NASA Astrophysics Data System (ADS)
Suchomel, Charles; Gaitonde, Datta
2007-01-01
The harsh environment encountered due to hypersonic flight, particularly when air-breathing propulsion devices are utilized, poses daunting challenges to successful maturation of suitable technologies. This has spurred the quest for revolutionary solutions, particularly those exploiting the fact that air under these conditions can become electrically conducting either naturally or through artificial enhancement. Optimized development of such concepts must emphasize not only the detailed physics by which the fluid interacts with the imposed electromagnetic fields, but must also simultaneously identify system level issues integration and efficiencies that provide the greatest leverage. This paper presents some recent advances at both levels. At the system level, an analysis is summarized that incorporates the interdependencies occurring between weight, power and flow field performance improvements. Cruise performance comparisons highlight how one drag reduction device interacts with the vehicle to improve range. Quantified parameter interactions allow specification of system requirements and energy consuming technologies that affect overall flight vehicle performance. Results based on on the fundamental physics are presented by distilling numerous computational studies into a few guiding principles. These highlight the complex non-intuitive relationships between the various fluid and electromagnetic fields, together with thermodynamic considerations. Generally, energy extraction is an efficient process, while the reverse is accompanied by significant dissipative heating and inefficiency. Velocity distortions can be detrimental to plasma operation, but can be exploited to tailor flows through innovative electromagnetic configurations.
Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry
NASA Astrophysics Data System (ADS)
Yoder, R. B.; Travish, G.
2013-03-01
Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.
Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atreya, Arvind
2013-04-15
The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more thanmore » 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.« less
The Johnson Matthey SCCRT, v.1 technology is a urea-based SCR system combined with a CCRT filter designed for on-highway light, medium, and heavy heavy-duty diesel, urban and non-urban, bus exhaust gas recirculation (EGR)-or non-EGR-equipped engines for use with commercial ultra-...
The role technology must play to mitigate climate change
The presentation provides a succinct integration of the projected warming the earth is likely to experience in the decades ahead, the emission reductions that may be needed to constrain this warming, and the technologies needed to help achieve these emission reduction. Population...
U.S. Military Technology Dependence: The Hidden Vulnerability to National Security
2016-06-10
complementary technologies among the services, decreasing the innovation to fielding timeline, and practice in degraded technology environments. 15. SUBJECT TERMS...technologies among the services, decreasing the innovation to fielding timeline, and practice in degraded technology environments. vi...29 SECTION 4: Fielding New Technology ................................................................... 32 Understanding the
Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illing, Lauren; Natelson, Robert; Resch, Michael
On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.
Plasma-assisted combustion technology for NOx reduction in industrial burners.
Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon
2013-10-01
Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.
Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functionalmore » applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.« less
Design and analysis of a hemi-anechoic chamber at Michigan Technological University
NASA Astrophysics Data System (ADS)
Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.
2005-09-01
A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.
Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C. E.; Knox, A. S.; Dixon, K. L.
2005-09-26
A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outsidemore » the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified from metal contaminated soils at TNX and D areas of SRS. A bacterial culture collection from subsurface studies near P Area of SRS were also evaluated for pyomelanin production. Bacterial densities of pyomelanin producers were determined to be >10{sup 6} cells/g soil at TNX and D areas. In addition, approximately 25% of isolates from P area demonstrated pyomelanin production in the presence of tyrosine. Biogeochemical activity is an ongoing and dynamic process due, in part, to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. This report demonstrates the application of recent advances in bacterial physiology and soil ecology for future bioremediation activities involving metal and actinide immobilization.« less
Conceptual design of an aircraft automated coating removal system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.; Draper, J.V.; Pin, F.G.
1996-05-01
Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which ismore » semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).« less
NASA Technical Reports Server (NTRS)
Barr, Lawrence D. (Editor)
1990-01-01
The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.
Roselló-Soto, Elena; Poojary, Mahesha M; Barba, Francisco J; Koubaa, Mohamed; Lorenzo, Jose M; Mañes, Jordi; Moltó, Juan Carlos
2018-03-01
"Horchata de chufa" is a traditional Spanish beverage produced from tiger nuts (Cyperus esculentus L.). Due to its richness in nutritional compounds, it is highly perishable and its conservation by pasteurization and/or adding preservatives is required. Although efficient, conventional thermal treatment for pasteurization induces changes in the nutritional and sensory properties. Replacing conventional pasteurization by non-thermal technologies such as pulsed electric fields, ultraviolet, and high pressure, combined with moderate temperatures (<40°C) allows a reduction of energy consumption, along with the preservation of the most thermo-sensitive molecules. Accordingly, this review deals with the description of the most relevant non-thermal technologies applied to preserve "horchata" beverage in order to extend the shelf life and inactivate pathogenic microorganisms as well as to preserve the nutritional and quality properties of this food beverage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S
2015-01-01
Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stettenheim, Joel
Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramaticallymore » increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.« less
Advanced Launch System (ALS) actuation and power systems impact operability and cost
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.
Enhanced CAH dechlorination in a low permeability, variably-saturated medium
Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,
2002-01-01
An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.
Liquid Metal Engineering by Application of Intensive Melt Shearing
NASA Astrophysics Data System (ADS)
Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun
In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.
Demagnetising field reduction in keepered media
NASA Astrophysics Data System (ADS)
Laidler, H.; O'Grady, K.; Coughlin, T. M.; Judy, J. H.
1999-03-01
We have used a comparative study of time decay of magnetisation and thermal loss of signal in keepered and unkeepered recording media to obtain a measurement of the effective reduction in demagnetising field resulting from the keeper. By measuring magnetic viscosity in the recording layer of a CoCrTa media we have determined the loss of magnetisation per decade of time, over a wide range of fields around the coercivity. Measurements of recorded signal thermal loss effects in the same media both with and without a keeper layer exhibit a significant reduction in the thermal loss from 2.8% to 1.1% per decade of time due to the keeper. Comparison with the bulk time dependence data shows that this corresponds to a reduction in the effective demagnetising field from 1786 to 1493 Oe which moves the demagnetising field away from the edge of the switching field distribution onto the flat portion of the hysteresis loop.
Light field imaging and application analysis in THz
NASA Astrophysics Data System (ADS)
Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin
2018-01-01
The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically achievable. [Reserved] 467.43 Section 467.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... application of the best available technology economically achievable. [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology currently available. [Reserved] 467.42 Section 467.42 Protection of Environment ENVIRONMENTAL PROTECTION... application of the best practicable control technology currently available. [Reserved] ...
Co-benefits and trade-offs in the water-energy nexus of irrigation modernization in China
NASA Astrophysics Data System (ADS)
Cremades, Roger; Rothausen, Sabrina G. S. A.; Conway, Declan; Zou, Xiaoxia; Wang, Jinxia; Li, Yu'e.
2016-05-01
There are strong interdependencies between water use in agriculture and energy consumption as water saving technologies can require increased pumping and pressurizing. The Chinese Government includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always addressed in policy targets. Here we build an original model of the energy embedded in water pumping for irrigated agriculture and its related processes. The model is based on the physical processes of irrigation schemes and the implication of technological developments, comprising all processes from extraction and conveyance of water to its application in the field. The model uses data from government sources to assess policy targets for deployment of irrigation technologies, which aim to reduce water application and contribute to adaptation of Chinese agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that achieve water and energy savings, or trade-offs in which reduced water application leads to increasing greenhouse gas (GHG) emissions. We analyze irrigation efficiency and energy use in four significant provinces and nationally, using scenarios based on the targets of the 12th 5YP. At the national scale, we find that expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase GHG emissions from agricultural water use, however, emissions decrease in those provinces with predominant groundwater use and planned expansion of low-pressure pipes. We show that the most costly technologies relate to trade-offs, while co-benefits are generally achieved with less expensive technologies. The investment cost per area of irrigation technology expansion does not greatly affect the outcome in terms of water, but in terms of energy the most expensive technologies are more energy-intensive and produce more emissions. The results show that water supply configuration (proportion of surface to groundwater) largely determines the potential energy savings from reductions in water application. The paper examines the importance of fertigation and highlights briefly some policy implications.
Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.
Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert
2012-01-01
This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.
Liu, Yang; Chiaromonte, Francesca; Li, Bing
2017-06-01
In many scientific and engineering fields, advanced experimental and computing technologies are producing data that are not just high dimensional, but also internally structured. For instance, statistical units may have heterogeneous origins from distinct studies or subpopulations, and features may be naturally partitioned based on experimental platforms generating them, or on information available about their roles in a given phenomenon. In a regression analysis, exploiting this known structure in the predictor dimension reduction stage that precedes modeling can be an effective way to integrate diverse data. To pursue this, we propose a novel Sufficient Dimension Reduction (SDR) approach that we call structured Ordinary Least Squares (sOLS). This combines ideas from existing SDR literature to merge reductions performed within groups of samples and/or predictors. In particular, it leads to a version of OLS for grouped predictors that requires far less computation than recently proposed groupwise SDR procedures, and provides an informal yet effective variable selection tool in these settings. We demonstrate the performance of sOLS by simulation and present a first application to genomic data. The R package "sSDR," publicly available on CRAN, includes all procedures necessary to implement the sOLS approach. © 2016, The International Biometric Society.
Tang, Xianqiang; Li, Qingyun; Wang, Zhenhua; Hu, Yanping; Hu, Yuan; Scholz, Miklas
2018-03-10
Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl 3 ) and calcium chloride (CaCl 2 ), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m 3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H + ) and hydroxide ion (OH - ) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl 3 and CaCl 2 caused soil Fe and Cl residuals and led to 4.33-7.59% and 139-172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields.
Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.
2010-01-01
A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the database included, the best available noise reduction was 40 dB cumulative. Projected effects from additional technologies were assessed for an advanced noise reduction configuration including landing gear fairings and advanced pylon and chevron nozzles. Incorporating the three additional technology improvements, an aircraft noise is projected of 42.4 dB cumulative below the Stage 4 level.
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 49.
1978-09-20
significant reduction in the times and now a reduction in the cost of the work), and data from the surveys of the incomes of families of workers...computer equipment, it provides comprehensive elaboration of the accounting and statistical material with a reduction in the cost of the work, and...themselves, while actively developing under conditons of space flight? We have already written about hydrogenous bacteria (TEKHNIKA — MOLODEZHI, No 4
NASA Technical Reports Server (NTRS)
Mathews, Douglas; Bock, Larry A.; Bielak, Gerald W.; Dougherty, R. P.; Premo, John W.; Scharpf, Dan F.; Yu, Jia
2014-01-01
Major airports in the world's air transportation systems face a serious problem in providing greater capacity to meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase their operating time, now restricted by curfews and by relaxing present limits on takeoffs and landings. The key operational issue in extending the present curfews is noise. In response to these increasing restrictive noise regulations, NASA has launched a program to validate through engine testing, noise reduction concepts and technologies that have evolved from the Advanced Subsonic Technologies (AST) Noise Reduction Program. The goal of this AST program was to develop and validate technology that reduces engine noise and improves nacelle suppression effectiveness relative to 1992 technology. Contract NAS3-97144 titled "Engine Validation of Noise Reduction Concepts" (EVNRC) was awarded to P&W on August 12, 1997 to conduct full scale noise reduction tests in two Phases on a PW4098 engine. The following Section 1.2 provides a brief description of the overall program. The remainder of this report provides a detailed documentation of Phase I of the program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Process... by the application of the best available technology economically achievable (BAT). [Reserved] ...