Sample records for field side reflectometer

  1. Analysis of the ITER low field side reflectometer transmission line system.

    PubMed

    Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M

    2010-10-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

  2. Refractive and relativistic effects on ITER low field side reflectometer design.

    PubMed

    Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V

    2010-10-01

    The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.

  3. Optimization studies of the ITER low field side reflectometer.

    PubMed

    Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P

    2010-10-01

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  4. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing.

    PubMed

    Wang, G; Doyle, E J; Peebles, W A

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  5. Development of the low-field side reflectometer for ITER

    NASA Astrophysics Data System (ADS)

    Muscatello, Christopher; Anderson, James; Gattuso, Anthony; Doyle, Edward; Peebles, William; Seraydarian, Raymond; Wang, Guiding; Kramer, Gerrit; Zolfaghari, Ali; Atomics Team, General; University of California Los Angeles Team; Princeton Plasma Physics Laboratory Team

    2017-10-01

    The Low-Field Side Reflectometer (LFSR) for ITER will provide real-time edge density profiles every 10 ms for feedback control and every 24 μs for physics evaluation. The spatial resolution will be better than 5 mm over 30 - 165 GHz, probing the scrape-off layer to the top of the pedestal in H-mode plasmas. An antenna configuration has been selected for measurements covering anticipated plasma elevations. Laboratory validation of diagnostic performance is underway using a LFSR transmission line (TL) mockup. The 40-meter TL includes circular corrugated waveguide, length calibration feature, Gaussian telescope, vacuum windows, containment membranes, and expansion joint. Transceiver modules coupled to the input of the TL provide frequency-modulated (FM) data for evaluation of performance as a monostatic reflectometer. Results from the mockup tests are presented and show that, with some further optimization, the LFSR will meet or exceed the measurement requirements for ITER. An update of the LFSR instrumentation design status is also presented with preliminary test results. Work supported by PPPL under subcontract S013252-A.

  6. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  7. Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends.

    PubMed

    Wang, G; Peebles, W A; Doyle, E J; Crocker, N A; Wannberg, C; Lau, C; Hanson, G R; Doane, J L

    2017-10-01

    The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ∼40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE 11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. It was observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ∼1.5%-3%. The polarization rotation due to the helical corrugations was in the range ∼1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ∼2.5 dB at 50 GHz and ∼6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. The primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.

  8. Evaluation of low-frequency operational limit of proposed ITER low-field-side reflectometer waveguide run including miter bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding; Peebles, W. A.; Doyle, E. J.

    The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarizationmore » rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.« less

  9. Field-aligned electrostatic potential differences on the Martian night side

    NASA Astrophysics Data System (ADS)

    Lillis, Rob; Collinson, Glyn; Mitchell, David

    2017-04-01

    Field-aligned electrostatic potential differences on the Martian night side above 170 km can be inferred with the aid of a kinetic electron transport model and in a statistical sense, by energy-dependent angular shifts in electron loss cones measured in Mars orbit. Potentials between 170 km and 400 km derived from pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/ Electron Reflectometer experiment (MAG/ER) at 2 a.m. local time are typically small (-10 V to 10 V) but can reach magnitudes of >100 V. Geographically, the strongest negative potential differences (with mean values up to -50 V) are preferentially observed at the boundaries between open and closed strong magnetic field regions, while positive potential differences are preferentially observed further from open field lines. These characteristics may reflect current systems closing at high altitude through cross-tail currents and at low altitude in the conducting night side ionosphere. We will present a synthesis of potentials derived from pitch angle distributions measured by both MGS MAG/ER as mentioned above, and by the MAVEN Solar Wind Electron Analyzer (SWEA) collected at a range of local times and altitudes.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X.; Yao, C.

    A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HVmore » feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.« less

  11. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  12. Improved integrating-sphere throughput with a lens and nonimaging concentrator.

    PubMed

    Chenault, D B; Snail, K A; Hanssen, L M

    1995-12-01

    A reflectometer design utilizing an integrating sphere with a lens and nonimaging concentrator is described. Compared with previous designs where a collimator was used to restrict the detector field of view, the concentrator-lens combination significantly increases the throughput of the reflectometer. A procedure for designing lens-concentrators is given along with the results of parametric studies. The measured angular response of a lens-concentrator system is compared with ray-trace predictions and with the response of an ideal system.

  13. Pressure-Water Content Relations for a Sandy, Granitic Soil Under Field and Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; McNamara, J. M.; Gribb, M. M.

    2001-12-01

    A new sensor was developed to measure soil water potential in order to determine the predominant mechanisms of snowmelt delivery to streamflow. The sensors were calibrated for +50 to -300 cm for application on steep granitic slopes and deployed at three depths and 2 locations on a slope in a headwater catchment of the Idaho Batholith throughout the 2001 snowmelt season. Soil moisture was measured simultaneously with Water Content Reflectometers (Cambell Scientific, Logan, UT), that were calibrated in situ with Time Domain Reflectometry measurements. Sensor performance was evaluated in a laboratory soil column via side-by-side monitoring during injection of water with a cone permeameter. Soil characteristic curves were also determined for the field site by multi-step outflow tests. Comparison of the results from the field study to those from the laboratory experiment and to the characteristic curves demonstrate the utility of the new sensor for recording dynamic changes in soil water status. During snowmelt, the sensor responded to both matric potential and bypass-flow pore potential. Large shifts in the pressure record that correspond to changes in the infiltration flux indicate initiation and cessation of macropore flow. The pore pressure records may be used to document the frequency, timing and duration of bypass flow that are not apparent from the soil moisture records.

  14. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  15. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devishvili, A.; Zhernenkov, K.; Institut Laue-Langevin, BP 156, 38042 Grenoble

    2013-02-15

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 Multiplication-Sign 10{sup 4} n cm{sup -2} s{sup -1} with monochromatization {Delta}{lambda}/{lambda}= 0.7% and angular divergence {Delta}{alpha}= 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzersmore » or a {sup 3}He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.« less

  16. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    NASA Astrophysics Data System (ADS)

    Devishvili, A.; Zhernenkov, K.; Dennison, A. J. C.; Toperverg, B. P.; Wolff, M.; Hjörvarsson, B.; Zabel, H.

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 104 n cm-2 s-1 with monochromatization Δλ/λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a 3He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  17. SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.

    PubMed

    Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  18. Reflectometer design using nonimaging optics

    NASA Astrophysics Data System (ADS)

    Snail, Keith A.

    1987-12-01

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  19. Reflectometer design using nonimaging optics.

    PubMed

    Snail, K A

    1987-12-15

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  20. Portable Infrared Reflectometer Designed and Manufactured for Evaluating Emittance in the Laboratory or in the Field

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The optical properties of materials play a key role in spacecraft thermal control. In space, radiant heat transfer is the only mode of heat transfer that can reject heat from a spacecraft. One of the key properties for defining radiant heat transfer is emittance, a measure of how efficiently a surface can reject heat in comparison to a perfect black body emitter. Heat rejection occurs in the infrared region of the spectrum, nominally in the range of 2 to 25 mm. To calculate emittance, one obtains the reflectance over this spectral range, calculates spectral absorptance by difference, and then uses Kirchhoff s Law and the Stefan-Boltzmann equation to calculate emittance. A new portable infrared reflectometer, the SOC 400t, was designed and manufactured to evaluate the emittance of surfaces and coatings in the laboratory or in the field. It was developed by Surface Optics Corporation under a contract with the NASA Glenn Research Center at Lewis Field to replace the Center s aging Gier-Dunkle DB-100 infrared reflectometer. The specifications for the new instrument include a wavelength range of 2 to 25 mm; reflectance repeatability of +/-1 percent; self-calibrating, near-normal spectral reflectance measurements; a full scan measurement time of 3.5 min, a sample size of 1.27 cm (0.5 in.); a spectral resolution selectable from 4, 8, 16, or 32/cm; and optical property characterization utilizing an automatic integration to calculate total emittance in a selectable temperature range.

  1. The Martian crustal magnetic field as seen from MGS and MAVEN

    NASA Astrophysics Data System (ADS)

    Langlais, B.; Thebault, E.

    2017-12-01

    We present a new model of the Martian crustal magnetic field. This model combines constraints from all available measurements made by Mars Global Surveyor (1997-2006) and MAVEN (2014-). This is the first time a planet (besides the Earth) is flown twice with spacecraft providing high quality vector magnetic field measurements over its entire surface. Both missions have pros and cons which are fully taken into account and exploited. The constant altitude and local time of MGS during its (high altitude) mapping orbit phases allows to separate static, internal fields from transient, external fields. Low altitude measurements (below 250 km) by MAVEN allow to a posteriori validate MGS magnetic field measurements both on the day and night sides. The indirect estimates of the field intensity by the Electron Reflectometer experiment completes the dataset. The new model in constructed with carefully selected measurements, using local and extrapolated proxies to estimate the level of the external field activity. Tracks are individually checked to remove spurious or noisy measurements. The final model has a horizontal resolution close to 100 km. At a local scale, anomalies are better defined, which should ease their interpretation in terms of magnetization properties and processes. During this presentation we will compare this model to previous ones and discuss its new findings.

  2. Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time

    NASA Astrophysics Data System (ADS)

    Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan

    1998-10-01

    Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.

  3. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  4. Direct measurement of density oscillation induced by a radio-frequency wave.

    PubMed

    Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H

    2007-08-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.

  5. First results of the SOL reflectometer on Alcator C-Mod.

    PubMed

    Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G

    2012-10-01

    A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

  6. AMOR - the time-of-flight neutron reflectometer at SINQ/PSI

    NASA Astrophysics Data System (ADS)

    Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.

    2004-07-01

    The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.

  7. Portable six-port reflectometer for determining moisture content of biomass material

    USDA-ARS?s Scientific Manuscript database

    A portable six-port reflectometer (SPR) for determining moisture content of biomass material is proposed for the first time in this paper. The proposed system consists of a 5.13 GHz reflectometer used with an open-ended half-mode substrateintegrated waveguide (HMSIW) sensor. The complex permittivity...

  8. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Seong-Heon; Wi, H. M.; Lee, W. R.

    2013-08-15

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank ofmore » low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.« less

  9. Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.

    2018-05-01

    The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.

  10. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J

    2008-10-01

    A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

  11. Use of Water Content Reflectometers in Bioinfiltration/Bioretention to Measure Water Movement and Estimate Evapotranspiration - abstract

    EPA Science Inventory

    Most bioinfiltration/bioretention models assume runoff is evenly distributed across the surface area and after the engineered fill media is no longer saturated, the volumetric water content (VWC) is constant throughout the media profile and at field capacity. Four to nine water ...

  12. Use of Water Content Reflectometers in Bioinfiltration/Bioretention to Measure Water Movement and Estimate Evapotranspiration

    EPA Science Inventory

    Most bioinfiltration/bioretention models assume runoff is evenly distributed across the surface area and after the engineered fill media is no longer saturated, the volumetric water content (VWC) is constant throughout the media profile and at field capacity. Four to nine water ...

  13. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  14. An evaluation of the NASA/GSFC Barnes field spectral reflectometer model 14-758, using signal/noise as a measure of utility

    NASA Astrophysics Data System (ADS)

    Bell, R.; Labovitz, M. L.

    1982-07-01

    A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.

  15. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  16. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Kane, S. R.; Khooha, Ajay

    2015-05-15

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less

  17. Methods to Determine the Deformation of the IRVE Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Young, William R.

    2011-01-01

    Small resonant targets used in conjunction with a microwave reflectometer to determine the deformation of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) during reentry are investigated. The reflectometer measures the distance to the targets and from this the HIAD deformation is determined. The HIAD is used by the Inflatable Reentry Vehicle Experiment (IRVE) which investigates the use of inflatable heat shields for atmospheric reentry. After several different microwave reflectometer systems were analyzed and compared it was determined that the most desirable for this application is the Frequency Doubling Target method.

  18. NIST High Accuracy Reference Reflectometer-Spectrophotometer

    PubMed Central

    Proctor, James E.; Yvonne Barnes, P.

    1996-01-01

    A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081

  19. Application of Time Domain Reflectometers to Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are in-situ monitoring probes that produce a temperature-compensated signal proportional to soil moisture content of the surrounding material when calibrated to a particular media. Typically used in agricultural settings, TDRs may also be applied...

  20. Density and magnetic fluctuations in type III-ELM pedestal evolution in JET: experimental and numerical characterization

    NASA Astrophysics Data System (ADS)

    De Masi, G.; Predebon, I.; Spagnolo, S.; Meneses, L.; Delabie, E.; Lupelli, I.; Hillesheim, J. C.; Maggi, C.; Contributors, JET

    2018-04-01

    Density and magnetic fluctuation measurements in low-β type-III ELM discharges are obtained in the Joint European Torus (JET). They are observed during the inter-ELM pedestal evolution, after the LH transition phase, at about 60-70 kHz. Density fluctuations are measured with a correlation reflectometer system installed on the low-field side and they are localized at the pedestal top. Magnetic fluctuations with a spatial scale k_yρ_i˜ 0.1 are measured through a high resolution coil array. The main features and the relations with local plasma parameters are presented. The nature of these fluctuations is discussed along with linear gyrokinetic simulations. Ion temperature gradient (ITG) modes are the dominant instabilities in the frequency range of interest. In terms of radial localization, typical oscillation frequency and qualitative relation with the possible linear drive, ITG modes are consistent with the experimental density fluctuations measurements. Micro-tearing modes (MTMs), found unstable with a lower growth rate, appear a possible explanation for magnetic fluctuations in terms of typical wavenumbers and direction of propagation.

  1. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  2. Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    EPA Science Inventory

    Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...

  3. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Harper, M.; Breun, R.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less

  4. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  5. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...

  6. Optimal design of reflectometer density profile measurements using a radar systems approach (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.

  7. Development of frequency modulation reflectometer for KSTAR tokamak: Data analysis based on Gaussian derivative waveleta)

    NASA Astrophysics Data System (ADS)

    Seo, Seong-Heon; Lee, K. D.

    2012-10-01

    A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.

  8. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    This is a poster for the Million Trees NYC research symposium in New York City, NY, March 5-6, 2010. The poster gives a summary of how time domain reflectometers can be installed in urban fill soil, engineered bioretention media, and recycled concrete aggregate to document the ...

  9. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  10. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  11. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. Return to the red planet

    NASA Astrophysics Data System (ADS)

    Nichols, Robert G.

    1992-10-01

    The paper discusses the type of data which will be collected by the NASA's Mars Observer spacecraft when it reaches the planet next year. These will include measurements on the Martian magnetic field, the volcanic activity, the dust storms, seasonal weather cycles, and the planet's atmosphere and gravitational field. The Mars Observer's instruments include a magnetometer, an electron reflectometer, an IR radiometer, a laser altimeter, a thermal-emission spectrometer, a gamma-ray spectrometer, a camera, and a radio system. The program is counting on the vehicle's longevity so that it can participate in a Russian mission due to arrive at Mars in September 1995.

  13. Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA.

    PubMed

    Pérez Díaz, Carlos L; Muñoz, Jonathan; Lakhankar, Tarendra; Khanbilvardi, Reza; Romanov, Peter

    2017-03-21

    The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness's plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack's liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack's LWC and temperature profiles. For this purpose, we created an easily-applicable, low-cost, automated, and continuous LWC profiling instrument using reflectometers at the Cooperative Remote Sensing Science and Technology Center-Snow Analysis and Field Experiment (CREST-SAFE) in Caribou, ME, USA, and tested it during the snow melt period (February-April) immediately after installation in 2014. Snow Thermal Model (SNTHERM) LWC simulations forced with CREST-SAFE meteorological data were used to evaluate the accuracy of the instrument. Results showed overall good agreement, but clearly indicated inaccuracy under wet snow conditions. For this reason, we present two (for dry and wet snow) statistical relationships between snow LWC and dielectric permittivity similar to Topp's equation for the LWC of mineral soils. These equations were validated using CREST-SAFE in situ data from winter 2015. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Additionally, the equations seemed to be able to capture the snowpack state (i.e., onset of melt, medium, and maximum saturation). Lastly, field test results show advantages, such as: automated, continuous measurements, the temperature profiling of the snowpack, and the possible categorization of its state. However, future work should focus on improving the instrument's capability to measure the snowpack's LWC profile by properly calibrating it with in situ LWC measurements. Acceptable validation agreement indicates that the developed snow LWC, temperature, and wetness profiler offers a promising new tool for snow hydrology research.

  14. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device.

    PubMed

    Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  15. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  16. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  17. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  18. Study of coherent reflectometer for imaging internal structures of highly scattering media

    NASA Astrophysics Data System (ADS)

    Poupardin, Mathieu; Dolfi, Agnes

    1996-01-01

    Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.

  19. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  20. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  1. AMOR - the versatile reflectometer at SINQ

    NASA Astrophysics Data System (ADS)

    Clemens, D.; Gross, P.; Keller, P.; Schlumpf, N.; Könnecke, M.

    2000-03-01

    We report on a new facility for neutron reflectometry situated at the end position of a cold neutron guide at the Swiss Spallation Neutron Source SINQ. The instrument is a flexible apparatus, adaptable to the needs of the user's individual experiment. Principally designed to operate in the time-of-flight mode it is also capable to exploit the fact that SINQ is a continuous source because PSI's developments in the field of thin film multilayers are fruitfully applied. By means of multilayer monochromators it can be converted into a constant wavelength reflectometer. Polarized neutron reflectometry on AMOR takes advantage of remanent FeCo/Ti:N supermirrors and multilayers which can be operated in a way that no spin flippers are needed. The time and angular contributions to the resolution in momentum transfer are separately determinable in TOF mode. The total length of the instrument is adjustable in order to optimize resolution together with the illumination of the sample's surface. Large sample environments can be placed on the sample table that is actively isolated against vibrations. Single detectors and an EMBL 3He area detector can be chosen, alternatively. The instrument concept as well as parameters of its components are presented.

  2. Magnetic Fields of Lunar Impact Basins and Their Use in Constraining the Impact Process

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Lin, R. P.

    2003-01-01

    Measurements by the Magnetometer/Electron Reflectometer instrument on the Lunar Prospector spacecraft, which completed its mapping mission in 1999, have been used to construct the first completely global maps of lunar crustal magnetic fields. Now, for the first time, we have a data set with global coverage and a sensitivity and resolution which allow us to investigate the magnetic fields of lunar impact basins and craters. As on the Earth, impact sites have a variety of magnetic signatures associated with them, ranging from nearly complete demagnetization to strong central magnetic anomalies. Observations of the magnetic fields of terrestrial basins have been used to make inferences about the impact process, and we wish to show that lunar observations can also provide valuable constraints.

  3. Automated data acquisition and processing for a Hohlraum reflectometer

    NASA Technical Reports Server (NTRS)

    Difilippo, Frank; Mirtich, Michael J.

    1988-01-01

    A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.

  4. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  5. Tear film measurement by optical reflectometry technique

    PubMed Central

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  6. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  7. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  8. Development of a spatially resolved reflectometer to monitor corrosion of solar reflectors

    NASA Astrophysics Data System (ADS)

    Sutter, Florian; Meyen, Stephanie; Heller, Peter; Pitz-Paal, Robert

    2013-06-01

    Solar reflectors for Concentrating Solar Power (CSP) concentrators require a high reflectance and high specularity over the whole solar spectrum. During their lifetime of at least 20 years, the reflectors must withstand harsh outdoor conditions without loosing their reflective properties. Currently, there are not many devices available to measure the specular reflectance. In this work a prototype of a specular reflectometer with spatial resolution has been developed. The major advantage of the prototype compared to other reflectometers is the possibility of measuring the specular reflectance on an extended measuring spot of more than 5 cm in diameter with a spatial resolution of 37 pixel/mm. Additionally, measurements can be taken at three different acceptance half angles (φ = 3.5, 6.0, and 12.5 mrad) and at three different wavelengths (λ = 410 nm, 500 nm, and 656 nm). This lab scale instrument can be employed to monitor degradation effects, such as corrosion spots, and evaluate their influence on the specular reflectance of solar mirror materials.

  9. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  10. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA) measurements taken on the new surfaces at the time of hardware fabrication in 1978. The results of investigation are presented.

  11. Lunar surface magnetic fields and their interaction with the solar wind: results from lunar prospector

    PubMed

    Lin; Mitchell; Curtis; Anderson; Carlson; McFadden; Acuna; Hood; Binder

    1998-09-04

    The magnetometer and electron reflectometer experiment on the Lunar Prospector spacecraft has obtained maps of lunar crustal magnetic fields and observed the interaction between the solar wind and regions of strong crustal magnetic fields at high selenographic latitude (30 degreesS to 80 degreesS) and low ( approximately 100 kilometers) altitude. Electron reflection maps of the regions antipodal to the Imbrium and Serenitatis impact basins, extending to 80 degreesS latitude, show that crustal magnetic fields fill most of the antipodal zones of those basins. This finding provides further evidence for the hypothesis that basin-forming impacts result in magnetization of the lunar crust at their antipodes. The crustal magnetic fields of the Imbrium antipode region are strong enough to deflect the solar wind and form a miniature (100 to several hundred kilometers across) magnetosphere, magnetosheath, and bow shock system.

  12. Measuring Mars' Atmospheric Neutral Density from 160 to 220km with the MGS Electron Reflectometer

    NASA Astrophysics Data System (ADS)

    Lillis, R.; Engel, J.; Mitchell, D.; Brain, D.; Lin, R.; Bougher, S.; Acuna, M.

    2005-08-01

    The Magnetometer/Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor (MGS) samples the local electron population's distribution in energy and pitch angle (angle between electron velocity and local magnetic field direction) at the mapping orbit altitude of ˜400km. We develop a single-particle model of the electrons' interaction with the neutral atmosphere and motion along open field-lines connecting the solar wind to remnant crustal magnetization. Electron reflection from magnetic gradients and absorption due to inelastic collisons with atmospheric neutrals results in characteristic pitch angle (PA) distributions for open field lines. By assuming the validity of spherical harmonic expansions (Cain et al, 2003) in the strongest field regions of Mars (such as Terra Sirenum), we trace the electron paths and fit these PA distributions to our model to constrain the scale height and density of the neutral atmosphere in the region of greatest absorption, 160-220km. We analyse almost 3 martian years of MGS mapping Orbit Data and present the first measurements of Mars' neutral density above 180km. Although the uncertainties in single measurements are quite large, averaging over many measurements over a period of weeks allows us to see long-term trends. Major results are: 1) a mean density of 0.03 kg/km3 at 160km with a month-averaged variation of ˜40%, 2) a very strong annual seasonal variation, confirmed by periodogram and least-squares fit and 3) increasing seasonal density variability with distance from the equator. We see broad general agreement with predictions from Mars Thermosphere Global Circulation Model (MTGCM) simulations [Bougher et al, 2004] and with inferred densities from MGS Doppler tracking data [Tracadas et al, 2001]. Our results will help to constrain the upper boundaries of GCMs and assist orbital decay calculations for low-orbiting spacecraft, such as the 2005 Mars Reconnaissance Orbiter. We thank the NASA Jet Propulsion Laboratory for funding assistance for this research.

  13. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed thatmore » the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m 2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.« less

  14. Integration of magnetic field and electron reflection data to improve Mars internal magnetic field model definition at 185 km altitude

    NASA Astrophysics Data System (ADS)

    Mozzoni, D. T.; Cain, J. C.; Lillis, R. J.

    2012-12-01

    Because no further projects are planned to better define the global magnetic field about Mars, it is important to utilize present the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) data to its fullest. Challenges in deriving an accurate model include the fact that the mapping orbit of MGS was limited to two local times, and also had a narrow distribution of data ranging from only southern latitudes below 350 km to only northern latitudes over 400 km. The aerobraking and science phasing orbit data below 350 km down to near 100 km was nearly all on the sunlit side with its strong distortions from the solar wind and embedded ionospheric currents. The improvement reported herein is from the addition of the projected total field evaluated at 185 km above the areoid. These data are derived from extrapolation of the pitch angle distributions of ER data to the reflection altitudes and adjustment to a common data altitude. Crucial to this analysis is the angular distribution of the magnetic field itself below MGS. Thus it was an iterative process whereby the 185 km data sets were recalculated based on the last iterative solutions from the magnetic field models derived including these data. The statistical improvements at the ER mapped altitudes after 5 iterations was to reduce the initial 2.0 nT sigma differences with a Gaussian spread of 20 nT to 0.5 nT and a spread of 12 nT. Unfortunately, many areas of very high field especially provided no data as they were on closed field lines. However, the iterative solutions also improved the 185 km scalar maps significantly from the original based on linear field line estimates, up to several hundred nT. The next step planned is to utilize the concept suggested by Connerney to use along-track gradients, especially those at lowest altitudes on the dayside, to input to the model sets. Preliminary tests indicate the possibility of added improvements in the missing ER data areas once this technique is perfected.

  15. Simultaneous measurement of X-ray specular reflection and off-specular diffuse scattering from liquid surfaces using a two-dimensional pixel array detector: the liquid-interface reflectometer of BL37XU at SPring-8.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari

    2010-07-01

    An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.

  16. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  17. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  18. Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.

    2014-10-01

    The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.

  19. Use of different surface analysis techniques for the study of the photo-degradation of a polymeric matrix composite

    NASA Astrophysics Data System (ADS)

    Larena, A.; Ochoa, S. Jimenez de

    2004-11-01

    Polypropylene matrix composites, with different reinforcement degrees of long glass fibres, are usually used in different fields of the industry, like aeronautics or automotive. Owed to their huge application field, and work under diverse and severe conditions, samples of the materials were exposed to artificial accelerated photo ageing in UV chamber (Heraeus Xenotest 15OS). Although the oxidative mechanism of the PP is known enough, the fact that the material presents a high content of glass fibre, cause a surface degradation higher than that the case of no reinforced materials, owed to the presence of the fibres near the surface. In order to study this topographic modifications, the optical confocal microscopy is used that allows us the analysis of the material surface with more accuracy than a surface profiler, and with nanometric precision. We also want a correlation between surface degradation studied by confocal microscopy and reflectometer measurements. By this way, we can know the surface state, and the degradation evolution, by means of a set of easy measurements, taken with a portable reflectometer, in samples at work, without preparation. Since these materials shall fulfil some aesthetic requirements, we study also, by means of UV-vis spectroscopy, Yellow Index and White Index variations, trying to explain the photochemical processes causing these modifications. Also, the fact that these materials are usually subjected to surface treatments like adhesion or painting makes necessary the study of surface energy. We study the variation of this factor with exposing time and percentage of fibre, by means of contact angle measurements, with different liquids of known surface tensions.

  20. Performance and data analysis aspects of the new DIII-D monostatic profile reflectometer system

    DOE PAGES

    Zeng, Lei; Peebles, William A.; Doyle, Edward J.; ...

    2014-08-07

    A new frequency-modulated (FMCW) profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam,more » the electron density (n e) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure n e profiles with plasma vertical offsets of up to ±17 cm. Furthermore, examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g. the measured temporal evolution of the density profile across an L-H transition.« less

  1. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  2. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo; Yu, Zhihao

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. Duringmore » the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.« less

  3. Measurement of two-dimensional thickness of micro-patterned thin film based on image restoration in a spectroscopic imaging reflectometer.

    PubMed

    Kim, Min-Gab; Kim, Jin-Yong

    2018-05-01

    In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.

  4. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  5. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  6. The multipurpose time-of-flight neutron reflectometer “Platypus” at Australia's OPAL reactor

    NASA Astrophysics Data System (ADS)

    James, M.; Nelson, A.; Holt, S. A.; Saerbeck, T.; Hamilton, W. A.; Klose, F.

    2011-03-01

    In this manuscript we describe the major components of the Platypus time-of-flight neutron reflectometer at the 20 MW OPAL reactor in Sydney, Australia. Platypus is a multipurpose spectrometer for the characterisation of solid thin films, materials adsorbed at the solid-liquid interface and free-liquid surfaces. It also has the capacity to study magnetic thin films using spin-polarised neutrons. Platypus utilises a white neutron beam ( λ=2-20 Å) that is pulsed using boron-coated disc chopper pairs; thus providing the capacity to tailor the wavelength resolution of the pulses to suit the system under investigation. Supermirror optical components are used to focus, deflect or spin-polarise the broad bandwidth neutron beams, and typical incident spectra are presented for each configuration. A series of neutron reflectivity datasets are presented, indicating the quality and flexibility of this spectrometer. Minimum reflectivity values of <10 -7 are observed; while maximum thickness values of 325 nm have been measured for single-component films and 483 nm for a multilayer system. Off-specular measurements have also been made to investigate in-plane features as opposed to those normal to the sample surface. Finally, the first published studies conducted using the Platypus time-of-flight neutron reflectometer are presented.

  7. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    PubMed

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  8. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  9. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  10. Distributed fiber optical sensing of oxygen with optical time domain reflectometry.

    PubMed

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-05-31

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  11. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  12. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  13. A simultaneous multiple angle-wavelength dispersive X-ray reflectometer using a bent-twisted polychromator crystal

    PubMed Central

    Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.

    2013-01-01

    An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659

  14. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    NASA Technical Reports Server (NTRS)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  15. Developments in the realization of diffuse reflectance scales at NPL

    NASA Astrophysics Data System (ADS)

    Chunnilall, Christopher J.; Clarke, Frank J. J.; Shaw, Michael J.

    2005-08-01

    The United Kingdom scales for diffuse reflectance are realized using two primary instruments. In the 360 nm to 2.5 μm spectral region the National Reference Reflectometer (NRR) realizes absolute measurement of reflectance and radiance factor by goniometric measurements. Hemispherical reflectance scales are obtained through the spatial integration of these goniometric measurements. In the mid-infrared region (2.5 μm - 55 μm) the hemispherical reflectance scale is realized by the Absolute Hemispherical Reflectometer (AHR). This paper describes some of the uncertainties resulting from errors in aligning the NRR and non-ideality in sample topography, together with its use to carry out measurements in the 1 - 1.6 μm region. The AHR has previously been used with grating spectrometers, and has now been coupled to a Fourier transform spectrometer.

  16. The Lunar Prospector Discovery Mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    1998-06-01

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  17. The Lunar Prospector discovery mission: mission and measurement description.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.; Binder, A. B.; Feldman, W.

    Lunar Prospector, the first competitively selected planetary mission in NASA's discovery program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the moon's composition and structure. The suite of five instruments will be outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.

  18. Invited Article: Polarization ``Down Under'': The polarized time-of-flight neutron reflectometer PLATYPUS

    NASA Astrophysics Data System (ADS)

    Saerbeck, T.; Klose, F.; Le Brun, A. P.; Füzi, J.; Brule, A.; Nelson, A.; Holt, S. A.; James, M.

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  19. Invited article: polarization "down under": the polarized time-of-flight neutron reflectometer PLATYPUS.

    PubMed

    Saerbeck, T; Klose, F; Le Brun, A P; Füzi, J; Brule, A; Nelson, A; Holt, S A; James, M

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  20. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    PubMed

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  1. Passive Wireless Vibration Sensing for Measuring Aerospace Structural Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.

    2017-01-01

    To reduce energy consumption, emissions, and noise, NASA is exploring the use of high aspect ratio wings on subsonic aircraft. Because high aspect ratio wings are susceptible to flutter events, NASA is also investigating methods of flutter detection and suppression. In support of that work a new remote, non-contact method for measuring flutter-induced vibrations has been developed. The new sensing scheme utilizes a microwave reflectometer to monitor the reflected response from an aeroelastic structure to ultimately characterize structural vibrations. To demonstrate the ability of microwaves to detect flutter vibrations, a carbon fiber-reinforced polymer (CFRP) composite panel was vibrated at various frequencies from 1Hz to 130Hz. The reflectometer response was found to closely resemble the sinusoidal response as measured with an accelerometer up to 100 Hz. The data presented demonstrate that microwaves can be used to measure flutter-induced aircraft vibrations.

  2. Reflectometer for pseudo-Brewster angle spectrometry (BAIRS)

    NASA Astrophysics Data System (ADS)

    Potter, Roy F.

    2000-10-01

    A simple, robust reflectometer, pre-set for several angles of incidence (AOI), has been designed and used for determining the optical parameters of opaque samples having a specular surface. A single, linear polarizing element permits the measurement of perpendicular(s) and parallel (p) reflectence at each AOI. The BAIRS algorithm determines the empirical optical parameters for the subject surface at the pseudo-Brewster AOI, based on the measurement of p/s at two AOI's and, in turn the optical constants n and k (or (epsilon) 1 and (epsilon) 2). Radiation sources in current use, are a stabilized tungsten-halide lamp or a deuterium lamp for the visible and near UV spectral regions. Silica fiber optics and lenses deliver input and output radiation from the source and to a CCD array scanned diffraction spectrometer. Results for a sample of GaAs will be presented along with a discussion of dispersion features in the optical constant spectra.

  3. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  4. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  5. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  6. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  7. Fiber cavity ring-down using an optical time-domain reflectometer

    NASA Astrophysics Data System (ADS)

    Passos, D. J.; Silva, S. O.; Fernandes, J. R. A.; Marques, M. B.; Frazão, O.

    2014-12-01

    This work presented a demonstration of the potential for a fiber based cavity ring-down (CRD) using an optical time-domain reflectometer (OTDR). The OTDR was used to send the impulses down into about 20 km of a standard single optical fiber, at the end of which the fiber cavity ring-down was placed. The OTDR measured no appreciable losses, so other CRDs multiplexed could be spliced in parallel along the same optical fiber. To demonstrate the behavior and sensitivity of the proposed configuration, a displacement sensor based on a fiber taper with a diameter of 50 μm was placed inside the fiber loop, and the induced losses were measured on the CRD signal — a sensitivity of 11.8 ± 0.5 μs/mm was achieved. The dynamic range of the sensing head used in this configuration was about 2 mm. Finally, this work was also compared with different works published in the literature.

  8. Reflectometry diagnostics on TCV

    NASA Astrophysics Data System (ADS)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  9. Effect of Various Finishing Procedures on the Reflectivity (Shine) of Tooth Enamel - An In-vitro Study.

    PubMed

    Patil, Harshal Ashok; Chitko, Shrikant Shrinivas; Kerudi, Veerendra Virupaxappa; Maheshwari, Amit Ratanlal; Patil, Neeraj Suresh; Tekale, Pawankumar Dnyandeo; Gore, Ketan Ashorao; Zope, Amit Ashok

    2016-08-01

    Reflectivity of an object is a good parameter for surface finish. As the patient evaluates finishing as a function of gloss/reflectivity/shine an attempt is made here to evaluate changes in surface finish with custom made reflectometer. The aim of the present study was to study the effect of various procedures during orthodontic treatment on the shine of enamel, using a custom made reflectometer. Sixty one extracted premolars were collected and each tooth was mounted on acrylic block. Reflectivity of the teeth was measured as compared to standard before any procedure. One tooth was kept as standard throughout the study. Sixty teeth were acid etched. Reflectivity was measured on custom made reflectometer and readings recorded. Same procedure was repeated after debonding. Then 60 samples were divided into three groups: Group 1 - Tungsten Carbide, Group 2 - Astropol, Group 3- Sof-Lex disc depending upon the finishing method after debonding and reflectivity was measured. The mean percentage of reflectivity after acid etching was 31.4%, debonding 45.5%, Tungsten carbide bur finishing (Group 1) was 58.3%, Astropol (Group 2) 72.8%, and Sof-Lex disc (Group 3) 84.4% as that to the standard. There was statistically very highly significant (p<0.001) difference in reflectivity restored by the three finishing materials in the study. Thus, the light reflection was better in Group 3> Group 2> Group 1. The primary goal was to restore the enamel to its original state after orthodontic treatment. The methods tested in this study could not restore the original enamel reflectivity.

  10. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    NASA Astrophysics Data System (ADS)

    Razzaghmanesh, Mostafa; Borst, Michael

    2018-02-01

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary School, on Fort Riley, Kansas was selected for this study. An 80-space parking lot was built behind the school as part of an EPA collaboration with the U.S. Army. The parking lot design includes a permeable interlocking concrete pavement section along the downgradient edge. This study monitored the clogging progress of the pavement section using twelve water content reflectometers and three buried tipping bucket rain gauges. This clogging dynamic investigation was divided into three stages namely pre-clogged, transitional, and clogged. Recorded initial relative water content of all three stages were significantly and negatively correlated to antecedent dry weather periods with stronger correlations during clogged conditions. The peak relative water content correlation with peak rainfall 10-min intensity was significant for the water content reflectometers located on the western edge away from the eastern edge; this correlation was strongest during transition stage. Once clogged, rainfall measurements no longer correlated with the buried tipping bucket rain gauges. Both water content reflectometers and buried tipping bucket rain gauges showed the progress of surface clogging. For every 6 mm of rain, clogging advanced 1 mm across the surface. The results generally support the hypothesis that the clogging progresses from the upgradient to the downgradient edge. The magnitude of the contributing drainage area and rainfall characteristics are effective factors on rate and progression of clogging.

  11. Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey

    2014-01-01

    Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.

  12. Lunar Prospector: developing a very low cost planetary mission.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.

  13. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  14. 78 FR 46932 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... APPARATUS, Issued on June 18, 2013//U.S. Patent Number 8,477,308: POLARIZED, SPECULAR REFLECTOMETER APPARATUS, Issued on July 2, 2013. ADDRESSES: Requests for copies of the inventions cited should be directed...

  15. Coincident Retrieval of Ocean Surface Roughness and Salinity Using Airborne and Satellite Microwave Radiometry and Reflectometry Measurements during the Carolina Offshore (Caro) Experiment.

    NASA Astrophysics Data System (ADS)

    Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.

    2017-12-01

    The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms were assessed, and the coincident buoy, aircraft and satellite retrievals of MSS, WSP and SSS were compared. During Caro WSP from the different instruments generally agreed. Some anomalously high wind retrievals found here and elsewhere in current CYGNSS Level 2 data may yield to the science team's recent L1 calibration revision.

  16. Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano

    2018-02-01

    We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.

  17. A novel reflectometer for relative reflectance measurements of CCDs

    NASA Astrophysics Data System (ADS)

    Hart, Murdock; Barkhouser, Robert H.; Gunn, James E.; Smee, Stephen A.

    2016-07-01

    The high quantum efficiencies (QE) of backside illuminated charge coupled devices (CCD) has ushered in the age of the large scale astronomical survey. The QE of these devices can be greater than 90%, and is dependent upon the operating temperature, device thickness, backside charging mechanisms, and anti-reflection (AR) coatings. But at optical wavelengths the QE is well approximated as one minus the reflectance, thus the measurement of the backside reflectivity of these devices provides a second independent measure of their QE. We have designed and constructed a novel instrument to measure the relative specular reflectance of CCD detectors, with a significant portion of this device being constructed using a 3D fused deposition model (FDM) printer. This device implements both a monitor and measurement photodiode to simultaneously collect in- cident and reflected measurements reducing errors introduced by the relative reflectance calibration process. While most relative reflectometers are highly dependent upon a precisely repeatable target distance for accurate measurements, we have implemented a method of measurement which minimizes these errors. Using the reflectometer we have measured the reflectance of two types of Hamamatsu CCD detectors. The first device is a Hamamatsu 2k x 4k backside illuminated high resistivity p-type silicon detector which has been optimized to operate in the blue from 380 nm - 650 nm. The second detector being a 2k x 4k backside illuminated high resistivity p-type silicon detector optimized for use in the red from 640 nm - 960 nm. We have not only been able to measure the reflectance of these devices as a function of wavelength we have also sampled the reflectance as a function of position on the device, and found a reflection gradient across these devices.

  18. On-farm quick tests for estimating nitrogen in dairy manure.

    PubMed

    Van Kessel, J S; Reeves, J B

    2000-08-01

    Manure nutrient analyses performed rapidly on the farm could be useful for nutrient management programs. The objective of this experiment was to evaluate six quick tests for their accuracy in estimating total manure N or NH4+-N. The quick tests included the hydrometer, electrical conductivity meter and pen, reflectometer, Agros N Meter, and Quantofix-N-Volumeter. The hydrometer was used to estimate total N, while the remaining tests were used to estimate NH4+-N. Samples (107) were collected from dairy farms in five northeastern states. Samples were analyzed for total N and NH4+-N by traditional laboratory methods and using each of the quick tests. Manure compositions ranged from 1.4 to 38.6% dry matter (DM), 0.9 to 9.5 kg/m3 total N, and 0.3 to 4.7 kg/m3 NH4+-N. The estimated concentration of total N or NH4+-N determined by each quick test was regressed against laboratory-determined values. The hydrometer did not estimate total N accurately. The strongest relationship for estimation of NH4+-N was with the Quantofix-N-Volumeter followed by the Agros N Meter, the reflectometer, and the electrical conductivity meter and pen. When the samples were split into high (>12%) and low (< or =12%) DM groups, in all cases the r2 for the regression equation was higher for the low DM group than for the high DM group. The Agros N Meter, the reflectometer, and the conductivity meter and pen did not perform well for the high DM group. These data indicate that several quick tests are viable options for measuring NH4+-N concentrations in dairy slurries and solids.

  19. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  20. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  1. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1982-01-01

    Discusses: (1) construction of an integrated spherical reflectometer; (2) limitations of the NOAA Weather Radio Network; and (3) a simple experiment to demonstrate/measure influence of damping force on amplitude resonance. Also discusses whether or not a homemade electrophorus can lose its charge and then recharge itself. (JN)

  2. A low cost, simple, portable instrument for the measurement of infra-red reflectance of paints

    NASA Astrophysics Data System (ADS)

    Marson, F.

    1982-05-01

    The construction and design of a low cost, simple, portable infra-red reflectometer which can be used to estimate the reflectance of paint films in the 800 nm region is described. The infra-red reflectances of a range of lustreless, semigloss and gloss olive drab camouflage paints determined using this instrument are compared to those obtained using modified commercial equipment and to the reflectances measured at 800 nm using a Cary model 17 spectrophotometer. The new reflectometer was shown to be superior to the modified commercial instrument currently specified in Australian government paint specifications and to be capable of estimating the reflectance of olive drab paints to within about one per cent of the Cary derived reflectance values. The reflectance values for a range of 24 experimental coatings made with pigments of varying absorption in the infra-red region are used to illustrate the effect of the instrument's spectral response and the necessity of establishing a reliable working standard.

  3. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  4. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  5. Strain measurement using a Brillouin optical time domain reflectometer for development of aircraft structure health monitoring system

    NASA Astrophysics Data System (ADS)

    Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo

    2001-07-01

    We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.

  6. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less

  7. Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)

    DOE PAGES

    Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...

    2014-07-22

    The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less

  8. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.

  9. Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.

    2001-01-01

    A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less

  10. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implementedmore » the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.« less

  11. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  12. An evaluation of the NASA/GSFC Barnes field spectral reflecometer model 14-758, using signal/noise as a measure of utility

    NASA Technical Reports Server (NTRS)

    Bell, R.; Labovitz, M. L.

    1982-01-01

    A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.

  13. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  14. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Lester, M.; Cowley, S. W. H.; Eriksson, A. I.

    2008-08-01

    We use the data set from the magnetometer and electron reflectometer instruments on board the Mars Global Surveyor spacecraft to show that the crustal magnetic fields of Mars affect the location of the magnetic pileup boundary (MPB) and bow shock (BS) globally. We search for crossings of the MPB and BS in the data that were observed over the first 16 months of the mission. To identify the influence of the crustal magnetic fields, all crossings are extrapolated to the terminator plane in order to remove the solar zenith angle (SZA) dependence, and to make it possible to compare crossings independently of location. The MPB crossings that were observed over regions on Mars, which contain strong crustal magnetic fields, are on average located further out than crossings observed over regions with weak crustal fields. This is shown in three separate longitude intervals. We also find that the dayside BS crossings observed over the southern hemisphere of Mars are on average located further out than the BS crossings observed over the northern hemisphere, possibly because of the influence of the crustal fields. We also study the magnetic field strength and its variation at the inside of the MPB and their dependence on the SZA and altitude. We find that the magnitude of the magnetic field in the MPB is closely linked to the altitude of the MPB, with the magnitude increasing as the MPB is observed closer to the planet.

  15. Field-Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Halekas, J. S.; Fillingim, M. O.; Poppe, A. R.; Collinson, G.; Brain, David A.; Mitchell, D. L.

    2018-01-01

    Field-aligned electrostatic potentials in the Martian ionosphere play potentially important roles in maintaining current systems, driving atmospheric escape and producing aurora. The strength and polarity of the potential difference between the observation altitude and the exobase ( 180 km) determine the energy dependence of electron pitch angle distributions (PADs) measured on open magnetic field lines (i.e. those connected both to the collisional atmosphere and to the interplanetary magnetic field). Here we derive and examine a data set of 3.6 million measurements of the potential between 185 km and 400 km altitude from PADs measured by the Mars Global Surveyor Magnetometer/Electron Reflectometer experiment at 2 A.M./2 P.M. local time from May 1999 to November 2006. Potentials display significant variability, consistent with expected variable positive and negative divergences of the convection electric field in the highly variable and dynamic Martian plasma environment. However, superimposed on this variability are persistent patterns whereby potential magnitudes depend positively on crustal magnetic field strength, being close to zero where crustal fields are weak or nonexistent. Average potentials are typically positive near the center of topologically open crustal field regions where field lines are steeper, and negative near the edges of such regions where fields are shallower, near the boundaries with closed fields. This structure is less pronounced for higher solar wind pressures and (on the dayside) higher solar EUV irradiance. Its causes are uncertain at present but may be due to differential motion of electrons and ions in Mars's substantial but (compared to Earth) weak magnetic fields.

  16. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  17. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  18. Electrophysical properties of water and ice under isentropic compression to megabar pressures

    NASA Astrophysics Data System (ADS)

    Belov, S. I.; Boriskov, G. V.; Bykov, A. I.; Dolotenko, M. I.; Egorov, N. I.; Korshunov, A. S.; Kudasov, Yu. B.; Makarov, I. V.; Selemir, V. D.; Filippov, A. V.

    2017-02-01

    The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ɛ = 350 at a pressure of 8 GPa, then drops sharply to ɛ = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.

  19. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  20. Evaluation of quick tests for phosphorus determination in dairy manures.

    PubMed

    Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B

    2005-05-01

    Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.

  1. Effectiveness of Cool Roof Coatings with Ceramic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less

  2. BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobl, M.; Kreuzer, M.; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin

    2011-05-15

    BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad rangemore » of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.« less

  3. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors

    NASA Astrophysics Data System (ADS)

    Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi

    2002-12-01

    We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.

  4. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  5. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Lau, Cornwall; Hanson, Greg; Wilgen, John; Lin, Yijun; Wukitch, Steve

    2010-10-01

    A swept-frequency X-mode reflectometer is being built for Alcator C-Mod to measure the scrape-off layer density profiles at the top, middle, and bottom locations in front of both the new lower hybrid launcher and the new ion cyclotron range of frequencies antenna. The system is planned to operate between 100 and 146 GHz at sweep rates from 10 μs to 1 ms, and will cover a density range of approximately 10(16)-10(20) m(-3) at B(0)=5-5.4 T. To minimize the effects of density fluctuations, both differential phase and full phase reflectometry will be employed. Design, test data, and calibration results of this electronics system will be discussed. To reduce attenuation losses, tallguide (TE(01)) will be used for most of the transmission line system. Simulations of high mode conversion in tallguide components, such as e-plane hyperbolic secant radius of curvature bends, tapers, and horn antennas will be shown. Experimental measurements of the total attenuation losses of these components in the lower hybrid waveguide run will also be presented.

  6. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    NASA Astrophysics Data System (ADS)

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  7. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second

    NASA Technical Reports Server (NTRS)

    Jones, W. L., Jr.; Cross, A. E.

    1972-01-01

    Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280,000 to 175,000 ft) with measured densities of 10 to the 8th power to 10 to the 12th power electrons/cu cm, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25,000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow field contamination. Comparisons of the probe measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle of attack motions and the good high altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements.

  8. Water content measurement in forest soils and decayed wood using time domain reflectometry

    Treesearch

    Andrew Gray; Thomas Spies

    1995-01-01

    The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...

  9. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  10. Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming

    NASA Astrophysics Data System (ADS)

    Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.

    2016-10-01

    Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.

  11. A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE) method

    NASA Astrophysics Data System (ADS)

    Bergese, P.; Bontempi, E.; Depero, L. E.

    2006-10-01

    X-ray reflectivity (XRR) is a non-destructive, accurate and fast technique for evaluating film density. Indeed, sample-goniometer alignment is a critical experimental factor and the overriding error source in XRR density determination. With commercial single-wavelength X-ray reflectometers, alignment is difficult to control and strongly depends on the operator. In the present work, the contribution of misalignment on density evaluation error is discussed, and a novel procedure (named XRR-density evaluation or XRR-DE method) to minimize the problem will be presented. The method allows to overcome the alignment step through the extrapolation of the correct density value from appropriate non-specular XRR data sets. This procedure is operator independent and suitable for commercial single-wavelength X-ray reflectometers. To test the XRR-DE method, single crystals of TiO 2 and SrTiO 3 were used. In both cases the determined densities differed from the nominal ones less than 5.5%. Thus, the XRR-DE method can be successfully applied to evaluate the density of thin films for which only optical reflectivity is today used. The advantage is that this method can be considered thickness independent.

  12. Lunar Prospector: First Results and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Scott Hubbard, G.; Feldman, William; Cox, Sylvia A.; Smith, Marcie A.; Chu-Thielbar, Lisa

    2002-01-01

    Lunar Prospector, the first competitively selected mission in NASA's Discovery Program, is conducting a one-year orbital survey of the Moon's composition and structure. Launched on January 6 1998, the suite of five instruments is measuring water/ice to a sensitivity of 50 ppm (hydrogen), detecting key elemental constituents, gas release events and mapping the Moon's gravitational and magnetic fields. The mission is described with emphasis on the first scientific results and lessons learned from managing a very low cost project. A mission overview and systems description is given along with final mission trajectories. Lessons learned from government-industry teaming, new modes of project management, and novel contractual arrangements are discussed. The suite of five instruments (neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer) is outlined with attention to final technical performance as well as development on a constrained budget and schedule. A review of our novel approaches to education and public outreach is discussed and a summary with suggestions and implications for future missions is provided.

  13. MAVEN Mapping of Plasma Clouds Near Mars

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Tran, T.; DiBraccio, G. A.; Espley, J. R.; Soobiah, Y. I. J.

    2017-12-01

    Brace et al. identified parcels of ionospheric plasma above the nominal ionosphere of Venus, dubbed plasma clouds. These were envisioned as instabilities on the ionopause that evolved to escaping parcels of ionospheric plasma. Mars Global Surveyor (MGS) Electron Reflectometer (ER) also detected signatures of ionospheric plasma above the nominal ionopause of Mars. Initial examination of the MGS ER data suggests that plasma clouds are more prevalent at Mars than at Venus, and similarly exhibit a connection to rotations in the upstream Interplanetary Magnetic Field (IMF) as Zhang et al. showed at Venus. We examine electron data from Mars to determine the locations of plasma clouds in the near-Mars environment using MGS and MAVEN data. The extensive coverage of the MAVEN orbit enables mapping an occurrence rate of the photoelectron spectra in Solar Wind Electron Analyzer (SWEA) data spanning all relevant altitudes and solar zenith angles. Martian plasma clouds are observed near the terminator like at Venus. They move to higher altitude as solar zenith angle increases, consistent with the escaping plasma hypothesis.

  14. Design and Test of an Event Detector for the ReflectoActive Seals System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Brad J

    2006-05-01

    The purpose of this thesis was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less

  15. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Brad J

    2006-06-01

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphicalmore » user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.« less

  16. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    NASA Astrophysics Data System (ADS)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  17. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  18. Constraints on the Martian Plate Tectonic Hypothesis from Gravity and Topography Data

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Raymond, C.

    1999-01-01

    The Mars Global Surveyor Magnetic Fields Experiment/ Electron Reflectometer (MGS MAG/ER) experiment serendipitously discovered unanticipated and unprecedented regions of high amplitude crustal magnetic anomalies, indicating strong sources of remanent crustal magnetism. In one area of the southern hemisphere, the anomalies appear lineated and alternate in direction, resembling the stripes formed at terrestrial oceanic spread-ing regions. However, many significant differences exist. The inferred magnetization are easily an order of magnitude greater in strength than terrestrial counterparts. The width of the anomalies appears to be approximately 200 km, in comparison to a variable width of order 10-1000 km at terrestrial spreading centers. However, the spacecraft altitude of 100-200 km may be such that narrower anomalies are simply unresolved. Although the majority of strong anomalies are found in the southern highlands, there is no clear correlation with landforms at the surface. The lack of a correlation between magnetism and topography hinders the confident interpretation of magnetic sources. Additional information is contained in the original extended abstract.

  19. Structural health monitoring of IACC yachts using fiber optic distributed strain sensors: a technical challenge for America's Cup 2000

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Kageyama, Kazuro; Kimpara, Isao; Akiyoshi, Shimada; Naruse, Hiroshi

    2000-06-01

    In this study, we developed a health monitoring system using a fiber optic distributed strain sensor for International America's Cup Class (IACC) yachts. Most structural components of an IACC yacht consist of an aluminum honeycomb core sandwiched between carbon fiber reinforced plastic (CFRP) laminates. In such structures, delamination, skin/core debonding and debonding between adhered members will be result in serious fracture of the structure. We equipped two IACC yachts with fiber optic strain sensors designed to measured the distributed strain using a Brillouin optical time domain reflectometer (BOTDR) and to detect any deterioration or damage to the yacht's structures caused by such failures. And based on laboratory test results, we proposed a structural health monitoring technique for IACC yachts that involves analyzing their strain distribution. Some important information about structural conditions of the IACC yachts could be obtained from this system through the periodical strain measurements in the field.

  20. Portable Chemical Agent Detection System: Differential Reflectometer and Light Scattering Approaches

    DTIC Science & Technology

    2005-02-15

    possible to conduct elemental analysis on modified capillaries because of the polymer coating. Instead, measurements of electroosmotic flow were used...design There are several essential requirements for a sensitive chemiluminescence cell (Figure 1); good reagent/analyte mixing for maximum photon yield...Cutaway of Chemiluminescence cell the cooled pint housing. In our design, the concentric inlets will increase photon collection due to better mixing of

  1. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  2. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  3. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.

  4. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  5. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    NASA Astrophysics Data System (ADS)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  6. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding

    Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less

  7. Application of Time Domain Reflectometers in Urban Settings ...

    EPA Pesticide Factsheets

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior

  8. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    PubMed

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  9. Method and apparatus for wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahk, Seung-Whan

    A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelengthmore » $$ \\lamda $$ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.« less

  10. Vitamin D Levels and Related Genetic Polymorphisms, Sun Exposure, Skin Color, and Risk of Aggressive Prostate Cancer

    DTIC Science & Technology

    2011-07-01

    sun exposure, and dietary calcium and vitamin D intake are ascertained. Finally, the melanin content of the skin is measured using a skin reflectance...meter called a Dermaspectrometer, to measure baseline skin melanin content, which is known to inhibit vitamin D synthesis from sunlight. This...three hospitals in Chicago, along with demographic and medical information, BMI, and skin melanin content using a portable narrow-band reflectometer

  11. Characteristics of Mini-Magnetospheres Formed by Paleo-Magnetic Fields of Mars

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Krymskii, A. M.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.; Barashyan, K. K.

    2003-01-01

    The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.

  12. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT

    2016-05-06

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less

  13. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  14. A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions

    NASA Astrophysics Data System (ADS)

    Syed Mohd, A.; Pütter, S.; Mattauch, S.; Koutsioubas, A.; Schneider, H.; Weber, A.; Brückel, T.

    2016-12-01

    We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å-1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.

  15. The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc.

    PubMed

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-01-01

    The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic. © Wiley Periodicals, Inc.

  16. A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions.

    PubMed

    Syed Mohd, A; Pütter, S; Mattauch, S; Koutsioubas, A; Schneider, H; Weber, A; Brückel, T

    2016-12-01

    We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å -1 . The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.

  17. Feasibility study of the automated detection and localization of underground tunnel excavation using Brillouin optical time domain reflectometer

    NASA Astrophysics Data System (ADS)

    Klar, Assaf; Linker, Raphael

    2009-05-01

    Cross-borders smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recent advances in strain measurements using optical fibers allow the development of smart underground security fences that could detect the excavation of smuggling tunnels. This paper presents the first stages in the development of such a fence using Brillouin Optical Time Domain Reflectometry (BOTDR). In the simulation study, two different ground displacement models are used in order to evaluate the robustness of the system against imperfect modeling. In both cases, soil-fiber interaction is considered. Measurement errors, and surface disturbances (obtained from a field test) are also included in the calibration and validation stages of the system. The proposed detection system is based on wavelet decomposition of the BOTDR signal, followed by a neural network that is trained to recognize the tunnel signature in the wavelet coefficients. The results indicate that the proposed system is capable of detecting even small tunnel (0.5m diameter) as deep as 20 meter.

  18. Note: 4-bounce neutron polarizer for reflectometry applications

    NASA Astrophysics Data System (ADS)

    Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.

    2018-05-01

    A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.

  19. Characterization and Measurements from the Infrared Grazing Angle Reflectometer

    DTIC Science & Technology

    2012-06-14

    18 3. List of sample scatter pattern fitting values. All values were taken from Ngan’s paper ”Experimental Analysis of BRDF Models - Supplemental” [1...using a BRDF model , and the absorptance can be modeled using a Fresnel absorptance. After defining both of these values, we can calculate the power seen... BRDF model of the face of the detector. This paper will examine the case of a flat detector with some index of refraction n. This air-detector

  20. Airborne Observation of Ocean Surface Roughness Variations Using a Combination of Microwave Radiometer and Reflectometer Systems: The Second Virginia Offshore (Virgo II) Experiment

    DTIC Science & Technology

    2014-03-06

    from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS

  1. Assessment of surface roughness by use of soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo

    2009-08-01

    A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.

  2. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  3. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; hide

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  4. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a supportmore » for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.« less

  5. Engineering two-wire optical antennas for near field enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhong-Jian; Zhao, Qian; Xiao, Si; He, Jun

    2017-07-01

    We study the optimization of near field enhancement in the two-wire optical antenna system. By varying the nanowire sizes we obtain the optimized side-length (width and height) for the maximum field enhancement with a given gap size. The optimized side-length applies to a broadband range (λ = 650-1000 nm). The ratio of extinction cross section to field concentration size is found to be closely related to the field enhancement behavior. We also investigate two experimentally feasible cases which are antennas on glass substrate and mirror, and find that the optimized side-length also applies to these systems. It is also found that the optimized side-length shows a tendency of increasing with the gap size. Our results could find applications in field-enhanced spectroscopies.

  6. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less

  7. How accurately do force fields represent protein side chain ensembles?

    PubMed

    Petrović, Dušan; Wang, Xue; Strodel, Birgit

    2018-05-23

    Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  8. Lower-extremity strength ratios of professional soccer players according to field position.

    PubMed

    Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S

    2015-05-01

    Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.

  9. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, Walter F.

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  10. The Presentation Location of the Reference Stimuli Affects the Left-Side Bias in the Processing of Faces and Chinese Characters

    PubMed Central

    Li, Chenglin; Cao, Xiaohua

    2017-01-01

    For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different. PMID:29018391

  11. The Presentation Location of the Reference Stimuli Affects the Left-Side Bias in the Processing of Faces and Chinese Characters.

    PubMed

    Li, Chenglin; Cao, Xiaohua

    2017-01-01

    For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different.

  12. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  13. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  14. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  15. The role of the large scale convection electric field in erosion of the plasmasphere during moderate and strong storms

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2015-12-01

    The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.

  16. The influence of crustal magnetic sources on the topology of the Martian magnetic environment

    NASA Astrophysics Data System (ADS)

    Brain, David Andrew

    2002-09-01

    In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.

  17. 1. EAST FACING SIDE EAST AND SOUTH SOUTH FACING SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAST FACING SIDE EAST AND SOUTH SOUTH FACING SIDE RESIDENTIAL AREA AROUND BUILDINGS 136, 137, & 138 - Hill Field, Non-Commissioned Officers' Quarters, North side of Fourth street, East side of E Avenue, Layton, Davis County, UT

  18. High speed reflectometer for EUV mask-blanks

    NASA Astrophysics Data System (ADS)

    Wies, Christian; Lebert, Rainer; Jagle, Bernhard; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, Ronny; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.

    2005-06-01

    AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproducibility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1x1 mm2, 2000 spectral channels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are accumulated in about 20 s, providing statistical reproducibility below 0.2% RMS. The total uncertainty is below 0.5% absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by reference to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.

  19. High speed reflectometer for EUV mask-blanks

    NASA Astrophysics Data System (ADS)

    Wies, C.; Lebert, R.; Jaegle, B.; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, R.; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.

    2005-05-01

    AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproduci-bility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1×1 mm2, 2000 spectral chan-nels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are ac-cumulated in about 20 s, providing statistical reproducibility below 0.2 % RMS. The total uncertainty is below 0.5 % absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by refe-rence to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.

  20. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  1. Digital Beamforming Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics

  2. Experimental investigation of RC beams using BOTDA(R)-FRP-OF

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; He, Jianping; Huang, Ying; Ou, Jinping

    2008-04-01

    Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis (Reflectometer) sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, five RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges and Fiber Bragg Grating (FBG) sensors, respectively. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.

  3. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  4. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage.

    PubMed

    Buerck, J; Roth, S; Kraemer, K; Mathieu, H

    2003-08-15

    A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.

  5. Lunar Prospector Data Archives

    NASA Astrophysics Data System (ADS)

    Guinness, Edward A.; Binder, Alan B.

    1998-01-01

    The Lunar Prospector (LP) is operating in a 100-km circular polar orbit around the Moon. The LP project's one-year primary mission began in January 1998. A six-month extended mission in a lower orbit is also possible. LP has five science instruments, housed on three booms: a gamma-ray spectrometer, a neutron spectrometer, an alpha-particle spectrometer, a magnetometer, and an electron reflectometer. In addition, a gravity experiment uses Doppler tracking data to derive gravity measurements. The major science objectives of LP are to determine the Moon's surface abundance of selected elements, to map the gravity and magnetic fields, to search for surface ice deposits, and to determine the locations of gas release events. The Geosciences Node of the NASA's Planetary Data System (PDS) is providing a lead role in working with the Lunar Prospector project to produce and distribute a series of archives of LP data. The Geosciences Node is developing a Web-based system to provide services for searching and browsing through the LP data archives, and for distributing the data electronically or on CDs. This system will also provide links to other relevant lunar datasets, such as Clementine image mosaics and telescopic and laboratory spectral reflectance data.

  6. Core heat convection in NSTX-U via modification of electron orbits by high frequency Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team

    2015-11-01

    New simulation results demonstrate that high frequency compressional (CAE) and global (GAE) Alfvén eigenmodes cause radial convection of electrons, with implications for particle and energy confinement, as well as electric field formation in NSTX-U. Simulations of electron orbits in the presence of multiple experimentally determined CAEs and GAEs, using the gyro-center code ORBIT, have revealed substantial convective transport, in addition to the expected diffusion via orbit stochastization. These results advance understanding of anomalous core energy transport expected in high performance, beam-heated NSTX-U plasmas. The simulations make use of experimentally determined density perturbation (δn) amplitudes and mode structures obtained by inverting measurements from 16 a channel reflectometer array using a synthetic diagnostic. Combined with experimentally determined mode polarizations (i.e. CAE or GAE), the δn are used to estimate the ExB displacements for use in ORBIT. Preliminary comparison of the simulation results with transport modeling by TRANSP indicate that the convection is currently underestimated. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 & DE-AC02-09CH11466.

  7. Spatially resolved measurement of the core temperature in a high-power thulium fiber system

    NASA Astrophysics Data System (ADS)

    Walbaum, Till; Heinzig, Matthias; Beier, Franz; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2016-03-01

    We present measurements of the temperature increase inside the active fiber of a thulium fiber amplifier during high power operation. At a pump power of over 100 W at a wavelength of 793 nm, we measure the core temperature distribution along the first section of a large mode area (LMA) highly thulium doped active fiber by use of an optical backscatter reflectometer. A mode field adaptor is used to maintain single mode operation in the LMA fiber. An increase in temperature of over 100 K can be observed in spite of conductive cooling, located at the pumped fiber end and jeopardizing the fiber coating. The recoated splice can be clearly identified as the hottest fiber region. This allows us to estimate the maximum thermally acceptable pump power for this amplifier. We also observe that the temperature can be decreased by increasing the seed power, which is in agreement with theoretical predictions on the increase of cross relaxation efficiency by depletion of the upper laser level. This underlines the role of power scaling of the respective seed power of a thulium amplifier stage as a means of thermal management.

  8. Longitudinal measurement of chromatic dispersion along an optical fiber transmission system with a new correction factor

    NASA Astrophysics Data System (ADS)

    Abbasi, Madiha; Imran Baig, Mirza; Shafique Shaikh, Muhammad

    2013-12-01

    At present existence OTDR based techniques have become a standard practice for measuring chromatic dispersion distribution along an optical fiber transmission link. A constructive measurement technique has been offered in this paper, in which a four wavelength bidirectional optical time domain reflectometer (OTDR) has been used to compute the chromatic dispersion allocation beside an optical fiber transmission system. To improve the correction factor a novel formulation has been developed, which leads to an enhanced and defined measurement. The investigational outcomes obtained are in good harmony.

  9. Real-time investigation of protein unfolding at an air–water interface at the 1 s time scale

    PubMed Central

    Yano, Yohko F.; Arakawa, Etsuo; Voegeli, Wolfgang; Matsushita, Tadashi

    2013-01-01

    Protein unfolding at an air–water interface has been demonstrated such that the X-ray reflectivity can be measured with an acquisition time of 1 s using a recently developed simultaneous multiple-angle–wavelength-dispersive X-ray reflectometer. This has enabled the electron density profile of the adsorbed protein molecules to be obtained in real time. A globular protein, lysozyme, adsorbed at the air–water interface is found to unfold into a flat shape within 1 s. PMID:24121352

  10. Analysis of a novel sensor interrogation technique based on fiber cavity ring-down (CRD) loop and OTDR

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Yilmaz, Anil

    2018-07-01

    We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.

  11. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  12. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  13. High-resolution reflectometer for monitoring of biological samples

    NASA Astrophysics Data System (ADS)

    Men, Liqiu; Lu, Ping; Chen, Qiying

    2008-06-01

    High-resolution optical low-coherence reflectometry is applied to monitor biological samples. It has been found that the reflectivity of aged cow's milk is significantly lower than that of the fresh milk with a difference of 5.35dB. During the process of heating the fresh milk at a constant temperature of 80°C, the reflectivity of the milk gradually decreases with the increase of the heating duration. The technique is proved to be effective in monitoring the change in the refractive index of the sample.

  14. First tests of a MIEZE (modulated intensity by Zero effort)-type instrument on a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Bröll, M.; Lang, E.; Littrell, K.; Gähler, R.; Lal, J.

    2006-01-01

    In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.

  15. Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: application to the flat panel display.

    PubMed

    Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G

    2003-04-01

    We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same.

  16. Spatial-temporal variability of soil moisture and its estimation across scales

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2010-02-01

    The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.

  17. NOVEL CRYOGENIC ENGINEERING SOLUTIONS FOR THE NEW AUSTRALIAN RESEARCH REACTOR OPAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons.The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber aremore » cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption).A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2{sup nd} half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions.A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2{sup nd} GM cryocooler (4K-300K) and a variable electric field can be applied.« less

  18. Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhong Lin; Zhu, Guang

    A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductivemore » layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.« less

  19. Influence of field size on the physiological and skill demands of small-sided games in junior and senior rugby league players.

    PubMed

    Gabbett, Tim J; Abernethy, Bruce; Jenkins, David G

    2012-02-01

    The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.

  20. Study of Geomagnetic Field Response to Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Kim, S.; Li, X.; Damas, M. C.; Ngwira, C.

    2017-12-01

    The solar wind is an integral component of space weather that has a huge impact on the near-Earth space conditions, which can in turn adversely impact technological infrastructure. By analyzing solar wind data, we can investigate the response of the Earth's magnetic field to changes in solar wind conditions, such as dynamic pressure, speed, and interplanetary magnetic fields (IMF). When a coronal mass ejection (CME) hits the Earth's magnetosphere, it compresses the dayside magnetosphere, which leads to SSC (Sudden Storm Commencement) seen in Dst or SYM-H index. Dst and SYM-H index are a measure of geomagnetic storm intensity that represents the magnetic field perturbations in the equatorial region originating from ring current. In this study, we focused on SSC intervals with sudden density increase, density, greater than 10 n/cc from 2000 to 2015 using data obtained from the NASA CDAWEB service. A total of 1,049 events were picked for this project. Then using INTERMAGNET service, corresponding horizontal component of magnetic field data were collected from several stations located in equatorial region, mid-latitude region, high-latitude region on the day-side and night-side of Earth. Using MATLAB, we calculated the rate of change of magnetic fields (dB/dt) for each station and each event. We found that in most cases, the sudden increase in proton density is associated with large changes in magnetic fields, dB/dt. The largest magnetic field changes were observed on the day-side than night-side at high latitudes. Interestingly, some exceptions were found such that greater dB/dt was found on night-side than day-side during some events, particularly at high latitudes. We suspect these are driven by magnetospheric substorms, which are manifested by an explosive release of energy in the local midnight sector. The next step will be creating the statistical form to see the correlation between proton density changes and magnetic field changes.

  1. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  2. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  3. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh

    2008-12-01

    A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.

  4. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.

    2018-01-01

    Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).

  5. Lee side flow for slender delta wings of finite thickness

    NASA Technical Reports Server (NTRS)

    Szodruch, J. G.

    1980-01-01

    An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.

  6. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.

    PubMed

    St Aubin, Joel; Steciw, Stephen; Fallone, B G

    2010-02-01

    The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.

  7. Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.

    2008-09-01

    We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.

  8. Magnetic Signatures of Nectarian-Aged Lunar Basin-Forming Impacts: Probable Evidence for a Former Core Dynamo

    NASA Astrophysics Data System (ADS)

    Hood, Lon

    2010-05-01

    Previous analyses of Lunar Prospector magnetometer (MAG) and electron reflectometer (ER) data have shown that impact processes played an important role in producing the observed crustal magnetization. In particular, the largest areas of strong anomalies occur antipodal to the youngest large basins and correlative studies indicate that basin ejecta materials are important anomaly sources. Models suggest that transient fields generated by the expansion of impact vapor-melt clouds in the presence of an initial solar wind magnetic field are sufficient to explain the antipodal anomalies (Hood and Artemieva, Icarus, v. 193, p. 485, 2008). However, analyses of ER data have also shown that some anomalies are present within Nectarian-aged basins including Moscoviense, Mendel-Rydberg, and Crisium (Halekas et al., Meteorit. Planet. Sci., v. 38, p. 565, 2003). These latter anomalies could be due either to thermoremanence (TRM) in impact melt or to shock remanence in the central uplift. The former interpretation would require a long-lived, steady magnetizing field, consistent with a core dynamo, while the latter interpretation could in principle be explained by an impact-generated field. Here, LP MAG data are applied to produce more detailed regional maps of magnetic anomalies within selected Nectarian basins. Anomalies within the Crisium basin, in particular, are located inside the inner rim edges and are clearly genetically associated with the basin (rather than being due to ejecta from younger basins superposed on Crisium). An analysis of the vector field components shows that the directions of magnetization of the two main sources are close to parallel within the errors of the modeling. These anomalies are therefore most probably due to TRM of impact melt that cooled in a steady, large-scale field. In addition, the paleomagnetic pole position calculated for the strongest and most isolated anomaly lies close to the present rotational pole. Assuming no true polar wander since the Crisium impact and that the lunar dynamo behaved similarly to presently existing terrestrial planet dynamos, they are therefore consistent with the existence of a lunar dynamo field.

  9. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Song, E-mail: yuessd@163.com; University of Chinese Academy of Sciences, Beijing 100049; Zhang, Zhao-chuan

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, inmore » which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.« less

  10. Moon Gravity Field Using Prospector Data

    NASA Image and Video Library

    2012-12-05

    This map shows the gravity field of the moon from the Lunar Prospector mission. The viewing perspective, known as a Mercator projection, shows the far side of the moon in the center and the nearside as viewed from Earth at either side.

  11. GRAIL Gravity Field of the Moon

    NASA Image and Video Library

    2012-12-05

    This map shows the gravity field of the moon as measured by NASA GRAIL mission. The viewing perspective, known as a Mercator projection, shows the far side of the moon in the center and the nearside as viewed from Earth at either side.

  12. Field Data on Head Injuries in Side Airbag Vehicles in Lateral Impact

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Gennarelli, Thomas A.

    2005-01-01

    Field data on side airbag deployments in lateral crashes and head injuries have largely remained anecdotal. Consequently, the purpose of this research was to report head injuries in lateral motor vehicle impacts. Data from the National Automotive Sampling System files were extracted from side impacts associated with side airbag deployments. Matched pairs with similar vehicle characteristics but without side airbags were also extracted. All data were limited to the United States Federal Motor vehicle Safety Standards FMVSS 214 compliant vehicles so that the information may be more effectively used in the future. In this study, some fundamental analyses are presented regarding occupant- and vehicle-related parameters. PMID:16179147

  13. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  14. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  15. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  16. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  17. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  18. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.

    2018-06-01

    In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.

  19. [Understanding chair-side digital technology for stomatology from an engineering viewpoint].

    PubMed

    Zhao, Y J; Wang, Y

    2018-04-09

    In recent years with the rapid development of digital technology for stomatology, the application field, application model, technical features and technical connotation of the chair-side digital technology has got development and change. The open modular system has gradually replaced the traditional closed system, and the application field of digital technology is no longer limited to chair-side dental restoration, it also has been extend to various kinds of chair-side digital treatment-assisted technology. In this paper, from the engineering point of view, the up to date general connotation of chair-side digital technology was explained, the characteristics and the development of each unit in chair-side digital technology were analyzed, and the application pattern and the localization status were also discussed in this paper. The aim of this paper was to introduce the trend of chair-side digital technological to readers and to better guide clinical application.

  20. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  1. Far-infrared BRDFs and reflectance spectra of candidate SOFIA telescope, cavity, and focal-plane instrument surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.

    2000-06-01

    The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.

  2. Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo

    2006-05-01

    A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.

  3. At-wavelength metrology facility for soft X-ray reflection optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, A., E-mail: andrey.sokolov@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.

    2016-05-15

    A new Optics Beamline coupled to a versatile UHV reflectometer is successfully operating at BESSY-II. It is used to carry out at-wavelength characterization and calibration of in-house produced gratings and novel nano-optical devices as well as mirrors and multilayer systems in the UV and XUV spectral region. This paper presents most recent commissioning data of the beamline and shows their correlation with initial beamline design calculations. Special attention is paid to beamline key parameters which determine the quality of the measurements such as high-order suppression and stray light behavior. The facility is open to user operation.

  4. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    PubMed

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  5. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  6. Possible applications of time domain reflectometry in planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Heckendorn, S.

    1982-01-01

    The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.

  7. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    PubMed Central

    Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-01-01

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755

  8. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K., E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: lkh@mssl.ucl.ac.uk

    2011-12-10

    Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursormore » was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.« less

  9. Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness

    NASA Astrophysics Data System (ADS)

    Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo

    2017-02-01

    Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.

  10. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  11. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  12. Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke

    2018-03-01

    Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.

  13. Flow-synchronous field motion refrigeration

    DOEpatents

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  14. Evidence for Weak Crustal Magnetic Fields over the Hellas, Chryse, and Acidalia Planitiae

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Mitchell, D. L.; Lillis, R.; Lin, R. P.; Reme, H.; Cloutier, P. A.; Acuna, M. H.

    2003-04-01

    The Electron Reflectometer (ER) onboard Mars Global Surveyor (MGS) detected a plasma boundary between the ionosphere and the solar wind as the latter is diverted around and past the planet [Mitchell et al., GRL, 27, 1871, 2000; Mitchell et al., JGR, 106, 23419, 2001]. Above this boundary the 10-1000 eV electron population is dominated by solar wind electrons, while below the boundary it is dominated by ionospheric photoelectrons. This "photoelectron boundary", or PEB, is sensitive to pressure variations and moves vertically in response to changes in the ionospheric pressure from below and the solar wind pressure from above. The PEB is also sensitive to crustal magnetic fields, which locally increase the total ionospheric pressure and positively bias the PEB altitude. We have empirically modeled and removed systematic variations in the PEB altitude associated with the solar wind interaction, thus isolating perturbations caused by crustal magnetic fields. A map of the PEB altitude perturbations closely resembles maps of the horizontal component of the crustal magnetic field measured at 400 km by the MGS Magnetometer (MAG). We find a PEB altitude bias over the Hellas basin that is consistent with a horizontal magnetic field with an intensity of several nanotesla at 400 km altitude. This is compatible with upper limits to the horizontal crustal field strength set by MGS MAG measurements. Since there is no evidence for significant crustal magnetic sources within the basin from MAG data obtained during aerobraking [Acuna et al. Science, 284, 790, 1999] or from electron reflection data obtained in the mapping orbit [Lillis et al., this conference], the most likely explanation is that the observed horizontal field originates from sources around the Hellas perimeter. No detectable PEB or magnetic signature is observed over the younger Argyre and Isidis Basins. There is also evidence for a significant enhancement (several nanoteslas) in the crustal field strength over Chryse Planitia and much of Acidalia Planitia, which are thought to contain hundreds of meters of material from the main outflow channels on Mars [Carr, Lunar Planetary Sci., 18, 155, 1987]. These fields appear to extend northward from a group of crustal magnetic sources along the dichotomy boundary that were mapped by the MGS Magnetometer.

  15. Effects of small-sided games on physical conditioning and performance in young soccer players.

    PubMed

    Katis, Athanasios; Kellis, Eleftherios

    2009-01-01

    The purpose of this study was to examine, first, the movement actions performed during two different small-sided games and, second, their effects on a series of field endurance and technical tests. Thirty-four young soccer players (age: 13 ± 0.9 yrs; body mass: 62.3 ± 15.1 kg; height: 1.65 ± 0.06 m) participated in the study. Small-sided games included three-a-side (3 versus 3 players) and six-a-side (6 versus 6 players) games consisting of 10 bouts of 4 min duration with 3 min active recovery between bouts. Soccer player performance was evaluated using five field tests: a) 30m sprint, b) throw-in for distance, c) Illinois Agility Test, d) dribbling the ball and e) horizontal jump before, in the middle and after the implementation of both game situations. Heart rate was monitored during the entire testing session. Each game was also filmed to measure soccer movements within the game. The ANOVA analysis indicated that the three-a- side games displayed significantly higher heart rate values compared with the six-a-side games (p < 0.05). The number of short passes, kicks, tackles, dribbles and scoring goals were significantly higher during the three-a-side compared with the six-a-side game condition (p < 0. 05) while players performed more long passes and headed the ball more often during the six-a-side (p < 0.05). After the three-a-side games, there was a significant decline in sprint and agility performance (p < 0.05), while after both game conditions significant alterations in the throw-in and the horizontal jump performance were observed (p < 0.05). The results of the present study indicated that three-a-side games provide higher stimulus for physical conditioning and technical improvement than six-a-side games and their use for training young soccer players is recommended. Key pointsThree-a-side games display higher HR compared with six-a-side games.In the three-a-side games players performed more short passes, kicks, dribbles, tackles and scored more goals compared with the six-a-side games.Impairment in endurance and field test performance was observed mainly after three-a-side games.The use of the three-a-side games to develop physical fitness and technique in young soccer players is recommended.

  16. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    PubMed Central

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  17. High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.

    2007-01-01

    Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).

  18. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Mach, D. M.; Christian, H. J.; Stewart, M. F.; Bateman, M. G.

    2005-01-01

    The Lagrange multiplier theory and "pitch down method" developed in Part I of this study are applied to complete the calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the method performs well in computer simulations. For mill measurement errors of 1 V/m and a 5 V/m error in the mean fair weather field function, the 3-D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair weather field was also tested using computer simulations. For mill measurement errors of 1 V/m, the method retrieves the 3-D storm field to within an error of about 8% if the fair weather field estimate is typically within 1 V/m of the true fair weather field. Using this side constraint and data from fair weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. The resulting calibration matrix was then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably with the results obtained from earlier calibration analyses that were based on iterative techniques.

  19. Re-aluminising the primary mirror of the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Stoffels, John; Koorts, Willie; Christian, Brendt; de Water, Wilhelmina; Fransman, Timothy; Gibbons, Denville; Machete, Nelson; Sefako, Ramotholo R.; Taaibos, Sinethemba

    2016-07-01

    Telescope mirrors reside in harsh environments and thus require periodic re-aluminisation to maintain their reflectivity. The SAAO's Sutherland field station suffers from dust and frequent bouts of high humidity. Dust settling on the mirrors adheres to the upward-facing optical surfaces and is not removed by CO2 cleaning. The 74-inch primary mirror was unsuccessfully re-aluminised in April 2015. Parts of the mirror proved difficult to clean and the resulting coating included hazy, white patches in those problem areas. Cotton wool soaked with ferric chloride was used to strip small patches of coating, confirming that no optical surface damage had occurred. The 55 year-old aluminising equipment for the 74-inch required an extensive overhaul and the spruced up system was then used to re-coat the primary mirror in November 2015. We used the same de-ionised water, potassium hydroxide, sodium lauryl sulphate, cotton wool, safety gear and cleaning techniques employed by the mirror coating team at the neighbouring Southern African Large Telescope, as well as their Ocean Optics reflectometer to quantify the improvement in reflectivity. Measurements at 320 nm on different parts of the dirty primary ranged between 10 % and 70 %, while the new coating exceeded 95 % over the entire surface.

  20. Turbulence studies with means of reflectometry at TEXTOR

    NASA Astrophysics Data System (ADS)

    Krämer-Flecken, A.; Dreval, V.; Soldatov, S.; Rogister, A.; Vershkov, V.; TEXTOR-team

    2004-11-01

    At TEXTOR, an O-mode heterodyne reflectometer system is installed and operated for the measurement of plasma density fluctuations and turbulence investigations. With two antenna arrays in the equatorial and top positions having two and three horn antennae, respectively, poloidal correlations are investigated under different plasma scenarios. From the amplitude, cross-phase and coherency spectrum, differences in the ohmic and auxiliary heated discharges are investigated. Furthermore the dynamic behaviour of the turbulence is studied in the SOC-IOC transition and in the precursor phase of a disruption. For the latter an increased integrated power spectral density was observed at the X-point of the mode compared with the O-point. Stationary m = 2 mode activity is observed for the first time at TEXTOR by reflectometry. The fluctuation level is calculated for different conditions and rises significantly increasing heating power which is consistent with the L-mode confinement degradation. Correlation measurements yield the measured phase delays which are used to calculate the poloidal phase velocity perpendicular to the magnetic field. In ohmic plasmas the turbulence rotates like a 'rigid body' with constant angular velocity inside the q = 2 surface. The rigid body rotation is broken up during tangential neutral beam injection. From the deduced poloidal wavenumber of the turbulence, most likely ion temperature gradient modes are the driving mechanism of the turbulence.

  1. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  2. Potential for detection of explosive and biological hazards with electronic terahertz systems.

    PubMed

    Choi, Min Ki; Bettermann, Alan; van der Weide, D W

    2004-02-15

    The terahertz (THz) regime (0.1-10 THz) is rich with emerging possibilities in sensing, imaging and communications, with unique applications to screening for weapons, explosives and biohazards, imaging of concealed objects, water content and skin. Here we present initial surveys to evaluate the possibility of sensing plastic explosives and bacterial spores using field-deployable electronic THz techniques based on short-pulse generation and coherent detection using nonlinear transmission lines and diode sampling bridges. We also review the barriers and approaches to achieving greater sensing-at-a-distance (stand-off) capabilities for THz sensing systems. We have made several reflection measurements of metallic and non-metallic targets in our laboratory, and have observed high contrast relative to reflection from skin. In particular, we have taken small quantities of energetic materials such as plastic explosives and a variety of Bacillus spores, and measured them in transmission and in reflection using a broadband pulsed electronic THz reflectometer. The pattern of reflection versus frequency gives rise to signatures that are remarkably specific to the composition of the target, even though the target's morphology and position is varied. Although more work needs to be done to reduce the effects of standing waves through time-gating or attenuators, the possibility of mapping out this contrast for imaging and detection is very attractive.

  3. Filters for blocking macroparticles in plasma deposition apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre; Kolbeck, Jonathan

    This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magneticmore » field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.« less

  4. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng

    2016-06-01

    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  5. 76 FR 71117 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... field side of the near running rail.'' In the case of a platform, 4 feet from the field side of the rail... examination of publicly-available data regarding passenger and employee injuries and fatalities on railroad... difference in worker injuries and fatalities on station platforms when compared to FRA data. Amtrak conducted...

  6. Mechanical membrane for the separation of a paramagnetic constituent from a fluid

    DOEpatents

    Maurice, David

    2017-05-02

    The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

  7. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  8. The reflectance of Ames 24E, Infrablack, and Martin black. [anodizing coatings for far-infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1989-01-01

    Results are reported from measurements of the specular reflectances (SRs) and bidirectional reflectance distribution functions (BRDFs) of three black optical coatings in the FIR wavelength range. The nonspecular reflectometer apparatus described by Smith (1984) is employed, and the data are presented in tables and graphs and discussed in detail. It is found that Ames 24E has an FIR SR one order of magnitude lower than that of Martin black (MB), with BRDF values characteristic of a nearly Lambertian surface, while Infrablack has SR two orders lower than MB and a specular-diffuse surface; MB itself has a very specular surface.

  9. Quality of dry chemistry testing.

    PubMed

    Nakamura, H; Tatsumi, N

    1999-01-01

    Since the development of the qualitative test paper for urine in 1950s, several kinds of dry-state-reagents and their automated analyzers have been developed. "Dry chemistry" has become to be called since the report on the development of quantitative test paper for serum bilirubin with reflectometer in the end of 1960s and dry chemistry has been world widely known since the presentation on the development of multilayer film reagent for serum biochemical analytes by Eastman Kodak Co at the 10th IFCC Meeting in the end of 1970s. We have reported test menu, results in external quality assessment, merits and demerits, and the future possibilities of dry chemistry.

  10. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  11. Technique for finding and identifying filters that cut off OTDR lights in front of ONU from a central office

    NASA Astrophysics Data System (ADS)

    Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji

    2006-04-01

    We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.

  12. 6. BUILDING 283, WEST SIDE OF THE GARAGE ADDITION (CA.1947) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING 283, WEST SIDE OF THE GARAGE ADDITION (CA.1947) ON LEFT, NORTH SIDE OF CA.1947-1950 ADDITION ON RIGHT. - Presidio of San Francisco, Warehouse & Auto Shop, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  13. Retrieving Storm Electric Fields from Aircrfaft Field Mill Data: Part II: Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Mach, D. M.; Christian H. J.; Stewart, M. F.; Bateman M. G.

    2006-01-01

    The Lagrange multiplier theory developed in Part I of this study is applied to complete a relative calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the Lagrange multiplier method performs well in computer simulations. For mill measurement errors of 1 V m(sup -1) and a 5 V m(sup -1) error in the mean fair-weather field function, the 3D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair-weather field was also tested using computer simulations. For mill measurement errors of 1 V m(sup -l), the method retrieves the 3D storm field to within an error of about 8% if the fair-weather field estimate is typically within 1 V m(sup -1) of the true fair-weather field. Using this type of side constraint and data from fair-weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. Absolute calibration was completed using the pitch down method developed in Part I, and conventional analyses. The resulting calibration matrices were then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably in many respects with results derived from earlier (iterative) techniques of calibration.

  14. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    NASA Astrophysics Data System (ADS)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  15. Full-field local displacement analysis of two-sided paperboard

    Treesearch

    J.M. Considine; D.W. Vahey

    2007-01-01

    This report describes a method to examine full-field displacements of both sides of paperboard during tensile testing. Analysis showed out-of-plane shear behavior near the failures zones. The method was reliably used to examine out-of-plane shear in double notch shear specimens. Differences in shear behavior of machine direction and cross-machine direction specimens...

  16. Spacecube V2.0 Micro Single Board Computer

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor); Geist, Alessandro (Inventor); Lin, Michael R. (Inventor); Crum, Gary R. (Inventor)

    2017-01-01

    A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm.times.7 cm.

  17. Leakage and field emission in side-gate graphene field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current densitymore » as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.« less

  18. Magnetism and the interior of the moon

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972, 11 magnetometers were sent to the moon. The primary purpose of this paper is to review the results of lunar magnetometer data analysis, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are 38, 103 (maximum), 3, and 327 gammas (maximum), respectively. Simultaneous magnetic field and solar plasma pressure measurements show that the Apollo 12 and 16 remanent fields are compressed during times of high plasma dynamic pressure. Apollo 15 and 16 subsatellite magnetometers have mapped in detail the field above portions of the lunar surface and have placed an upper limit on the global permanent dipole moment. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. Magnetic fields are stronger in highland regions than in mare regions and stronger on the lunar far side than on the near side. The largest magnetic anomaly measured to date is between the craters Van de Graaff and Aitken on the lunar far side.

  19. Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study.

    PubMed

    Skaane, Per; Young, Kari; Skjennald, Arnulf

    2003-12-01

    To compare screen-film and full-field digital mammography with soft-copy reading in a population-based screening program. Full-field digital and screen-film mammography were performed in 3,683 women aged 50-69 years. Two standard views of each breast were acquired with each modality. Images underwent independent double reading with use of a five-point rating scale for probability of cancer. Recall rates and positive predictive values were calculated. Cancer detection rates determined with both modalities were compared by using the McNemar test for paired proportions. Retrospective side-by-side analysis for conspicuity of cancers was performed by an external independent radiologist group with experience in both modalities. In 3,683 cases, 31 cancers were detected. Screen-film mammography depicted 28 (0.76%) malignancies, and full-field digital mammography depicted 23 (0.62%) malignancies. The difference between cancer detection rates was not significant (P =.23). The recall rate for full-field digital mammography (4.6%; 168 of 3,683 cases) was slightly higher than that for screen-film mammography (3.5%; 128 of 3,683 cases). The positive predictive value based on needle biopsy results was 46% for screen-film mammography and 39% for full-field digital mammography. Side-by-side image comparison for cancer conspicuity led to classification of 19 cancers as equal for probability of malignancy, six cancers as slightly better demonstrated at screen-film mammography, and six cancers as slightly better demonstrated at full-field digital mammography. There was no statistically significant difference in cancer detection rate between screen-film and full-field digital mammography. Cancer conspicuity was equal with both modalities. Full-field digital mammography with soft-copy reading is comparable to screen-film mammography in population-based screening.

  20. Saturation of side-band instabilities in a free-electron laser

    NASA Astrophysics Data System (ADS)

    Lin, A. T.

    The efficiency of a free electron laser is intrinsically limited because the growth of the ponderomotive force produced by the interaction of the rippled magnetic field and the signal wave will eventually trap the electrons. There are a number of approaches for enhancing the efficiency of a free electron laser (FEL). One approach employs a dc field. Most of the efficiency enhancement calculations use a single-mode approximation which prohibits the side band waves to grow. In the present investigation, a particle simulation procedure is employed to demonstrate that the enhancement process is ultimately terminated by the generation of side band instabilities due to the interaction of the trapped electrons and the signal wave. The side band instability will play an important part in determining the maximum output power which can be obtained from a FEL. It is also shown that a considerable improvement in output power can still be achieved by carefully choosing the strength and the turn-on time of the dc electric field.

  1. The origin of morphological asymmetries in bipolar active regions. [magnetic field in solar convective envelope

    NASA Technical Reports Server (NTRS)

    Fan, Y.; Fisher, G. H.; Deluca, E. E.

    1993-01-01

    A series of 3D numerical simulations was carried out to examine the dynamical evolution of emerging flux loops in the solar convective envelope. The innermost portions of the loops are anchored beneath the base of the convective zone by the subadiabatic temperature gradient of the underlying overshoot region. It is found that, as the emerging loops approach the photosphere, the magnetic field strength of the leading side of each rising loop is about twice as large as that of the following side at the same depth. The evacuation of plasma out of the leading side of the rising loop results in an enhanced magnetic field strength there compared with the following side. It is argued that this result provides a natural explanation for the fact that the preceding (leading) polarity tends to have a less organized and more fragmented appearance, and that the preceding spots tend to be larger in area and fewer in number, and have a longer lifetime than the following spots.

  2. Diamagnetic Solar-Wind Cavity Discovered behind Moon.

    PubMed

    Colburn, D S; Currie, R G; Mihalov, J D; Sonett, C P

    1967-11-24

    Preliminary Ames-magnetometer data from Explorer 35, the lunar orbiter, show no evidence of a lunar bow shock. However, an increase of the magnetic field by about 1.5 gamma (over the interplanetary value) is evident on Moon's dark side, as well as dips in field strength at the limbs. Interpretation of these spatial variations in the field as deriving from plasma diamagnetism is consistent with a plasma void on the dark side, and steady-state (B = 0) magnetic transparency of Moon.

  3. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  4. Design and Construction of a Dual Anti-Helmholtz Magnet System for a Side-by-Side MOT

    NASA Astrophysics Data System (ADS)

    Narducci, Frank; Prasher, Rebecca; Adler, Charles

    2012-06-01

    The design of a cold-atom interferometric gradient magnetometer [1] requires two side-by-side identical atom clouds separated by approximately 1 cm for noise reduction purposes. The first step in building this system is a side-by-side MOT to capture the atoms; however, the design of a coil system to provide two zero field crossings with high field gradients separated by a small distance with low power consumption can be challenging. These three requirements are not easy to satisfy simultaneously, but there is a large ``state space'' in which we can evolve different designs. In this poster we analyze the requirements for such a system and discuss our design consisting of coils with wires wrapped on a truncated cone; this type of design has been made possible by recent advances in 3D printers, and we will go over the issues involved in printing the coil supports, building the coils and comparison of our measurements of the magnetic field to theory. We also discuss the possibility of optimizing coil design using state space searches like the Metropolis algorithm, and how these designs can be realized using 3D printing technology. [4pt] [1] Davis, J. P. and Narducci, F. A.(2008) ``A proposal for a gradient magnetometer atom interferometer,'' Journal of Modern Optics,55:19,3173 --- 3185

  5. Magnetic heat pumping

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1978-01-01

    A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.

  6. The Westerbork SINGS survey. III. Global magnetic field topology

    NASA Astrophysics Data System (ADS)

    Braun, R.; Heald, G.; Beck, R.

    2010-05-01

    A sample of large northern Spitzer Infrared Nearby Galaxies Survey (SINGS) galaxies was observed with the Westerbork Synthesis Radio Telescope (WSRT) at 1300-1760 MHz. In Paper II of this series, we described sensitive observations of the linearly polarized radio continuum emission in this WSRT-SINGS galaxy sample. Large-scale magnetic field structures of two basic types are found: (a) disk fields with a spiral topology in all detected targets; and (b) circumnuclear, bipolar outflow fields in a subset. Here we explore the systematic patterns of azimuthal modulation of both the Faraday depth and the polarized intensity and their variation with galaxy inclination. A self-consistent and fully general model for both the locations of net polarized emissivity at 1-2 GHz frequencies and the global magnetic field topology of nearby galaxies emerges. Net polarized emissivity is concentrated into two zones located above and below the galaxy mid-plane, with the back-side zone suffering substantial depolarization (by a factor of 4-5) relative to the front-side zone in its propagation through the turbulent mid-plane. The field topology which characterizes the thick-disk emission zone, is in all cases an axisymmetric spiral with a quadrupole dependence on height above the mid-plane. The front-side emission is affected by only mild dispersion (10's of rad m-2) from the thermal plasma in the galaxy halo, while the back-side emission is affected by additional strong dispersion (100's of rad m-2) from an axi-symmetric spiral field in the galaxy mid-plane. The field topology in the upper halo of galaxies is a mixture of two distinct types: a simple extension of the axisymmetric spiral quadrupole field of the thick disk and a radially directed dipole field. The dipole component might be a manifestation of (1) a circumnuclear, bipolar outflow; (2) an in situ generated dipole field; or (3) evidence of a non-stationary global halo.

  7. Sound field separation with sound pressure and particle velocity measurements.

    PubMed

    Fernandez-Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-12-01

    In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance between the equivalent sources and measurement surfaces and for the difference in magnitude between pressure and velocity. Experimental and numerical studies have been conducted to examine the methods. The double layer velocity method seems to be more robust to noise and flanking sound than the combined pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward.

  8. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Taylor, Henry F.

    2005-05-01

    The use of an optical fiber as a distributed sensor for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR). Light pulses from a cw laser operating in a single longitudinal mode and with low (MHz/min range) frequency drift are injected into one end of the single mode fiber, and the backscattered light is monitored with a photodetector. In laboratory tests with 12 km of fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on Φ-OTDR traces were characterized. In field tests in which the sensing element is a single mode fiber in a 3-mm diameter cable buried in a 20-46 cm deep, 10 cm wide trench in clay soil, detection of intruders on foot up to 4.6 m from the cable line was achieved. In desert terrain field tests in which the sensing fiber is in a 4.5-mm diameter cable buried in a 30 cm deep, 75 cm wide trench filled with loose sand, high sensitivity and consistent detection of intruders on foot and of vehicles traveling down a road near the cable line was realized over a cable length of 8.5 km and a total fiber path of 19 km. Based on these results, this technology may be regarded as a candidate for providing low-cost perimeter security for nuclear power plants, electrical power distribution centers, storage facilities for fuel and volatile chemicals, communication hubs, airports, government offices, military bases, embassies, and national borders.

  9. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  10. A millimeter-wave reflectometer for whole-body hydration sensing

    NASA Astrophysics Data System (ADS)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  11. Polarization effects on hard target calibration of lidar systems

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1987-01-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.

  12. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  13. Metal-coated Bragg grating reflecting fibre

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  14. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  15. Structure of a Reconnection Layer Poleward of the Cusp Under Extreme Density Asymmetry

    NASA Astrophysics Data System (ADS)

    Muzamil, F. M.; Farrugia, C. J.; Torbert, R. B.; Mozer, F.; Pritchett, P. L.; Scudder, J. D.; Sandholt, P. E.; Russell, C. T.; Denig, W. F.

    2013-12-01

    We present in situ observations made by the Polar spacecraft of a reconnection layer poleward of the northern cusp. Interplanetary conditions monitored by Wind showed an ICME with a strong (~ 20 nT ) northward pointing field component (clock angle ~ 200) lasting for ~13 hours. Polar traversed the layer several times from the magnetosphere (MSP) and magnetosheath (MSH). It recorded an event characterized by extreme density (over two orders of magnitude) and temperature (about one order of magnitude) asymmetries between the two regimes. By contrast the magnetic field on either side of the reconnection was practically equal (ratio= 0.85) and sheared by 1530. During each crossing of the layer, Polar intercepted sunward-flowing jets reaching up to 500km/s. Supplementing the Polar data by low-altitude, polar orbiting, DMSP observations, we show continued patterns of reverse convection in the northern hemisphere which lasted for as long as the external field was northward pointing. Here, we examine one Polar crossing in detail. The observations show (1) a prominent density dip region lasting for ~18 seconds is detected at the separatrix on the MSP side. (2) A clear, though much less pronounced, density dip at the separatrix on MSH side was also detected. (3) Intense electric field fluctuations reaching up to 60 mV/m mostly in the normal component to MP (Hall E field). (4) The ion bulk outflow jet was strongly biased towards to the MSP side. (5) The Hall, out-of-plane magnetic field has a unipolar structure. We compare our findings with those from 2D PIC simulations of Tanaka et al. (Ann. Geophys. 26, 2008) who also focused on density asymmetry (NMSH/NMSP=10) with no guide field. We find good agreement. In our case, however we find (1) a more intense EN field and (2) the ion bulk ouflow jet being more strongly biased towards the MSP side. An interesting feature of our observations is the presence of a clear structure in the outflow jet bearing similarities to a micro FTEs but does not have a flux rope structure.

  16. The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.

    1993-01-01

    Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.

  17. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  18. Coupling of the magnetic field and gas flows inferred from the net circular polarization in a sunspot penumbra

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi

    2015-04-01

    We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.

  19. View southeast, showing front elevation, side (west) elevation and ell. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast, showing front elevation, side (west) elevation and ell. Outbuildings and field stretching to west and south - Conner Homestead, Epping Road (State Route 101), Exeter, Rockingham County, NH

  20. Skyrmion based universal memory operated by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Jiadong; Chien, Chia-Ling; Li, Yufan

    2017-09-26

    A method for generating a skyrmion, comprising: depositing a vertical metallic nanopillar electrode on a first side of a helimagnetic thin film, the helimagnetic thin film having a contact on a second side to provide a current drain; injecting a current through the vertical metallic nanopillar electrode to generate a rotating field; and applying a static upward magnetic field perpendicular to the helimagnetic thin film to maintain an FM phase background.

  1. 6. SOUTHWEST CORNER DETAIL (FRONT AND LEFT SIDE) SHOWING LOG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SOUTHWEST CORNER DETAIL (FRONT AND LEFT SIDE) SHOWING LOG JOINERY AND WEATHERBOARDING (copy negative, original 35 mm negative in field records) - Thomas Jefferson Walling Log Cabin, Henderson, Rusk County, TX

  2. 1. BUILDING 283, SOUTH SIDE OF CA.19471950 ADDITION (ONEANDONEHALFSTORY, GABLEROOFED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 283, SOUTH SIDE OF CA.1947-1950 ADDITION (ONE-AND-ONE-HALF-STORY, GABLE-ROOFED STRUCTURE AND ONE-STORY, FLAT-ROOFED STRUCTURE) AND WEST SIDE OF CA. 1926 WAREHOUSE (TWO-STORY, GABLE-ROOFED STRUCTURE). - Presidio of San Francisco, Warehouse & Auto Shop, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  3. Developing a Side Bias for Conspecific Faces during Childhood

    ERIC Educational Resources Information Center

    Balas, Benjamin; Moulson, Margaret C.

    2011-01-01

    Adults preferentially use information from the left side of face images to judge gender, emotion, and identity. In this study, we examined the development of this visual-field bias over middle childhood (5-10 years). Our goal was to both characterize the developmental trajectory of the left-side bias (should one exist) and examine the selectivity…

  4. Magnetic Topology and Ion Outflow in Mars' Magnetotail

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Xu, S.; McFadden, J. P.; Hara, T.; Luhmann, J. G.; Mazelle, C. X.; Andersson, L.; DiBraccio, G. A.; Connerney, J. E. P.

    2017-12-01

    Planetary ion outflow down the Martian magnetotail could be an important atmospheric loss mechanism. This process depends on magnetic connectivity to the day-side ionosphere and on acceleration of ions to escape velocity. The Mars Atmosphere and Volatile Evolution (MAVEN) mission has obtained comprehensive ion, electron, and magnetic field data in Mars' magnetotail. The spacecraft is in a 75°-inclination, elliptical orbit that samples altitudes from 150 to 6200 km. As the orbit precesses, it sweeps through the tail at a variety of altitudes in this range. Data from the Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) are used to determine the magnetic field topology in the tail at high cadence (every 2-4 seconds), and in particular whether field lines are open, closed, or draped, and if open whether they have access to the day-side or night-side ionosphere. Simultaneous observations by the Supra-Thermal and Thermal Ion Composition (STATIC) instrument and the Langmuir Probe and Waves (LPW) experiment are used to measure the density, composition, and velocity of planetary plasma on these field lines. We find that magnetic topology in the tail is complex and variable, and is influenced by the IMF polarity and the orientation of Mars' crustal magnetic fields with respect to the Sun. We find that planetary ion outflow occurs on both open and draped field lines. On open field lines, outflow tends to occur parallel to the field line, with colder, denser, and slower outflow on field lines connected to the day-side ionosphere (Fig. 1). On these same field lines (after correction for the spacecraft potential) a shift in the position of the He-II photoelectron feature indicates a 1-Volt parallel electric potential directed away from the planet. Except for H+ and occasionally O+, this potential is insufficient by itself to accelerate planetary ions to escape velocity. Outflow is warmer, less dense, and faster moving on draped field lines. In this case, the ion bulk velocity can be at large angles to the magnetic field, suggesting JxB acceleration. This indicates that more than one mechanism is responsible for accelerating ions into the tail.

  5. Mean size estimation yields left-side bias: Role of attention on perceptual averaging.

    PubMed

    Li, Kuei-An; Yeh, Su-Ling

    2017-11-01

    The human visual system can estimate mean size of a set of items effectively; however, little is known about whether information on each visual field contributes equally to the mean size estimation. In this study, we examined whether a left-side bias (LSB)-perceptual judgment tends to depend more heavily on left visual field's inputs-affects mean size estimation. Participants were instructed to estimate the mean size of 16 spots. In half of the trials, the mean size of the spots on the left side was larger than that on the right side (the left-larger condition) and vice versa (the right-larger condition). Our results illustrated an LSB: A larger estimated mean size was found in the left-larger condition than in the right-larger condition (Experiment 1), and the LSB vanished when participants' attention was effectively cued to the right side (Experiment 2b). Furthermore, the magnitude of LSB increased with stimulus-onset asynchrony (SOA), when spots on the left side were presented earlier than the right side. In contrast, the LSB vanished and then induced a reversed effect with SOA when spots on the right side were presented earlier (Experiment 3). This study offers the first piece of evidence suggesting that LSB does have a significant influence on mean size estimation of a group of items, which is induced by a leftward attentional bias that enhances the prior entry effect on the left side.

  6. Rear Seat Occupant Thorax Protection in Near Side Impacts

    PubMed Central

    Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola

    2009-01-01

    Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828

  7. 3. BUILDING 901, EXTERIOR DETAILING ON NORTH SIDE SHOWING CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 901, EXTERIOR DETAILING ON NORTH SIDE SHOWING CONCRETE FOUNDATION AND METAL TERMITE SHIELD. - Presidio of San Francisco, Warehouse, West End of Crissy Field, Livingston Street, San Francisco, San Francisco County, CA

  8. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  9. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  10. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    DOE PAGES

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  11. An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viertel, Ryan; Osting, Braxton

    2017-08-01

    A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i)more » find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.« less

  12. IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF BENZENE, TOLUENE, AND O-XYLENE IN A NORMALLY SULFATE-REDUCING AQUIFER

    EPA Science Inventory

    Two side-by-side field experiments were conducted in a shallow sulfate-reducing aquifer at a former service station site at Vandenberg Air Force Base, CA. On one side, we injected site groundwater amended with 1-3 mg/L benzene, toluene, and o-xylene (B, T, and o-X). On the othe...

  13. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-06

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

  14. 6. West side of Building 1001 (administration building), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. West side of Building 1001 (administration building), looking southeast - Naval Air Station Chase Field, Building 1001, Independence Street, .45 mile south of intersection of Texas State Highway & Independence Street, Beeville, Bee County, TX

  15. 4. South side of Building 1001 (administration building), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of Building 1001 (administration building), looking north - Naval Air Station Chase Field, Building 1001, Independence Street, .45 mile south of intersection of Texas State Highway & Independence Street, Beeville, Bee County, TX

  16. 3. East side of Building 1001 (administration building), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. East side of Building 1001 (administration building), looking west - Naval Air Station Chase Field, Building 1001, Independence Street, .45 mile south of intersection of Texas State Highway & Independence Street, Beeville, Bee County, TX

  17. 3. Southwest side of Building 1042 (brig), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of Building 1042 (brig), looking northeast - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  18. 8. Southwest side of Building 1040 (chapel), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Southwest side of Building 1040 (chapel), looking northeast - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  19. 4. Southwest side of Building 1042 (brig), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Southwest side of Building 1042 (brig), looking northeast - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  20. 2. Southeast side of Building 1042 (brig), looking northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Building 1042 (brig), looking northwest - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  1. 5. North side of Building 1001 (administration building), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. North side of Building 1001 (administration building), looking southeast - Naval Air Station Chase Field, Building 1001, Independence Street, .45 mile south of intersection of Texas State Highway & Independence Street, Beeville, Bee County, TX

  2. 1. Northeast side of Building 1042 (brig), looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast side of Building 1042 (brig), looking southwest - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  3. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  4. A border-ownership model based on computational electromagnetism.

    PubMed

    Zainal, Zaem Arif; Satoh, Shunji

    2018-03-01

    The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  6. Antenna for Measuring Electric Fields Within the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward Charles

    2007-01-01

    A document discusses concepts for the design of an antenna to be deployed from a spacecraft for measuring the ambient electric field associated with plasma waves at a location within 3 solar radii from the solar photosphere. The antenna must be long enough to extend beyond the photoelectron and plasma sheaths of the spacecraft (expected to be of the order of meters thick) and to enable measurements at frequencies from 20 Hz to 10 MHz without contamination by spacecraft electric-field noise. The antenna must, therefore, extend beyond the thermal protection system (TPS) of the main body of the spacecraft and must withstand solar heating to a temperature as high as 2,000 C while not conducting excessive heat to the interior of the spacecraft. The TPS would be conical and its axis would be pointed toward the Sun. The antenna would include monopole halves of dipoles that would be deployed from within the shadow of the TPS. The outer potion of each monopole would be composed of a carbon-carbon (C-C) composite surface exposed to direct sunlight (hot side) and a C-C side in shadow (cold side) with yttria-stabilized zirconia spacers in-between. The hot side cannot view the spacecraft bus, while the cold side can. The booms also can be tilted to minimize heat input to spacecraft bus. This design allows one to reduce heat input to the spacecraft bus to acceptable levels.

  7. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  8. Subharmonic mechanism of the mode C instability

    NASA Astrophysics Data System (ADS)

    Sheard, G. J.; Thompson, M. C.; Hourigan, K.

    2005-11-01

    The perturbation field of the recently discovered subharmonic mode C instability in the wake behind a ring is compared via a side-by-side comparison to the perturbation fields of the modes A and B instabilities familiar from past studies of the vortex street behind a circular cylinder. Snapshots of the wake are presented over a full shedding cycle, along with evidence from a linear stability analysis, to verify and better understand how the subharmonic instability is sustained.

  9. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Levy; Dentz, J.; Ansanelli, E.

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  10. RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging

    DTIC Science & Technology

    2016-02-04

    coil with square -shaped overlapping turns along the 135mm length of the coil. This paper compares these two coils to determine which has a more...in which, the coil arrays consist of a few square or circular coils side-by-side or overlapping. Mobile unilateral NMR/MRI scanners were...magnetic field along the length of a normal rectangular coil (NRC) and a rectangular coil with overlapping square -shaped turns (RCOS). The RCOS coil is

  11. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    NASA Astrophysics Data System (ADS)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  12. 4. Northeast side of Building 1009, (enlisted waves' barracks), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast side of Building 1009, (enlisted waves' barracks), looking southwest - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  13. 2. Southwest side of Building 1009, (enlisted waves' barracks), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southwest side of Building 1009, (enlisted waves' barracks), looking northeast - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  14. 3. Southwest side of quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters R (commanding officer's quarters), looking east - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  15. 3. Northwest side of Building 1009, (enlisted waves' barracks), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Northwest side of Building 1009, (enlisted waves' barracks), looking southeast - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  16. 4. Northeast side of Building 1015 (land plane hangar), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast side of Building 1015 (land plane hangar), looking southwest - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  17. 5. Southeast side of Building 1015 (land plane hangar), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Southeast side of Building 1015 (land plane hangar), looking northwest - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  18. 3. Northwest side of Building 1015 (land plane hangar), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Northwest side of Building 1015 (land plane hangar), looking east - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  19. 1. North side of quarters (executive officer's quarters), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. North side of quarters (executive officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  20. 6. Detail of southeast side of Building 1040 (chapel), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of southeast side of Building 1040 (chapel), looking northwest - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  1. 2. Southwest side of Building 1015 (land plane hangar), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southwest side of Building 1015 (land plane hangar), looking northeast - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  2. 5. East side of quarters (executive officer's quarters), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. East side of quarters (executive officer's quarters), looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  3. 1. Northeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast side of Quarters R (commanding officer's quarters), looking west - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  4. 2. West side of quarters (executive officer's quarters), looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. West side of quarters (executive officer's quarters), looking east - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  5. 2. Southeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Quarters R (commanding officer's quarters), looking northwest - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  6. 4. Northwest side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northwest side of Quarters R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  7. 7. Detail of southwest side of Building 1040 (gym), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of southwest side of Building 1040 (gym), looking northeast - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  8. 4. South side of quarters (executive officer's quarters), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of quarters (executive officer's quarters), looking north - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  9. 5. Southeast side of Building 1009, (enlisted waves' barracks), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Southeast side of Building 1009, (enlisted waves' barracks), looking west - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  10. 3. Southwest side of quarters (executive officer's quarters), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters (executive officer's quarters), looking northeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  11. Helical cone beam CT with an asymmetrical detector.

    PubMed

    Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D

    2005-10-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  12. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  13. Calibration and standards beamline 6.3.2 at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, J.H.; Gullikson, E.M.; Koike, M.

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit;more » vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.« less

  14. AWG-based WDM-PON monitoring system using an optical switch and a WDM filter

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Lai, Y.-T.; Chang, C.-L.; Shung, O.

    2008-09-01

    A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.

  15. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  16. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  17. Grazing incidence reflection coefficients of rhodium, osmium, platinum, and gold from 50 to 300 A

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Edelstein, J.; Flint, S. A.

    1985-01-01

    Reflectance measurements were made of several metals illuminated from various angles with light at 14 wavelengths in the interval 46.5-283 A. The metals, Rh, Os, Pt and Au were deposited as 125 A films on a binding substrate through electron beam epitaxy. Measurements were made with a grazing incidence monochromator and a reflectometer. The data generally showed lowered reflectance with increasing angles of illumination and shorter wavelengths. The reflectance peak, however, was located at wavelengths of 100-160 A, particularly at large grazing incidences. The wavelengths correspond with the 5p to epsilon-d transition in all of the elements. Rh displayed the highest overall reflectance, and both Rh and Os were more efficient than Au or Pt.

  18. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  19. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

    2013-12-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  20. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  1. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  2. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  3. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    NASA Astrophysics Data System (ADS)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  4. 2. Southeast side of Building 1040 (auditorium/gym/chapel), looking northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Building 1040 (auditorium/gym/chapel), looking northwest - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  5. 7. Staircase on south side of Building 1009, (enlisted waves' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Staircase on south side of Building 1009, (enlisted waves' barracks), looking southeast - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  6. 3. Southeast side of Building 1040 (auditorium/gym/chapel), looking northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southeast side of Building 1040 (auditorium/gym/chapel), looking northwest - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  7. 4. Northeast side of Building 1040 (auditorium/gym/chapel), looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast side of Building 1040 (auditorium/gym/chapel), looking southwest - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  8. 5. Northwest side of Building 1040 (auditorium/gym/chapel), looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Northwest side of Building 1040 (auditorium/gym/chapel), looking south - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  9. NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION WAS NOT POSSIBLE DUE TO VEGETATION, SEE OBLIQUE SHOTS 2 AND 5. VIEW FACING SOUTHWEST. - Hickam Field, Officers' Housing Type G, 205 Seventh Street, Honolulu, Honolulu County, HI

  10. Strain-induced modulation of near-field radiative transfer.

    PubMed

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  11. Trapped particles at a magnetic discontinuity

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1972-01-01

    At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.

  12. Study on the intelligent decision making of soccer robot side-wall behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochuan; Shao, Guifang; Tan, Zhi; Li, Zushu

    2007-12-01

    Side-wall is the static obstacle in soccer robot game, reasonably making use of the Side-wall can improve soccer robot competitive ability. As a kind of artificial life, the Side-wall processing strategy of soccer robot is influenced by many factors, such as game state, field region, attacking and defending situation and so on, each factor also has different influence degree, so, the Side-wall behavior selection is an intelligent selecting process. From the view point of human simulated, based on the idea of Side-wall processing priority[1], this paper builds the priority function for Side-wall processing, constructs the action predicative model for Side-wall obstacle, puts forward the Side-wall processing strategy, and forms the Side-wall behavior selection mechanism. Through the contrasting experiment between the strategy applied and none, proves that this strategy can improve the soccer robot capacity, it is feasible and effective, and has positive meaning for soccer robot stepped study.

  13. Nebulae: Not as Close as They Appear

    NASA Image and Video Library

    2011-05-05

    This image from NASA Wide-field Infrared Survey Explorer, shows three different nebulae located in the constellation of Perseus. NGC 1491 is seen on the right side of the image, SH 2-209 is on the left side and BFS 34 lies in between.

  14. Identification of doubly excited states in nonsequential double ionization of Ar in strong laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Li, Xiaojin; Sun, Xiaoli; Hao, Xiaolei; Chen, Jing

    2017-12-01

    We use the semiclassical model to study the intensity dependence of nonsequential double ionization (NSDI) of Ar in short strong laser pulses. The contributions to NSDI through sequential ionization of doubly excited states (SIDE) are identified by tracking the energy trajectories of the two outgoing electrons. The correlated electron momentum distributions are calculated from which the longitudinal momentum distributions of the fast and the slow electrons for the side-by-side and the back-to-back emissions are obtained. The simulated momentum distributions of the fast and the slow electrons for NSDI of Ar by linearly polarized fields with a wavelength of 795 nm at an intensity of 7 × 1013 W cm-2 are in good agreement with the experimental measurements of Liu et al (2014 Phys. Rev. Lett. 112 013003). We demonstrate that the process of double ionization through SIDE dominates NSDI only when the laser intensities are below the recollision threshold; nevertheless, for higher intensities the SIDE process still takes place although the contribution to the NSDI yields decreases rapidly as the intensity increases. It has been found that for SIDE at different intensities, both the correlated electron momentum spectra and the momentum distributions of the fast and the slow electrons remain the same.

  15. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

    PubMed Central

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-01-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  16. Eocene Total Petroleum System -- North and East of the Eocene West Side Fold Belt Assessment Unit of the San Joaquin Basin Province: Chapter 19 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Gautier, Donald L.; Hosford Scheirer, Allegra

    2009-01-01

    The North and East of Eocene West Side Fold Belt Assessment Unit (AU) of the Eocene Total Petroleum System of the San Joaquin Basin Province comprises all hydrocarbon accumulations within the geographic and stratigraphic limits of this confirmed AU. Oil and associated gas accumulations occur in Paleocene through early middle Miocene marine to nonmarine sandstones found on the comparatively stable northeast shelf of the basin. The assessment unit is located north and east of the thickest accumulation of Neogene sediments and the west side fold belt. The area enclosed by the AU has been affected by only mild deformation since Eocene time. Traps containing known accumulations are mostly low-relief domes, anticlines, and up-dip basin margin traps with faulting and stratigraphic components. Map boundaries of the assessment unit are shown in figures 19.1 and 19.2; this assessment unit replaces the Northeast Shelf of Neogene Basin play 1006, the East Central Basin and Slope North of Bakersfield Arch play 1010, and part of the West Side Fold Belt Sourced by Pre-middle Miocene Rocks play 1005 considered by the U.S. Geological Survey (USGS) in their 1995 National Assessment (Beyer, 1996). Stratigraphically, the AU includes rocks from the uppermost crystalline basement to the topographic surface. In the region of overlap with the Central Basin Monterey Diagenetic Traps Assessment Unit, the North and East of Eocene West Side Fold Belt AU extends from basement rocks to the top of the Temblor Formation (figs. 19.3 and 19.4). In map view, the northern boundary of the assessment unit corresponds to the northernmost extent of Eocene-age Kreyenhagen Formation. The northeast boundary is the eastern limit of possible oil reservoir rocks near the eastern edge of the basin. The southeast boundary corresponds to the pinch-out of Stevens sand of Eckis (1940) to the south, which approximately coincides with the northern flank of the Bakersfield Arch (fig. 19.1). The AU is bounded on the southwest by the limit of major west side structural deformation and to the northwest by the San Andreas Fault and the limit of hydrocarbon-prospective strata in the Coast Ranges. As described by Gautier and others (this volume, chapter 2), existing oil fields in the San Joaquin Basin Province were assigned to assessment units based on the identified petroleum system and reservoir rocks in each field. Vallecitos oil field in the extreme northwest corner of the basin was assigned to the Eocene Total Petroleum System, because oil analyses conducted for this San Joaquin Basin assessment indicate that Eocene oil charged the reservoir rocks (Lillis and Magoon, this volume, chapter 9). Some literature classifies the Vallecitos oil field as part of the northernmost fold of the basin’s west side fold belt (see, for example, Rentschler, 1985; Bartow, 1991), but because of the oil field’s spatial separation and differing trend from the west side fold belt, Vallecitos field was considered here to be within the North and East of Eocene West Side Fold Belt Assessment Unit rather than in the other assessment unit in the Eocene Total Petroleum System, the Eocene West Side Fold Belt. Primary fields in the assessment unit are defined as those containing hydrocarbon resources greater than the USGS minimum threshold for assessment (0.5 million barrels of oil); secondary fields contain smaller volumes of oil but constitute a significant show of hydrocarbons.

  17. ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Xinbang; Gong, Zhenfeng

    2018-03-01

    In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.

  18. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  19. Integrating watershed hydrology and economics to establish a local market for water quality improvement: A field experiment.

    PubMed

    Uchida, Emi; Swallow, Stephen K; Gold, Arthur; Opaluch, James; Kafle, Achyut; Merrill, Nathaniel; Michaud, Clayton; Gill, Carrie Anne

    2018-04-01

    Innovative market mechanisms are being increasingly recognized as effective decision-making institutions to incorporate the value of ecosystem services into the economy. We present a field experiment that integrates an economic auction and a biophysical water flux model to develop a local market process consisting of both the supply and demand sides. On the supply side, we operate an auction with small-scale livestock owners who bid for contracts to implement site-specific manure management practices that reduce phosphorus loadings to a major reservoir. On the demand side, we implement a real money, multi-unit public good auction for these contracts with residents who potentially benefit from reduced water quality risks. The experiments allow us to construct supply and demand curves to find an equilibrium price for water quality improvement. The field experiments provide a proof-of-concept for practical implementation of a local market for environmental improvements, even for the challenging context of nonpoint pollution.

  20. Influence of Magnetic Topology on Mars' Ionospheric Structure

    NASA Astrophysics Data System (ADS)

    Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.

    2017-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.

  1. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    NASA Astrophysics Data System (ADS)

    Heilman, A. L.; Gordon, M. J.

    2016-06-01

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective" pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.

  2. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilman, A. L.; Gordon, M. J.

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used tomore » plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower “effective” pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.« less

  3. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  4. Study of magnetic field expansion using a plasma generator for space radiation active protection

    NASA Astrophysics Data System (ADS)

    Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo

    2013-09-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  5. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  6. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  7. Human health monitoring technology

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Hyun; Yook, Jong-Gwan

    2017-05-01

    Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

  8. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  9. Use of soil moisture probes to estimate ground water recharge at an oil spill site

    USGS Publications Warehouse

    Delin, G.N.; Herkelrath, W.N.

    2005-01-01

    Soil moisture data collected using an automated data logging system were used to estimate ground water recharge at a crude oil spill research site near Bemidji, Minnesota. Three different soil moisture probes were tested in the laboratory as well as the field conditions of limited power supply and extreme weather typical of northern Minnesota: a self-contained reflectometer probe, and two time domain reflectometry (TDR) probes, 30 and 50 cm long. Recharge was estimated using an unsaturated zone water balance method. Recharge estimates for 1999 using the laboratory calibrations were 13 to 30 percent greater than estimates based on the factory calibrations. Recharge indicated by the self-contained probes was 170 percent to 210 percent greater than the estimates for the TDR probes regardless of calibration method. Results indicate that the anomalously large recharge estimates for the self-contained probes are not the result of inaccurate measurements of volumetric moisture content, but result from the presence of crude oil, or bore-hole leakage. Of the probes tested, the 50 cm long TDR probe yielded recharge estimates that compared most favorably to estimates based on a method utilizing water table fluctuations. Recharge rates for this probe represented 24 to 27 percent of 1999 precipitation. Recharge based on the 30 cm long horizontal TDR probes was 29 to 37 percent of 1999 precipitation. By comparison, recharge based on the water table fluctuation method represented about 29 percent of precipitation. (JAWRA) (Copyright ?? 2005).

  10. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    NASA Astrophysics Data System (ADS)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  11. Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    NASA Technical Reports Server (NTRS)

    Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)

    1982-01-01

    Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents.

  12. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  13. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  14. Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations

    NASA Technical Reports Server (NTRS)

    Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.; hide

    2016-01-01

    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.

  15. Study of wavefront error and polarization of a side mounted infrared window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin

    2008-03-01

    The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.

  16. Downhole data transmission system

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe

    2006-06-20

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  17. Downhole Data Transmission System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2003-12-30

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  18. Asteroid 2012 DA14 as Seen from Siding Spring, Australia

    NASA Image and Video Library

    2013-02-15

    An animated set of images, from the telescope known as the iTelescope.net Siding Spring Observatory, shows asteroid 2012 DA14 as the streak moving from top to bottom in the field of view. The animation is available in the Planetary Photojournal.

  19. Nutrient Infiltrate Concentrations from Three Permeable Pavement Types

    EPA Science Inventory

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...

  20. Cover crop water quality benefits in intensive production

    USDA-ARS?s Scientific Manuscript database

    Fresh market tomatoes are typically grown in in raised beds covered in polyethylene mulch with bare-soil furrows between the beds. Field experiments were conducted over five years to examine two alternative management strategies. In side-by-side comparison with the traditional management practice, t...

  1. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    PubMed

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Exploration of Structural Changes in Lactose Permease on Sugar Binding and Proton Transport through Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Jewel, Yead; Dutta, Prashanta

    2017-11-01

    Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-D-galactopyranosyl-1-thio- β-D-galactopyranoside (TDG) molecule to a wild-type LacY. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from microsecond simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with experiments. Our analysis suggest that the conformational changes of LacY are a cumulative consequence of inter-domain H-bonds breaking at the periplasmic side, inter-domain salt-bridge formation at the cytoplasmic side, as well as the TDG orientational changes during the transition. This work is supported by US National Science Foundation under Grant No. CBET-1604211.

  3. Mariner 10 magnetic field observations of the Venus wake

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Behannon, K. W.

    1977-01-01

    Magnetic field measurements made over a 21-hour interval during the Mariner 10 encounter with Venus were used to study the down-stream region of the solar wind-Venus interaction over a distance of approximately 100 R sub v. For most of the day before closest approach the spacecraft was located in a sheath-like region which was apparently bounded by planetary bow shock on the outer side and either a planetary wake boundary or transient boundary-like feature on the inner side. The spacecraft made multiple encounters with the wake-like boundary during the 21-hour interval with an increasing frequency as it approached the planet. Each pass into the wake boundary from the sheath region was consistently characterized by a slight decrease in magnetic field magnitude, a marked increase in the frequency and amplitude of field fluctuations, and a systematic clockwise rotation of the field direction when viewed from above the plane of the planet orbit.

  4. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  5. Magnetic Quantum Oscillations in YBa2Cu3O6.61 and YBa2Cu3O6.69 in Fields of Up to 85 T: Patching the Hole in the Roof of the Superconducting Dome

    NASA Astrophysics Data System (ADS)

    Singleton, John; de La Cruz, Clarina; McDonald, R. D.; Li, Shiliang; Altarawneh, Moaz; Goddard, Paul; Franke, Isabel; Rickel, Dwight; Mielke, C. H.; Yao, Xin; Dai, Pengcheng

    2010-02-01

    We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p≈0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, Takeshi; Ikeda, Shunsuke

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  7. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  8. Impurity screening behavior of the high-field side scrape-off layer in near-double-null configurations: prospect for mitigating plasma-material interactions on RF actuators and first-wall components

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Kuang, A. Q.; Brunner, D.; Faust, I.; Mumgaard, R.; Reinke, M. L.; Terry, J. L.; Howard, N.; Hughes, J. W.; Chilenski, M.; Lin, Y.; Marmar, E.; Rice, J. E.; Rodriguez-Fernandez, P.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.

    2017-07-01

    The impurity screening response of the high-field side (HFS) scrape-off layer (SOL) to localized nitrogen injection is investigated on Alcator C-Mod for magnetic equilibria spanning lower-single-null, double-null and upper-single-null configurations under otherwise identical plasma conditions. L-mode, EDA H-mode and I-mode discharges are investigated. HFS impurity screening is found to depend on magnetic flux balance and the direction of B  ×  \

  9. Calibration Procedure for Measuring S-Parameters in Balun Applications on 150-ohm High-Speed Cables

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Onoufrios; Warner, Joseph D.

    2012-01-01

    In the radiofrequency (RF) world, in order to characterize cables that do not conform to the typical 50-omega impedance, a time domain reflectometer (TDR) would probably be the simplest and quickest tool to attain this goal. In the real world, not every engineer has a TDR at their disposal; however, they most likely have a network analyzer available. Given a generic 50-omega vector network analyzer (VNA), we would like to make S-parameter measurements for non-50-omega devices (DUTs). For that, we utilize RF balanced/unbalanced transformers (called baluns for short), which are primarily used to match the impedance between the two VNA ports and the DUT's input and output ports, for the two-port S-parameter measurements.

  10. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  11. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  12. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.

    2017-08-01

    Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.

  13. Dark side of predation: Blind side in biocontrol research

    USDA-ARS?s Scientific Manuscript database

    Predation of pests by arthopod predators (insects and spiders) occurs around the clock. Yet little effort has been made to characterize the 24-hour pattern of predation on insect pests in the field, particularly events that occur nocturnally. The few round-the-clock observations in various ecosyst...

  14. A histopathologic investigation on the effects of electrical stimulation on periodontal tissue regeneration in experimental bony defects in dogs.

    PubMed

    Kaynak, Deniz; Meffert, Roland; Günhan, Meral; Günhan, Omer

    2005-12-01

    One endpoint of periodontal therapy is to regenerate the structure lost due to periodontal disease. In the periodontium, gingival epithelium is regenerated by oral epithelium. Underlying connective tissue, periodontal ligament, bone, and cementum are derived from connective tissue. Primitive connective tissue cells may develop into osteoblasts and cementoblasts, which form bone and cementum. Several procedural advances may support these regenerations; however, the regeneration of alveolar bone does not always occur. Therefore, bone stimulating factors are a main topic for periodontal reconstructive research. The present study was designed to examine histopathologically whether the application of an electrical field could demonstrate enhanced alveolar and cementum regeneration and modify tissue factors. Seven beagle dogs were used for this experiment. Mandibular left and right sides served as control and experimental sides, respectively, and 4-walled intrabony defects were created bilaterally between the third and fourth premolars. The experimental side was treated with a capacitively coupled electrical field (CCEF) (sinusoidal wave, 60 kHz, and 5 V peak-to-peak), applied for 14 hours per day. The following measurements were performed on the microphotographs: 1) the distance from the cemento-enamel junction to the apical notch (CEJ-AN) and from the crest of newly formed bone (alveolar ridge) to the apical notch (AR-AN); 2) the thickness of new cementum in the apical notch region; and 3) the length of junctional epithelium. The following histopathologic parameters were assessed by a semiquantitative subjective method: 1) inflammatory cell infiltration (ICI); 2) cellular activity of the periodontal ligament; 3) number and morphology of osteoclasts; 4) resorption lacunae; and 5) osteoblastic activity. The results showed that the quantity of new bone fill and the mean value of the thickness of the cementum were significantly higher for the experimental side (P < 0.01). The location of the base of the pocket was positioned more coronally with respect to the apical point of the coronal notch in the experimental side (statistically significant P < 0.01). The length of the junctional epithelium and the number of osteoclasts were higher in the stimulated side than the coronal side; these findings were also statistically significant (P < 0.01). The comparison of the electrically stimulated versus non-stimulated mandibles with the semiquantitative subjective method demonstrated statistically significant differences in defined histopathologic parameters, except for osteoclast morphologies (P > 0.05). This study demonstrated that the CCEF method has the potential to produce reconstructive effects and bone deposits. Further investigations with respect to the theoretical determination of local field parameters of the periodontal tissue complex, such as permittivity, conductivity, strength of the field electrical stimulation applied to the periodontal field current density, wavelength, and signal frequency appropriate for this field, should be undertaken. Using different electromotive forces alone or in combination with bone graft materials, guided tissue regeneration techniques, and dental implants may achieve a new dimension in periodontal therapy in the near future.

  15. Effect of Magnetic Field on Bone Healing around Endosseous Implants – An In-vivo Study

    PubMed Central

    Anam, Chandrasekar; Mamidi, Praveen; Chiluka, Radha; Kumar, A. Gautam; Bibinagar, Ragini

    2016-01-01

    Introduction After implant placement, a stress-free healing period of 3-6 months is a pre-requisite to achieve good osseointegration. If this duration could be reduced, the patients would feel happier. Eventhough, immediate loading of implants is a clinically feasible concept; it is not possible in certain situations. Few studies have shown that Static magnetic field is useful to promote bone formation faster after the bone is wounded. Aim This pilot study was intended to evaluate the tissue response after implant placement under the influence of magnetic field. Materials and Methods Twenty Tidal Spiral implants were used for this study. Two implants were placed in each patient in the anterior mandible corresponding to the B and D regions and the implant on the D region was exposed to magnetic field using safer magnet (Neodymium Boron Iron) and the implant on the B region served as a control. Both the implants were compared for stability using Resonance Frequency Analyzer (RFA) at Days 0, 30, 60 and 90. Mean Implant Stability Quotient (ISQ) values were compared on both sides using student’s paired t-test and repeated measures ANOVA (analysis of variance). There was a significant difference in the mean ISQ values, hence, a post-hoc test was done to evaluate whether there is any difference between the follow-ups. Results The average ISQ value for implants at 0 day in the B and D regions was 68.6 and 68.7 respectively. The average ISQ value at 30th day, 60th day and 90th day was 73.25, 76.05 and 78.95 respectively on the magnetic side (D region). Whereas on the non-magnetic side (B region) at 30th day, 60th day and 90th day was 68.45, 72.05 and 74.45 respectively. Conclusion The implant stability quotient values obtained on the magnetic side were significantly greater than on the non-magnetic side. Positive correlation exists between the magnetic field and osseointegration. PMID:27891492

  16. Global facilitation of attended features is obligatory and restricts divided attention.

    PubMed

    Andersen, Søren K; Hillyard, Steven A; Müller, Matthias M

    2013-11-13

    In many common situations such as driving an automobile it is advantageous to attend concurrently to events at different locations (e.g., the car in front, the pedestrian to the side). While spatial attention can be divided effectively between separate locations, studies investigating attention to nonspatial features have often reported a "global effect", whereby items having the attended feature may be preferentially processed throughout the entire visual field. These findings suggest that spatial and feature-based attention may at times act in direct opposition: spatially divided foci of attention cannot be truly independent if feature attention is spatially global and thereby affects all foci equally. In two experiments, human observers attended concurrently to one of two overlapping fields of dots of different colors presented in both the left and right visual fields. When the same color or two different colors were attended on the two sides, deviant targets were detected accurately, and visual-cortical potentials elicited by attended dots were enhanced. However, when the attended color on one side matched the ignored color on the opposite side, attentional modulation of cortical potentials was abolished. This loss of feature selectivity could be attributed to enhanced processing of unattended items that shared the color of the attended items in the opposite field. Thus, while it is possible to attend to two different colors at the same time, this ability is fundamentally constrained by spatially global feature enhancement in early visual-cortical areas, which is obligatory and persists even when it explicitly conflicts with task demands.

  17. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori

    2016-07-18

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less

  18. Internal quantum efficiency mapping analysis for a >20%-efficiency n-type bifacial solar cell with front-side emitter formed by BBr3 thermal diffusion

    NASA Astrophysics Data System (ADS)

    Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka

    2017-10-01

    This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.

  19. Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu

    2017-08-10

    The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less

  20. Martian Low-Altitude Magnetic Topology Deduced from MAVEN/SWEA Observations

    NASA Astrophysics Data System (ADS)

    Xu, S.; Mitchell, D. L.; Liemohn, M. W.; Fang, X.; Ma, Y.; Luhmann, J. G.; Brain, D. A.; Steckiewicz, M.; Mazelle, C. X.; Connerney, J. E. P.; Jakosky, B. M.

    2016-12-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission is the first to make comprehensive plasma and magnetic field measurements down to 150 km altitude over wide ranges of solar zenith angle, local time, longitude, and latitude. The Magnetometer (MAG) and the Solar Wind Electron Analyzer (SWEA) measure the magnetic field vector and the energy-angle distribution of superthermal (3-4600 eV) electrons along the spacecraft trajectory. This study presents pitch angle-resolved electron energy spectra, which we use to infer the plasma source regions sampled by the magnetic field line at large distances from the spacecraft, and in particular whether one or both ends of the magnetic field line have access to the day-side ionosphere. This is a key piece of information for deducing Martian magnetic topology. In the northern hemisphere at altitudes below 400 km, we find that magnetic field lines typically have both ends embedded in the collisional ionosphere, forming loops that connect distant regions on both the day and night hemispheres. This implies that this low-altitude region is dominated by closed crustal magnetic field lines, as opposed to the draped interplanetary magnetic field (IMF), which is prevalent at higher altitudes. Closed loops straddling the terminator allow transport of superthermal photoelectrons to the night hemisphere, which provides a source of ionization to support Mars' patchy night-side ionosphere. This study can also identify "open" field lines, with one end embedded in the ionosphere and the other end connected to the solar wind. This topology provides a conduit for ion outflow from the day-side ionosphere as well as precipitation of (possibly energized) solar wind electrons onto the atmosphere, which can also produce ionospheric patches and possibly auroral emissions.

  1. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  2. Conflict between aftereffects of retinal sweep and looming motion.

    PubMed

    Bridgeman, B; Nardello, C

    1994-01-01

    Observers looked monocularly into a tunnel, with gratings on the left and right sides drifting toward the head. An exposure period was followed by a test with fixed gratings. With fixation points, left and right retinal fields could be stimulated selectively. When exposure and test were on the same retinal fields, but fixation was on opposite sides of the tunnel during exposure and test periods, aftereffects of retinal sweep and of perceived looming were in opposite directions. The two effects tended to cancel, yielding no perceived aftereffect. When they did occur, aftereffects in the retinal and the looming directions were equally likely. Cancellation was significantly more likely in the experimental conditions than in the control, when fixation always remained on the same side. When areas of retinal stimulation in the exposure and test periods did not overlap, cancellation was less frequent and aftereffects of looming were more frequent. Results were not significantly different for left and right visual fields, indicating that cortical vs. subcortical OKN pathways do not influence the illusion. Vection resulted for 16 of 20 observers under one or another of our conditions.

  3. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Lishuai; Zhang, Peipeng; Chen, Lianjun; Hao, Zhen; Sainoki, Atsushi; Mitri, Hani S.; Wang, Qingbiao

    2017-11-01

    Entry driven along goaf-side (EDG), which is the development of an entry of the next longwall panel along the goaf-side and the isolation of the entry from the goaf with a small-width yield pillar, has been widely employed in China over the past several decades . The width of such a yield pillar has a crucial effect on EDG layout in terms of the ground control, isolation effect and resource recovery rate. Based on a case study, this paper presents an approach for evaluating, designing and optimizing EDG and yield pillar by considering the results from numerical simulations and field practice. To rigorously analyze the ground stability, the numerical study begins with the simulation of goaf-side stress and ground conditions. Four global models with identical conditions, except for the width of the yield pillar, are built, and the effect of pillar width on ground stability is investigated by comparing aspects of stress distribution, failure propagation, and displacement evolution during the entire service life of the entry. Based on simulation results, the isolation effect of the pillar acquired from field practice is also considered. The suggested optimal yield pillar design is validated using a field test in the same mine. Thus, the presented numerical approach provides references and can be utilized for the evaluation, design and optimization of EDG and yield pillars under similar geological and geotechnical circumstances.

  4. Performance characteristics of a low-volume PM10 sampler

    USDA-ARS?s Scientific Manuscript database

    Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...

  5. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    EPA Science Inventory

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  6. Electron dynamics surrounding the X line in asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.; Hasegawa, H.; Nagai, T.

    2017-12-01

    Electron dynamics surrounding the X line in magnetopause-type asymmetric reconnection is investigated using a two-dimensional particle-in-cell simulation. We study electron properties of three characteristic regions in the vicinity of the X line. The fluid properties, velocity distribution functions (VDFs), and orbits are studied and cross-compared. On the magnetospheric side of the X line, the normal electric field enhances the electron meandering motion from the magnetosheath side. The motion leads to a crescent-shaped component in the electron VDF, in agreement with recent studies. On the magnetosheath side of the X line, the magnetic field line is so stretched in the third dimension that its curvature radius is comparable with typical electron Larmor radius. The electron motion becomes nonadiabatic, and therefore the electron idealness is no longer expected to hold. Around the middle of the outflow regions, the electron nonidealness is coincident with the region of the nonadiabatic motion. Finally, we introduce a finite-time mixing fraction (FTMF) to evaluate electron mixing. The FTMF marks the magnetospheric side of the X line, where the nonideal energy dissipation occurs.

  7. Effect of graded InGaN drain region and 'In' fraction in InGaN channel on performances of InGaN tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoling; Zhang, Jincheng; Wang, Shulong; Quan, Rudai; Hao, Yue

    2017-12-01

    An InGaN-based graded drain region tunnel field-effect transistor (GD-TFET) is proposed to suppress the ambipolar behavior. The simulation results with the trade-off between on-state current (Ion) and ambipolar current (Iambipolar) show decreased Iambipolar (1.9 × 10-14 A/μm) in comparison with that of conventional TFETs (2.0 × 10-8 A/μm). Furthermore, GD-TFET with high 'In' fraction InxGa1-xN source-side channel (SC- GD-TFET) is explored and exhibits 5.3 times Ion improvement and 60% average subthreshold swing (SSavg) reduction in comparison with GD-TFET by adjusting 'In' fraction in the InxGa1-xN source-side channel. The improvement is attributed to the confinement of BTBT in the source-side channel by the heterojunction. And then, the optimum value for source-side channel length (Lsc) is researched by DC performances results, which shows it falls into the range between Lsc = 10 nm and 20 nm.

  8. The Vibration Analysis of Tube Bundles Induced by Fluid Elastic Excitation in Shell Side of Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze

    2017-09-01

    Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.

  9. Alpha channeling with high-field launch of lower hybrid waves

    DOE PAGES

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-04

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  10. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  11. A unique Austin Chalk reservoir, Van field, Van Zandt County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, J.T.

    1990-09-01

    Significant shallow oil production from the Austin Chalk was established in the Van field, Van Zandt County, in East Texas in the late 1980s. The Van field structure is a complexly faulted domal anticline created by salt intrusion. The Woodbine sands, which underlie the Austin Chalk, have been and continue to be the predominant reservoir rocks in the field. Evidence indicates that faults provided vertical conduits for migration of Woodbine oil into the Austin Chalk where it was trapped along the structural crest. The most prolific Austin Chalk production is on the upthrown side of the main field fault, asmore » is the Woodbine. The Austin Chalk is a soft, white to light gray limestone composed mostly of coccoliths with some pelecypods. Unlike the Austin Chalk in the Giddings and Pearsall fields, the chalk at Van was not as deeply buried and therefore did not become brittle and susceptible to tensional or cryptic fracturing. The shallow burial in the Van field was also important in that it allowed the chalk to retain primary microporosity. The production comes entirely from this primary porosity. In addition to the structural position and underlying oil source from the Woodbine, the depositional environment and associated lithofacies are also keys to the reservoir quality in the Van field as demonstrated by cores from the upthrown and downthrown (less productive) sides of the main field fault. It appears that at the time of Austin Chalk deposition, the main field fault was active and caused the upthrown side to be a structural high and a more agreeable environment for benthonic organisms such as pelecypods and worms. The resulting bioturbation enhanced the reservoir's permeability enough to allow migration and entrapment of the oil. Future success in exploration for analogous Austin Chalk reservoirs will require the combination of a favorable environment of deposition, a nearby Woodbine oil source, and a faulted trap that will provide the conduit for migration.« less

  12. Extensional Structures on the Po Valley Side of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Bettelli, G.; Vannucchi, P.; Capitani, M.

    2001-12-01

    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  13. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.

    PubMed

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-04-14

    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.

  14. Radiofrequency radiation injures trees around mobile phone base stations.

    PubMed

    Waldmann-Selsam, Cornelia; Balmori-de la Puente, Alfonso; Breunig, Helmut; Balmori, Alfonso

    2016-12-01

    In the last two decades, the deployment of phone masts around the world has taken place and, for many years, there has been a discussion in the scientific community about the possible environmental impact from mobile phone base stations. Trees have several advantages over animals as experimental subjects and the aim of this study was to verify whether there is a connection between unusual (generally unilateral) tree damage and radiofrequency exposure. To achieve this, a detailed long-term (2006-2015) field monitoring study was performed in the cities of Bamberg and Hallstadt (Germany). During monitoring, observations and photographic recordings of unusual or unexplainable tree damage were taken, alongside the measurement of electromagnetic radiation. In 2015 measurements of RF-EMF (Radiofrequency Electromagnetic Fields) were carried out. A polygon spanning both cities was chosen as the study site, where 144 measurements of the radiofrequency of electromagnetic fields were taken at a height of 1.5m in streets and parks at different locations. By interpolation of the 144 measurement points, we were able to compile an electromagnetic map of the power flux density in Bamberg and Hallstadt. We selected 60 damaged trees, in addition to 30 randomly selected trees and 30 trees in low radiation areas (n=120) in this polygon. The measurements of all trees revealed significant differences between the damaged side facing a phone mast and the opposite side, as well as differences between the exposed side of damaged trees and all other groups of trees in both sides. Thus, we found that side differences in measured values of power flux density corresponded to side differences in damage. The 30 selected trees in low radiation areas (no visual contact to any phone mast and power flux density under 50μW/m 2 ) showed no damage. Statistical analysis demonstrated that electromagnetic radiation from mobile phone masts is harmful for trees. These results are consistent with the fact that damage afflicted on trees by mobile phone towers usually start on one side, extending to the whole tree over time. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Wide-field in vivo oral OCT imaging

    PubMed Central

    Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine; Lane, Pierre

    2015-01-01

    We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions. PMID:26203389

  16. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  17. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  18. MMS Observations of Large Guide Field Symmetric Reconnection Between Colliding Reconnection Jets at the Center of a Magnetic Flux Rope at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; hide

    2016-01-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  19. MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause

    NASA Astrophysics Data System (ADS)

    Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.

    2016-06-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  20. MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2016-12-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at 12 di downstream of the X line) was well resolved by Magnetospheric Multiscale, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  1. APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA

    DOEpatents

    Gibson, G.; Jordan, W.C.; Lauer, E.J.

    1963-04-01

    The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)

  2. 77 FR 30047 - Notice of Opportunity for Public Comment on Surplus Property Release at Michael J Smith Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Comment on Surplus Property Release at Michael J Smith Field, Beaufort, NC AGENCY: Federal Aviation... J Smith Field, be used for aeronautical purposes. DATES: Comments must be received on or before June... property at the Michael J Smith Field. The property consists of one parcel located on the north side of...

  3. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  4. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  5. SU-F-T-408: On the Determination of Equivalent Squares for Rectangular Small MV Photon Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, OA; Wegener, S; Exner, F

    Purpose: It is common practice to tabulate dosimetric data like output factors, scatter factors and detector signal correction factors for a set of square fields. In order to get the data for an arbitrary field, it is mapped to an equivalent square, having the same scatter as the field of interest. For rectangular fields both, tabulated data and empiric formula exist. We tested the applicability of such rules for very small fields. Methods: Using the Monte-Carlo method (EGSnrc-doseRZ), the dose to a point in 10cm depth in water was calculated for cylindrical impinging fluence distributions. Radii were from 0.5mm tomore » 11.5mm with 1mm thickness of the rings. Different photon energies were investigated. With these data a matrix was constructed assigning the amount of dose to the field center to each matrix element. By summing up the elements belonging to a certain field, the dose for an arbitrary point in 10cm depth could be determined. This was done for rectangles up to 21mm side length. Comparing the dose to square field results, equivalent squares could be assigned. The results were compared to using the geometrical mean and the 4Xperimeter/area rule. Results: For side length differences less than 2mm, the difference between all methods was in general less than 0.2mm. For more elongated fields, relevant differences of more than 1mm and up to 3mm for the fields investigated occurred. The mean square side length calculated from both empiric formulas fitted much better, deviating hardly more than 1mm and for the very elongated fields only. Conclusion: For small rectangular photon fields, deviating only moderately from square both investigated empiric methods are sufficiently accurate. As the deviations often differ regarding their sign, using the mean improves the accuracy and the useable elongation range. For ratios larger than 2, Monte-Carlo generated data are recommended. SW is funded by Deutsche Forschungsgemeinschaft (SA481/10-1)« less

  6. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Esisio, F.; Oladapo, F.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.

  7. AmeriFlux Measurement Component (AMC) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichl, Ken; Biraud, Sebastien C.

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System.more » Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.« less

  8. [Blood-sugar self control. A means for the diabetic of controlling his metabolic management. Quality control of a battery-run pocket size reflectometer (glucose-meter)].

    PubMed

    Leidinger, F; Jörgens, V; Chantelau, E; Berchtold, P; Berger, M

    1980-07-26

    Home blood glucose monitoring by diabetic patients has recently been advocated as an effective means to improve metabolic control. The Glucocheck apparatus, a pocket-size battery-driven reflectance-meter (in Germany commercially available under the name Glucose-meter), has been evaluated for accuracy and practicability. In 450 blood glucose measurements, the variance between the values obtained using the Glucocheck apparatus and routine clinical laboratory procedures was +/- 11.7%. Especially in the low range of blood glucose concentrations, the Glucocheck method was very reliable. The quantitative precision of the Glucocheck method depends, however, quite considerably on the ability of the patient to use the apparatus correctly. In order to profit from Glucocheck in clinical practice, particular efforts to educate the patients in its use are necessary.

  9. Wafer characteristics via reflectometry

    DOEpatents

    Sopori, Bhushan L.

    2010-10-19

    Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.

  10. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOEpatents

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  11. Space Science Payloads Optical Properties Monitor (OPM) Mission Flight Anomalies Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Schmitz, Craig P.

    2001-01-01

    The OPM was the first space payload that measured in-situ the optical properties of materials and had data telemetered to ground. The OPM was EVA mounted to the Mir Docking Module for an eight-month stay where flight samples were exposed to the Mir induced and natural environments. The OPM was comprised of three optical instruments; a total hemispherical spectral reflectometer, a vacuum ultraviolet spectrometer, and a total integrated scatterometer. There were also three environmental monitors; an atomic oxygen monitor, solar and infrared radiometers, and two temperature-controlled quartz crystal microbalances (to monitor contamination). Measurements were performed weekly and data telemetered to ground through the Mir data system. This paper will describe the OPM thermal control design and how the thermal math models were used to analyze anomalies which occurred during the space flight mission.

  12. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  13. Active cleaning technique for removing contamination from optical surfaces in space

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.; Cruz, G. A.

    1973-01-01

    An active cleaning technique for removing contaminants from optical surfaces in space was investigated with emphasis on the feasibility of using plasma exposure as a means of in-situ cleaning. The major work accomplished includes: (1) development of an in-situ reflectometer for use in conjunction with the contaminant film deposition/cleaning facility; (2) completion of Apollo Telescope Mount (ATM) filter treatment experiments to assess the effects of plasma exposure on the UV transmittance; (3) attempts to correlate the atomic oxygen flux with cleaning rate; (4) completion of in-situ butadien contamination/plasma cleaning/UV reflectance measurement experiments; (5) carbon cleaning experiments using various gases; (6) completion of silicone contamination/cleaning experiments; and (7) experiments conducted at low chamber pressures to determine cleaning rate distribution and contamination of surfaces adjacent to those being cleaned.

  14. Measurement of large strains in ropes using plastic optical fibers

    DOEpatents

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  15. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  16. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE PAGES

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; ...

    2017-05-16

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  17. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  18. Color multiplexing method to capture front and side images with a capsule endoscope.

    PubMed

    Tseng, Yung-Chieh; Hsu, Hsun-Ching; Han, Pin; Tsai, Cheng-Mu

    2015-10-01

    This paper proposes a capsule endoscope (CE), based on color multiplexing, to simultaneously record front and side images. Only one lens associated with an X-cube prism is employed to catch the front and side view profiles in the CE. Three color filters and polarizers are placed on three sides of an X-cube prism. When objects locate at one of the X-cube's three sides, front and side view profiles of different colors will be caught through the proposed lens and recorded at the color image sensor. The proposed color multiplexing CE (CMCE) is designed with a field of view of up to 210 deg and a 180 lp/mm resolution under f-number 2.8 and overall length 13.323 mm. A ray-tracing simulation in the CMCE with the color multiplexing mechanism verifies that the CMCE not only records the front and side view profiles at the same time, but also has great image quality at a small size.

  19. PPP mode’s applications motivation in the field of water conservancy project - based on the “money service” theory of Milton Friedman

    NASA Astrophysics Data System (ADS)

    Chen, Zurong; Feng, Jingchun; Wang, Yuting; Xue, Song

    2017-06-01

    We study on PPP mode’s applications motivation in the field of water conservancy project, on the basis of analyzing Friedman’s “money service” theory, for the disadvantages of traditional investment mode in water conservancy project field. By analyzing the way of government and social capital spending money in PPP projects, we get conclusion that both of which are the way of “spending their own money to do their own thing”, which fully reflects that the two sides are a win-win partnership in PPP mode. From the application motivation, PPP mode can not only compensate for the lack of local funds, improve the investment efficiency of the government, but also promote marketization and the supply-side structural reforms.

  20. Four pi calibration and modeling of a bare germanium detector in a cylindrical field source

    NASA Astrophysics Data System (ADS)

    Dewberry, R. A.; Young, J. E.

    2012-05-01

    In this paper we describe a 4π cylindrical field acquisition configuration surrounding a bare (unshielded, uncollimated) high purity germanium detector. We perform an efficiency calibration with a flexible planar source and model the configuration in the 4π cylindrical field. We then use exact calculus to model the flux on the cylindrical sides and end faces of the detector. We demonstrate that the model accurately represents the experimental detection efficiency compared to that of a point source and to Monte Carlo N-particle (MCNP) calculations of the flux. The model sums over the entire source surface area and the entire detector surface area including both faces and the detector's cylindrical sides. Agreement between the model and both experiment and the MCNP calculation is within 8%.

  1. Simulation of one-sided heating of boiler unit membrane-type water walls

    NASA Astrophysics Data System (ADS)

    Kurepin, M. P.; Serbinovskiy, M. Yu.

    2017-03-01

    This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.

  2. 46 CFR 72.04-1 - Navigation bridge visibility.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... meters (1640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  3. 46 CFR 72.04-1 - Navigation bridge visibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... meters (1640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  4. 46 CFR 72.04-1 - Navigation bridge visibility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... meters (1640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  5. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  6. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Simultaneous Measurement of Electron Temperature and Density Fluctuations in the Core of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.

    2009-11-01

    Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.

  7. Effect of low electric fields on alpha scintillation light yield in liquid argon

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  8. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume coverage and organs at risks. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  9. Adaptive near-field beamforming techniques for sound source imaging.

    PubMed

    Cho, Yong Thung; Roan, Michael J

    2009-02-01

    Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.

  10. Coupling between premixed flame propagation and swirl flow during boundary layer flashback

    NASA Astrophysics Data System (ADS)

    Ebi, Dominik; Ranjan, Rakesh; Clemens, Noel T.

    2018-07-01

    Flashback of premixed methane-air flames in the turbulent boundary layer of swirling flows is investigated experimentally. The premix section of the atmospheric model swirl combustor features an axial swirler with an attached center-body. Our previous work with this same configuration investigated the flame propagation during flashback using particle image velocimetry (PIV) with liquid droplets as seed particles that precluded making measurements in the burnt gases. The present study investigates the transient velocity field in the unburnt and burnt gas region by means of solid-particle seeding and high-speed stereoscopic PIV. The global axial and circumferential lab-frame flame propagation speed is obtained simultaneously based on high-speed chemiluminescence movies. By combining the PIV data with the global flame propagation speed, the quasi-instantaneous swirling motion of the velocity field is constructed on annular shells, which provides a more intuitive view on the complex three-dimensional flow-flame interaction. Previous works showed that flashback is led by flame tongues. We find that the important flow-flame interaction occurs on the far side of these flame tongues relative to the approach flow, which we henceforth refer to as the leading side. The leading side is found to propagate as a classical premixed flame front relative to the strongly modified approach flow field. The blockage imposed by flame tongues is not limited to the immediate vicinity of the flame base, but occurs along the entire leading side.

  11. Correlation of lunar far-side magnetized regions with ringed impact basins

    USGS Publications Warehouse

    Anderson, K.A.; Wilhelms, D.E.

    1979-01-01

    By the method of electron reflection, we have identified seven well-defined magnetized regions in the equatorial belt of the lunar far side sampled by the Apollo 16 Particles and Fields subsatellite. Most of these surface magnetic fields lie within one basin radius from the rim of a ringed impact basin, where thick deposits of basin ejecta are observed or inferred. The strongest of the seven magnetic features is linear, at least 250 km long, and radial to the Freundlich-Sharonov basin. The apparent correlation with basin ejecta suggests some form of impact origin for the observed permanently magnetized regions. ?? 1979.

  12. Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.

    2016-10-01

    The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.

  13. Transferable Coarse-Grained Models for Ionic Liquids.

    PubMed

    Wang, Yanting; Feng, Shulu; Voth, Gregory A

    2009-04-14

    The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.

  14. USAF Minor Surgery Field Assembly,

    DTIC Science & Technology

    1982-10-01

    Brooks Air Force Base, Texas 78235 rs or 11 s0 036 .; :._,. ,. . . . . ... NOTICES This review was submitted by personnel of the Dental Investigation...Field equipment, dental Disaster-medicine eauipment 20. ABSTRACT (Condihis on revere* side It necessar end identify by block mmbe) -The history of...24 Field Assembly Handpieces ..... . . . . . .. . 24 Other Items of Equipment and Supplies . . . . .... .... 24 B!BLIOGRAPHY

  15. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  16. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  17. Effect of defect creation and migration on hump characteristics of a-InGaZnO thin film transistors under long-term drain bias stress with light illumination

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jung; Kim, Woo-Sic; Lee, Yeol-Hyeong; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun

    2018-06-01

    We investigated the mechanism of formation of the hump that occurs in the current-voltage I-V characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) that are exposed to long-term drain bias stress under illumination. Transfer characteristics showed two-stage degradation under the stress. At the beginning of the stress, the I-V characteristics shifted in the negative direction with a degradation of subthreshold slope, but the hump phenomenon developed over time in the I-V characteristics. The development of the hump was related to creation of defects, especially ionized oxygen vacancies which act as shallow donor-like states near the conduction-band minimum in a-IGZO. To further investigate the hump phenomenon we measured a capacitance-voltage C-V curve and performed two-dimensional device simulation. Stretched-out C-V for the gate-to-drain capacitance and simulated electric field distribution which exhibited large electric field near the drain side of TFT indicated that VO2+ were generated near the drain side of TFT, but the hump was not induced when VO2+ only existed near the drain side. Therefore, the degradation behavior under DBITS occurred because VO2+ were created near the drain side, then were migrated to the source side of the TFT.

  18. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-11-21

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  19. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-06-16

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  20. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan

    2013-01-01

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less

  1. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquidmore » properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.« less

  2. 46 CFR 32.16-1 - Navigation bridge visibility-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... meters (1,640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  3. 46 CFR 32.16-1 - Navigation bridge visibility-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... meters (1,640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  4. 46 CFR 32.16-1 - Navigation bridge visibility-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... meters (1,640 feet) from dead ahead to 10 degrees on either side of the vessel. Within this arc of... 22.5 degrees abaft the beam on one side of the vessel, through dead ahead, to at least 22.5 degrees... bow, through dead ahead, to at least dead astern. (4) From the main steering position, the field of...

  5. The Ed.D. Program at the University of Illinois at Chicago: Using Continuous Improvement to Promote School Leadership Preparation

    ERIC Educational Resources Information Center

    Cosner, Shelby; Tozer, Steve; Smylie, Mark

    2012-01-01

    This article describes the process of replacing a modest Master's level school leader preparation program with an innovative Ed.D. program at the University of Illinois at Chicago (UIC). The new doctoral program is intensive, highly selective, intellectually rigorous, and field-based. The authors provide side-by-side comparisons of the difference…

  6. Immobilized Cell Research

    DTIC Science & Technology

    1990-10-31

    specifically with the biotech nologi cal side of cellular immobilization, there aje aspects of this research that have importance in other fields. 20 C...meetings dealt lem facing the Navy. The techniques reviewed here specifically with the biotechnological side of cellular im- should be of particular...phenomena. types of organisms, and the many techniques used to compare cellular physiologies. Undoubtedly, any tech- Why Use Immobilized Cells in

  7. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  8. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.

    PubMed

    Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz

    2017-01-01

    The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high-field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regimemore » consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  11. Electrostatic Solvation Free Energy of Amino Acid Side Chain Analogs: Implications for the Validity of Electrostatic Linear Response in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Bin; Pettitt, Bernard M.

    Electrostatic free energies of solvation for 15 neutral amino acid side chain analogs are computed. We compare three methods of varying computational complexity and accuracy for three force fields: free energy simulations, Poisson-Boltzmann (PB), and linear response approximation (LRA) using AMBER, CHARMM, and OPLSAA force fields. We find that deviations from simulation start at low charges for solutes. The approximate PB and LRA produce an overestimation of electrostatic solvation free energies for most of molecules studied here. These deviations are remarkably systematic. The variations among force fields are almost as large as the variations found among methods. Our study confirmsmore » that success of the approximate methods for electrostatic solvation free energies comes from their ability to evaluate free energy differences accurately.« less

  12. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.

    PubMed

    Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-01-01

    The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. An improved schlieren method for measurement and automatic reconstruction of the far-field focal spot

    PubMed Central

    Wang, Zhengzhou; Hu, Bingliang; Yin, Qinye

    2017-01-01

    The schlieren method of measuring far-field focal spots offers many advantages at the Shenguang III laser facility such as low cost and automatic laser-path collimation. However, current methods of far-field focal spot measurement often suffer from low precision and efficiency when the final focal spot is merged manually, thereby reducing the accuracy of reconstruction. In this paper, we introduce an improved schlieren method to construct the high dynamic-range image of far-field focal spots and improve the reconstruction accuracy and efficiency. First, a detection method based on weak light beam sampling and magnification imaging was designed; images of the main and side lobes of the focused laser irradiance in the far field were obtained using two scientific CCD cameras. Second, using a self-correlation template matching algorithm, a circle the same size as the schlieren ball was dug from the main lobe cutting image and used to change the relative region of the main lobe cutting image within a 100×100 pixel region. The position that had the largest correlation coefficient between the side lobe cutting image and the main lobe cutting image when a circle was dug was identified as the best matching point. Finally, the least squares method was used to fit the center of the side lobe schlieren small ball, and the error was less than 1 pixel. The experimental results show that this method enables the accurate, high-dynamic-range measurement of a far-field focal spot and automatic image reconstruction. Because the best matching point is obtained through image processing rather than traditional reconstruction methods based on manual splicing, this method is less sensitive to the efficiency of focal-spot reconstruction and thus offers better experimental precision. PMID:28207758

  14. Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.

    1979-01-01

    Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.

  15. Modeling Density Variation in the Thermosphere

    DTIC Science & Technology

    2011-04-29

    static electromagnetic fields as follows: when a volume of the ionosphere is bounded on the sides by an equipotential surface and on the bottom by the...generation of electromagnetic energy along that geomagnetic-field line. An Equipotential -Boundary Poynting-Flux (EBPF) theorem was presented for quasi

  16. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  17. Ionomycin-Induced Changes in Membrane Potential Alter Electroporation Outcomes in HL-60 Cells.

    PubMed

    Aiken, Erik J; Kilberg, Brian G; Yu, Siyuan; Hagness, Susan C; Booske, John H

    2018-06-19

    Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation. These cells were then electroporated in a solution containing propidium iodide, a membrane integrity indicator. After 20 min, we added trypan blue to identify IRE cells. Our results showed that hyperpolarizing cells before electroporation alters the pulsed electric field intensity thresholds for reversible electroporation and IRE, allowing for greater control and selectivity of electroporation outcomes. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    PubMed

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  19. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less

  20. Further Evidence of Asymmetrical Processing of Tachistoscopic Inputs in Undergraduates across Sex, Handedness, Field-Side, and Fixation Instructions.

    ERIC Educational Resources Information Center

    Iaccino, James F.

    A study examined laterality effects observed in previous studies in which men as well as right-handers show a right-visual field (RVF) advantage for letter recall and a left-visual field (LVF) advantage for letter position recall, suggesting asymmetrical brain organization for these groups. Subjects, 96 undergraduates equally divided by sex and…

Top