Sample records for field simulations based

  1. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  2. Removing systematic errors in interionic potentials of mean force computed in molecular simulations using reaction-field-based electrostatics

    PubMed Central

    Baumketner, Andrij

    2009-01-01

    The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media. PMID:19292522

  3. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  4. Simulations of multi-contrast x-ray imaging using near-field speckles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  5. Driving with visual field loss : an exploratory simulation study

    DOT National Transportation Integrated Search

    2009-01-01

    The goal of this study was to identify the influence of peripheral visual field loss (VFL) on driving performance in a motion-based driving simulator. Sixteen drivers (6 with VFL and 10 with normal visual fields) completed a 14 km simulated drive. Th...

  6. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  7. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  8. Historical and projected carbon balance of mature black spruce ecosystems across north america: The role of carbon-nitrogen interactions

    USGS Publications Warehouse

    Clein, Joy S.; McGuire, A.D.; Zhang, X.; Kicklighter, D.W.; Melillo, J.M.; Wofsy, S.C.; Jarvis, P.G.; Massheder, J.M.

    2002-01-01

    The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C-N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R2= 0.77, 0.88 for GPP and RESP; uncoupled: R2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and simulated NEP (R2 = 0.36, 0.20 for coupled and uncoupled simulations, respectively) was similar to the correlations at the northern site. To evaluate the role of N dynamics in C balance of black spruce ecosystems across North America, we simulated historical and projected C dynamics from 1900 to 2100 with a global-based climatology at 0.5?? resolution (latitude ?? longitude) with both the coupled and uncoupled parameterizations of TEM. From analyses at the northern site, several consistent patterns emerge. There was greater inter-annual variability in net primary production (NPP) simulated by the uncoupled parameterization as compared to the coupled parameterization, which led to substantial differences in inter-annual variability in NEP between the parameterizations. The divergence between NPP and heterotrophic respiration was greater in the uncoupled simulation, resulting in more C sequestration during the projected period. These responses were the result of fundamentally different responses of the coupled and uncoupled parameterizations to changes in CO2 and climate. Across North American black spruce ecosystems, the range of simulated decadal changes in C storage was substantially greater for the uncoupled parameterization than for the coupled parameterization. Analysis of the spatial variability in decadal responses of C dynamics revealed that C fluxes simulated by the coupled and uncoupled parameterizations have different sensitivities to climate and that the climate sensitivities of the fluxes change over the temporal scope of the simulations. The results of this study suggest that uncertainties can be reduced through (1) factorial studies focused on elucidating the role of C and N interactions in the response of mature black spruce ecosystems to manipulations of atmospheric CO2 and climate, (2) establishment of a network of continuous, long-term measurements of C dynamics across the range of mature black spruce ecosystems in North America, and (3) ancillary measureme

  9. A beam hardening and dispersion correction for x-ray dark-field radiography.

    PubMed

    Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo

    2016-06-01

    X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.

  10. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOEpatents

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  11. Fields of Fuel

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Wangen, Steve; Nye, D. Leith; Shapiro, R. Benjamin; Strinz, Will; Ferris, Michael

    2015-01-01

    To help teachers engage students in discussions about sustainability, the authors designed Fields of Fuel, a multiplayer, web-based simulation game that allows players to explore the environmental and economic trade-offs of a realistic sustainable system. Computer-based simulations of real-world phenomena engage students and have been shown to…

  12. Intrinsically Disordered Protein Specific Force Field CHARMM36IDPSFF.

    PubMed

    Liu, Hao; Song, Dong; Lu, Hui; Luo, Ray; Chen, Hai-Feng

    2018-05-28

    Intrinsically disordered proteins (IDPs) are closely related to various human diseases. Because IDPs lack certain tertiary structure, it is difficult to use X-ray and NMR methods to measure their structures. Therefore, molecular dynamics simulation is a useful tool to study the conformer distribution of IDPs. However, most generic protein force fields were found to be insufficient in simulations of IDPs. Here we report our development for the CHARMM community. Our residue-specific IDP force field (CHARMM36IDPSFF) was developed based on the base generic force field with CMAP corrections of for all 20 naturally occurring amino acids. Multiple tests show that the simulated chemical shifts with the newly developed force field are in quantitative agreement with NMR experiment and are more accurate than the base generic force field. Comparison of J-couplings with previous work shows that CHARMM36IDPSFF and its corresponding base generic force field have their own advantages. In addition, CHARMM36IDPSFF simulations also agree with experiment for SAXS profiles and radii of gyration of IDPs. Detailed analysis shows that CHARMM36IDPSFF can sample more diverse and disordered conformers. These findings confirm that the newly developed force field can improve the balance of accuracy and efficiency for the conformer sampling of IDPs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    NASA Technical Reports Server (NTRS)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  14. Pressure calculation in hybrid particle-field simulations

    NASA Astrophysics Data System (ADS)

    Milano, Giuseppe; Kawakatsu, Toshihiro

    2010-12-01

    In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.

  15. The MHD simulation of interplanetary space and heliosphere by using the boundary conditions of time-varying magnetic field and IPS-based plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Kojima, M.; Fujiki, K.

    2008-12-01

    We present our new boundary treatment to introduce the temporal variation of the observation-based magnetic field and plasma parameters on the inner boundary sphere (at 30 to 50 Rs) to the MHD simulation of the interplanetary space and the simulation results. The boundary treatment to induce the time-variation of the magnetic field including the radial component is essentially same as shown in our previous AGU meetings and newly modified so that the model can also include the variation of the plasma variables detected by IPS (interplanetary scintillation) observation, a ground-based remote sensing technique for the solar wind plasma. We used the WSO (Wilcox Solar Observatory at Stanford University) for the solar magnetic field input. By using the time-varying boundary condition, smooth variations of heliospheric MHD variables during the several Carrington solar rotation period are obtained. The simulation movie will show how the changes in the inner heliosphere observable by the ground-based instrument propagate outward and affects the outer heliosphere. The simulated MHD variables are compared with the Ulysses in-situ measurement data including ones made during its travel from the Earth to Jupiter for validation, and we obtain better agreements than with the simulation with fixed boundary conditions.

  16. Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Davis, John H.

    1993-01-01

    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.

  17. Magnetic field simulation and shimming analysis of 3.0T superconducting MRI system

    NASA Astrophysics Data System (ADS)

    Yue, Z. K.; Liu, Z. Z.; Tang, G. S.; Zhang, X. C.; Duan, L. J.; Liu, W. C.

    2018-04-01

    3.0T superconducting magnetic resonance imaging (MRI) system has become the mainstream of modern clinical MRI system because of its high field intensity and high degree of uniformity and stability. It has broad prospects in scientific research and other fields. We analyze the principle of magnet designing in this paper. We also perform the magnetic field simulation and shimming analysis of the first 3.0T/850 superconducting MRI system in the world using the Ansoft Maxwell simulation software. We guide the production and optimization of the prototype based on the results of simulation analysis. Thus the magnetic field strength, magnetic field uniformity and magnetic field stability of the prototype is guided to achieve the expected target.

  18. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    NASA Astrophysics Data System (ADS)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  19. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  20. Simbios: an NIH national center for physics-based simulation of biological structures

    PubMed Central

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A

    2011-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222

  1. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  2. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  3. Dispersion Analysis Using Particle Tracking Simulations Through Heterogeneity Based on Outcrop Lidar Imagery

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Tidwell, V. C.; Frechette, J. D.; Wawrzyniec, T. F.

    2007-12-01

    Solute plumes are believed to disperse in a non-Fickian manner due to small-scale heterogeneity and variable velocities that create preferential pathways. In order to accurately predict dispersion in naturally complex geologic media, the connection between heterogeneity and dispersion must be better understood. Since aquifer properties can not be measured at every location, it is common to simulate small-scale heterogeneity with random field generators based on a two-point covariance (e.g., through use of sequential simulation algorithms). While these random fields can produce preferential flow pathways, it is unknown how well the results simulate solute dispersion through natural heterogeneous media. To evaluate the influence that complex heterogeneity has on dispersion, we utilize high-resolution terrestrial lidar to identify and model lithofacies from outcrop for application in particle tracking solute transport simulations using RWHet. The lidar scan data are used to produce a lab (meter) scale two-dimensional model that captures 2-8 mm scale natural heterogeneity. Numerical simulations utilize various methods to populate the outcrop structure captured by the lidar-based image with reasonable hydraulic conductivity values. The particle tracking simulations result in residence time distributions used to evaluate the nature of dispersion through complex media. Particle tracking simulations through conductivity fields produced from the lidar images are then compared to particle tracking simulations through hydraulic conductivity fields produced from sequential simulation algorithms. Based on this comparison, the study aims to quantify the difference in dispersion when using realistic and simplified representations of aquifer heterogeneity. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Multimode marine engine room simulation system based on field bus technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Deng, Linlin; Guo, Yi

    2003-09-01

    Developing multi mode MER (Marine Engine Room) Labs is the main work in Marine Simulation Center, which is the key lab of Communication Ministry of China. It includes FPP (Fixed Pitch Propeller) and CPP (Controllable Pitch Propeller) mode MER simulation systems, integrated electrical propulsion mode MER simulation system, physical mode MER lab, etc. FPP mode simulation system, which was oriented to large container ship, had been completed since 1999, and got second level of Shanghai Municipal Science and Technical Progress award. This paper mainly introduces the recent development and achievements of Marine Simulation Center. Based on the Lon Works field bus, the structure characteristics and control strategies of completely distributed intelligent control network are discussed. The experiment mode of multi-nodes field bus detection and control system is described. Besides, intelligent fault diagnosis technology about some mechatronics integration control systems explored is also involved.

  5. A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface.

    PubMed

    Shao, Yu; Wang, Shumin

    2016-12-01

    The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.

  6. Measurement and numerical simulation of high intensity focused ultrasound field in water

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  7. Adaptive quantum computation in changing environments using projective simulation

    NASA Astrophysics Data System (ADS)

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-08-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.

  8. Adaptive quantum computation in changing environments using projective simulation

    PubMed Central

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-01-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263

  9. Simulation design of light field imaging based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Xiao, Xiangguo; Luan, Yadong; Zhou, Xiaobin

    2017-02-01

    Based on the principium of light field imaging, there designed a objective lens and a microlens array for gathering the light field feature, the homologous ZEMAX models was also be built. Then all the parameters were optimized using ZEMAX and the simulation image was given out. It pointed out that the position relationship between the objective lens and the microlens array had a great affect on imaging, which was the guidance when developing a prototype.

  10. Design of Energetic Ionic Liquids (Preprint)

    DTIC Science & Technology

    2008-05-07

    mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been

  11. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  12. Enabling full-field physics-based optical proximity correction via dynamic model generation

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-07-01

    As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  13. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  14. COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Joby, N. E.; Sabu, S.

    2017-12-01

    The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.

  15. Optimal spinneret layout in Von Koch curves of fractal theory based needleless electrospinning process

    NASA Astrophysics Data System (ADS)

    Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo

    2016-06-01

    Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.

  16. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  17. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  18. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  19. Data-Driven Correlation Analysis Between Observed 3D Fatigue-Crack Path and Computed Fields from High-Fidelity, Crystal-Plasticity, Finite-Element Simulations

    NASA Astrophysics Data System (ADS)

    Pierson, Kyle D.; Hochhalter, Jacob D.; Spear, Ashley D.

    2018-05-01

    Systematic correlation analysis was performed between simulated micromechanical fields in an uncracked polycrystal and the known path of an eventual fatigue-crack surface based on experimental observation. Concurrent multiscale finite-element simulation of cyclic loading was performed using a high-fidelity representation of grain structure obtained from near-field high-energy x-ray diffraction microscopy measurements. An algorithm was developed to parameterize and systematically correlate the three-dimensional (3D) micromechanical fields from simulation with the 3D fatigue-failure surface from experiment. For comparison, correlation coefficients were also computed between the micromechanical fields and hypothetical, alternative surfaces. The correlation of the fields with hypothetical surfaces was found to be consistently weaker than that with the known crack surface, suggesting that the micromechanical fields of the cyclically loaded, uncracked microstructure might provide some degree of predictiveness for microstructurally small fatigue-crack paths, although the extent of such predictiveness remains to be tested. In general, gradients of the field variables exhibit stronger correlations with crack path than the field variables themselves. Results from the data-driven approach implemented here can be leveraged in future model development for prediction of fatigue-failure surfaces (for example, to facilitate univariate feature selection required by convolution-based models).

  20. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.

    PubMed

    Lue, Leo; Linse, Per

    2011-12-14

    Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics

  1. Using Fluid Dynamics and Field Experiments to Improve Vehicle-based Wind Measurements for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Hanlon, T.; Bourlon, E.; Jensen, N.; Risk, D. A.

    2017-12-01

    Vehicle-based measurements of wind speed and direction are presently used for a range of applications, including gas plume detection. Theoretically, vehicle-based measurements could also be integrated with fixed-site measurements to add spatial richness in weather and atmospheric observing systems, but the quality and accuracy of such measurements is currently not well understood. Our research objective for this field-simulation study was to understand how anemometer placement and the vehicle's external air flow field affect measurement accuracy of vehicle-mounted anemometers. We used a truck-mounted anemometer to investigate wind measurements at different vehicle speeds and anemometer placements. We conducted field tests on a square 3.2 km route in flat, treeless terrain and positioned stationary sonic anemometers at each corner. We drove the route in replicate under varying wind conditions and vehicle speeds, and with multiple sonic anemometer placements on the vehicle. The vehicle-based anemometer measurements were corrected to remove the vehicle speed and course vector. In the lab, Computational Fluid Dynamic (CFD) simulations were generated in Ansys FLUENT to model the external flow fields at the locations of measurement under varying vehicle speed and yaw angle. In field trials we observed that vehicle-based measurements differed from stationary measurements by a different magnitude in each of the upwind, downwind and crosswind directions. The difference from stationary anemometers increased with vehicle speed, suggesting the vehicle's flow field does indeed impact the accuracy of vehicle-based anemometer measurements. We used the CFD simulations to develop a quantitative understanding of fluid flow around the vehicle, and to develop speed-based corrections that were applied to the field data. We were also able to make recommendations for anemometer placement. This study demonstrates the importance of applying aerodynamics-based correction factors to vehicle based wind measurements.

  2. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Treesearch

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  3. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  4. Micromotor-based on-off fluorescence detection of sarin and soman simulants.

    PubMed

    Singh, Virendra V; Kaufmann, Kevin; Orozco, Jahir; Li, Jinxing; Galarnyk, Michael; Arya, Gaurav; Wang, Joseph

    2015-06-30

    Self-propelled micromotor-based fluorescent "On-Off" detection of nerve agents is described. The motion-based assay utilizes Si/Pt Janus micromotors coated with fluoresceinamine toward real-time "on-the-fly" field detection of sarin and soman simulants.

  5. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  6. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  7. Comparison of Magnetospheric Magnetic Field Variations at Quasi-Zenith Orbit Based on Michibiki Observation and REPPU Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.

    2017-12-01

    We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.

  8. Machine Learning Classification of Heterogeneous Fields to Estimate Physical Responses

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Akhriev, A.; Alzate, C.; Zhuk, S.

    2017-12-01

    The promise of machine learning to enhance physics-based simulation is examined here using the transient pressure response to a pumping well in a heterogeneous aquifer. 10,000 random fields of log10 hydraulic conductivity (K) are created and conditioned on a single K measurement at the pumping well. Each K-field is used as input to a forward simulation of drawdown (pressure decline). The differential equations governing groundwater flow to the well serve as a non-linear transform of the input K-field to an output drawdown field. The results are stored and the data set is split into training and testing sets for classification. A Euclidean distance measure between any two fields is calculated and the resulting distances between all pairs of fields define a similarity matrix. Similarity matrices are calculated for both input K-fields and the resulting drawdown fields at the end of the simulation. The similarity matrices are then used as input to spectral clustering to determine groupings of similar input and output fields. Additionally, the similarity matrix is used as input to multi-dimensional scaling to visualize the clustering of fields in lower dimensional spaces. We examine the ability to cluster both input K-fields and output drawdown fields separately with the goal of identifying K-fields that create similar drawdowns and, conversely, given a set of simulated drawdown fields, identify meaningful clusters of input K-fields. Feature extraction based on statistical parametric mapping provides insight into what features of the fields drive the classification results. The final goal is to successfully classify input K-fields into the correct output class, and also, given an output drawdown field, be able to infer the correct class of input field that created it.

  9. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  10. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    NASA Astrophysics Data System (ADS)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  11. 'I didn't see that coming': simulated visual fields and driving hazard perception test performance.

    PubMed

    Glen, Fiona C; Smith, Nicholas D; Jones, Lee; Crabb, David P

    2016-09-01

    Evidence is limited regarding specific types of visual field loss associated with unsafe driving. We use novel gaze-contingent software to examine the effect of simulated visual field loss on computer-based driving hazard detection with the specific aim of testing the impact of scotomata located to the right and left of fixation. The 'hazard perception test' is a component of the UK driving licence examination, which measures speed of detecting 15 different hazards in a series of real-life driving films. We have developed a novel eye-tracking and computer set up capable of generating a realistic gaze-contingent scotoma simulation (GazeSS) overlaid on film content. Thirty drivers with healthy vision completed three versions of the hazard perception test in a repeated measures experiment. In two versions, GazeSS simulated a scotoma in the binocular field of view to the left or right of fixation. A third version was unmodified to establish baseline performance. Participants' mean baseline hazard perception test score was 51 ± 7 (out of 75). This reduced to 46 ± 9 and 46 ± 11 when completing the task with a binocular visual field defect located to the left and right of fixation, respectively. While the main effect of simulated visual field loss on performance was statistically significant (p = 0.007), there were no average differences in the experimental conditions where a scotoma was located in the binocular visual field to the right or left of fixation. Simulated visual field loss impairs driving hazard detection on a computer-based test. There was no statistically significant difference in average performance when the simulated scotoma was located to the right or left of fixation of the binocular visual field, but certain types of hazard caused more difficulties than others. © 2016 Optometry Australia.

  12. Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method.

    PubMed

    Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping

    2017-04-03

    Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.

  13. Distributed simulation for formation flying applications

    NASA Technical Reports Server (NTRS)

    Sohl, Garett A.; Udomkesmalee, Santi; Kellogg, Jennifer L.

    2005-01-01

    High fidelity engineering simulation plays a key role in the rapidly developing field of space-based formation flying. This paper describes the design and implementation of the Formation Algorithms and Simulation Testbed (FAST).

  14. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documentsmore » the in- well vapor-stripping demonstration from a field perspective.« less

  15. Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet

    PubMed Central

    Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong; Ando, Ryuya; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and simulation results of a screening current induced magnetic field (SCF) in a high temperature superconductor (HTS) insert that constitutes a low-/high-temperature superconductor (LTS/HTS) NMR magnet. In this experiment, the HTS insert, a stack of 50 double-pancake coils, each wound with Bi2223 tape, was operated at 77 K. A screening current was induced in the HTS insert by three magnetic field sources: 1) a self field from the HTS insert; 2) an external field from a 5-T background magnet; and 3) combinations of 1) and 2). For each field excitation, which induced an SCF, its axial field distribution and temporal variations were measured and compared with simulation results based on the critical state model. Agreement on field profile between experiment and simulation is satisfactory but more work is needed to make the simulation useful for designing shim coils that will cancel the SCF. PMID:20401187

  16. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  17. Spatial and spectral simulation of LANDSAT images of agricultural areas

    NASA Technical Reports Server (NTRS)

    Pont, W. F., Jr. (Principal Investigator)

    1982-01-01

    A LANDSAT scene simulation capability was developed to study the effects of small fields and misregistration on LANDSAT-based crop proportion estimation procedures. The simulation employs a pattern of ground polygons each with a crop ID, planting date, and scale factor. Historical greenness/brightness crop development profiles generate the mean signal values for each polygon. Historical within-field covariances add texture to pixels in each polygon. The planting dates and scale factors create between-field/within-crop variation. Between field and crop variation is achieved by the above and crop profile differences. The LANDSAT point spread function is used to add correlation between nearby pixels. The next effect of the point spread function is to blur the image. Mixed pixels and misregistration are also simulated.

  18. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  19. Providing Interactive Access to Cave Geology for All Students, Regardless of Physical Ability

    NASA Astrophysics Data System (ADS)

    Atchison, C. `; Stredney, D.; Hittle, B.; Irving, K.; Toomey, R. S., III; Lemon, N. N.; Price, A.; Kerwin, T.

    2013-12-01

    Based on an identified need to accommodate students with mobility impairments in field-based instructional experiences, this presentation will discuss current efforts to promote participation, broaden diversity, and impart a historical perspective in the geosciences through the use of an interactive virtual environment. Developed through the integration of emerging simulation technologies, this prototypical virtual environment is created from LIDAR data of the Historic Tour route of Mammoth Cave National Park. The educational objectives of the simulation focus on four primary locations within the tour route that provide evidence of the hydrologic impact on the cave and karst formation. The overall objective is to provide a rich experience of a geological field-based learning for all students, regardless of their physical abilities. Employing a virtual environment that interchangeably uses two and three-dimensional representation of geoscience content, this synthetic field-based cave and karst module will provide an opportunity to assess the effectiveness in engaging the student community, and its efficacy in the curriculum when used as an alternative representation of a traditional field experience. The expected outcome is that based on the level of interactivity, the simulated environment will provide adequate pedagogical representation for content transfer without the need for physical experience in the uncontrolled field environment. Additionally, creating such an environment will impact all able-bodied students by providing supplemental resources that can both precede a traditional field experience and allow for students to re-examine a field site long after a the field experience, in both current formal and informal educational settings.

  20. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    PubMed Central

    MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie

    2015-01-01

    In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638

  1. Computer simulation for integrated pest management of spruce budworms

    Treesearch

    Carroll B. Williams; Patrick J. Shea

    1982-01-01

    Some field studies of the effects of various insecticides on the spruce budworm (Choristoneura sp.) and their parasites have shown severe suppression of host (budworm) populations and increased parasitism after treatment. Computer simulation using hypothetical models of spruce budworm-parasite systems based on these field data revealed that (1)...

  2. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  3. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  4. Comparison of simulated and measured nonlinear ultrasound fields

    NASA Astrophysics Data System (ADS)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-03-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.

  5. The use of computers for perioperative simulation in anesthesia, critical care, and pain medicine.

    PubMed

    Lambden, Simon; Martin, Bruce

    2011-09-01

    Simulation in perioperative anesthesia training is a field of considerable interest, with an urgent need for tools that reliably train and facilitate objective assessment of performance. This article reviews the available simulation technologies, their evolution, and the current evidence base for their use. The future directions for research in the field and potential applications of simulation technology in anesthesia, critical care, and pain medicine are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Note: The design of thin gap chamber simulation signal source based on field programmable gate array.

    PubMed

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Liang, Futian; Jin, Ge

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  7. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Wang, Xu; Li, Feng

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  8. Interpreting remanence isotherms: a Preisach-based study

    NASA Astrophysics Data System (ADS)

    Roshko, R. M.; Viddal, C.

    2004-07-01

    Numerical simulations of the field dependence of the isothermal remanent moment (IRM) and the thermoremanent moment (TRM) are presented, based on a Preisach formalism which decomposes the free energy landscape into an ensemble of thermally activated, temperature dependent, double well subsystems, each characterized by a dissipation field H d and a bias field H s . The simulations show that the TRM approaches saturation much more rapidly than the corresponding IRM and that, as a consequence, the characteristics of the IRM are determined primarily by the distribution of dissipation fields, as defined by the mean field bar {H}_d (T) and the dispersion σ_d (T), while the characteristics of the TRM are determined primarily by a mixture of the mean dissipation field bar {H}_d (T) and the dispersion of bias fields σ_s (T). The simulations also identify a regime bar {H}_d ≫σ_s , where the influence of bar {H}_d (T) on the TRM is negligible, and hence where the TRM and the IRM provide essentially independent scans of the Preisach distribution along the two orthogonal H s and H d directions, respectively. The systematics established by the model simulations are exploited to analyze TRM and IRM data from a mixed ferromagnetic perovskite Ca0.4Sr0.6RuO3, and to reconstruct the distribution of characteristic fields H d and H s , and its variation with temperature.

  9. Simulation's Ensemble is Better Than Ensemble Simulation

    NASA Astrophysics Data System (ADS)

    Yan, X.

    2017-12-01

    Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.

  10. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    PubMed

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  11. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    PubMed Central

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation. PMID:28596730

  12. A cavitation model based on Eulerian stochastic fields

    NASA Astrophysics Data System (ADS)

    Magagnato, F.; Dumond, J.

    2013-12-01

    Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  13. Monte Carlo simulations of spin transport in a strained nanoscale InGaAs field effect transistor

    NASA Astrophysics Data System (ADS)

    Thorpe, B.; Kalna, K.; Langbein, F. C.; Schirmer, S.

    2017-12-01

    Spin-based logic devices could operate at a very high speed with a very low energy consumption and hold significant promise for quantum information processing and metrology. We develop a spintronic device simulator by combining an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with spin transport based on a Bloch equation model and a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings. It is employed to simulate a spin field effect transistor operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor with a CMOS compatible architecture. We observe a non-uniform decay of the net magnetization between the source and the gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and the drain. We demonstrate a coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current can be increased twofold by the strain induced into the channel.

  14. Modeling and simulation of magnetic resonance imaging based on intermolecular multiple quantum coherences

    NASA Astrophysics Data System (ADS)

    Cai, Congbo; Dong, Jiyang; Cai, Shuhui; Cheng, En; Chen, Zhong

    2006-11-01

    Intermolecular multiple quantum coherences (iMQCs) have many potential applications since they can provide interaction information between different molecules within the range of dipolar correlation distance, and can provide new contrast in magnetic resonance imaging (MRI). Because of the non-localized property of dipolar field, and the non-linear property of the Bloch equations incorporating the dipolar field term, the evolution behavior of iMQC is difficult to deduce strictly in many cases. In such cases, simulation studies are very important. Simulation results can not only give a guide to optimize experimental conditions, but also help analyze unexpected experimental results. Based on our product operator matrix and the K-space method for dipolar field calculation, the MRI simulation software was constructed, running on Windows operation system. The non-linear Bloch equations are calculated by a fifth-order Cash-Karp Runge-Kutta formulism. Computational time can be efficiently reduced by separating the effects of chemical shifts and strong gradient field. Using this software, simulation of different kinds of complex MRI sequences can be done conveniently and quickly on general personal computers. Some examples were given. The results were discussed.

  15. Improving chemical shift encoding‐based water–fat separation based on a detailed consideration of magnetic field contributions

    PubMed Central

    Ruschke, Stefan; Eggers, Holger; Meineke, Jakob; Rummeny, Ernst J.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques. PMID:29424458

  16. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    PubMed

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  17. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    PubMed

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  18. An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R Tonks; Derek R Gaston; Paul C Millett

    2012-01-01

    The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less

  19. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2016-07-28

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  20. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  1. Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation

    PubMed Central

    2010-01-01

    We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062

  2. Effect of the presence of oil on foam performance; A field simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, D.H.S.; Yang, Z.M.; Stone, T.W.

    1992-05-01

    This paper describes a field-scale sensitivity study of the effect of the presence of oil on foam performance in a steam-foam-drive process. The 2D field-scale simulation was based on a field pilot in the Karamay formation in Zin-Jiang, China. Numerical results showed that the detrimental effect of oil on the foam performance in field operations is significant. The success of a steam-foam process depended mainly on the ability of the foam to divert steam from the depleted zone.

  3. Simulation study on electric field intensity above train roof

    NASA Astrophysics Data System (ADS)

    Fan, Yizhe; Li, Huawei; Yang, Shasha

    2018-04-01

    In order to understand the distribution of electric field in the space above the train roof accurately and select the installation position of the detection device reasonably, in this paper, the 3D model of pantograph-catenary is established by using SolidWorks software, and the spatial electric field distribution of pantograph-catenary model is simulated based on Comsol software. According to the electric field intensity analysis within the 0.4m space above train roof, we give a reasonable installation of the detection device.

  4. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  5. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm.

    PubMed

    Pernice, W H; Payne, F P; Gallagher, D F

    2007-09-03

    We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.

  6. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  7. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  8. Predictive simulation of guide-wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Hatten, Xavier; Cournia, Zoe; Huc, Ivan

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostaticmore » potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostaticmore » potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.« less

  11. SU-G-JeP2-15: Proton Beam Behavior in the Presence of Realistic Magnet Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, D M; Wachowicz, K; Fallone, B G

    2016-06-15

    Purpose: To investigate the effects of magnetic fields on proton therapy beams for integration with MRI. Methods: 3D magnetic fields from an open-bore superconducting MRI model (previously developed by our group) and 3D magnetic fields from an in-house gradient coil design were applied to various mono energetic proton pencil beam (80MeV to 250MeV) simulations. In all simulations, the z-axis of the simulation geometry coincided with the direction of the B0 field and magnet isocentre. In each simulation, the initial beam trajectory was varied. The first set of simulations performed was based on analytic magnetic force equations (analytic simulations), which couldmore » be rapidly calculated yet were limited to propagating proton beams in vacuum. The second set is full Monte Carlo (MC) simulations, which used GEANT4 MC toolkit. Metrics such as the beam position and dose profiles were extracted. Comparisons between the cases with and without magnetic fields present were made. Results: The analytic simulations served as verification checks for the MC simulations when the same simulation geometries were used. The results of the analytic simulations agreed with the MC simulations performed in vacuum. The presence of the MRI’s static magnetic field causes proton pencil beams to follow a slight helical trajectory when there were some initial off-axis components. The 80MeV, 150MeV, and 250MeV proton beams rotated by 4.9o, 3.6o, and 2.8o, respectively, when they reached z=0cm. The deflections caused by gradient coils’ magnetic fields show spatially invariant patterns with a maximum range of 0.5mm at z=0cm. Conclusion: This investigation reveals that both the MRI’s B0 and gradient magnetic fields can cause small but observable deflections of proton beams at energies studied. The MRI’s static field caused a rotation of the beam while the gradient coils’ fields effects were spatially invariant. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less

  12. A physical data model for fields and agents

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek

    2016-04-01

    Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.

  13. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.

    PubMed

    Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro

    2006-03-02

    We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to coexistence of brittle grains and soft amorphous-like grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth.

  14. Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal

    NASA Astrophysics Data System (ADS)

    Langer, M.; Röder, F.; Gallardo, R. A.; Schneider, T.; Stienen, S.; Gatel, C.; Hübner, R.; Bischoff, L.; Lenz, K.; Lindner, J.; Landeros, P.; Fassbender, J.

    2017-05-01

    This work aims to demonstrate and understand the key role of local demagnetizing fields in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed in two different ways—performing micromagnetic simulations based on the structural shape as well as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron holography. The simulations yield the frequency-field dependence as well as the angular dependence revealing the governing role of the internal field landscape around the backward-volume geometry. Simple rules for the propagation vector and the mode localization are formulated in order to explain the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external field.

  15. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    NASA Astrophysics Data System (ADS)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  16. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.

  17. Dark-field imaging in coronary atherosclerosis.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias

    2017-09-01

    Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  19. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  20. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  1. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  2. A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations

    Treesearch

    Jason M. Forthofer; Bret W. Butler; Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw; Richard D. Stratton; Kyle S. Shannon; Natalie S. Wagenbrenner

    2014-01-01

    The effect of fine-resolution wind simulations on fire growth simulations is explored. The wind models are (1) a wind field consisting of constant speed and direction applied everywhere over the area of interest; (2) a tool based on the solution of the conservation of mass only (termed mass-conserving model) and (3) a tool based on a solution of conservation of mass...

  3. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Detection of chemical warfare simulants using Raman excitation at 1064 nm

    NASA Astrophysics Data System (ADS)

    Dentinger, Claire; Mabry, Mark W.; Roy, Eric G.

    2014-05-01

    Raman spectroscopy is a powerful technique for material identification. The technique is sensitive to primary and higher ordered molecular structure and can be used to identify unknown materials by comparison with spectral reference libraries. Additionally, miniaturization of opto-electronic components has permitted development of portable Raman analyzers that are field deployable. Raman scattering is a relatively weak effect compared to a competing phenomenon, fluorescence. Even a moderate amount of fluorescence background interference can easily prevent identification of unknown materials. A long wavelength Raman system is less likely to induce fluorescence from a wider variety of materials than a higher energy visible laser system. Compounds such as methyl salicylate (MS), diethyl malonate (DEM), and dimethyl methylphosphonate (DMMP) are used as chemical warfare agent (CWA) simulants for development of analytical detection strategies. Field detection of these simulants however poses unique challenges because threat identification must be made quickly without the turnaround time usually required for a laboratory based analysis. Fortunately, these CWA simulants are good Raman scatterers, and field based detection using portable Raman instruments is promising. Measurements of the CWA simulants were done using a 1064 nm based portable Raman spectrometer. The longer wavelength excitation laser was chosen relative to a visible based laser systems because the 1064 nm based spectrometer is less likely to induce fluorescence and more suitable to a wider range of materials. To more closely mimic real world measurement situations, different sample presentations were investigated.

  5. Optical simulation of flying targets using physically based renderer

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen

    2018-02-01

    The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.

  6. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  7. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been developed, helping ACS Cobra to adequately handle the optical and thermal coupled simulations. According to current results it can be concluded that the developed model has resulted in a powerful tool to improve the design and operation of future ACS Cobra's Molten Salts Solar Towers, since historical data based on its projects have been used for validation of the final tool.

  8. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins. 

  9. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  10. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

  11. Response of a Bell–Bloom Magnetometer to a Magnetic Field of Arbitrary Direction

    PubMed Central

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-01-01

    The Bell–Bloom magnetometer in response to a magnetic field of arbitrary direction is observed theoretically and experimentally. A theoretical model is built from a macroscopic view to simulate the magnetometer frequency response to an external magnetic field of arbitrary direction. Based on the simulation results, the magnetometer characteristics, including the signal phase and amplitude at resonance, the linewidth, and the magnetometer sensitivity, are analyzed, and the dependencies of these characteristics on the external magnetic field direction are obtained, which are verified by the experiment. PMID:29724059

  12. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress in the Simulation and Synthesis of WIIT Data

    NASA Technical Reports Server (NTRS)

    Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.

  13. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  14. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  15. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  16. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  17. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    NASA Astrophysics Data System (ADS)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  18. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillis, D.R.

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less

  19. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  20. Systematic Validation of Protein Force Fields against Experimental Data

    PubMed Central

    Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157

  1. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  2. Numerical Computation of Electric Field and Potential Along Silicone Rubber Insulators Under Contaminated and Dry Band Conditions

    NASA Astrophysics Data System (ADS)

    Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.

    2016-09-01

    Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.

  3. Simulators for Mariner Training and Licensing. Phase 3: Investigation of Horizontal Field of View Requirements for Simulator-Based Training of Maritime Cadets,

    DTIC Science & Technology

    1981-12-01

    addressing the "at-sea equivalence issue." * Request that the radar simulator-based training schools stress the importance of multiple navigational...potentially high cost simulator/training program variables, namely: e Target maneuverability Independent versus canned * Color visual scene Color versus... high wind conditions (40 knots). It appears that this may be due to insufficient understanding of: (1) responsiveness of the vessel to various rudder

  4. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  5. "More may mean less... " the role for simulation-based medical education in the cardiac catheterization laboratory.

    PubMed

    Westerdahl, Daniel E; Henry, Timothy D

    2016-02-15

    Implementation of simulation-based medical education (SBME) can improve cardiovascular fellows' angiography skills and knowledge SBME focused on performing coronary angiography shortened procedure times and decreased the use of cine-fluoroscopy The ACGME mandate and SCAI's Simulation Committee recommendations suggest SBME will play an expanding and integral role in the field of cardiovascular medicine. © 2016 Wiley Periodicals, Inc.

  6. Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation

    PubMed Central

    Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel

    2016-01-01

    Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502

  7. Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone; Favalli, Massimiliano

    2011-07-01

    In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.

  8. Plasmon response evaluation based on image-derived arbitrary nanostructures.

    PubMed

    Trautmann, S; Richard-Lacroix, M; Dathe, A; Schneidewind, H; Dellith, J; Fritzsche, W; Deckert, V

    2018-05-31

    The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.

  9. Comparison between phase field simulations and experimental data from intragranular bubble growth in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, M. R.; Biner, S. B.; Mille, P. C.

    2013-07-01

    In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)

  10. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  11. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  12. Coupling crystal plasticity and phase-field damage to simulate β-HMX-based polymer-bonded explosive under shock load

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol

    2017-06-01

    The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.

  13. Nonsequential modeling of laser diode stacks using Zemax: simulation, optimization, and experimental validation.

    PubMed

    Coluccelli, Nicola

    2010-08-01

    Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.

  14. Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Taubenschuss, U.; Santolík, O.

    2017-01-01

    We present results of numerical simulations of VLF chorus emissions based on the backward wave oscillator model and compare them with Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii. Specific attention is paid to the choice of simulation parameters based on experimental data. We show that with known parameters of the geomagnetic field, plasma density, and the initial wave frequency, one can successfully reproduce individual chorus elements in the simulation. In particular, the measured growth rate, wave amplitude, and frequency drift rate are in agreement with observed values. The characteristic interval between the elements has a mismatch of factor 2. The agreement becomes perfect if we assume that the inhomogeneity scale of the magnetic field along the field line is half of that obtained from the T96 model. Such an assumption can be justified since the T96 model does not fit well for the time of chorus observations, and there is a shear in the observed field which indicates the presence of local currents.

  15. A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.

    2015-01-01

    Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.

  16. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because models tend to have more difficulty in correctly predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of cloud-allowing forecasts become available.

  17. Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field

    PubMed Central

    Buck, Patrick M.; Bystroff, Christopher

    2015-01-01

    Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613

  18. Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.

    2004-01-01

    We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.

  19. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Li, Xiao-Li

    2015-12-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. Project supported by the National Natural Science Foundation of China (Grant Nos. 61273063 and 61503321), the China Postdoctoral Science Foundation (Grant No. 2013M540215), the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161), and the Youth Research Program of Yanshan University, China (Grant No. 02000134).

  20. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  1. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  2. Impact of the initial specification of moisture and vertical motion on precipitation forecasts with a mesoscale model Implications for a satellite mesoscale data base

    NASA Technical Reports Server (NTRS)

    Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.

    1986-01-01

    Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.

  3. Space-based Doppler lidar sampling strategies: Algorithm development and simulated observation experiments

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.

  4. Modelling of induced electric fields based on incompletely known magnetic fields

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro

    2017-08-01

    Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.

  5. Toward Theory Building in the Field of Instructional Games and Simulations

    ERIC Educational Resources Information Center

    Cruickshank, Donald R.; Mager, Gerald M.

    1976-01-01

    Three suggestions are made for improving on the present uncoordinated state of games and simulations: establish precise vocabulary, understand the relationships between simulation/gaming and other instructional alternatives, and instigate systematic research based on the descriptive--correlational--experimental loop model. (Author/LS)

  6. Economics of residue harvest: Regional partnership evaluation

    USDA-ARS?s Scientific Manuscript database

    Economic analyses on the viability of corn (Zea mays, L.) stover harvest for bioenergy production have largely been based on simulation modeling. While some studies have utilized field research data, most field-based analyses have included a limited number of sites and a narrow geographic distributi...

  7. Analysis of Developing Gas/liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less

  8. International journal of computational fluid dynamics real-time prediction of unsteady flow based on POD reduced-order model and particle filter

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru

    2016-04-01

    An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.

  9. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  10. Ionospheric Trend Over Wuhan During 1947-2017: Comparison Between Simulation and Observation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Hu, Lianhuan; Wei, Yong; Wan, Weixing; Ning, Baiqi

    2018-02-01

    Since Roble and Dickinson (1989), who drew the community's attention about the greenhouse gas effect on the ionosphere, huge efforts have been implemented on ionospheric climate study. However, direct comparison between observations and simulations is still rare. Recently, the Wuhan ionosonde observations were digitized and standardized through unified method back to 1947. In this study, the NCAR-TIEGCM was driven by Mauna Loa Observatory observed CO2 level and International Geomagnetic Reference Field (IGRF) geomagnetic field to simulate their effects on ionospheric long-term trend over Wuhan. Only March equinox was considered in both data analysis and simulation. Simulation results show that the CO2 and geomagnetic field have comparable effect on hmF2 trend, while geomagnetic field effect is stronger than CO2 on foF2 trend over Wuhan. Both factors result in obvious but different diurnal variations of foF2/hmF2 long-term trends. The geomagnetic field effect is nonlinear versus years since the long-term variation of geomagnetic field intensity and orientation is complex. Mean value of foF2 and hmF2 trend is (-0.0021 MHz/yr, -0.106 km/yr) and (-0.0022 MHz/yr, -0.0763 km/yr) for observation and simulation, respectively. Regarding the diurnal variation of the trend, the simulation accords well with that of observation except hmF2 results around 12 UT. Overall, good agreement between observation and simulation illustrates the good quality of Wuhan ionosonde long-term data and the validity of ancient ionosphere reconstruction based on realistic indices driving simulation.

  11. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  12. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C., III

    1999-01-01

    As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.

  13. Flow characteristics in a canine aneurysm model: A comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations

    PubMed Central

    Jiang, Jingfeng; Johnson, Kevin; Valen-Sendstad, Kristian; Mardal, Kent-Andre; Wieben, Oliver; Strother, Charles

    2011-01-01

    Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using “subject-specific” pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. Results: PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%–20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). Conclusions: In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms. PMID:22047395

  14. Process-based modelling of NH3 exchange with grazed grasslands

    NASA Astrophysics Data System (ADS)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Milford, Celia; Nemitz, Eiko; Twigg, Marsailidh M.; Horváth, László; Sutton, Mark A.

    2017-09-01

    In this study the GAG model, a process-based ammonia (NH3) emission model for urine patches, was extended and applied for the field scale. The new model (GAG_field) was tested over two modelling periods, for which micrometeorological NH3 flux data were available. Acknowledging uncertainties in the measurements, the model was able to simulate the main features of the observed fluxes. The temporal evolution of the simulated NH3 exchange flux was found to be dominated by NH3 emission from the urine patches, offset by simultaneous NH3 deposition to areas of the field not affected by urine. The simulations show how NH3 fluxes over a grazed field in a given day can be affected by urine patches deposited several days earlier, linked to the interaction of volatilization processes with soil pH dynamics. Sensitivity analysis showed that GAG_field was more sensitive to soil buffering capacity (β), field capacity (θfc) and permanent wilting point (θpwp) than the patch-scale model. The reason for these different sensitivities is dual. Firstly, the difference originates from the different scales. Secondly, the difference can be explained by the different initial soil pH and physical properties, which determine the maximum volume of urine that can be stored in the NH3 source layer. It was found that in the case of urine patches with a higher initial soil pH and higher initial soil water content, the sensitivity of NH3 exchange to β was stronger. Also, in the case of a higher initial soil water content, NH3 exchange was more sensitive to the changes in θfc and θpwp. The sensitivity analysis showed that the nitrogen content of urine (cN) is associated with high uncertainty in the simulated fluxes. However, model experiments based on cN values randomized from an estimated statistical distribution indicated that this uncertainty is considerably smaller in practice. Finally, GAG_field was tested with a constant soil pH of 7.5. The variation of NH3 fluxes simulated in this way showed a good agreement with those from the simulations with the original approach, accounting for a dynamically changing soil pH. These results suggest a way for model simplification when GAG_field is applied later at regional scale.

  15. Stochastic-field cavitation model

    NASA Astrophysics Data System (ADS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  16. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  17. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less

  18. Preface: Special Topic: From Quantum Mechanics to Force Fields.

    PubMed

    Piquemal, Jean-Philip; Jordan, Kenneth D

    2017-10-28

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  19. Preface: Special Topic: From Quantum Mechanics to Force Fields

    NASA Astrophysics Data System (ADS)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  20. Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.

    2017-01-01

    In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.

  1. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Hakmana; He Xiaochun; Cleven, Christopher

    The Muon charge ratio at the Earth's surface has been studied with a Geant4 based simulation for two different geomagnetic locations: Atlanta and Lynn Lake. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake, At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 {+-} 0.05 (without geomagnetic field), 1.12 {+-} 0.05 (with geomagnetic field) for Atlanta and 1.22 {+-} 0.04 (with geomagnetic field) for Lynn Lake. These types of studies aremore » very important for analyzing secondary cosmic ray muon flux distribution at Earth's surface and can be used to evaluate the parameter of atmospheric neutrino oscillations.« less

  3. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less

  4. Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  5. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  6. The Use of Simulation and Cases to Teach Real World Decision Making: Applied Example for Health Care Management Graduate Programs

    ERIC Educational Resources Information Center

    Eisenhardt, Alyson; Ninassi, Susanne Bruno

    2016-01-01

    Many pedagogy experts suggest the use of real world scenarios and simulations as a means of teaching students to apply decision analysis concepts to their field of study. These methods allow students an opportunity to synthesize knowledge, skills, and abilities by presenting a field-based dilemma. The use of real world scenarios and simulations…

  7. Direct numerical simulation of the effect of an electric field on flame stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhi, Memdouh; Domingo, Pascale; Vervisch, Pierre

    2010-12-15

    The role of electric fields in stabilising combustion is a well-known phenomenon. Among the possible mechanisms favouring the anchorage of the flame base, the ion-driven wind acting directly on flow momentum ahead of the flame base could be the leading one. Direct numerical simulation has been used to verify this hypothesis and lead to a better understanding of diffusion flame base anchoring in the presence of an externally applied voltage. In this context, a simplified modelling approach is proposed to describe combustion in the presence of electric body forces. The model reproduces the tendencies of experimental observations found in themore » literature. The sensitivity of the flame lift-off height to the applied voltage is studied and the modification of the velocity field ahead of the flame base induced by the electric volume forces is highlighted. (author)« less

  8. Towards oscillations-based simulation of social systems: a neurodynamic approach

    NASA Astrophysics Data System (ADS)

    Plikynas, Darius; Basinskas, Gytis; Laukaitis, Algirdas

    2015-04-01

    This multidisciplinary work presents synopsis of theories in the search for common field-like fundamental principles of self-organisation and communication existing on quantum, cellular, and even social levels. Based on these fundamental principles, we formulate conceptually novel social neuroscience paradigm (OSIMAS), which envisages social systems emerging from the coherent neurodynamical processes taking place in the individual mind-fields. In this way, societies are understood as global processes emerging from the superposition of the conscious and subconscious mind-fields of individual members of society. For the experimental validation of the biologically inspired OSIMAS paradigm, we have designed a framework of EEG-based experiments. Initial baseline individual tests of spectral cross-correlations of EEG-recorded brainwave patterns for some mental states have been provided in this paper. Preliminary experimental results do not refute the main OSIMAS postulates. This paper also provides some insights for the construction of OSIMAS-based simulation models.

  9. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  10. Simulation Training: Evaluating the Instructor’s Contribution to a Wizard of Oz Simulator in Obstetrics and Gynecology Ultrasound Training

    PubMed Central

    Tepper, Ronnie

    2017-01-01

    Background Workplaces today demand graduates who are prepared with field-specific knowledge, advanced social skills, problem-solving skills, and integration capabilities. Meeting these goals with didactic learning (DL) is becoming increasingly difficult. Enhanced training methods that would better prepare tomorrow’s graduates must be more engaging and game-like, such as feedback based e-learning or simulation-based training, while saving time. Empirical evidence regarding the effectiveness of advanced learning methods is lacking. Objective quantitative research comparing advanced training methods with DL is sparse. Objectives This quantitative study assessed the effectiveness of a computerized interactive simulator coupled with an instructor who monitored students’ progress and provided Web-based immediate feedback. Methods A low-cost, globally accessible, telemedicine simulator, developed at the Technion—Israel Institute of Technology, Haifa, Israel—was used. A previous study in the field of interventional cardiology, evaluating the efficacy of the simulator to enhanced learning via knowledge exams, presented promising results of average scores varying from 94% after training and 54% before training (n=20) with P<.001. Two independent experiments involving obstetrics and gynecology (Ob-Gyn) physicians and senior ultrasound sonographers, with 32 subjects, were conducted using a new interactive concept of the WOZ (Wizard of OZ) simulator platform. The contribution of an instructor to learning outcomes was evaluated by comparing students’ knowledge before and after each interactive instructor-led session as well as after fully automated e-learning in the field of Ob-Gyn. Results from objective knowledge tests were analyzed using hypothesis testing and model fitting. Results A significant advantage (P=.01) was found in favor of the WOZ training approach. Content type and training audience were not significant. Conclusions This study evaluated the contribution of an integrated teaching environment using a computerized interactive simulator, with an instructor providing immediate Web-based immediate feedback to trainees. Involvement of an instructor in the simulation-based training process provided better learning outcomes that varied training content and trainee populations did not affect the overall learning gains. PMID:28432039

  11. Simulations of extragalactic magnetic fields and of their observables

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.

    2017-12-01

    The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.

  12. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less

  13. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    NASA Astrophysics Data System (ADS)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  14. Sound-field reproduction in-room using optimal control techniques: simulations in the frequency domain.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-02-01

    This paper describes the simulations and results obtained when applying optimal control to progressive sound-field reproduction (mainly for audio applications) over an area using multiple monopole loudspeakers. The model simulates a reproduction system that operates either in free field or in a closed space approaching a typical listening room, and is based on optimal control in the frequency domain. This rather simple approach is chosen for the purpose of physical investigation, especially in terms of sensing microphones and reproduction loudspeakers configurations. Other issues of interest concern the comparison with wave-field synthesis and the control mechanisms. The results suggest that in-room reproduction of sound field using active control can be achieved with a residual normalized squared error significantly lower than open-loop wave-field synthesis in the same situation. Active reproduction techniques have the advantage of automatically compensating for the room's natural dynamics. For the considered cases, the simulations show that optimal control results are not sensitive (in terms of reproduction error) to wall absorption in the reproduction room. A special surrounding configuration of sensors is introduced for a sensor-free listening area in free field.

  15. On magnetic field amplification and particle acceleration near non-relativistic collisionless shocks: Particles in MHD Cells simulations

    NASA Astrophysics Data System (ADS)

    Casse, F.; van Marle, A. J.; Marcowith, A.

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle-in-cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider non-relativistic super-Alfénic shocks with various magnetic field obliquity. We recover all the features from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell and hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our oblique shock simulations the streaming of supra-thermal particles induces a corrugation of the shock front. Such oscillations of both the shock front and the magnetic field then locally helps the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  16. MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation

    NASA Technical Reports Server (NTRS)

    Charest, Leonard

    1994-01-01

    This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.

  17. Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry

    PubMed Central

    Guo, Shan; Moore, Timothy C.; Iacovella, Christopher R.; Strickland, L. Anderson; McCabe, Clare

    2014-01-01

    Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment. PMID:24501589

  18. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.

    2017-08-01

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  19. On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations

    NASA Astrophysics Data System (ADS)

    van Marle, Allard Jan; Casse, Fabien; Marcowith, Alexandre

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and suprathermal particles. Such interaction is depicted by combining a grid-based magnetohydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of suprathermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvénic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger time-scales than in the parallel case. We show that in our simulations, the suprathermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  20. Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability

    NASA Astrophysics Data System (ADS)

    Li, Weiyi; Zhang, Zhili; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Sun, Shichuang; Song, Liang; Hao, Ronghui; Fan, Yaming; Cai, Yong; Zhang, Baoshun

    2017-07-01

    We proposed a novel AlGaN/GaN enhancement-mode (E-mode) high electron mobility transistor (HEMT) with a dual-gate structure and carried out the detailed numerical simulation of device operation using Silvaco Atlas. The dual-gate device is based on a cascode connection of an E-mode and a D-mode gate. The simulation results show that electric field under the gate is decreased by more than 70% compared to that of the conventional E-mode MIS-HEMTs (from 2.83 MV/cm decreased to 0.83 MV/cm). Thus, with the discussion of ionized trap density, the proposed dual-gate structure can highly improve electric field-related reliability, such as, threshold voltage stability. In addition, compared with HEMT with field plate structure, the proposed structure exhibits a simplified fabrication process and a more effective suppression of high electric field. Project supported by the Key Technologies Support Program of Jiangsu Province (No. BE2013002-2) and the National Key Scientific Instrument and Equipment Development Projects of China (No. 2013YQ470767).

  1. Molecular dynamics simulations of polarizable DNA in crystal environment

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Baucom, Jason; Darden, Thomas A.; Sagui, Celeste

    We have investigated the role of the electrostatic description and cell environment in molecular dynamics (MD) simulations of DNA. Multiple unrestrained MD simulations of the DNA duplex d(CCAACGTTGG)2 have been carried out using two different force fields: a traditional description based on atomic point charges and a polarizable force field. For the time scales probed, and given the ?right? distribution of divalent ions, the latter performs better than the nonpolarizable force field. In particular, by imposing the experimental unit cell environment, an initial configuration with ideal B-DNA duplexes in the unit cell acquires sequence-dependent features that very closely resemble the crystallographic ones. Simultaneously, the all-atom root-mean-square coordinates deviation (RMSD) with respect to the crystallographic structure is seen to decay. At later times, the polarizable force field is able to maintain this lower RMSD, while the nonpolarizable force field starts to drift away.

  2. Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning

    NASA Astrophysics Data System (ADS)

    Askarian Amiri, Mikal

    Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain, return loss and tunable impedance bandwidth, were obtained and recommended for ferrite-loaded CBS antennas.

  3. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.

  4. X-Ray Irradiation Effects in Top Contact, Pentacene Based Field Effect Transistors for Space Related Applications

    DTIC Science & Technology

    2006-01-01

    Journal Article POSTPRINT 3. DATES COVERED (From - To) 2006 4. TITLE AND SUBTITLE X-ray irradiation effects in top contact, pentacene based field 5a...Preliminary studies of the effect of x-ray irradiation, typically used to simulate radiation effects in space, on top contract, pentacene based field effect...irradiation, radiation, radiation effects, pentacene 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  5. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE; Department of Physics & Astronomy, University College London, London WC1E 6BT

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by specklemore » tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.« less

  6. Simulation and Experimental Studies of a 2.45GHz Magnetron Source for an SRF Cavity with Field Amplitude and Phase Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haipeng; Plawski, Tomasz E.; Rimmer, Robert A.

    2016-06-01

    Phase lock to an SRF cavity by using injection signal through output waveguide of a magnetron has been demonstrated [1, 3]. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using MATLAB/Simulink simulations [2]. Based on these, we are planning to use an FPGA based digital LLRF system, which allows applying various types of control algorithms in order to achieve the required accelerating field stability. Since the 1497 MHz magnetron is still in the design stage, the proof of principle measurements of a commercial 2450 MHz magnetron are carried out to characterize the anode I-V curve,more » output power (the tube electronic efficiency), frequency dependence on the anode current (frequency pushing) and the Rieke diagram (frequency pulling by the reactive load). Based on early Simulink simulation, experimental data and extension of the Adler equation governing injection phase stability by Chen’s model, the specification of the new LLRF control chassis for both 2450 and 1497MHz systems are presented in this paper.« less

  7. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  8. Stochastic-field cavitation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumond, J., E-mail: julien.dumond@areva.com; AREVA GmbH, Erlangen, Paul-Gossen-Strasse 100, D-91052 Erlangen; Magagnato, F.

    2013-07-15

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-fieldmore » cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.« less

  9. Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles

    PubMed Central

    Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.

    2014-01-01

    We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845

  10. Evaluation of General and Tailor Made Force Fields via X-ray Thermal Diffuse Scattering Using Molecular Dynamics and Monte Carlo Simulations of Crystalline Aspirin.

    PubMed

    Chan, Eric J; Neumann, Marcus A

    2018-04-10

    We have performed a comparison of the experimental thermal diffuse scattering (TDS) from crystalline Aspirin (form I) to that calculated from molecular dynamics (MD) simulations based on a variety of general force fields and a tailor-made force field (TMFF). A comparison is also made with Monte Carlo (MC) simulations which use a "harmonic network" approach to describe the intermolecular interactions. These comparisons were based on the hypothesis that TDS could be a useful experimental data in validation of such simulation parameter sets, especially when calculations of dynamical properties (e.g., thermodynamic free energies) from molecular crystals are concerned. Currently such a validation of force field parameters against experimental data is often limited to calculation of specific physical properties, e.g., absolute lattice energies usually at 0 K or heat capacity measurements. TDS harvested from in-house or synchrotron experiments comprises highly detailed structural information representative of the dynamical motions of the crystal lattice. Thus, TDS is a well-suited experimental data-driven means of cross validating theoretical approaches targeted at understanding dynamical properties of crystals. We found from the results of our investigation that the TMFF and COMPASS (from the commercial software "Materials Studio") parameter sets gave the best agreement with experiment. From our homologous MC simulation analysis we are able to show that force constants associated with the molecular torsion angles are likely to be a strong contributing factor for the apparent reason why these aforementioned force fields performed better.

  11. Simulation of a shock tube with a small exit nozzle

    NASA Astrophysics Data System (ADS)

    Luan, Yigang; Olzmann, Matthias; Magagnato, Franco

    2018-02-01

    Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related thermodynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and validated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with analytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are investigated. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.

  12. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    NASA Astrophysics Data System (ADS)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  13. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment

    DTIC Science & Technology

    2012-09-01

    ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow

  14. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    PubMed

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  15. Consistent View of Protein Fluctuations from All-Atom Molecular Dynamics and Coarse-Grained Dynamics with Knowledge-Based Force-Field.

    PubMed

    Jamroz, Michal; Orozco, Modesto; Kolinski, Andrzej; Kmiecik, Sebastian

    2013-01-08

    It is widely recognized that atomistic Molecular Dynamics (MD), a classical simulation method, captures the essential physics of protein dynamics. That idea is supported by a theoretical study showing that various MD force-fields provide a consensus picture of protein fluctuations in aqueous solution [Rueda, M. et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 796-801]. However, atomistic MD cannot be applied to most biologically relevant processes due to its limitation to relatively short time scales. Much longer time scales can be accessed by properly designed coarse-grained models. We demonstrate that the aforementioned consensus view of protein dynamics from short (nanosecond) time scale MD simulations is fairly consistent with the dynamics of the coarse-grained protein model - the CABS model. The CABS model employs stochastic dynamics (a Monte Carlo method) and a knowledge-based force-field, which is not biased toward the native structure of a simulated protein. Since CABS-based dynamics allows for the simulation of entire folding (or multiple folding events) in a single run, integration of the CABS approach with all-atom MD promises a convenient (and computationally feasible) means for the long-time multiscale molecular modeling of protein systems with atomistic resolution.

  16. Simulation of drift wave instability in field-reversed configurations using global magnetic geometry

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team

    2016-10-01

    Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.

  17. MHD Simulation for Investigating the Dynamic State Transition Responsible for a Solar Eruption in Active Region 12158

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya

    2018-06-01

    We present a magnetohydrodynamic model of solar eruption based on the dynamic state transition from the quasi-static state to the eruptive state of an active region (AR) magnetic field. For the quasi-static state before an eruption, we consider the existence of a slow solar wind originating from an AR, which may continuously make the AR magnetic field deviate from mechanical equilibrium. In this model, we perform a three-dimensional magnetohydrodynamic simulation of AR 12158 producing a coronal mass ejection, where the initial magnetic structure of the simulation is given by a nonlinear force-free field derived from an observed photospheric vector magnetic field. We then apply a pressure-driven outflow to the upper part of the magnetic structure to achieve a quasi-static pre-eruptive state. The simulation shows that the eruptive process observed in this AR may be caused by the dynamic state transition of an AR magnetic field, which is essentially different from the destabilization of a static magnetic field. The dynamic state transition is determined from the shape evolution of the magnetic field line according to the κH-mechanism. This work demonstrates how the mechanism works to produce a solar eruption in the dynamic solar corona governed by the gravitational field and the continuous outflows of solar wind.

  18. Gate voltage dependent 1/f noise variance model based on physical noise generation mechanisms in n-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo

    2015-04-01

    1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.

  19. Numerical Simulation and Experimental Casting of Nickel-Based Single-Crystal Superalloys by HRS and LMC Directional Solidification Processes

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng

    2017-04-01

    Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.

  20. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  1. Formation and field-driven dynamics of nematic spheroids.

    PubMed

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  2. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  3. Investigation of outside visual cues required for low speed and hover

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1985-01-01

    Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.

  4. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    NASA Astrophysics Data System (ADS)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  5. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463

  6. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    NASA Astrophysics Data System (ADS)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  7. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  8. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  9. Direct folding simulation of helical proteins using an effective polarizable bond force field.

    PubMed

    Duan, Lili; Zhu, Tong; Ji, Changge; Zhang, Qinggang; Zhang, John Z H

    2017-06-14

    We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. Cluster analysis has also verified that these folded structures with the highest population are in good agreement with their corresponding native structures for these proteins. In addition, the free energy landscape of seven proteins in the two dimensional space comprised of RMSD and radius of gyration proved that these folded structures are indeed of the lowest energy conformations. However, when the corresponding simulations were performed using the standard (nonpolarizable) AMBER force fields, no stable folded structures were observed for these proteins. Comparison of the simulation results based on a polarizable EPB force field and a nonpolarizable AMBER force field clearly demonstrates the importance of polarization in the folding of stable helical structures.

  10. Information driving force and its application in agent-based modeling

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  12. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  13. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  14. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  15. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    PubMed

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.

  16. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant

    PubMed Central

    2011-01-01

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields. PMID:22241968

  17. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  18. CulSim: A simulator of emergence and resilience of cultural diversity

    NASA Astrophysics Data System (ADS)

    Ulloa, Roberto

    CulSim is an agent-based computer simulation software that allows further exploration of influential and recent models of emergence of cultural groups grounded in sociological theories. CulSim provides a collection of tools to analyze resilience of cultural diversity when events affect agents, institutions or global parameters of the simulations; upon combination, events can be used to approximate historical circumstances. The software provides a graphical and text-based user interface, and so makes this agent-based modeling methodology accessible to a variety of users from different research fields.

  19. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  20. Computer-Based Simulation Systems and Role-Playing: An Effective Combination for Fostering Conditional Knowledge.

    ERIC Educational Resources Information Center

    Shlechter, Theodore M.; And Others

    1992-01-01

    Examines the effectiveness of SIMNET (Simulation Networking), a virtual reality training simulation system, combined with a program of role-playing activities for helping Army classes to master the conditional knowledge needed for successful field performance. The value of active forms of learning for promoting higher order cognitive thinking is…

  1. Experimental controlled-NOT gate simulation with thermal light

    PubMed Central

    Peng, Tao; Tamma, Vincenzo; Shih, Yanhua

    2016-01-01

    We report a recent experimental simulation of a controlled-NOT gate operation based on polarization correlation measurements of thermal fields in photon-number fluctuations. The interference between pairs of correlated paths at the very heart of these experiments has the potential for the simulation of correlations between a larger number of qubits. PMID:27439330

  2. Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.

    ERIC Educational Resources Information Center

    Towne, Douglas M.; Munro, Allen

    A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…

  3. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    NASA Astrophysics Data System (ADS)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  4. Development of a large-scale, outdoor, ground-based test capability for evaluating the effect of rain on airfoil lift

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Campbell, Bryan A.

    1993-01-01

    A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.

  5. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  6. Diffraction-Based Density Restraints for Membrane and Membrane-Peptide Molecular Dynamics Simulations

    PubMed Central

    Benz, Ryan W.; Nanda, Hirsh; Castro-Román, Francisco; White, Stephen H.; Tobias, Douglas J.

    2006-01-01

    We have recently shown that current molecular dynamics (MD) atomic force fields are not yet able to produce lipid bilayer structures that agree with experimentally-determined structures within experimental errors. Because of the many advantages offered by experimentally validated simulations, we have developed a novel restraint method for membrane MD simulations that uses experimental diffraction data. The restraints, introduced into the MD force field, act upon specified groups of atoms to restrain their mean positions and widths to values determined experimentally. The method was first tested using a simple liquid argon system, and then applied to a neat dioleoylphosphatidylcholine (DOPC) bilayer at 66% relative humidity and to the same bilayer containing the peptide melittin. Application of experiment-based restraints to the transbilayer double-bond and water distributions of neat DOPC bilayers led to distributions that agreed with the experimental values. Based upon the experimental structure, the restraints improved the simulated structure in some regions while introducing larger differences in others, as might be expected from imperfect force fields. For the DOPC-melittin system, the experimental transbilayer distribution of melittin was used as a restraint. The addition of the peptide caused perturbations of the simulated bilayer structure, but which were larger than observed experimentally. The melittin distribution of the simulation could be fit accurately to a Gaussian with parameters close to the observed ones, indicating that the restraints can be used to produce an ensemble of membrane-bound peptide conformations that are consistent with experiments. Such ensembles pave the way for understanding peptide-bilayer interactions at the atomic level. PMID:16950837

  7. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    USGS Publications Warehouse

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  8. Visualizing light with electrons

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.

    2014-03-01

    In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.

  9. Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Howard, R. A.; St. Cyr, O. C.; Vourlidas, A.

    2017-12-01

    The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a “floor” in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to ∼3 days during minima. We discuss the sources of these CMEs.

  10. Robotic Range Clearance Competition (R2C2)

    DTIC Science & Technology

    2011-10-01

    unexploded ordnance (UXO). A large part of the debris field consists of ferrous metal objects that magnetic 39 Distribution A: Approved for public...was set at 7 degrees above horizontal based on terrain around the Base station. We used the BSUBR file for all fields except the Subsurface...and subsurface clearance test areas had numerous pieces of simulated unexploded ordinance (SUXO) buried at random locations around the field . These

  11. Palpation Simulator of Beating Aorta for Cardiovascular Surgery Training

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiro; Nakao, Megumi; Kuroda, Tomohiro; Oyama, Hiroshi; Komori, Masaru; Matsuda, Tetsuya; Sakaguchi, Genichi; Komeda, Masashi; Takahashi, Takashi

    In field of cardiovascular surgeries, palpation of aorta plays important roles in decision of surgical site.This paper develops palpation simulator of aorta based on a finite element based physical model.The proposed model calculates soft tissue deformation according to the affection of inner pressure and the operation of a surgeon.The proposed method is implemented on a prototype with dual PHANToM device.Experimental results confirmed our model achieves real time simulation of the surgical palpation.

  12. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  13. Combustion in an acceleration field: A survey of Soviet literature

    NASA Technical Reports Server (NTRS)

    Radloff, S. J.; Osborn, J. R.

    1980-01-01

    The effect of an acceleration field on the burning rate of a solid propellant was measured from -900g's to +1000g's using both double base and ammonium perchlorate based propellants. The acceleration fields were simulated using a centrifuge device and the burning rate was recorded. Both metalized and non-metalized variations of each propellant were tested and it was found that acceleration fields affect the burning rate. For the most part the theoretical predictions and the experimental results agreed.

  14. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  15. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  16. Theoretical analyses of localized surface plasmon resonance spectrum with nanoparticles imprinted polymers

    NASA Astrophysics Data System (ADS)

    Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei

    2011-12-01

    Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.

  17. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less

  18. Calibrating cellular automaton models for pedestrians walking through corners

    NASA Astrophysics Data System (ADS)

    Dias, Charitha; Lovreglio, Ruggiero

    2018-05-01

    Cellular Automata (CA) based pedestrian simulation models have gained remarkable popularity as they are simpler and easier to implement compared to other microscopic modeling approaches. However, incorporating traditional floor field representations in CA models to simulate pedestrian corner navigation behavior could result in unrealistic behaviors. Even though several previous studies have attempted to enhance CA models to realistically simulate pedestrian maneuvers around bends, such modifications have not been calibrated or validated against empirical data. In this study, two static floor field (SFF) representations, namely 'discrete representation' and 'continuous representation', are calibrated for CA-models to represent pedestrians' walking behavior around 90° bends. Trajectory data collected through a controlled experiment are used to calibrate these model representations. Calibration results indicate that although both floor field representations can represent pedestrians' corner navigation behavior, the 'continuous' representation fits the data better. Output of this study could be beneficial for enhancing the reliability of existing CA-based models by representing pedestrians' corner navigation behaviors more realistically.

  19. A light field microscope imaging spectrometer based on the microlens array

    NASA Astrophysics Data System (ADS)

    Yao, Yu-jia; Xu, Feng; Xia, Yin-xiang

    2017-10-01

    A new light field spectrometry microscope imaging system, which was composed by microscope objective, microlens array and spectrometry system was designed in this paper. 5-D information (4-D light field and 1-D spectrometer) of the sample could be captured by the snapshot system in only one exposure, avoiding the motion blur and aberration caused by the scanning imaging process of the traditional imaging spectrometry. Microscope objective had been used as the former group while microlens array used as the posterior group. The optical design of the system was simulated by Zemax, the parameter matching condition between microscope objective and microlens array was discussed significantly during the simulation process. The result simulated in the image plane was analyzed and discussed.

  20. Angle-of-arrival variance of waves and rays in strong atmospheric scattering: split-step simulation results

    NASA Astrophysics Data System (ADS)

    Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas

    2017-09-01

    The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.

  1. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH…

  2. Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng

    2017-03-01

    We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.

  3. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  4. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  5. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    NASA Astrophysics Data System (ADS)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  6. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training.

    PubMed

    Keelan, Robert; Shimada, Kenji; Rabin, Yoed

    2017-02-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze-thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface.

  7. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training

    PubMed Central

    Keelan, Robert; Shimada, Kenji

    2016-01-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze–thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface. PMID:26818026

  8. A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.

    2007-01-01

    Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.

  9. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  10. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  11. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhamad, J.; Kusano, K.; Inoue, S.

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into twomore » groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.« less

  12. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-08-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  13. Computational modeling of magnetic particle margination within blood flow through LAMMPS

    NASA Astrophysics Data System (ADS)

    Ye, Huilin; Shen, Zhiqiang; Li, Ying

    2017-11-01

    We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.

  14. Magnetic Field in a Screw Flow with Fluctuations

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Stepanov, R. A.; Sokoloff, D. D.

    2018-04-01

    We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.

  15. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  16. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  17. Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huihui; He, Xiongwei; Guo, Peng

    2017-04-01

    Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.

  18. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  19. Background and imaging simulations for the hard X-ray camera of the MIRAX mission

    NASA Astrophysics Data System (ADS)

    Castro, M.; Braga, J.; Penacchioni, A.; D'Amico, F.; Sacahui, R.

    2016-07-01

    We report the results of detailed Monte Carlo simulations of the performance expected both at balloon altitudes and at the probable satellite orbit of a hard X-ray coded-aperture camera being developed for the Monitor e Imageador de RAios X (MIRAX) mission. Based on a thorough mass model of the instrument and detailed specifications of the spectra and angular dependence of the various relevant radiation fields at both the stratospheric and orbital environments, we have used the well-known package GEANT4 to simulate the instrumental background of the camera. We also show simulated images of source fields to be observed and calculated the detailed sensitivity of the instrument in both situations. The results reported here are especially important to researchers in this field considering that we provide important information, not easily found in the literature, on how to prepare input files and calculate crucial instrumental parameters to perform GEANT4 simulations for high-energy astrophysics space experiments.

  20. Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys.

    PubMed

    Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E

    2017-10-15

    Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

  1. Magnetic biosensors: Modelling and simulation.

    PubMed

    Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi

    2018-04-30

    In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    NASA Astrophysics Data System (ADS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  3. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  4. Simulations of laser undulators

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  5. Research on cloud background infrared radiation simulation based on fractal and statistical data

    NASA Astrophysics Data System (ADS)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  6. Output factor determination based on Monte Carlo simulation for small cone field in 10-MV photon beam.

    PubMed

    Fukata, Kyohei; Sugimoto, Satoru; Kurokawa, Chie; Saito, Akito; Inoue, Tatsuya; Sasai, Keisuke

    2018-06-01

    The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.

  7. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  8. Collaborative Learning with Screen-Based Simulation in Health Care Education: An Empirical Study of Collaborative Patterns and Proficiency Development

    ERIC Educational Resources Information Center

    Hall, L. O.; Soderstrom, T.; Ahlqvist, J.; Nilsson, T.

    2011-01-01

    This article is about collaborative learning with educational computer-assisted simulation (ECAS) in health care education. Previous research on training with a radiological virtual reality simulator has indicated positive effects on learning when compared to a more conventional alternative. Drawing upon the field of Computer-Supported…

  9. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  10. Quantum simulation of an ultrathin body field-effect transistor with channel imperfections

    NASA Astrophysics Data System (ADS)

    Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.

    2012-04-01

    An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.

  11. Biodegradation modelling of a dissolved gasoline plume applying independent laboratory and field parameters

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Molson, John W.; Frind, Emil O.; Barker, James F.

    2000-12-01

    Biodegradation of organic contaminants in groundwater is a microscale process which is often observed on scales of 100s of metres or larger. Unfortunately, there are no known equivalent parameters for characterizing the biodegradation process at the macroscale as there are, for example, in the case of hydrodynamic dispersion. Zero- and first-order degradation rates estimated at the laboratory scale by model fitting generally overpredict the rate of biodegradation when applied to the field scale because limited electron acceptor availability and microbial growth are not considered. On the other hand, field-estimated zero- and first-order rates are often not suitable for predicting plume development because they may oversimplify or neglect several key field scale processes, phenomena and characteristics. This study uses the numerical model BIO3D to link the laboratory and field scales by applying laboratory-derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at the Canadian Forces Base (CFB) Borden. All input parameters were derived from independent laboratory and field measurements or taken from the literature a priori to the simulations. The simulated results match the experimental results reasonably well without model calibration. A sensitivity analysis on the most uncertain input parameters showed only a minor influence on the simulation results. Furthermore, it is shown that the flow field, the amount of electron acceptor (oxygen) available, and the Monod kinetic parameters have a significant influence on the simulated results. It is concluded that laboratory-derived Monod kinetic parameters can adequately describe field scale degradation, provided all controlling factors are incorporated in the field scale model. These factors include advective-dispersive transport of multiple contaminants and electron acceptors and large-scale spatial heterogeneities.

  12. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  13. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    NASA Astrophysics Data System (ADS)

    He, Yi; Liwo, Adam; Scheraga, Harold A.

    2015-12-01

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  14. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Fangchao, E-mail: dangfangchao@sina.com; Zhang, Xiaoping; Zhong, Huihuang

    2014-06-15

    A novel radial line oscillator operating at Ku-band with low guiding magnetic field is proposed in this paper. By using an oversized radial structure, the power handling capacity is enhanced significantly. Based on the small-signal theory, the π/2 mode in radial TM{sub 01} mode is selected as the working mode. Furthermore, a radial uniform guiding magnetic field, made up of four solenoids, is designed. As indicated in 2.5-dimensional fully electromagnetic particle-in-cell simulation, high power microwaves with a power of 2.2 GW and a frequency of 14.25 GHz are generated with over 40% efficiency when the electron beam voltage is 300 kV, themore » beam current 18 kA, and the guiding magnetic field is only 0.6 T. There is no angular non-asymmetric mode discovered in three-dimensional simulation.« less

  15. Light focusing through a multiple scattering medium: ab initio computer simulation

    NASA Astrophysics Data System (ADS)

    Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey

    2018-01-01

    The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.

  16. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  17. Polarization leakage in epoch of reionization windows - III. Wide-field effects of narrow-field arrays

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; de Bruyn, A. G.; Pandey, V. N.; Gehlot, B. K.

    2018-05-01

    Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic side-lobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the `EoR window' of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and North Celestial Pole (NCP) fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-k∥ that could potentially leak to Stokes I. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes I because of the primary beam. We find that the rms fractional leakage over the instrumental k-space is 0.35 {per cent} in the 3C196 field and 0.27 {per cent} in the NCP field, and it does not change significantly within the diameters of 15°, 9°, and 4°. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes I is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.

  18. Temperature field simulation on Ti6Al4V and Inconel718 heated by continuous infrared laser

    NASA Astrophysics Data System (ADS)

    Wang, Yanshen; Zhang, Zheng; Feng, Weiwei; Wang, Bo; Gai, Yuxian

    2014-08-01

    Laser assisted machining technology can heat and soften metals, which can be used for improving the machinability of superalloys such as Ti6Al4V and Inconel718. Researches on temperature field simulation of Ti6Al4V and Inconel718 are conducted in this paper. A thermal differential equation is established based on Fourier's law and energy conservation law. Then, a model using ABAQUS for simulating heat transfer process is brought out, which is then experimentally validated. Using the simulation model, detailed investigations on temperature field simulation are carried out in Ti6Al4V and Inconel718. According to simulation, surface temperature of the two superalloys eventually reaches their peak values, and the peak temperature of Ti6Al4V is much higher than that of Inconel718. To further investigate temperature heated by laser, laser parameters such as power, scanning velocity, laser spot radius and inclination angle are set to be variables separately for simulation. Simulation results show that laser power and laser spot radius are predominant factors in heating process compared with the influence of scanning velocity and inclination angle. Simulations in this paper provide valuable references for parameter optimization in the following laser heating experiments, which plays an important role in laser assisted machining.

  19. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.

    PubMed

    Bennett, W F Drew; Hong, Chun Kit; Wang, Yi; Tieleman, D Peter

    2016-09-13

    Due to antimicrobial resistance, the development of new drugs to combat bacterial and fungal infections is an important area of research. Nature uses short, charged, and amphipathic peptides for antimicrobial defense, many of which disrupt the lipid membrane in addition to other possible targets inside the cell. Computer simulations have revealed atomistic details for the interactions of antimicrobial peptides and cell-penetrating peptides with lipid bilayers. Strong interactions between the polar interface and the charged peptides can induce bilayer deformations - including membrane rupture and peptide stabilization of a hydrophilic pore. Here, we performed microsecond-long simulations of the antimicrobial peptide CM15 in a POPC bilayer expecting to observe pore formation (based on previous molecular dynamics simulations). We show that caution is needed when interpreting results of equilibrium peptide-membrane simulations, given the length of time single trajectories can dwell in local energy minima for 100's of ns to microseconds. While we did record significant membrane perturbations from the CM15 peptide, pores were not observed. We explain this discrepancy by computing the free energy for pore formation with different force fields. Our results show a large difference in the free energy barrier (ca. 40 kJ/mol) against pore formation predicted by the different force fields that would result in orders of magnitude differences in the simulation time required to observe spontaneous pore formation. This explains why previous simulations using the Berger lipid parameters reported pores induced by charged peptides, while with CHARMM based models pores were not observed in our long time-scale simulations. We reconcile some of the differences in the distance dependent free energies by shifting the free energy profiles to account for thickness differences between force fields. The shifted curves show that all the models describe small defects in lipid bilayers in a consistent manner, suggesting a common physical basis.

  20. Phase-field simulation of microstructure formation in technical castings - A self-consistent homoenthalpic approach to the micro-macro problem

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Eiken, J.; Apel, M.

    2009-10-01

    Performing microstructure simulation of technical casting processes suffers from the strong interdependency between latent heat release due to local microstructure formation and heat diffusion on the macroscopic scale: local microstructure formation depends on the macroscopic heat fluxes and, in turn, the macroscopic temperature solution depends on the latent heat release, and therefore on the microstructure formation, in all parts of the casting. A self-consistent homoenthalpic approximation to this micro-macro problem is proposed, based on the assumption of a common enthalpy-temperature relation for the whole casting which is used for the description of latent heat production on the macroscale. This enthalpy-temperature relation is iteratively obtained by phase-field simulations on the microscale, thus taking into account the specific morphological impact on the latent heat production. This new approach is discussed and compared to other approximations for the coupling of the macroscopic heat flux to complex microstructure models. Simulations are performed for the binary alloy Al-3at%Cu, using a multiphase-field solidification model which is coupled to a thermodynamic database. Microstructure formation is simulated for several positions in a simple model plate casting, using a one-dimensional macroscopic temperature solver which can be directly coupled to the microscopic phase-field simulation tool.

  1. Laboratory and Field Evaluation of Rapid Setting Cementitious Materials for Large Crater Repair

    DTIC Science & Technology

    2010-05-01

    frame used within which to complete the repair was the current NATO standard of 4 hr. A total of 6 simulated craters were prepared, with each repair...Combat Command 129 Andrews Street Langley Air Force Base, VA 23665 ERDC TR-10-4 ii Abstract: Current practice for expedient runway repair...penalty. Numerous commercial products are available. A full-scale field test was conducted using rapid setting materials to repair simulated bomb craters

  2. FDTD simulation of field performance in reverberation chamber excited by two excitation antennas

    NASA Astrophysics Data System (ADS)

    Wang, Song; Wu, Zhan-cheng; Cui, Yao-zhong

    2013-03-01

    The excitation source is one of the critical items that determine the electromagnetic fields in a reverberation chamber (RC). In order to optimize the electromagnetic fields performance, a new method of exciting RC with two antennas is proposed based on theoretical analysis. The full 3D simulation of RC is carried out by the finite difference time domain (FDTD) method on two excitation conditions of one antenna and two antennas. The broadband response of RC is obtained by fast Fourier transformation (FFT) after only one simulation. Numerical data show that the field uniformity in the test space is improved on the condition of two transmitting antennas while the normalized electric fields decreased slightly compared to the one antenna condition. It is straightforward to recognize that two antennas excitation can reduce the demands on power amplifier as the total input power is split among the two antennas, and consequently the cost of electromagnetic compatibility (EMC) test in large-scale RC can be reduced.

  3. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  5. The characteristics of grating structure in magnetic field measurements based on polarization properties of fiber gratings

    NASA Astrophysics Data System (ADS)

    Su, Yang; Peng, Hui; Feng, Kui; Li, Yu-quan

    2009-11-01

    In this paper the characteristics of grating structure in magnetic field measurements based on differential group delay of fiber gratings are analyzed. Theoretical simulations are realized using the coupled-mode theory and transfer matrix method. The effects of grating parameters of uniform Bragg grating on measurement range and sensitivity are analyzed. The impacts of chirped, phase-shifted and apodized gratings on DGD peak values are also monitored. FBG transmitted spectrums and DGD spectrums are recorded by means of an optical vector analyzer (OVA). Both the simulations and experiments demonstrate that the phase-shifted gratings can obviously improve the sensitivity.

  6. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization

    NASA Astrophysics Data System (ADS)

    Yunfang, Jia; Cheng, Ju

    2016-01-01

    The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene. Project supported by the National Natural Science Foundation of China (No. 61371028) and the Tianjin Natural Science Foundation (No. 12JCZDJC22400).

  7. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array

    PubMed Central

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Tao, Yuan

    2018-01-01

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%. PMID:29734742

  8. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

    PubMed

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Abu-Siada, Ahmed; Tao, Yuan

    2018-05-05

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%.

  9. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles

    PubMed Central

    2011-01-01

    We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χOL. The parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like structural distortions in RNA simulations. They also improve the description of the syn region and the syn–anti balance as well as enhance MD simulations of various RNA structures. Although χOL can be combined with both ff99 and ff99bsc0, we recommend the latter. We do not recommend using χOL for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χOL force field is compared with several previous glycosidic torsion parametrizations. PMID:21921995

  10. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  11. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  12. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  13. Virtual Disaster Simulation: Lesson Learned from an International Collaboration That Can Be Leveraged for Disaster Education in Iran.

    PubMed

    Ardalan, Ali; Balikuddembe, Joseph Kimuli; Ingrassia, Pier Luigi; Carenzo, Luca; Della Corte, Francesco; Akbarisari, Ali; Djalali, Ahmadreza

    2015-07-13

    Disaster education needs innovative educational methods to be more effective compared to traditional approaches. This can be done by using virtual simulation method. This article presents an experience about using virtual simulation methods to teach health professional on disaster medicine in Iran. The workshop on the "Application of New Technologies in Disaster Management Simulation" was held in Tehran in January 2015. It was co-organized by the Disaster and Emergency Health Academy of Tehran University of Medical Sciences and Emergency and the Research Center in Disaster Medicine and Computer Science applied to Medicine (CRIMEDIM), Università del Piemonte Orientale. Different simulators were used by the participants, who were from the health system and other relevant fields, both inside and outside Iran. As a result of the workshop, all the concerned stakeholders are called on to support this new initiative of incorporating virtual training and exercise simulation in the field of disaster medicine, so that its professionals are endowed with field-based and practical skills in Iran and elsewhere. Virtual simulation technology is recommended to be used in education of disaster management. This requires capacity building of instructors, and provision of technologies. International collaboration can facilitate this process.

  14. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    DOE PAGES

    Yang, Shang-Te; Ling, Hao

    2013-01-01

    An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less

  15. Direct Simulation of Extinction in a Slab of Spherical Particles

    NASA Technical Reports Server (NTRS)

    Mackowski, D.W.; Mishchenko, Michael I.

    2013-01-01

    The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.

  16. Statistical field estimators for multiscale simulations.

    PubMed

    Eapen, Jacob; Li, Ju; Yip, Sidney

    2005-11-01

    We present a systematic approach for generating smooth and accurate fields from particle simulation data using the notions of statistical inference. As an extension to a parametric representation based on the maximum likelihood technique previously developed for velocity and temperature fields, a nonparametric estimator based on the principle of maximum entropy is proposed for particle density and stress fields. Both estimators are applied to represent molecular dynamics data on shear-driven flow in an enclosure which exhibits a high degree of nonlinear characteristics. We show that the present density estimator is a significant improvement over ad hoc bin averaging and is also free of systematic boundary artifacts that appear in the method of smoothing kernel estimates. Similarly, the velocity fields generated by the maximum likelihood estimator do not show any edge effects that can be erroneously interpreted as slip at the wall. For low Reynolds numbers, the velocity fields and streamlines generated by the present estimator are benchmarked against Newtonian continuum calculations. For shear velocities that are a significant fraction of the thermal speed, we observe a form of shear localization that is induced by the confining boundary.

  17. Design and realization of retina-like three-dimensional imaging based on a MOEMS mirror

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hao, Qun; Xia, Wenze; Peng, Yuxin; Cheng, Yang; Mu, Jiaxing; Wang, Peng

    2016-07-01

    To balance conflicts for high-resolution, large-field-of-view and real-time imaging, a retina-like imaging method based on time-of flight (TOF) is proposed. Mathematical models of 3D imaging based on MOEMS are developed. Based on this method, we perform simulations of retina-like scanning properties, including compression of redundant information and rotation and scaling invariance. To validate the theory, we develop a prototype and conduct relevant experiments. The preliminary results agree well with the simulations.

  18. Leaders by example: Best practices and advice on establishing a state-of-the art surgical simulation center that optimizes available resources.

    PubMed

    Gardner, A K; Ritter, E M; Dunkin, B J; Smink, D S; Lau, J N; Paige, J T; Phitayakorn, R; Acton, R D; Stefanidis, D; Gee, D W

    2018-02-01

    The role of simulation-based education continues to expand exponentially. To excel in this environment as a surgical simulation leader requires unique knowledge, skills, and abilities that are different from those used in traditional clinically-based education. Leaders in surgical simulation were invited to participate as discussants in a pre-conference course offered by the Association for Surgical Education. Highlights from their discussions were recorded. Recommendations were provided on topics such as building a simulation team, preparing for accreditation requirements, what to ask for during early stages of development, identifying tools and resources needed to meet educational goals, expanding surgical simulation programming, and building educational curricula. These recommendations provide new leaders in simulation with a unique combination of up-to-date best practices in simulation-based education, as well as valuable advice gained from lessons learned from the personal experiences of national leaders in the field of surgical simulation and education. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  20. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.

  1. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.

  2. New light field camera based on physical based rendering tracing

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  3. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  4. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  5. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  6. Selection of optimum median-filter-based ambiguity removal algorithm parameters for NSCAT. [NASA scatterometer

    NASA Technical Reports Server (NTRS)

    Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.

    1989-01-01

    The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.

  7. Path Planning for Robot based on Chaotic Artificial Potential Field Method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2018-03-01

    Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.

  8. Series expansions of rotating two and three dimensional sound fields.

    PubMed

    Poletti, M A

    2010-12-01

    The cylindrical and spherical harmonic expansions of oscillating sound fields rotating at a constant rate are derived. These expansions are a generalized form of the stationary sound field expansions. The derivations are based on the representation of interior and exterior sound fields using the simple source approach and determination of the simple source solutions with uniform rotation. Numerical simulations of rotating sound fields are presented to verify the theory.

  9. On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions

    NASA Astrophysics Data System (ADS)

    Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy

    2017-09-01

    An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.

  10. Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.

    2014-12-01

    We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.

  11. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  12. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.

  13. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations

    PubMed Central

    Mandija, Stefano; Sommer, Iris E. C.; van den Berg, Cornelis A. T.; Neggers, Sebastiaan F. W.

    2017-01-01

    Background Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. Methods We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. Results Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. Conclusion TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation PMID:28640923

  14. Numerical Simulation of Non-Thermal Food Preservation

    NASA Astrophysics Data System (ADS)

    Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.

    2010-09-01

    Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.

  15. Simulating the large-scale structure of HI intensity maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 2048{sup 3} particles (particle mass 1.6 × 10{sup 11} M{sub ⊙} / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (10{sup 8} M{sub ⊙} / h < M{sub halo} < 10{sup 13} M{sub ⊙} / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 ∼< z ∼< 0.9 in redshift bins of width Δ z ≈ 0.05 andmore » cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.« less

  16. Finite element simulation of thunderstorm electrodynamics in the proximity of the storm

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1988-01-01

    Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.

  17. Numerical simulation of MPD thruster flows with anomalous transport

    NASA Technical Reports Server (NTRS)

    Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1992-01-01

    Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.

  18. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations withmore » four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.« less

  19. Quantum Sensors for the Generating Functional of Interacting Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Aarts, G.; Müller, M.

    2017-10-01

    Difficult problems described in terms of interacting quantum fields evolving in real time or out of equilibrium abound in condensed-matter and high-energy physics. Addressing such problems via controlled experiments in atomic, molecular, and optical physics would be a breakthrough in the field of quantum simulations. In this work, we present a quantum-sensing protocol to measure the generating functional of an interacting quantum field theory and, with it, all the relevant information about its in- or out-of-equilibrium phenomena. Our protocol can be understood as a collective interferometric scheme based on a generalization of the notion of Schwinger sources in quantum field theories, which make it possible to probe the generating functional. We show that our scheme can be realized in crystals of trapped ions acting as analog quantum simulators of self-interacting scalar quantum field theories.

  20. Electric Field Simulation of Surge Capacitors with Typical Defects

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Mao, Yuxiang; Xie, Shijun; Zhang, Yu

    2018-03-01

    The electric field of power capacitors with different typical defects in DC working condition and impulse oscillation working condition is studied in this paper. According to the type and location of defects and considering the influence of space charge, two-dimensional models of surge capacitors with different typical defects are simulated based on ANSYS. The distribution of the electric field inside the capacitor is analyzed, and the concentration of electric field and its influence on the insulation performance are obtained. The results show that the type of defects, the location of defects and the space charge all affect the electric field distribution inside the capacitor in varying degrees. Especially the electric field distortion in the local area such as sharp corners and burrs is relatively larger, which increases the probability of partial discharge inside the surge capacitor.

  1. The simulation of 3D structure of groundwater system based on Java/Java3D

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Cui, Weihong; Wang, Peifa; Huang, Yongqi

    2007-06-01

    With the singular development of Internet technique and 3DGIS as well as VR and the imminence demand of 3D visualization from Groundwater information management field, how to display, roam, anatomize and analyze of 3D structure of Groundwater system on Internet have become a research hotspot in hydrogeology field. We simulated the 3D Groundwater resource structure of Taiyuan basin and implemented displaying, roaming, anatomizing and analyzing functions on Internet by Java 3D.

  2. A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion

    NASA Astrophysics Data System (ADS)

    Wirth, A.

    2005-01-01

    We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.

  3. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  4. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution and Eruption

    NASA Astrophysics Data System (ADS)

    Leake, J. E.; Linton, M.; Schuck, P. W.

    2017-12-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the recent development of coronal models which are "data-driven" at the photosphere. Using magnetohydrodynamic simulations of active region formation and our recently created validation framework we investigate the source of errors in data-driven models that use surface measurements of the magnetic field, and derived MHD quantities, to model the coronal magnetic field. The primary sources of errors in these studies are the temporal and spatial resolution of the surface measurements. We will discuss the implications of theses studies for accurately modeling the build up and release of coronal magnetic energy based on photospheric magnetic field observations.

  5. From bricks to buildings: adapting the Medical Research Council framework to develop programs of research in simulation education and training for the health professions.

    PubMed

    Haji, Faizal A; Da Silva, Celina; Daigle, Delton T; Dubrowski, Adam

    2014-08-01

    Presently, health care simulation research is largely conducted on a study-by-study basis. Although such "project-based" research generates a plethora of evidence, it can be chaotic and contradictory. A move toward sustained, thematic, theory-based programs of research is necessary to advance knowledge in the field. Recognizing that simulation is a complex intervention, we present a framework for developing research programs in simulation-based education adapted from the Medical Research Council (MRC) guidance. This framework calls for an iterative approach to developing, refining, evaluating, and implementing simulation interventions. The adapted framework guidance emphasizes: (1) identification of theory and existing evidence; (2) modeling and piloting interventions to clarify active ingredients and identify mechanisms linking the context, intervention, and outcomes; and (3) evaluation of intervention processes and outcomes in both the laboratory and real-world setting. The proposed framework will aid simulation researchers in developing more robust interventions that optimize simulation-based education and advance our understanding of simulation pedagogy.

  6. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    PubMed

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.

  7. Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.

    ERIC Educational Resources Information Center

    Kent, J. W.

    1983-01-01

    Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)

  8. Simulation study on combination of GRACE monthly gravity field solutions

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2016-04-01

    The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.

  9. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  10. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  11. Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset

    DOE PAGES

    Gao, Xujiao; Huang, Andy; Kerr, Bert

    2017-10-25

    In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less

  12. Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xujiao; Huang, Andy; Kerr, Bert

    In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less

  13. MCPB.py: A Python Based Metal Center Parameter Builder.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling.

  14. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  15. An object oriented Python interface for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  16. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.

    PubMed

    Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul

    2018-01-21

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  17. CyberMedVPS: visual programming for development of simulators.

    PubMed

    Morais, Aline M; Machado, Liliane S

    2011-01-01

    Computer applications based on Virtual Reality (VR) has been outstanding in training and teaching in the medical filed due to their ability to simulate realistic in which users can practice skills and decision making in different situations. But was realized in these frameworks a hard interaction of non-programmers users. Based on this problematic will be shown the CyberMedVPS, a graphical module which implement Visual Programming concepts to solve an interaction trouble. Frameworks to develop such simulators are available but their use demands knowledge of programming. Based on this problematic will be shown the CyberMedVPS, a graphical module for the CyberMed framework, which implements Visual Programming concepts to allow the development of simulators by non-programmers professionals of the medical field.

  18. Near- and Far-Field Characterization of Planar mm-Wave Antenna Arrays with Waveguide-to-Microstrip Transition

    NASA Astrophysics Data System (ADS)

    Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2016-09-01

    We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.

  19. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  20. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model

    PubMed Central

    Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108

  1. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model.

    PubMed

    Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.

  2. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pika: A snow science simulation tool built using the open-source framework MOOSE

    NASA Astrophysics Data System (ADS)

    Slaughter, A.; Johnson, M.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.

  4. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    PubMed

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. PDF approach for turbulent scalar field: Some recent developments

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.

  6. Simulation of an Asynchronous Machine by using a Pseudo Bond Graph

    NASA Astrophysics Data System (ADS)

    Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa

    2008-11-01

    For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .

  7. Using adaptive-mesh refinement in SCFT simulations of surfactant adsorption

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Kumar, Rajeev; Jamroz, Ben; Crockett, Robert; Pletzer, Alex

    2013-03-01

    Adsorption of surfactants at interfaces is relevant to many applications such as detergents, adhesives, emulsions and ferrofluids. Atomistic simulations of interface adsorption are challenging due to the difficulty of modeling the wide range of length scales in these problems: the thin interface region in equilibrium with a large bulk region that serves as a reservoir for the adsorbed species. Self-consistent field theory (SCFT) has been extremely useful for studying the morphologies of dense block copolymer melts. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. However, even SCFT methods can be difficult to apply to systems in which small spatial regions might require finer resolution than most of the simulation grid (eg. interface adsorption and confinement). We will present results on interface adsorption simulations using PolySwift++, an object-oriented, polymer SCFT simulation code aided by the Tech-X Chompst library that enables via block-structured AMR calculations with PETSc.

  8. Schaben field, Kansas: Improving performance in a Mississippian shallow-shelf carbonate

    USGS Publications Warehouse

    Montgomery, S.L.; Franseen, E.K.; Bhattacharya, S.; Gerlach, P.; Byrnes, A.; Guy, W.; Carr, T.R.

    2000-01-01

    Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: Spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.

  9. Efficient morse decompositions of vector fields.

    PubMed

    Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene

    2008-01-01

    Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

  10. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

    NASA Astrophysics Data System (ADS)

    Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás

    2014-04-01

    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.

  11. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  12. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory.

    PubMed

    Qi, Shuanhu; Schmid, Friederike

    2017-11-08

    We present a multiscale hybrid particle-field scheme for the simulation of relaxation and diffusion behavior of soft condensed matter systems. It combines particle-based Brownian dynamics and field-based local dynamics in an adaptive sense such that particles can switch their level of resolution on the fly. The switching of resolution is controlled by a tuning function which can be chosen at will according to the geometry of the system. As an application, the hybrid scheme is used to study the kinetics of interfacial broadening of a polymer blend, and is validated by comparing the results to the predictions from pure Brownian dynamics and pure local dynamics calculations.

  13. igun - A program for the simulation of positive ion extraction including magnetic fields

    NASA Astrophysics Data System (ADS)

    Becker, R.; Herrmannsfeldt, W. B.

    1992-04-01

    igun is a program for the simulation of positive ion extraction from plasmas. It is based on the well known program egun for the calculation of electron and ion trajectories in electron guns and lenses. The mathematical treatment of the plasma sheath is based on a simple analytical model, which provides a numerically stable calculation of the sheath potentials. In contrast to other ion extraction programs, igun is able to determine the extracted ion current in succeeding cycles of iteration by itself. However, it is also possible to set values of current, plasma density, or ion current density. Either axisymmetric or rectangular coordinates can be used, including axisymmetric or transverse magnetic fields.

  14. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  15. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  16. Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2017-01-01

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  17. Parsec-scale Obscuring Accretion Disk with Large-scale Magnetic Field in AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorodnitsyn, A.; Kallman, T.

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate thatmore » the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.« less

  18. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  19. Ftmp-Based Simulation of Twin Nucleation and Substructure Evolution Under Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Okuda, Tatsuya; Imiya, Kazuhiro; Hasebe, Tadashi

    2013-01-01

    The deformation twinning model based on Field Theory of Multiscale Plasticity (FTMP) represents the twin degrees of freedom with the incompatibility tensor, which is incorporated into the hardening law of the FTMP-based crystalline plasticity framework. The model is further implemented into a finite element code. In the present study, the model is adapted to a single slip-oriented FCC single crystal sample, and preliminary simulations are conducted under static conditions to confirm the model's basic capabilities. The simulation results exhibit nucleation and growth of twinned regions, accompanied by serrated stress response and overall softening. Simulations under hypervelocity impact conditions are also conducted to investigate the model's descriptive capabilities of induced complex substructures composing of both twins and dislocations. The simulated nucleation of twins is examined in detail by using duality diagrams in terms of the flow-evolutionary hypothesis.

  20. Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    NASA Technical Reports Server (NTRS)

    Streeter, Barry G.

    1986-01-01

    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.

  1. A carrier-based analytical theory for negative capacitance symmetric double-gate field effect transistors and its simulation verification

    NASA Astrophysics Data System (ADS)

    Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-09-01

    A carrier-based analytical drain current model for negative capacitance symmetric double-gate field effect transistors (NC-SDG FETs) is proposed by solving the differential equation of the carrier, the Pao-Sah current formulation, and the Landau-Khalatnikov equation. The carrier equation is derived from Poisson’s equation and the Boltzmann distribution law. According to the model, an amplified semiconductor surface potential and a steeper subthreshold slope could be obtained with suitable thicknesses of the ferroelectric film and insulator layer at room temperature. Results predicted by the analytical model agree well with those of the numerical simulation from a 2D simulator without any fitting parameters. The analytical model is valid for all operation regions and captures the transitions between them without any auxiliary variables or functions. This model can be used to explore the operating mechanisms of NC-SDG FETs and to optimize device performance.

  2. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  3. STOCHASTIC SIMULATION OF FIELD-SCALE PESTICIDE TRANSPORT USING OPUS AND GLEAMS

    EPA Science Inventory

    Incorporating variability in soil and chemical properties into root zone leaching models should provide a better representation of pollutant distribution in natural field conditions. Our objective was to determine if a more mechanistic rate-based model (Opus) would predict soil w...

  4. Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field.

    PubMed

    Pang, Yujia; Li, Wenliang; Zhang, Jingping

    2017-09-15

    A novel type of porous organic frameworks, based on Mg-porphyrin, with diamond-like topology, named POF-Mgs is computationally designed, and the gas uptakes of CO 2 , H 2 , N 2 , and H 2 O in POF-Mgs are investigated by Grand canonical Monte Carlo simulations based on first-principles derived force fields (FF). The FF, which describes the interactions between POF-Mgs and gases, are fitted by dispersion corrected double-hybrid density functional theory, B2PLYP-D3. The good agreement between the obtained FF and the first-principle energies data confirms the reliability of the FF. Furthermore our simulation shows the presence of a small amount of H 2 O (≤ 0.01 kPa) does not much affect the adsorption quantity of CO 2 , but the presence of higher partial pressure of H 2 O (≥ 0.1 kPa) results in the CO 2 adsorption decrease significantly. The good performance of POF-Mgs in the simulation inspires us to design novel porous materials experimentally for gas adsorption and purification. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Developing a Field Artillery Training System Based on Devices and Simulations: Evaluation of Training Devices and Simulations

    DTIC Science & Technology

    1984-12-01

    best trained by instruction alone or with simple demonstration materials. Training Devices are judged best for training the routine use of specific...pieces of equipment (e.g., Howitzer, BCS, DMD/FIST DMD, GLLD, LRF, map/compass/ plotting tools). Simulations are judged best for training more complex...at all phases of engagement operations. Simulations are also judged best for conducting training of any task under extreme environments and

  6. A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.

    PubMed

    Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José

    2016-08-01

    Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.

  7. A process-based algorithm for simulating terraces in SWAT

    USDA-ARS?s Scientific Manuscript database

    Terraces in crop fields are one of the most important soil and water conservation measures that affect runoff and erosion processes in a watershed. In large hydrological programs such as the Soil and Water Assessment Tool (SWAT), terrace effects are simulated by adjusting the slope length and the US...

  8. Modelling rollover behaviour of exacavator-based forest machines

    Treesearch

    M.W. Veal; S.E. Taylor; Robert B. Rummer

    2003-01-01

    This poster presentation provides results from analytical and computer simulation models of rollover behaviour of hydraulic excavators. These results are being used as input to the operator protective structure standards development process. Results from rigid body mechanics and computer simulation methods agree well with field rollover test data. These results show...

  9. The Role of Simulation Case Studies in Enterprise Education

    ERIC Educational Resources Information Center

    Tunstall, Richard; Lynch, Martin

    2010-01-01

    Purpose: This paper aims to explore the role of electronic simulation case studies in enterprise education, their effectiveness, and their relationship to traditional forms of classroom-based approaches to experiential learning. The paper seeks to build on previous work within the field of enterprise and management education, specifically in…

  10. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, N. V.; Kakurin, A. M.

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEARmore » code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.« less

  11. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    NASA Astrophysics Data System (ADS)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  12. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  13. Improved atomistic simulation of diffusion and sorption in metal oxides

    NASA Astrophysics Data System (ADS)

    Skouras, E. D.; Burganos, V. N.; Payatakes, A. C.

    2001-01-01

    Gas diffusion and sorption on the surface of metal oxides are investigated using atomistic simulations, that make use of two different force fields for the description of the intramolecular and intermolecular interactions. MD and MC computations are presented and estimates of the mean residence time, Henry's constant, and the heat of adsorption are provided for various common gases (CO, CO2, O2, CH4, Xe), and semiconducting substrates that hold promise for gas sensor applications (SnO2, BaTiO3). Comparison is made between the performance of a simple, first generation force field (Universal) and a more detailed, second generation field (COMPASS) under the same conditions and the same assumptions regarding the generation of the working configurations. It is found that the two force fields yield qualitatively similar results in all cases examined here. However, direct comparison with experimental data reveals that the accuracy of the COMPASS-based computations is not only higher than that of the first generation force field but exceeds even that of published specialized methods, based on ab initio computations.

  14. GOCE gravity field simulation based on actual mission scenario

    NASA Astrophysics Data System (ADS)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  15. The evaluation of 6 and 18 MeV electron beams for small animal irradiation

    NASA Astrophysics Data System (ADS)

    Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.

    2009-10-01

    A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.

  16. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  17. A Generic Force Field for Protein Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    Gu, Junfeng; Bai, Fang; Li, Honglin; Wang, Xicheng

    2012-01-01

    Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled. PMID:23203075

  18. Dynamic process of high-current vacuum arc with consideration of magnetic field delay: numerical simulation and comparisons with the experiments

    NASA Astrophysics Data System (ADS)

    Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian

    2009-03-01

    Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.

  19. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations

    NASA Astrophysics Data System (ADS)

    Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul

    2018-01-01

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  20. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  1. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.

  2. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Magnetic-field enhancement beyond the skin-depth limit

    NASA Astrophysics Data System (ADS)

    Shin, Jonghwa; Park, Namkyoo; Fan, Shanhui; Lee, Yong-Hee

    2010-02-01

    Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a PEC model, the principle's predictions fails to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.

  4. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  5. Probe compensation in cylindrical near-field scanning: A novel simulation methodology

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Rahmat-Samii, Yahya

    1993-01-01

    Probe pattern compensation is essential in near-field scanning geometry, where there is a great need to accurately know far-field patterns at wide angular range. This paper focuses on a novel formulation and computer simulation to determine the precise need for and effect of probe compensation in cylindrical near-field scanning. The methodology is applied to a linear test array antenna and the NASA scatterometer radar antenna. The formulation is based on representing the probe by its equivalent tangential magnetic currents. The interaction between the probe equivalent aperture currents and the test antenna fields is obtained with the application of a reciprocity theorem. This allows us to obtain the probe vector output pickup integral which is proportional to the amplitude and phase of the electric field induced in the probe aperture with respect to its position to the test antenna. The integral is evaluated for each probe position on the required sampling point on a cylindrical near-field surface enclosing the antenna. The use of a hypothetical circular-aperture probe with a different radius permits us to derive closed-form expressions for its far-field radiation patterns. These results, together with the probe vector output pickup, allow us to perform computer simulated synthetic measurements. The far-field patterns of the test antenna are formulated based on cylindrical wave expansions of both the probe and test antenna fields. In the limit as the probe radius becomes very small, the probe vector output is the direct response of the near-field at a point, and no probe compensation is needed. Useful results are generated to compare the far-field pattern of the test antenna constructed from the knowledge of the simulated near-field with and without probe pattern compensation and the exact results. These results are important since they clearly illustrate the angular range over which probe compensation is needed. It has been found that a probe with an aperture radius of 0.25(lambda), 0.5(lambda), and 1(lambda) needs a little probe compensation, if any, near the test antenna main beam. In addition, a probe with low directivity may provide a better signal-to-noise ratio than a highly directive one. This is evident in test antenna patterns without probe compensation at wide angles.

  6. Hybrid Optimal Design of the Eco-Hydrological Wireless Sensor Network in the Middle Reach of the Heihe River Basin, China

    PubMed Central

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-01-01

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables. PMID:25317762

  7. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays.

    PubMed

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  8. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A.

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  9. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China.

    PubMed

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-10-14

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.

  10. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive magnetic dipole and low oceanic shell conductivity).

  11. Biomolecularmodeling and simulation: a field coming of age

    PubMed Central

    Schlick, Tamar; Collepardo-Guevara, Rosana; Halvorsen, Leif Arthur; Jung, Segun; Xiao, Xia

    2013-01-01

    We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right. PMID:21226976

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge upmore » the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.« less

  13. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  14. Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team

    2015-11-01

    The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.

  15. The interplanetary electric field, cleft currents and plasma convection in the polar caps

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.

    1984-01-01

    The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.

  16. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  17. Simulation services and analysis tools at the CCMC to study multi-scale structure and dynamics of Earth's magnetopause

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.

    2016-12-01

    The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.

  18. Integrated Predictive Tools for Customizing Microstructure and Material Properties of Additively Manufactured Aerospace Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Fattebert, Jean-Luc; Gorti, Sarma B.

    Additive Manufacturing (AM) refers to a process by which digital three-dimensional (3-D) design data is converted to build up a component by depositing material layer-by-layer. United Technologies Corporation (UTC) is currently involved in fabrication and certification of several AM aerospace structural components made from aerospace materials. This is accomplished by using optimized process parameters determined through numerous design-of-experiments (DOE)-based studies. Certification of these components is broadly recognized as a significant challenge, with long lead times, very expensive new product development cycles and very high energy consumption. Because of these challenges, United Technologies Research Center (UTRC), together with UTC business unitsmore » have been developing and validating an advanced physics-based process model. The specific goal is to develop a physics-based framework of an AM process and reliably predict fatigue properties of built-up structures as based on detailed solidification microstructures. Microstructures are predicted using process control parameters including energy source power, scan velocity, deposition pattern, and powder properties. The multi-scale multi-physics model requires solution and coupling of governing physics that will allow prediction of the thermal field and enable solution at the microstructural scale. The state-of-the-art approach to solve these problems requires a huge computational framework and this kind of resource is only available within academia and national laboratories. The project utilized the parallel phase-fields codes at Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL), along with the high-performance computing (HPC) capabilities existing at the two labs to demonstrate the simulation of multiple dendrite growth in threedimensions (3-D). The LLNL code AMPE was used to implement the UTRC phase field model that was previously developed for a model binary alloy, and the simulation results were compared against the UTRC simulation results, followed by extension of the UTRC model to simulate multiple dendrite growth in 3-D. The ORNL MEUMAPPS code was used to simulate dendritic growth in a model ternary alloy with the same equilibrium solidification range as the Ni-base alloy 718 using realistic model parameters, including thermodynamic integration with a Calphad based model for the ternary alloy. Implementation of the UTRC model in AMPE met with several numerical and parametric issues that were resolved and good comparison between the simulation results obtained by the two codes was demonstrated for two dimensional (2-D) dendrites. 3-D dendrite growth was then demonstrated with the AMPE code using nondimensional parameters obtained in 2-D simulations. Multiple dendrite growth in 2-D and 3-D were demonstrated using ORNL’s MEUMAPPS code using simple thermal boundary conditions. MEUMAPPS was then modified to incorporate the complex, time-dependent thermal boundary conditions obtained by UTRC’s thermal modeling of single track AM experiments to drive the phase field simulations. The results were in good agreement with UTRC’s experimental measurements.« less

  19. Study of high breakdown voltage GaN-based current-aperture vertical electron transistor with source-connected field-plates for power applications

    NASA Astrophysics Data System (ADS)

    Wang, Haiyong; Mao, Wei; Cong, Guanyu; Wang, Xiaofei; Du, Ming; Zheng, Xuefeng; Wang, Chong; Zhang, Jincheng; Hao, Yue

    2018-07-01

    A GaN-based current-aperture vertical electron transistor with source-connected field-plates (SFP-CAVET) is proposed and investigated by means of two-dimensional simulations. This device is characterized by the source-connected field-plates (SFP) at both sides, which leads to remarkable improvement of breakdown voltage (BV) without degradation of specific on-resistance (R on). Systematic analyses are conducted to reveal the mechanism of the SFP modulation effect on the potential and the electric field distributions and thus the BV improvement. Optimization and design of SFP-CAVET are performed for the maximum BV. Simulation results exhibit a R on of 2.25 mΩ · cm2 and a significantly enhanced BV of 3610 V in SFP-CAVET, indicating an average breakdown electric field of more than 240 V μm‑1. Compared with conventional CAVET, both BV and average breakdown electric field in SFP-CAVET are increased by more than 121% while R on remains unchanged. And the trade-off performance of BV and R on in SFP-CAVET is also better than that in GaN-based CAVET with superjunctions (SJ CAVET). In addition, the fabrication process issues of the proposed SFP-CAVET are also presented and discussed. These results could break a new path to further improve the trade-off performance of BV and R on in GaN-based vertical devices.

  20. Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients

    NASA Astrophysics Data System (ADS)

    Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin

    2016-08-01

    In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.

  1. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.

    PubMed

    Kim, Seonghoon; Lee, Jumin; Jo, Sunhwan; Brooks, Charles L; Lee, Hui Sun; Im, Wonpil

    2017-06-05

    Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

  3. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  4. Nanodosimetry-Based Plan Optimization for Particle Therapy

    PubMed Central

    Schulte, Reinhard W.

    2015-01-01

    Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were simulated in a water phantom to investigate the optimization feasibility. Track structures of the mixed radiation field produced at different depths in the target volume were simulated with Geant4-DNA and nanodosimetric descriptors were calculated. The fluences of the treatment field pencil beams were optimized in order to create a mixed field with equal nanodosimetric descriptors at each of the multiple positions in spread-out particle Bragg peaks. For both proton and carbon ion plans, a uniform spatial distribution of nanodosimetric descriptors could be obtained by optimizing opposing-field but not single-field plans. The results obtained indicate that uniform nanodosimetrically weighted plans, which may also be radiobiologically uniform, can be obtained with this approach. Future investigations need to demonstrate that this approach is also feasible for more complicated beam arrangements and that it leads to biologically uniform response in tumor cells and tissues. PMID:26167202

  5. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands

    PubMed Central

    Dodda, Leela S.

    2017-01-01

    Abstract The accurate calculation of protein/nucleic acid–ligand interactions or condensed phase properties by force field-based methods require a precise description of the energetics of intermolecular interactions. Despite the progress made in force fields, small molecule parameterization remains an open problem due to the magnitude of the chemical space; the most critical issue is the estimation of a balanced set of atomic charges with the ability to reproduce experimental properties. The LigParGen web server provides an intuitive interface for generating OPLS-AA/1.14*CM1A(-LBCC) force field parameters for organic ligands, in the formats of commonly used molecular dynamics and Monte Carlo simulation packages. This server has high value for researchers interested in studying any phenomena based on intermolecular interactions with ligands via molecular mechanics simulations. It is free and open to all at jorgensenresearch.com/ligpargen, and has no login requirements. PMID:28444340

  6. A projective reconstruction method of underground or hidden structures using atmospheric muon absorption data

    NASA Astrophysics Data System (ADS)

    Bonechi, L.; D'Alessandro, R.; Mori, N.; Viliani, L.

    2015-02-01

    Muon absorption radiography is an imaging technique based on the analysis of the attenuation of the cosmic-ray muon flux after traversing an object under examination. While this technique is now reaching maturity in the field of volcanology for the imaging of the innermost parts of the volcanic cones, its applicability to other fields of research has not yet been proved. In this paper we present a study concerning the application of the muon absorption radiography technique to the field of archaeology, and we propose a method for the search of underground cavities and structures hidden a few metres deep in the soil (patent [1]). An original geometric treatment of the reconstructed muon tracks, based on the comparison of the measured flux with a reference simulated flux, and the preliminary results of specific simulations are discussed in details.

  7. Particle Demagnetization in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  8. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.

  9. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  10. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    DOE PAGES

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  11. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  12. The application of additive technologies in creation a medical simulator-trainer of the human head operating field

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.

    2016-06-01

    The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.

  13. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. All-atom Simulation of Amyloid Aggregates

    NASA Astrophysics Data System (ADS)

    Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.

  15. A method for spectral DNS of low Rm channel flows based on the least dissipative modes

    NASA Astrophysics Data System (ADS)

    Kornet, Kacper; Pothérat, Alban

    2015-10-01

    We put forward a new type of spectral method for the direct numerical simulation of flows where anisotropy or very fine boundary layers are present. The main idea is to take advantage of the fact that such structures are dissipative and that their presence should reduce the number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs extra computational cost in most current methods. The principle of this method is to use a functional basis with elements that already include these fine structures so as to avoid these extra costs. This leads us to develop an algorithm to implement a spectral method for arbitrary functional bases, and in particular, non-orthogonal ones. We construct a basic implementation of this algorithm to simulate magnetohydrodynamic (MHD) channel flows with an externally imposed, transverse magnetic field, where very thin boundary layers are known to develop along the channel walls. In this case, the sought functional basis can be built out of the eigenfunctions of the dissipation operator, which incorporate these boundary layers, and it turns out to be non-orthogonal. We validate this new scheme against numerical simulations of freely decaying MHD turbulence based on a finite volume code and it is found to provide accurate results. Its ability to fully resolve wall-bounded turbulence with a number of modes close to that required by the dynamics is demonstrated on a simple example. This opens the way to full-blown simulations of MHD turbulence under very high magnetic fields. Until now such simulations were too computationally expensive. In contrast to traditional methods the computational cost of the proposed method, does not depend on the intensity of the magnetic field.

  16. A Study into the Impact of Physical Structures on the Runway Velocity Field at the Atlantic City International Airport

    NASA Astrophysics Data System (ADS)

    King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny

    2015-04-01

    Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.

  17. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Zacharias, Martin

    2014-12-01

    Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.

  18. Constrained Local UniversE Simulations: a Local Group factory

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias

    2016-05-01

    Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.

  19. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  20. Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures

    PubMed Central

    2012-01-01

    Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g), although special attention should be paid to the possible effects of the magnetic field (B) itself. Results Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T), intermediate g* (0.1 g* at B = 14.7 T) and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T) plus an internal 1 g* control (B = 16.5 T). The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg) and a Large Diameter Centrifuge (2 g). Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions) have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies. Conclusions A detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software), can detect underlying global-scale responses, which cannot be detected by means of individual gene expression techniques using raw or corrected p values (FDR). A subtle, but consistent, genome-scale response to hypogravity environments was found, which was opposite to the response in a hypergravity environment. PMID:22435851

  1. Winter Simulation Conference, Miami Beach, Fla., December 4-6, 1978, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    Highland, H. J. (Editor); Nielsen, N. R.; Hull, L. G.

    1978-01-01

    The papers report on the various aspects of simulation such as random variate generation, simulation optimization, ranking and selection of alternatives, model management, documentation, data bases, and instructional methods. Simulation studies in a wide variety of fields are described, including system design and scheduling, government and social systems, agriculture, computer systems, the military, transportation, corporate planning, ecosystems, health care, manufacturing and industrial systems, computer networks, education, energy, production planning and control, financial models, behavioral models, information systems, and inventory control.

  2. Bridging the gap: simulations meet knowledge bases

    NASA Astrophysics Data System (ADS)

    King, Gary W.; Morrison, Clayton T.; Westbrook, David L.; Cohen, Paul R.

    2003-09-01

    Tapir and Krill are declarative languages for specifying actions and agents, respectively, that can be executed in simulation. As such, they bridge the gap between strictly declarative knowledge bases and strictly executable code. Tapir and Krill components can be combined to produce models of activity which can answer questions about mechanisms and processes using conventional inference methods and simulation. Tapir was used in DARPA's Rapid Knowledge Formation (RKF) project to construct models of military tactics from the Army Field Manual FM3-90. These were then used to build Courses of Actions (COAs) which could be critiqued by declarative reasoning or via Monte Carlo simulation. Tapir and Krill can be read and written by non-knowledge engineers making it an excellent vehicle for Subject Matter Experts to build and critique knowledge bases.

  3. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Experimental and Numerical Investigation of Guest Molecule Exchange Kinetics based on the 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.

    2015-12-01

    In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.

  5. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri

    2015-08-01

    The 3-D magnetohydrodynamic (MHD) Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo generated magnetic fields possesses many time scales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulations relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The time scales that appear to be relevant to the magnetic polarity reversal are also identified.

  6. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    PubMed

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  7. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations

    PubMed Central

    Dijkstra, Maurits J. J.; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-01-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a ‘tube model’ approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the ‘CamTube’ force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost. PMID:26505754

  8. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  9. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.

    2016-05-15

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less

  10. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  11. Strike a Balance: Optimization of Backbone Torsion Parameters of AMBER Polarizable Force Field for Simulations of Proteins and Peptides

    PubMed Central

    WANG, ZHI-XIANG; ZHANG, WEI; WU, CHUN; LEI, HONGXING; CIEPLAK, PIOTR; DUAN, YONG

    2014-01-01

    Based on the AMBER polarizable model (ff02), we have reoptimized the parameters related to the main-chain (Φ, Ψ) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., β, PII, αR, and αL regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the β, PII and αR regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)7-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization. PMID:16526038

  12. Large perturbation flow field analysis and simulation for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.

    1984-01-01

    An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.

  13. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M.

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  14. An Analysis of Chronic Personnel Shortages in the B-52 Radar Navigator Career Field

    DTIC Science & Technology

    1987-03-01

    Weapon System Trainer - The new simulators for the B-52 located on some of the B-52 bases. Due to the complexity of the simulators, they have a small ...navigators crosstraining to these are lost to the B-52 career field. 21 ASTRA Every year a small number of radar navigators are chosen to attend one yerc at...this case, though, it turned up a small problem initially. The separation rates were obtained from Headquarters SAC (10), but did not include the number

  15. Numerical modeling of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Doughty, C.; Kincaid, C. T.

    1982-12-01

    During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.

  16. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    NASA Astrophysics Data System (ADS)

    Danilov, A. A.; Kramarenko, V. K.; Nikolaev, D. V.; Rudnev, S. G.; Salamatova, V. Yu; Smirnov, A. V.; Vassilevski, Yu V.

    2013-04-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  17. Novel Texture-based Visualization Methods for High-dimensional Multi-field Data Sets

    DTIC Science & Technology

    2013-07-06

    project: In standard format showing authors, title, journal, issue, pages, and date, for each category list the following: b) papers published...visual- isation [18]. Novel image acquisition and simulation tech- niques have made is possible to record a large number of co-located data fields...function, structure, anatomical changes, metabolic activity, blood perfusion, and cellular re- modelling. In this paper we investigate texture-based

  18. The X-IFU end-to-end simulations performed for the TES array optimization exercise

    NASA Astrophysics Data System (ADS)

    Peille, Philippe; Wilms, J.; Brand, T.; Cobo, B.; Ceballos, M. T.; Dauser, T.; Smith, S. J.; Barret, D.; den Herder, J. W.; Piro, L.; Barcons, X.; Pointecouteau, E.; Bandler, S.; den Hartog, R.; de Plaa, J.

    2015-09-01

    The focal plane assembly of the Athena X-ray Integral Field Unit (X-IFU) includes as the baseline an array of ~4000 single size calorimeters based on Transition Edge Sensors (TES). Other sensor array configurations could however be considered, combining TES of different properties (e.g. size). In attempting to improve the X-IFU performance in terms of field of view, count rate performance, and even spectral resolution, two alternative TES array configurations to the baseline have been simulated, each combining a small and a large pixel array. With the X-IFU end-to-end simulator, a sub-sample of the Athena core science goals, selected by the X-IFU science team as potentially driving the optimal TES array configuration, has been simulated for the results to be scientifically assessed and compared. In this contribution, we will describe the simulation set-up for the various array configurations, and highlight some of the results of the test cases simulated.

  19. Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein

    NASA Astrophysics Data System (ADS)

    Nava, J. J. Godina; Segura, M. A. Rodríguez; García, M. N. Jiménez; Cadena, M. S. Reyes

    2008-08-01

    Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.

  20. ILEWG EuroMoonMars Research, Technology, and Field Simulation Campaigns

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.; Maller, L.; Decadi, A.; Villa-Massone, J.; Preusterink, J.; Neklesa, A.; Barzilay, A.; Volkova, T.

    2017-10-01

    ILEWG developed since 2008, "EuroMoonMars" pilot research with a Robotic Test Bench (ExoGeoLab) and a Mobile Laboratory Habitat (ExoHab) at ESTEC. Field campaigns were e.g. in ESTEC, EAC, at Utah MDRS, Eifel, and LunAres base at Pila Poland in 2017.

  1. The Use of Visual-Based Simulated Environments in Teacher Preparation

    ERIC Educational Resources Information Center

    Judge, Sharon; Bobzien, Jonna; Maydosz, Ann; Gear, Sabra; Katsioloudis, Petros

    2013-01-01

    While virtual technology for training in the simulation field has a long history in medicine, aviation, and the military, the application of similar emerging and innovative technologies in teacher preparation and education has been limited. TLE TeachLive™ (Teaching Learning Environment, Teaching in a Virtual Environment) [TLE] is an inventive…

  2. Revised Planning Methodology For Signalized Intersections And Operational Analysis Of Exclusive Left-Turn Lanes, A Simulation-Based Method, Part - I: Literature Review (Final Report)

    DOT National Transportation Integrated Search

    1996-04-01

    THE STUDY INVESTIGATES THE APPLICATION OF SIMULATION ALONG WITH FIELD OBSERVATIONS FOR ESTIMATION OF EXCLUSIVE LEFT-TURN SATURATION FLOW RATE AND CAPACITY. THE ENTIRE RESEARCH HAS COVERED THE FOLLOWING PRINCIPAL SUBJECTS: (1) A SATURATION FLOW MODEL ...

  3. Offshore Storage Resource Assessment - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Bill; Ozgen, Chet

    The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less

  4. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    USGS Publications Warehouse

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge aquifers at the base of the hillsides. Inclusion of uplands in models of valley-fill aquifers and use of the new procedure increases model complexity and data requirements, but automates the simulation of recharge to those aquifers from the uplands, even in transient-state simulations with multiple periods of varied stresses, and facilitates delineation of upland areas that contribute water to well fields. The area from which ground water flowed toward the Dover well field decreased with an increase in simulated streambed leakance or an increase in simulated hydraulic conductivity of upland till. Concentrations of solutes in ground water near the Dover well field reflect the mixing of native ground water with water infiltrated from the Rockaway River. Chemical reactions in the aquifer, chiefly the weathering of carbonate minerals by dissolved carbon dioxide, affect the pH and the concentrations of both solutes and dissolved gases. Concentrations of sodium, chloride, and sulfate appear to be related to man's activities, such as road deicing, or to decay of organic matter in the aquifer.

  5. Simulation of radiation from lightning return strokes - The effects of tortuosity

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1978-01-01

    A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and has been used to study the effects of tortuosity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant.

  6. WebGL-enabled 3D visualization of a Solar Flare Simulation

    NASA Astrophysics Data System (ADS)

    Chen, A.; Cheung, C. M. M.; Chintzoglou, G.

    2016-12-01

    The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.

  7. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  8. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  9. Proton probing of a relativistic laser interaction with near-critical plasma

    NASA Astrophysics Data System (ADS)

    Willingale, Louise; Zulick, C.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K.; Nilson, P. M.; Stoeckl, C.; Sangster, T. C.; Nazarov, W.

    2014-10-01

    The Omega EP laser (1000 J in 10 ps pulses) was used to investigate a relativistic intensity laser interaction with near-critical density plasma using a transverse proton beam to diagnose the large electromagnetic fields generated. A very low density foam target mounted in a washer provided the near-critical density conditions. The fields from a scaled, two-dimensional particle-in-cell simulation were inputed into a particle-tracking code to create simulated proton probe images. This allows us to understand the origins of the complex features in the experimental images, including a rapidly expanding sheath field, evidence for ponderomotive channeling and fields at the foam-washer interface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002028.

  10. Numerical investigation of the spreading of self-excited stratified jets

    NASA Technical Reports Server (NTRS)

    Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.

  11. Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.

    2016-09-01

    In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.

  12. THE POSSIBLE IMPACT OF L5 MAGNETOGRAMS ON NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    The proposed Carrington-L5 mission would bring instruments to the L5 Lagrange point to provide us with crucial data for space weather prediction. To assess the importance of including a magnetograph, we consider the possible differences in non-potential solar coronal magnetic field simulations when magnetograph observations are available from the L5 point, compared with an L1-based field of view (FOV). A timeseries of synoptic radial magnetic field maps is constructed to capture the emergence of two active regions from the L5 FOV. These regions are initially absent in the L1 magnetic field maps, but are included once they rotate into themore » L1 FOV. Non-potential simulations for these two sets of input data are compared in detail. Within the bipolar active regions themselves, differences in the magnetic field structure can exist between the two simulations once the active regions are included in both. These differences tend to reduce within 5 days of the active region being included in L1. The delayed emergence in L1 can, however, lead to significant persistent differences in long-range connectivity between the active regions and the surrounding fields, and also in the global magnetic energy. In particular, the open magnetic flux and the location of open magnetic footpoints, are sensitive to capturing the real-time of emergence. These results suggest that a magnetograph at L5 could significantly improve predictions of the non-potential corona, the interplanetary magnetic field, and of solar wind source regions on the Sun.« less

  13. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    PubMed

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  14. Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan

    2018-05-01

    Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.

  15. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source.

    PubMed

    Barminova, H Y; Saratovskyh, M S

    2016-02-01

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10(10) ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  16. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barminova, H. Y., E-mail: barminova@bk.ru; Saratovskyh, M. S.

    2016-02-15

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10{sup 10} ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turnmore » in magnetic field are presented for different initial conditions.« less

  17. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  18. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  19. Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain

    PubMed Central

    Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim

    2009-01-01

    A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367

  20. An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.

    PubMed

    Singh, Parth Raj; Wang, Yide; Chargé, Pascal

    2017-03-30

    In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.

  1. Simulation-based learning: Just like the real thing

    PubMed Central

    Lateef, Fatimah

    2010-01-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often “immersive” in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals’ knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors. PMID:21063557

  2. Simulation-based learning: Just like the real thing.

    PubMed

    Lateef, Fatimah

    2010-10-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often "immersive" in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals' knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors.

  3. Simulation to Support Local Search in Trajectory Optimization Planning

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsey, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.

  4. Space Earthquake Perturbation Simulation (SEPS) an application based on Geant4 tools to model and simulate the interaction between the Earthquake and the particle trapped on the Van Allen belt

    NASA Astrophysics Data System (ADS)

    Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu

    2014-05-01

    During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).

  5. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.

    PubMed

    Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon

    2014-08-01

    A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.

  6. 3D hybrid tectono-stochastic modeling of naturally fractured reservoir: Application of finite element method and stochastic simulation technique

    NASA Astrophysics Data System (ADS)

    Gholizadeh Doonechaly, N.; Rahman, S. S.

    2012-05-01

    Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.

  7. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-09

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.

  8. Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China

    PubMed Central

    Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong

    2015-01-01

    The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181

  9. Thorough exploration of complex environments with a space-based potential field

    NASA Astrophysics Data System (ADS)

    Kenealy, Alina; Primiano, Nicholas; Keyes, Alex; Lyons, Damian M.

    2015-01-01

    Robotic exploration, for the purposes of search and rescue or explosive device detection, can be improved by using a team of multiple robots. Potential field navigation methods offer natural and efficient distributed exploration algorithms in which team members are mutually repelled to spread out and cover the area efficiently. However, they also suffer from field minima issues. Liu and Lyons proposed a Space-Based Potential Field (SBPF) algorithm that disperses robots efficiently and also ensures they are driven in a distributed fashion to cover complex geometry. In this paper, the approach is modified to handle two problems with the original SBPF method: fast exploration of enclosed spaces, and fast navigation of convex obstacles. Firstly, a "gate-sensing" function was implemented. The function draws the robot to narrow openings, such as doors or corridors that it might otherwise pass by, to ensure every room can be explored. Secondly, an improved obstacle field conveyor belt function was developed which allows the robot to avoid walls and barriers while using their surface as a motion guide to avoid being trapped. Simulation results, where the modified SPBF program controls the MobileSim Pioneer 3-AT simulator program, are presented for a selection of maps that capture difficult to explore geometries. Physical robot results are also presented, where a team of Pioneer 3-AT robots is controlled by the modified SBPF program. Data collected prior to the improvements, new simulation results, and robot experiments are presented as evidence of performance improvements.

  10. Role of ion hydration for the differential capacitance of an electric double layer.

    PubMed

    Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio

    2016-10-12

    The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.

  11. Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg

    2015-12-01

    In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

  12. Direct numerical simulation of human phonation

    NASA Astrophysics Data System (ADS)

    Bodony, Daniel; Saurabh, Shakti

    2017-11-01

    The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).

  13. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  14. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  15. Simulation and training in Urology - in collaboration with ESU/ESUT.

    PubMed

    Veneziano, Domenico; Cacciamani, Giovanni; Shekhar Biyani, Chandra

    2018-01-01

    Being a Surgeon today means taking on your shoulders countless responsibilities. It is definitely a high-stakes job but, even though the professionals do not go through the intense, focused and demanding training schedule as followed by the other equally risky fields, it doesn't yet require any practical training certification. Simulation was introduced in the aviation field in the early '30s with the "Link Trainer", designed to reproduce the most difficult flying case scenario: landing on an air-carrier. After almost a century, flight simulation is still becoming more sophisticated, while surgical training is slowly starting to fill the gap. The aim of a simulator is to produce an "imitation of the operation of a real-world process or system over time". This short but effective definition explains why simulators are utilised across different fields. There is no doubt that surgeons are continuously undergoing a condition of stress, even in nonthreatening situations, while performing a procedure. This condition adds a relevant variable to surgery, meaning that mastering technical skills is not always equal to "safe surgery". This is why "non-technical skills" (NTS) training should be a part of any simulation based training opportunity and will probably start to be always more part of the Handson Training programs.

  16. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  17. Extremely pulsatile flow around a surface-mounted hemisphere: synergistic experiments and simulations

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.

    2017-11-01

    Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.

  18. Use of High-resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, William E.; LaCasse, K.; Goodman, S. J.

    2006-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  19. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field

    PubMed Central

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B 2007, 111, 1416–1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala10) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala10 which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field. PMID:20011673

  20. Mesoscale Particle-Based Model of Electrophoresis

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2015-07-31

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  1. Mesoscale Particle-Based Model of Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.

    Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.

  2. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models,the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of forecasts become available.

  3. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  4. Revisiting imidazolium based ionic liquids: Effect of the conformation bias of the [NTf2] anion studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Neumann, Jan; Golub, Benjamin; Odebrecht, Lisa-Marie; Ludwig, Ralf; Paschek, Dietmar

    2018-05-01

    We study ionic liquids composed of 1-alkyl-3-methylimidazolium cations and bis(trifluoromethyl-sulfonyl)imide anions ([CnMIm][NTf2]) with varying chain-length n = 2, 4, 6, 8 by using molecular dynamics simulations. We show that a reparametrization of the dihedral potentials as well as charges of the [NTf2] anion leads to an improvement of the force field model introduced by Köddermann, Paschek, and Ludwig [ChemPhysChem 8, 2464 (2007)] (KPL-force field). A crucial advantage of the new parameter set is that the minimum energy conformations of the anion (trans and gauche), as deduced from ab initio calculations and Raman experiments, are now both well represented by our model. In addition, the results for [CnMIm][NTf2] show that this modification leads to an even better agreement between experiment and molecular dynamics simulation as demonstrated for densities, diffusion coefficients, vaporization enthalpies, reorientational correlation times, and viscosities. Even though we focused on a better representation of the anion conformation, also the alkyl chain-length dependence of the cation behaves closer to the experiment. We strongly encourage to use the new NGOLP (Neumann, Golub, Odebrecht, Ludwig, Paschek) force field for the [NTf2] anion instead of the earlier KPL parameter set for computer simulations aiming to describe the thermodynamics, dynamics, and also structure of imidazolium-based ionic liquids.

  5. Super-resolution photoacoustic microscopy using a localized near-field of a plasmonic nanoaperture: a three-dimensional simulation study

    NASA Astrophysics Data System (ADS)

    Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong

    2018-02-01

    Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.

  6. Building the Case for SNAP: Creation of Multi-Band, Simulated Images With Shapelets

    NASA Technical Reports Server (NTRS)

    Ferry, Matthew A.

    2005-01-01

    Dark energy has simultaneously been the most elusive and most important phenomenon in the shaping of the universe. A case for a proposed space-telescope called SNAP (SuperNova Acceleration Probe) is being built, a crucial component of which is image simulations. One method for this is "Shapelets," developed at Caltech. Shapelets form an orthonormal basis and are uniquely able to represent realistic space images and create new images based on real ones. Previously, simulations were created using the Hubble Deep Field (HDF) as a basis Set in one band. In this project, image simulations are created.using the 4 bands of the Hubble Ultra Deep Field (UDF) as a basis set. This provides a better basis for simulations because (1) the survey is deeper, (2) they have a higher resolution, and (3) this is a step closer to simulating the 9 bands of SNAP. Image simulations are achieved by detecting sources in the UDF, decomposing them into shapelets, tweaking their parameters in realistic ways, and recomposing them into new images. Morphological tests were also run to verify the realism of the simulations. They have a wide variety of uses, including the ability to create weak gravitational lensing simulations.

  7. Two-bead polarizable water models combined with a two-bead multipole force field (TMFF) for coarse-grained simulation of proteins.

    PubMed

    Li, Min; Zhang, John Z H

    2017-03-08

    The development of polarizable water models at coarse-grained (CG) levels is of much importance to CG molecular dynamics simulations of large biomolecular systems. In this work, we combined the newly developed two-bead multipole force field (TMFF) for proteins with the two-bead polarizable water models to carry out CG molecular dynamics simulations for benchmark proteins. In our simulations, two different two-bead polarizable water models are employed, the RTPW model representing five water molecules by Riniker et al. and the LTPW model representing four water molecules. The LTPW model is developed in this study based on the Martini three-bead polarizable water model. Our simulation results showed that the combination of TMFF with the LTPW model significantly stabilizes the protein's native structure in CG simulations, while the use of the RTPW model gives better agreement with all-atom simulations in predicting the residue-level fluctuation dynamics. Overall, the TMFF coupled with the two-bead polarizable water models enables one to perform an efficient and reliable CG dynamics study of the structural and functional properties of large biomolecules.

  8. Complementary analyses of hollow cylindrical unioriented permanent magnet (HCM) with high permeability external layer

    NASA Astrophysics Data System (ADS)

    Lobo, Carlos M. S.; Tosin, Giancarlo; Baader, Johann E.; Colnago, Luiz A.

    2017-10-01

    In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.

  9. Numerical modeling of coronal mass ejections based on various pre-event model atmospheres

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A. H.; Wu, S. T.; Poletto, G.

    1994-01-01

    We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution at lower boundary (i.e. solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CME's, but also modifies the adjacent quiet corona and/or coronal holes. We consider four pre-event coronal cases: (1) Constant boundary conditions and a polytropic gas with gamma = 1.05; (2) Non-constant (latitude dependent) boundary conditions and a polytropic gas with gamma = 1.05; (3) Constant boundary conditions with a volumetric energy source and gamma = 1.67; (4) Non-constant (latitude dependent) boundary conditions with a volumetric energy source and gamma = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using MHD characteristic theory. The simulations show how different CME's, including loop-like transients, clouds, and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CME's properties.

  10. Numerical Modeling of Coronal Mass Ejections Based on Various Pre-event Model Atmospheres

    NASA Technical Reports Server (NTRS)

    Wang, A. H.; Wu, S. T.; Suess, S. T.; Poletto, G.

    1995-01-01

    We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution, at the lower boundary (i.e., solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CME's, but also modifies the adjacent quiet corona and/or coronal holes. We consider four pre-event coronal cases: (1) constant boundary conditions and a polytropic gas with gamma = 1.05; (2) non-constant (latitude dependent) boundary conditions and a polytropic gas with gamma = 1.05; (3) constant boundary conditions with a volumetric energy source and gamma = 1.67; (4) non-constant (latitude dependent) boundary conditions with a volumetric energy source and gamma = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using magnetohydrodynamic (MHD) characteristic theory. The simulations show how different CME's, including loop-like transients, clouds and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CME's properties.

  11. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.

    PubMed

    Yoo, Jeong-Ki; Kim, Jong-Hwan

    2012-02-01

    When a humanoid robot moves in a dynamic environment, a simple process of planning and following a path may not guarantee competent performance for dynamic obstacle avoidance because the robot acquires limited information from the environment using a local vision sensor. Thus, it is essential to update its local map as frequently as possible to obtain more information through gaze control while walking. This paper proposes a fuzzy integral-based gaze control architecture incorporated with the modified-univector field-based navigation for humanoid robots. To determine the gaze direction, four criteria based on local map confidence, waypoint, self-localization, and obstacles, are defined along with their corresponding partial evaluation functions. Using the partial evaluation values and the degree of consideration for criteria, fuzzy integral is applied to each candidate gaze direction for global evaluation. For the effective dynamic obstacle avoidance, partial evaluation functions about self-localization error and surrounding obstacles are also used for generating virtual dynamic obstacle for the modified-univector field method which generates the path and velocity of robot toward the next waypoint. The proposed architecture is verified through the comparison with the conventional weighted sum-based approach with the simulations using a developed simulator for HanSaRam-IX (HSR-IX).

  12. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    NASA Astrophysics Data System (ADS)

    Chen, F.; Peter, H.

    2015-09-01

    Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org

  13. Ion and Electron Energization in Guide Field Reconnection Outflows with Kinetic Riemann Simulations and Parallel Shock Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Drake, J. F.; Swisdak, M.

    2017-12-01

    How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.

  14. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  15. An adaptive time-stepping strategy for solving the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less

  16. Full-wave simulation of a three-dimensional metamaterial prism

    DOE PAGES

    Basilio, Lorena I.; Langston, William L.; Warne, Larry K.; ...

    2015-01-23

    In our article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). Furthermore, to describe the methodology used in designing a n = -1 refractive index prism, our results include the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributionsmore » corresponding to a normally incident plane-wave excitation of the prism.« less

  17. Nonclassical and semiclassical para-Bose states

    NASA Astrophysics Data System (ADS)

    Huerta Alderete, C.; Villanueva Vergara, Liliana; Rodríguez-Lara, B. M.

    2017-04-01

    Motivated by the proposal to simulate para-Bose oscillators in a trapped-ion setup [C. Huerta Alderete and B. M. Rodríguez-Lara, Phys. Rev. A 95, 013820 (2017), 10.1103/PhysRevA.95.013820], we introduce an overcomplete, nonorthogonal basis for para-Bose Hilbert spaces. The states spanning these bases can be experimentally realized in the trapped-ion simulation via time evolution. The para-Bose states show both nonclassical and semiclassical statistics on their Fock state distribution, asymmetric field quadrature variances, and do not minimize the uncertainty relation for the field quadratures. These properties are analytically controlled by the para-Bose order and the evolution time; both parameters might be feasible for fine tuning in the trapped-ion quantum simulation.

  18. Influence of electric field on the hydrogen bond network of water.

    PubMed

    Suresh, S J; Satish, A V; Choudhary, A

    2006-02-21

    Understanding the inherent response of water to an external electric (E)-field is useful towards decoupling the role of E-field and surface in several practically encountered situations, such as that near an ion, near a charged surface, or within a biological nanopore. While this problem has been studied in some detail through simulations in the past, it has not been very amenable for theoretical analysis owing to the complexities presented by the hydrogen (H) bond interactions in water. It is also difficult to perform experiments with water in externally imposed, high E-fields owing to dielectric breakdown problems; it is hence all the more important that theoretical progress in this area complements the progress achieved through simulations. In an attempt to fill this lacuna, we develop a theory based on relatively simple concepts of reaction equilibria and Boltzmann distribution. The results are discussed in three parts: one pertaining to a comparison of the key features of the theory vis a vis published simulation/experimental results; second pertaining to insights into the H-bond stoichiometry and molecular orientations at different field strengths and temperatures; and the third relating to a surprising but explainable finding that H-bonds can stabilize molecules whose dipoles are oriented perpendicular to the direction of field (in addition to the E-field and H-bonds both stabilizing molecules with dipoles aligned in the direction of the field).

  19. Application of computer virtual simulation technology in 3D animation production

    NASA Astrophysics Data System (ADS)

    Mo, Can

    2017-11-01

    In the continuous development of computer technology, the application system of virtual simulation technology has been further optimized and improved. It also has been widely used in various fields of social development, such as city construction, interior design, industrial simulation and tourism teaching etc. This paper mainly introduces the virtual simulation technology used in 3D animation. Based on analyzing the characteristics of virtual simulation technology, the application ways and means of this technology in 3D animation are researched. The purpose is to provide certain reference for the 3D effect promotion days after.

  20. Simulation in otolaryngology: smart dummies and more.

    PubMed

    Deutsch, Ellen S

    2011-12-01

    Simulation is revolutionizing medical education, certification, and ongoing professional development. Simulation encompasses a variety of technologies as well as nontechnical approaches to improve individual psychomotor skills, group effectiveness, and systems processes, all without direct risk to patients. Simulation-enhanced learning experiences, addressing learning objectives based on the needs of the individual or the group and following the principles of adult education, can be used to ensure consistent and comprehensive learning opportunities, thereby creatively complementing didactic and clinical learning experiences. Pockets of simulation expertise are already present in the field of otolaryngology; more will develop as these exciting and important innovations blossom.

Top