Science.gov

Sample records for field stimulation device

  1. Dosimetry of typical transcranial magnetic stimulation devices

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2010-05-01

    The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.

  2. Graphene field emission devices

    SciTech Connect

    Kumar, S. Raghavan, S.; Duesberg, G. S.; Pratap, R.

    2014-09-08

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm{sup −1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  3. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  4. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. PMID:24112886

  5. Susceptibility study of audio recording devices to electromagnetic stimulations

    SciTech Connect

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals. Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.

  6. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  7. High-field (11.75T) multimodal MR imaging of exercising hindlimb mouse muscles using a non-invasive combined stimulation and force measurement device.

    PubMed

    Gondin, Julien; Vilmen, Christophe; Cozzone, Patrick J; Bendahan, David; Duhamel, Guillaume

    2014-08-01

    We have designed and constructed an experimental set-up allowing electrical stimulation of hindlimb mouse muscles and the corresponding force measurements at high-field (11.75T). We performed high-resolution multimodal MRI (including T2 -weighted imaging, angiography and diffusion) and analysed the corresponding MRI changes in response to a stimulation protocol. Mice were tested twice over a 1-week period to investigate the reliability of mechanical measurements and T2 changes associated with the stimulation protocol. Additionally, angiographic images were obtained before and immediately after the stimulation protocol. Finally, multislice diffusion imaging was performed before, during and immediately after the stimulation session. Apparent diffusion coefficient (ADC) maps were calculated on the basis of diffusion weighted images (DWI). Both force production and T2 values were highly reproducible as illustrated by the low coefficient of variation (<8%) and high intraclass correlation coefficient (≥0.75) values. Maximum intensity projection angiographic images clearly showed a strong vascular effect resulting from the stimulation protocol. Although a motion sensitive imaging sequence was used (echo planar imaging) and in spite of the strong muscle contractions, motion artifacts were minimal for DWI recorded under exercising conditions, thereby underlining the robustness of the measurements. Mean ADC values increased under exercising conditions and were higher during the recovery period as compared with the corresponding control values. The proposed experimental approach demonstrates accurate high-field multimodal MRI muscle investigations at a preclinical level which is of interest for monitoring the severity and/or the progression of neuromuscular diseases but also for assessing the efficacy of potential therapeutic interventions.

  8. Nanostructured cavity devices for extracellular stimulation of HL-1 cells.

    PubMed

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-01-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. PMID:25939765

  9. CDC field mapping device - ''ROTOTRACK''

    SciTech Connect

    Yamada, R.; Hawtree, J.; Kaczar, K.; Leverence, R.; McGuire, K.; Newman-Holmes, C.; Schmidt, E.E.; Shallenberger, J.

    1985-10-01

    A field mapping device for the magnet of the Collider Detector at Fermilab (CDF) was constructed. The device was used for extensive study of the CDF magnetic field distribution. The mechanical and electrical features of the device, as well as the data acquisition system and software, are described. The mechanical system was designed so that the errors on the position and angle of the probe were +-0.75 mm and +-1 mrad, respectively.

  10. Nanostructured cavity devices for extracellular stimulation of HL-1 cells

    NASA Astrophysics Data System (ADS)

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-05-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and

  11. Modeling and Field Results from Seismic Stimulation

    SciTech Connect

    Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.

    2006-05-30

    Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory.

  12. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  13. Medical devices; neurological devices; classification of the transcranial magnetic stimulator for headache. Final order.

    PubMed

    2014-07-01

    The Food and Drug Administration (FDA) is classifying the transcranial magnetic stimulator for headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcranial magnetic stimulator for headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:25016622

  14. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  15. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  16. Implantable optical-electrode device for stimulation of spinal motoneurons

    NASA Astrophysics Data System (ADS)

    Matveev, M. V.; Erofeev, A. I.; Zakharova, O. A.; Pyatyshev, E. N.; Kazakin, A. N.; Vlasova, O. L.

    2016-08-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA).

  17. Magnetic field control. [electromechanical torquing device

    NASA Technical Reports Server (NTRS)

    Haeussermann, W. (Inventor)

    1982-01-01

    A torque control for an electromechanical torquing device of a type where a variable clearance occurs between a rotor and field is described. A Hall effect device senses the field present, which would vary as a function of spacing between field and rotor. The output of the Hall effect device controls the power applied to the field so as to provide a well defined field and thus a controlled torque to the rotor which is well defined.

  18. Field errors in hybrid insertion devices

    SciTech Connect

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  19. Semi-shunt field emission in electronic devices

    SciTech Connect

    Karpov, V. G.; Shvydka, Diana

    2014-08-04

    We introduce a concept of semi-shunts representing needle shaped metallic protrusions shorter than the distance between a device electrodes. Due to the lightening rod type of field enhancement, they induce strong electron emission. We consider the corresponding signature effects in photovoltaic applications; they are: low open circuit voltages and exponentially strong random device leakiness. Comparing the proposed theory with our data for CdTe based solar cells, we conclude that stress can stimulate semi-shunts' growth making them shunting failure precursors. In the meantime, controllable semi-shunts can play a positive role mitigating the back field effects in photovoltaics.

  20. A compact electroencephalogram recording device with integrated audio stimulation system

    NASA Astrophysics Data System (ADS)

    Paukkunen, Antti K. O.; Kurttio, Anttu A.; Leminen, Miika M.; Sepponen, Raimo E.

    2010-06-01

    A compact (96×128×32 mm3, 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 μVrms at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW® and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.

  1. Development of an integrated surface stimulation device for systematic evaluation of wound electrotherapy.

    PubMed

    Howe, D S; Dunning, J; Zorman, C; Garverick, S L; Bogie, K M

    2015-02-01

    Ideally, all chronic wounds would be prevented as they can become life threatening complications. The concept that a wound produces a 'current of injury' due to the discontinuity in the electrical field of intact skin provides the basis for the concept that electrical stimulation (ES) may provide an effective treatment for chronic wounds. The optimal stimulation waveform parameters are unknown, limiting the reliability of achieving a successful clinical therapeutic outcome. In order to gain a more thorough understanding of ES for chronic wound therapy, systematic evaluation using a valid in vivo model is required. The focus of the current paper is development of the flexible modular surface stimulation (MSS) device by our group. This device can be programed to deliver a variety of clinically relevant stimulation paradigms and is essential to facilitate systematic in vivo studies. The MSS version 2.0 for small animal use provides all components of a single-channel, programmable current-controlled ES system within a lightweight, flexible, independently-powered portable device. Benchtop testing and validation indicates that custom electronics and control algorithms support the generation of high-voltage, low duty-cycle current pulses in a power-efficient manner, extending battery life and allowing ES therapy to be delivered for up to 7 days without needing to replace or disturb the wound dressing.

  2. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices.

    PubMed

    Soares Dos Santos, Marco P; Marote, Ana; Santos, T; Torrão, João; Ramos, A; Simões, José A O; da Cruz E Silva, Odete A B; Furlani, Edward P; Vieira, Sandra I; Ferreira, Jorge A F

    2016-01-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells. PMID:27456818

  3. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices

    PubMed Central

    Soares dos Santos, Marco P.; Marote, Ana; Santos, T.; Torrão, João; Ramos, A.; Simões, José A. O.; da Cruz e Silva, Odete A. B.; Furlani, Edward P.; Vieira, Sandra I.; Ferreira, Jorge A. F.

    2016-01-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells. PMID:27456818

  4. Sensor devices comprising field-structured composites

    DOEpatents

    Martin, James E.; Hughes, Robert C.; Anderson, Robert A.

    2001-02-27

    A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.

  5. Emerging Techniques for Field Device Security

    DOE PAGES

    Schwartz, Moses; Bechtel Corp.; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  6. Emerging Techniques for Field Device Security

    SciTech Connect

    Schwartz, Moses; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a system will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.

  7. Deep Brain Stimulation using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jiles, David; Williams, Paul; Crowther, Lawrence; Iowa State University Team; Wolfson CentreMagnetics Team

    2011-03-01

    New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore so is the demand for improved performance, particularly in terms of their ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have then been developed, modeled and tested as a result of this work. A large magnetizing coil, 300mm in diameter and compatible with a commercial TMS system has been constructed to determine its feasibility for use as a deep brain stimulator. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.

  8. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  9. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  10. Field stimulation of the carotid baroreceptor complex does not compromise baroreceptor function in spontaneously hypertensive rats.

    PubMed

    Kouchaki, Zahra; Georgakopoulos, Dimitrios; Butlin, Mark; Avolio, Alberto P

    2014-01-01

    Field stimulation of the carotid baroreceptors has been successfully used to induce a long-term reduction in blood pressure. However, baroreceptor stimulation may interfere with or compromise the beneficial short-term blood pressure regulation function of the baroreceptors. This study aims to quantify the baroreceptor function before and during acute, unilateral field stimulation of the carotid baroreceptors. Spontaneously Hypertensive Rats (n=7) were anaesthetised and instrumented to measure heart rate and mean arterial pressure (MAP), aortic pulse wave velocity (a surrogate measure of arterial stiffness), abdominal aortic flow and renal artery flow. A custom made field stimulation device was fitted to the left common carotid artery. Baroreceptor function was measured by quantifying heart rate response to MAP change induced by bolus injection of phenylephrine. Field stimulation of the baroreceptors reduced heart rate by 20 bpm (p=0.003) with MAP reduction of 18 mmHg (p=0.008). Maximal barorecep-tor gain without stimulation was -1.20±0.41 bpm/mmHg and during stimulation -1.41±0.52 bpm/mmHg (p=0.59). The MAP at which maximal gain occurred also did not change (152±11, 160±9 mmHg respectively, p=0.22). This study indicates that unilateral field stimulation of the carotid baroreceptor complex, while causing a sustained reduction of arterial pressure, does not alter acute baroreceptor function peak gain. PMID:25570608

  11. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  12. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  13. Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson's disease.

    PubMed

    Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M

    2004-05-01

    Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.

  14. Novel Air Stimulation MR-Device for Intraoral Quantitative Sensory Cold Testing

    PubMed Central

    Brönnimann, Ben; Meier, Michael L.; Hou, Mei-Yin; Parkinson, Charles; Ettlin, Dominik A.

    2016-01-01

    The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to −35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to −35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity. PMID:27445771

  15. Formation of nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.

    2000-01-01

    A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.

  16. Heart Stimulation by Time-Varying Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masuhiro; Andoh, Tomio; Goto, Tsuneaki; Hosono, Akihiko; Kawakami, Tadashi; Okumura, Fukuichiro; Takenaka, Toshifumi; Yamamoto, Isao

    1992-07-01

    A strong magnetic stimulator adopted for cardiac muscle was constructed with the stored energy of 50 kJ. Pulsed magnetic fields were applied to dog hearts with normal activity from outside of the body. The magnetic stimulus triggered on the T wave of the electrocardiograph caused arrhythmias in the first and second beats after the stimulus. It has been confirmed that this magnetic effect is due to a direct stimulation of cardiac muscle, not to an indirect stimulation on the vagus nerve. The threshold strength was determined for different pulse durations. The obtained strength-duration relationship is comparable to that for the electric stimulation of the dog heart.

  17. The Flow Field Inside Ventricle Assist Device

    NASA Astrophysics Data System (ADS)

    Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit

    2000-11-01

    The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.

  18. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices.

    PubMed

    Incerti, Paola V; Ching, Teresa Y C; Cowan, Robert

    2013-03-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  19. A Low Power Micro Deep Brain Stimulation Device for Murine Preclinical Research

    PubMed Central

    Abulseoud, Osama A.; Tye, Susannah J.; Hosain, Md Kamal; Berk, Michael

    2013-01-01

    Deep brain stimulation has emerged as an effective medical procedure that has therapeutic efficacy in a number of neuropsychiatric disorders. Preclinical research involving laboratory animals is being conducted to study the principles, mechanisms, and therapeutic effects of deep brain stimulation. A bottleneck is, however, the lack of deep brain stimulation devices that enable long term brain stimulation in freely moving laboratory animals. Most of the existing devices employ complex circuitry, and are thus bulky. These devices are usually connected to the electrode that is implanted into the animal brain using long fixed wires. In long term behavioral trials, however, laboratory animals often need to continuously receive brain stimulation for days without interruption, which is difficult with existing technology. This paper presents a low power and lightweight portable microdeep brain stimulation device for laboratory animals. Three different configurations of the device are presented as follows: 1) single piece head mountable; 2) single piece back mountable; and 3) two piece back mountable. The device can be easily carried by the animal during the course of a clinical trial, and that it can produce non-stop stimulation current pulses of desired characteristics for over 12 days on a single battery. It employs passive charge balancing to minimize undesirable effects on the target tissue. The results of bench, in-vitro, and in-vivo tests to evaluate the performance of the device are presented. PMID:27170861

  20. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  1. Visions on the future of medical devices in spinal cord stimulation: what medical device is needed?

    PubMed

    De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Recently burst stimulation and 10 kHz stimulation have been developed as novel stimulation designs. Both appear to be superior to classical tonic stimulation in the amount of responders and the amount of pain suppression and have as an extra advantage that they are paresthesia-free. This evolution is very important as it shifts the focus of research from better targeting by developing new lead configurations to better communication with the nervous system. It can be envisioned that this is only the start of a new trend in spinal cord, brain, and peripheral nerve stimulation and that more new stimulation designs will be developed in the near future such as pseudorandom burst stimulation, pleasure stimulation, noise stimulation and reconditioning stimulation. This evolution mandates a new approach in the development of internal pulse generators, and the most obvious approach is to develop an upgradable stimulator, on which new stimulation designs can be downloaded, analogous to the apps people download on their smartphones. This will create a shift from hardware driven products to software driven stimulators. PMID:26708299

  2. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  3. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device. PMID:25600671

  4. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  5. Field characterization of external grease abatement devices.

    PubMed

    Aziz, Tarek N; Holt, Leon M; Keener, Kevin M; Groninger, John W; Ducoste, Joel J

    2012-03-01

    This study characterized some of the physical and chemical features of large outside field grease abatement devices (GADs). 24-hour measurements of several food service establishments' (FSEs') influent GAD flowrates indicated highly intermittent conditions with hydraulic retention times (HRTs) that exceeded the common recommendation (30 minutes) by two to five times. Investigation into the chemical characteristics of GADs indicated highly variable influent and effluent fat, oil, and grease (FOG) concentrations. Low pH and dissolved oxygen values were measured throughout the GAD, indicating the likely occurrence of anaerobic microbial processes. Detailed spatial and temporal observations of the accumulation of FOG and food solids were also discussed. Though the FOG layer remained relatively constant for all GAD configurations investigated, results indicated that commonly-used GAD configurations with a straight submerged inlet tee or no-inlet tee configuration may result in the transport of food solids into the second compartment. The present research showed increased accumulation of food solids in the first compartment with a retro-fit flow distributive inlet. This retro-fit displays promise for potentially improving the separation characteristics of existing GADs.

  6. Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems

    SciTech Connect

    Bitzer, L. A.; Benson, N. Schmechel, R.

    2014-08-15

    Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface.

  7. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage.

  8. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. PMID:25613437

  9. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    SciTech Connect

    Bouda, N. R. Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  10. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    NASA Astrophysics Data System (ADS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  11. Integration and Evaluation of Nanophotonic Devices Using Optical Near Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Nomura, Wataru; Yi, Gyu-Chul; Ohtsu, Motoichi

    In this chapter, we review the optical near-field phenomena and their applications to realize the nanophotonic device. To realize the nanometer-scale controllability in size and position, we demonstrate the feasibility of nanometer-scale chemical vapor deposition using optical near-field techniques (see Sect. 15.2). In which, the probe-less fabrication method for mass production is also demonstrated. To confirm the promising optical properties of individual ZnO for realizing nanophotonic devices, we performed the near-field evaluation of the ZnO quantum structure (see Sect. 15.3). To drive the nanophotonic device with external conventional diffraction-limited photonic device, the far-/near-field conversion device is required. Section 15.4 reviews nanometer-scale waveguide to be used as such a conversion device of the nanophotonic ICs.

  12. Implantation of a defibrillator in a patient with an upper airway stimulation device.

    PubMed

    Ong, Adrian A; O'Brien, Terrence X; Nguyen, Shaun A; Gillespie, M Boyd

    2016-02-01

    The patient is a 62-year-old man with continuous positive airway pressure-intolerant obstructive sleep apnea who was enrolled in a study for a hypoglossal nerve upper airway stimulation device (UAS). Nearly 2.5 years later, he was admitted to the hospital for unstable angina. Diagnostic workup revealed a prior myocardial infarction, an ejection fraction of 30% on maximal medical therapy, and episodes of nonsustained ventricular tachycardia. During hospitalization, the patient received an implantable cardioverter defibrillator (ICD). This is the first reported case of simultaneous use of a UAS and an ICD, and we report no untoward device interference between the two implantable devices.

  13. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  14. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  15. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  16. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  17. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way.

  18. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  19. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  20. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes.

    PubMed

    Heo, Chaejeong; Yoo, Jeongwan; Lee, Siyoung; Jo, Areum; Jung, Susie; Yoo, Hyosun; Lee, Young Hee; Suh, Minah

    2011-01-01

    Electric field stimulation has become one of the most promising therapies for a variety of neurological diseases. However, the safety and effectiveness of the stimulator are critical in determining the outcome. Because there are few safe and effective in vivo and/or in vitro stimulator devices, we demonstrate a method that allows for non-contact electric field stimulation with a specific strength that is able to control cell-to-cell interaction in vitro. Graphene, a form of graphite, and polyethylene terephthalate (PET) was used to create a non-cytotoxic in vitro graphene/PET film stimulator. A transient non-contact electric field was produced by charge-balanced biphasic stimuli through the graphene/PET film electrodes and applied to cultured neural cells. We found that weak electric field stimulation (pulse duration of 10 s) as low as 4.5 mV/mm for 32 min was particularly effective in shaping cell-to-cell interaction. Under weak electric field stimulation, we observed a significant increase in the number of cells forming new cell-to-cell couplings and in the number of cells strengthening existing cell-to-cell couplings. The underlying mechanism of the altered cellular interactions may be related to an altered regulation of the endogenous cytoskeletal proteins fibronectin, actin, and vinculin. In conclusion, this technique may open a new therapeutic approach for augmenting cell-to-cell coupling in cell transplantation therapy in the central nervous system.

  1. Barriers to investigator-initiated deep brain stimulation and device research

    PubMed Central

    Malone, Donald; Okun, Michael S.; Booth, Joan; Machado, Andre G.

    2014-01-01

    The success of device-based research in the clinical neurosciences has overshadowed a critical and emerging problem in the biomedical research environment in the United States. Neuroprosthetic devices, such as deep brain stimulation (DBS), have been shown in humans to be promising technologies for scientific exploration of neural pathways and as powerful treatments. Large device companies have, over the past several decades, funded and developed major research programs. However, both the structure of clinical trial funding and the current regulation of device research threaten investigator-initiated efforts in neurologic disorders. The current atmosphere dissuades clinical investigators from pursuing formal and prospective research with novel devices or novel indications. We review our experience in conducting a federally funded, investigator-initiated, device-based clinical trial that utilized DBS for thalamic pain syndrome. We also explore barriers that clinical investigators face in conducting device-based clinical trials, particularly in early-stage studies or small disease populations. We discuss 5 specific areas for potential reform and integration: (1) alternative pathways for device approval; (2) eliminating right of reference requirements; (3) combining federal grant awards with regulatory approval; (4) consolidation of oversight for human subjects research; and (5) private insurance coverage for clinical trials. Careful reformulation of regulatory policy and funding mechanisms is critical for expanding investigator-initiated device research, which has great potential to benefit science, industry, and, most importantly, patients. PMID:24670888

  2. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation

    PubMed Central

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects.

  3. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  4. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  5. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  6. Screening test of stimulants in human urine utilizing headspace gas chromatography for field test.

    PubMed

    Tsuchihashi, H; Nakajima, K; Nishikawa, M; Suzuki, S; Oka, Y; Otsuki, K

    1990-03-01

    An accurate and simple screening method of stimulants in human urine using headspace gas chromatography utilizing heat of dissolution of potassium carbonate was developed. A 4.9-g portion of potassium carbonate was put into the vial prior to sending to the field, and a 5-ml aliquot of urine, suspected of containing stimulants and internal standard components was pipetted. After the vial was sealed and shaken by hand, 1 ml of its headspace gas was taken by disposable syringe and injected into the gas chromatograph. A compact gas chromatograph device with flame ionization detector and fused silica capillary column was developed for this experiment. Detection limits of methamphetamine and amphetamine were 1.0 micrograms/ml and 1.5 micrograms/ml, respectively. PMID:2335332

  7. A Simple Soil Percolation Test Device for Field Environmentalists

    ERIC Educational Resources Information Center

    Smith, William H.; Stark, Phillip E.

    1977-01-01

    A primary responsibility of field environmental health workers is evaluation of individual sewage disposal system sites. The authors of this article developed a practical, accurate, and inexpensive measurement device for obtaining reliable percolation test results. Directions for the construction and use of the device are detailed. Drawings…

  8. Detailed analysis of allergic cutaneous reactions to spinal cord stimulator devices.

    PubMed

    Chaudhry, Zeshan Ahmed; Najib, Umer; Bajwa, Zahid H; Jacobs, W Carl; Sheikh, Javed; Simopoulos, Thomas T

    2013-01-01

    The use of spinal cord stimulation (SCS) devices to treat chronic, refractory neuropathic pain continues to expand in application. While device-related complications have been well described, inflammatory reactions to the components of these devices remain underreported. In contrast, hypersensitivity reactions associated with other implanted therapies, such as endovascular and cardiac rhythm devices, have been detailed. The purpose of this case series is to describe the clinical presentation and course of inflammatory reactions as well as the histology of these reactions. All patients required removal of the entire device after developing inflammatory reactions over a time course of 1-3 months. Two patients developed a foreign body reaction in the lead insertion wound as well as at the implantable pulse generator site, with histology positive for giant cells. One patient developed an inflammatory dermatitis on the flank and abdomen that resolved with topical hydrocortisone. "In vivo" testing with a lead extension fragment placed in the buttock resulted in a negative reaction followed by successful reimplantation of an SCS device. Inflammatory reactions to SCS devices can manifest as contact dermatitis, granuloma formation, or foreign body reactions with giant cell formation. Tissue diagnosis is essential, and is helpful to differentiate an inflammatory reaction from infection. The role of skin patch testing for 96 hours may not be suited to detect inflammatory giant cell reactions that manifest several weeks post implantation. PMID:23946668

  9. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... controls). The device type is intended to produce planar digital x-ray images of the entire breast; this... digital x-ray images of the entire breast. This generic type of device may include digital mammography... 892.1715. The final rule uses the term ``planar'' instead of ``full- field'' to describe digital...

  10. Stimulants

    MedlinePlus

    Stimulants are drugs that increase your heart rate, breathing rate, and brain function. Some stimulants affect only a specific organ, such as the heart, lungs, brain, or nervous system. Epinephrine is a stimulant. It ...

  11. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation.

    PubMed

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  12. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation

    PubMed Central

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  13. The effect of electromagnetic fields, from two commercially available water treatment devices, on bacterial culturability.

    PubMed

    Piyadasa, Chathuri; Yeager, Thomas R; Gray, Stephen R; Stewart, Matthew B; Ridgway, Harry F; Pelekani, Con; Orbell, John D

    2016-01-01

    Commercially available pulsed-electromagnetic field (PEMF) devices are currently being marketed and employed to ostensibly manage biofouling. The reliable application and industry acceptance of such technologies require thorough scientific validation - and this is currently lacking. We have initiated proof-of-principle research in an effort to investigate whether such commercially available PEMF devices can influence the viability (culturability) of planktonic bacteria in an aqueous environment. Thus two different commercial PEMF devices were investigated via a static (i.e. non-flowing) treatment system. 'Healthy' Escherichia coli cells, as well as cultures that were physiologically compromised by silver nano-particles, were exposed to the PEMFs from both devices under controlled conditions. Although relatively minor, the observed effects were nevertheless statistically significant and consistent with the hypothesis that PEMF exposure under controlled conditions may result in a decrease in cellular viability and culturability. It has also been observed that under certain conditions bacterial growth is actually stimulated.

  14. The application of a use case/task based approach in the development of software for a portable neuromuscular stimulator device.

    PubMed

    Furey, K; Conway, R; O'Keeffe, D; Lyons, G M

    2007-09-01

    This paper describes the use of a use case/task based method in the development of a portable neuromuscular stimulator device. The developed unit allows a variety of stimulus delivery algorithms to be incorporated dependent on the patient's requirements. The developed system consists of a stimulator unit, stimulator firmware, external sensors, a programmer unit, two stimulation channels and electrodes. A clinician specifies a suitable algorithm for a particular patient and then selects the relevant stimulus parameters for that algorithm using the programmer unit. The stimulator unit's architecture supports the addition of future algorithms. The device was developed in accordance with the European Medical Devices Directive 93/42/EEC resulting in the need for a well-defined development lifecycle during the design and development of the neuromuscular stimulator. This development lifecycle must place emphasis on the need to identify potential hazards. Therefore, the adoption of a use case/task driven approach as one of the strategies in eliciting the requirements, both functional and non-functional and specification stages of the development lifecycle resulted in a more rigid hazard/risk analysis leading ultimately to a more robust final system. A comprehensive review of the literature has revealed that use cases have been in use in other contexts but not so in a biomedical context. Therefore, this is a novel strategy to the development of a device in this field. A brief background on the historical development of drop foot stimulators shall be presented thereby displaying the benefits of the programmability feature of our stimulator. PMID:17049449

  15. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-05-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research.

  16. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device

    PubMed Central

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-01-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research. PMID:27150137

  17. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    NASA Astrophysics Data System (ADS)

    Chen, C.; Evans, J. A.; Robinson, M. P.; Smye, S. W.; O'Toole, P.

    2010-02-01

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m-1. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  18. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the

  19. Field effect type devices based on highly doped conducting polymer

    NASA Astrophysics Data System (ADS)

    Waldmann, O.; Park, J. H.; Hsu, F. C.; Chiou, N. R.; Kim, Y. R.; Epstein, A. J.

    2003-03-01

    Field-effect type devices based on the highly doped polymer poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid (PEDOT/PSS) show a reversible change of the source-drain current by several orders of magnitude upon application of appropriate gate voltages. However, the underlying physical mechanism of their operation is little understood so far. A field-effect like operation, dopant ion diffusion, or electrochemical process has been conjectured. In this work, we investigated devices fabricated on glass substrates with polyvinyl phenol and aluminum as dielectric layer and gate, respectively. We applied a saw tooth shaped voltage profile to the gate electrode and a very small source-drain voltage while measuring gate and source-drain currents. These measurements resemble capacitance-voltage measurements used to study the field-effect in inorganic devices as well as cyclic voltammetry used in electrochemical work. Conclusions concerning the operation principle will be discussed. Supported in part by ONR.

  20. Contactless remote induction of shear waves in soft tissues using a transcranial magnetic stimulation device

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy

    2016-03-01

    This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.

  1. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  2. The cell-stretcher: A novel device for the mechanical stimulation of cell populations.

    PubMed

    Seriani, S; Del Favero, G; Mahaffey, J; Marko, D; Gallina, P; Long, C S; Mestroni, L; Sbaizero, O

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation. PMID:27587132

  3. The cell-stretcher: A novel device for the mechanical stimulation of cell populations

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C. S.; Mestroni, L.; Sbaizero, O.

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation.

  4. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  5. Oscillating field stimulation in the treatment of spinal cord injury.

    PubMed

    Walters, Beverly C

    2010-12-01

    The application of electrical current to injured tissue is known to promote healing. The use of this modality in healing the injured spinal cord to promote neurologic recovery has been introduced as a potential treatment for patients who previously had minimal hope of recovery. In in vitro and in vivo experiments, neural regeneration has been seen to occur, especially when an oscillating field is used. With this modality, an electrical current is applied in which the polarity changes direction on a periodic basis, preventing the "die-back" phenomenon of severed neural pathways. This mechanism of recovery has been demonstrated in several species in which sacrifice has been undertaken and spinal cords examined. In a study of humans, a small number of patients participated in a single phase Ia trial in which the safety of an implantable device was demonstrated, with indications of probable benefit, consistent with laboratory and animal studies. In addition, a number of additional patients were treated, and their results were examined along with the original cohort and were compared with historical control subjects. The device used in this mode of treatment has not been approved for use in the general spinal cord-injured population, pending further study. A larger multi-institutional trial needs to be done to further demonstrate efficacy and effectiveness, and outcomes will need to be agreed upon by spinal cord injury researchers, patients, and regulators before widespread use will be permitted. Unfortunately, some subtle changes experienced and valued by patients are not recognized as important or desirable by regulators or by all researchers. PMID:21172690

  6. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    PubMed Central

    Kahan, Joshua; Papadaki, Anastasia; White, Mark; Mancini, Laura; Yousry, Tarek; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Thornton, John

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio. Study outline We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI. Results Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength. Conclusions We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe

  7. Assessing The Integrity Of Field Devices In Modbus Networks

    NASA Astrophysics Data System (ADS)

    Shayto, Ryan; Porter, Brian; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet

    Pipeline control systems often incorporate thousands of widely dispersed sensors and actuators, many of them in remote locations. Information about the operational aspects (functionality) and integrity (state) of these field devices is critical because they perform vital measurement and control functions.

  8. Influence of Biphasic Stimulation on Olfactory Ensheathing Cells for Neuroprosthetic Devices

    PubMed Central

    Hassarati, Rachelle T.; Foster, L. John R.; Green, Rylie A.

    2016-01-01

    The recent success of olfactory ensheathing cell (OEC) assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce superior neuroprosthetic electrode surfaces. The following study sought to understand the influence of biphasic electrical stimulation (ES), inherent to bionic devices, on cell survival and function, with respect to conventional metallic and developmental conductive hydrogel (CH) coated electrodes. The CH utilized in this study was a biosynthetic hydrogel consisting of methacrylated poly(vinyl-alcohol) (PVA), heparin and gelatin through which poly(3,4-ethylenedioxythiophene) (PEDOT) was electropolymerised. OECs cultured on Pt and CH surfaces were subjected to biphasic ES. Image-based cytometry yielded little significant difference between the viability and cell cycle of OECs cultured on the stimulated and passive samples. The significantly lower voltages measured across the CH electrodes (147 ± 3 mV) compared to the Pt (317 ± 5 mV), had shown to influence a higher percentage of viable cells on CH (91–93%) compared to Pt (78–81%). To determine the functionality of these cells following electrical stimulation, OECs co-cultured with PC12 cells were found to support neural cell differentiation (an indirect measure of neurotrophic factor production) following ES. PMID:27757072

  9. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    PubMed

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  10. Process Orchestration With Modular Software Applications On Intelligent Field Devices

    NASA Astrophysics Data System (ADS)

    Orfgen, Marius; Schmitt, Mathias

    2015-07-01

    The method developed by the DFKI-IFS for extending the functionality of intelligent field devices through the use of reloadable software applications (so-called Apps) is to be further augmented with a methodology and communication concept for process orchestration. The concept allows individual Apps from different manufacturers to decentrally share information. This way of communicating forms the basis for the dynamic orchestration of Apps to complete processes, in that it allows the actions of one App (e.g. detecting a component part with a sensor App) to trigger reactions in other Apps (e.g. triggering the processing of that component part). A holistic methodology and its implementation as a configuration tool allows one to model the information flow between Apps, as well as automatically introduce it into physical production hardware via available interfaces provided by the Field Device Middleware. Consequently, configuring industrial facilities is made simpler, resulting in shorter changeover and shutdown times.

  11. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  12. Nanodiamond vacuum field emission device with gate modulated triode characteristics

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Raina, S.; Huang, J. H.

    2013-05-01

    A three-electrode nanodiamond vacuum field emission (VFE) device with gate modulated triode characteristics is developed by integrating nanodiamond emitter with self-aligned silicon gate and anode, employing a mold transfer technique in conjunction with chemical vapor deposition of nanodiamond. Triode behavior showing emission current modulation with high current density at low operating voltages is achieved. A systematic analysis based on modified Fowler-Nordheim theory is used to analyze gate modulated VFE characteristics, confirming the triode field emission mechanism and operating principle. The realization of an efficient VFE microtriode has achieved the fundamental step for further development of vacuum integrated microelectronics.

  13. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations. PMID:25877640

  14. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.

  15. Advanced materials and device technology for photonic electric field sensors

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Kingsley, Stuart A.; Pollick, Andrea; Sriram, Sri; Taylor, Edward

    2012-10-01

    Photonic methods for electric field sensing have been demonstrated across the electromagnetic spectrum from near-DC to millimeter waves, and at field strengths from microvolts-per-meter to megavolts-per-meter. The advantages of the photonic approach include a high degree of electrical isolation, wide bandwidth, minimum perturbation of the incident field, and the ability to operate in harsh environments. Aerospace applications of this technology span a wide range of frequencies and field strengths. They include, at the high-frequency/high-field end, measurement of high-power electromagnetic pulses, and at the low-frequency/low-field end, in-flight monitoring of electrophysiological signals. The demands of these applications continue to spur the development of novel materials and device structures to achieve increased sensitivity, wider bandwidth, and greater high-field measurement capability. This paper will discuss several new directions in photonic electric field sensing technology for defense applications. The first is the use of crystal ion slicing to prepare high-quality, single-crystal electro-optic thin films on low-dielectricconstant, RF-friendly substrates. The second is the use of two-dimensional photonic crystal structures to enhance the electro-optic response through slow-light propagation effects. The third is the use of ferroelectric relaxor materials with extremely high electro-optic coefficients.

  16. Field-Based Experiential Learning Using Mobile Devices

    NASA Astrophysics Data System (ADS)

    Hilley, G. E.

    2015-12-01

    Technologies such as GPS and cellular triangulation allow location-specific content to be delivered by mobile devices, but no mechanism currently exists to associate content shared between locations in a way that guarantees the delivery of coherent and non-redundant information at every location. Thus, experiential learning via mobile devices must currently take place along a predefined path, as in the case of a self-guided tour. I developed a mobile-device-based system that allows a person to move through a space along a path of their choosing, while receiving information in a way that guarantees delivery of appropriate background and location-specific information without producing redundancy of content between locations. This is accomplished by coupling content to knowledge-concept tags that are noted as fulfilled when users take prescribed actions. Similarly, the presentation of the content is related to the fulfillment of these knowledge-concept tags through logic statements that control the presentation. Content delivery is triggered by mobile-device geolocation including GPS/cellular navigation, and sensing of low-power Bluetooth proximity beacons. Together, these features implement a process that guarantees a coherent, non-redundant educational experience throughout a space, regardless of a learner's chosen path. The app that runs on the mobile device works in tandem with a server-side database and file-serving system that can be configured through a web-based GUI, and so content creators can easily populate and configure content with the system. Once the database has been updated, the new content is immediately available to the mobile devices when they arrive at the location at which content is required. Such a system serves as a platform for the development of field-based geoscience educational experiences, in which students can organically learn about core concepts at particular locations while individually exploring a space.

  17. Magnetic field effect in organic films and devices

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj Raj

    In this work, we focused on the magnetic field effect in organic films and devices, including organic light emitting diodes (OLEDs) and organic photovoltaic (OPV) cells. We measured magnetic field effect (MFE) such as magnetoconductance (MC) and magneto-electroluminescence (MEL) in OLEDs based on several pi- conjugated polymers and small molecules for fields |B|<100 mT. We found that both MC(B) and MEL(B) responses in bipolar devices and MC(B) response in unipolar devices are composed of two B-regions: (i) an 'ultra-small' region at |B| < 1-2 mT, and (ii) a monotonic response region at |B| >˜2mT. Magnetic field effect (MFE) measured on three isotopes of Poly (dioctyloxy) phenylenevinylene (DOO-PPV) showed that both regular and ultra-small effects are isotope dependent. This indicates that MFE response in OLED is mainly due to the hyperfine interaction (HFI). We also performed spectroscopy of the MFE including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in several systems. This includes pristine Poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-phenylene-vinylene] (MEH-PPV) films, MEH-PPV films subjected to prolonged illumination, and MEH-PPV/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) blend, as well as annealed and pristine C60 thin films. For comparison, we also measured MC and MEL in organic diodes based on the same materials. By directly comparing the MPA and MPL responses in films to MC and MEL in organic diodes based on the same active layers, we are able to relate the MFE in organic diodes to the spin densities of the excitations formed in the device, regardless of whether they are formed by photon absorption or carrier injection from the electrodes. We also studied magneto-photocurrent (MPC) and power conversion efficiency (PCE) of a 'standard' Poly (3-hexylthiophene)/PCBM device at various Galvinoxyl radical wt%. We found that the MPC reduction with Galvinoxyl wt% follows the same trend as that of the

  18. SEMICONDUCTOR DEVICES: Humidity sensitive organic field effect transistor

    NASA Astrophysics Data System (ADS)

    Murtaza, I.; Karimov, Kh S.; Ahmad, Zubair; Qazi, I.; Mahroof-Tahir, M.; Khan, T. A.; Amin, T.

    2010-05-01

    This paper reports the experimental results for the humidity dependent properties of an organic field effect transistor. The organic field effect transistor was fabricated on thoroughly cleaned glass substrate, in which the junction between the metal gate and the organic channel plays the role of gate dielectric. Thin films of organic semiconductor copper phthalocynanine (CuPc) and semitransparent Al were deposited in sequence by vacuum thermal evaporation on the glass substrate with preliminarily deposited Ag source and drain electrodes. The output and transfer characteristics of the fabricated device were performed. The effect of humidity on the drain current, drain current-drain voltage relationship, and threshold voltage was investigated. It was observed that humidity has a strong effect on the characteristics of the organic field effect transistor.

  19. Binocular device for displaying numerical information in field of view

    NASA Technical Reports Server (NTRS)

    Fuller, H. V. (Inventor)

    1977-01-01

    An apparatus is described for superimposing numerical information on the field of view of binoculars. The invention has application in the flying of radio-controlled model airplanes. Information such as airspeed and angle of attack are sensed on a model airplane and transmitted back to earth where this information is changed into numerical form. Optical means are attached to the binoculars that a pilot is using to track the model air plane for displaying the numerical information in the field of view of the binoculars. The device includes means for focusing the numerical information at infinity whereby the user of the binoculars can see both the field of view and the numerical information without refocusing his eyes.

  20. Organic Field-Effect Transistors for CMOS Devices

    NASA Astrophysics Data System (ADS)

    Melzer, Christian; von Seggern, Heinz

    Organic field-effect transistors (OFETs) are the key elements of future low cost electronics such as radio frequency identification tags. In order to take full advantage of organic electronics, low power consumption is mandatory, requiring the use of a complementary metal oxide semiconductor (CMOS) like technique. To realize CMOS-devices p-type and n-type organic field-effect transistors on one substrate have to be provided. Here, the latest concepts to produce in a straightforward way complementary acting OFETs for CMOS-like elements are illustrated on basis of the inverter. Starting from a simple description of thin-film transistors, the basic design rules for the development of complementary OFETs are given and some realizations of CMOS-like inverters are discussed. A CMOS-like inverter based on two identical field-effect transistors disclosing almost unipolar p-type and n-type behavior is presented.

  1. High-Field Transport in Semiconducting Material and Devices.

    NASA Astrophysics Data System (ADS)

    Ahmad, Nisar

    1990-01-01

    Available from UMI in association with The British Library. Considering the developments and most recent technological innovations of semiconductor devices, it is important to investigate the ramifications of charge carrier transport in high electric field in modern semiconductor microstructures, where the electric fields are found to be necessarily high. The fundamental ideas of transport theory including the mobility -limiting scattering mechanisms are reviewed. The ideas of linear transport are extended and the derivation of the high-field distribution is described in a single-valley model appropriate for the band structures of silicon and germanium. The velocity-field profile obtained from this distribution function is compared with the experimental results on bulk (3-dimensional) samples of silicon and germanium. The two-band model of intrinsic transport in a high electric field is also included. The single valley distribution is applied to the multi-valley structures of CaAs and (InGa)As to explain the experimentally observed negative differential resistivity in bulk samples. The calculations are further extended to two dimensional quantum -well microstructures of GaAs and (InGa)As. The conditions necessary for negative differential resistivity in these microstructures to be observable is also discussed. The applications of the above ideas in modelling submicron -length channel field effect transistors (MOSFET's and MODFET's) is discussed. Suggestions for further future applications of the analysis are offered.

  2. Radiation hardening of MOS devices by boron. [for stabilizing gate threshold potential of field effect device

    NASA Technical Reports Server (NTRS)

    Danchenko, V. (Inventor)

    1974-01-01

    A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.

  3. Device for remote viewing of objects in ionizing radiation fields

    SciTech Connect

    Ivanov, B.I.; Ivanov, N.M.; Malakhov, I.K.; Motin, J.D.; Reformatsky, I.A.; Sinitsyn, P.R.

    1980-10-21

    A device is described for remote viewing of objects in ionizing radiation fields, wherein a fibre-optics channel for transmitting the image of an object under observation beyond the biological shield against ionizing radiation comprises an entrance lens in whose immediate vicinity there is placed one of the ends of a bundle of optic fibres, the other end of the bundle being beyond the biological shield. The fibre-optics channel also comprises a source of heat to maintain at least only the fibre bundle at a temperature ensuring thermostabilization of its light conducting properties in the presence of the ionizing radiation.

  4. Topological insulator Bi2Te3 nanowire field effect devices

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Zhang, Genqiang; Wu, Yue; Chen, Yong P.

    2012-02-01

    Bismuth telluride (Bi2Te3) has been studied extensively as one of the best thermoelectric materials and recently shown to be a prototype topological insulator with nontrivial conducting surface states. We have grown Bi2Te3 nanowires by a two-step solution phase reaction and characterized their material and structural properties by XRD, TEM, XPS and EDS. We fabricate both backgated (on SiO2/Si) and top-gated (with ALD high-k gate dielectric such as Al2O3 or HfO2) field effect devices on such nanowires with diameters ˜50nm. Ambipolar field effect and a resistance modulation of up to 600% at low temperatures have been observed. The 4-terminal resistance shows insulating behavior (increasing with decreasing temperature) from 300 K to 50K, then saturates in a plateau for temperatures below 50K, consistent with the presence of metallic surface state. Aharonov--Bohm (AB) oscillations are observed in the magneto-resistance with a magnetic field parallel to the nanowire, providing further evidence of the presence of surface state conduction Finally, a prominent weak anti-localization (WAL) feature that weakens with increasing magnetic field and/or temperature is observed in the magneto-resistance with a magnetic field perpendicular to the nanowire.

  5. Features of multiphoton-stimulated bremsstrahlung in a quantized field

    NASA Astrophysics Data System (ADS)

    Burenkov, Ivan A.; Tikhonova, Olga V.

    2010-12-01

    The process of absorption and emission of external field quanta by a free electron during the scattering on a potential centre is investigated in the case of interaction with a quantized electromagnetic field. The analytical expression for differential cross-sections and probabilities of different multiphoton channels are obtained. We demonstrate that in the case of a non-classical 'squeezed vacuum' initial field state the probability for the electron to absorb a large number of photons appears to be larger by several orders of magnitude in comparison to the classical field and leads to the formation of the high-energy plateau in the electron energy spectrum. The generalization of the Marcuse effect to the case of the quantized field is worked out. The total probability of energy absorption by electron from the non-classical light is analysed.

  6. Near-field scanning microwave microscopy of microwave devices

    NASA Astrophysics Data System (ADS)

    Vlahacos, C. P.; Steinhauer, David E.; Dutta, S.; Anlage, S. M.; Wellstood, F. C.; Newman, H.

    1997-03-01

    We have developed a scanning microwave microscope which can presently image features with a spatial resolution of 10-100 μm in the frequency range 5-15 GHz.(C. P. Vlahacos, et al.), Appl. Phys. Lett. 69, 3272 (1996).^,(S. M. Anlage, et al.), IEEE. Trans. Appl. Supercond. (1997). The microscope consists of a resonant section of a coaxial cable which is terminated with a small-diameter open-ended coaxial probe. Images are made by scanning the sample under the probe while recording the induced near-field microwave voltage as a function of sample position. We will present images for several microwave devices, including an X-band microstrip planar ferrite circulator and a high-temperature superconducting microstrip YBa_2Cu_3O_7-δ resonator, and compare them to the calculated field profiles.

  7. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De

    neural stimulation strength and focality of ECT and MST. Across and within ECT studies, there is marked unexplained variability in seizure threshold and clinical outcomes. It is not known to what extent the age and sex effects on seizure threshold are mediated by interindividual variation in neural excitability and/or anatomy of the head. Addressing this question, we examine the effect on ECT and MST induced field characteristics of the variability in head diameter, scalp and skull thicknesses and conductivities, as well as brain volume, in a range of values that are representative of the patient population. Variations in the local tissue properties such as scalp and skull thickness and conductivity affect the existing ECT configurations more than MST. On the other hand, the existing MST coil configurations show greater sensitivity to head diameter variation compared to ECT. Due to the high focality of MST compared to ECT, the stimulated brain volume in MST is more sensitive to variation in tissue layer thicknesses. We further demonstrate how individualization of the stimulus pulse current amplitude, which is not presently done in ECT or MST, can be used as a means of compensating for interindividual anatomical variability, which could lead to better and more consistent clinical outcomes. Part III of the dissertation aims to systemically investigate, both computationally and experimentally, the safety of TMS and ECT in patients with a deep-brain stimulation system, and propose safety guidelines for the dual-device therapy. We showed that the induction of significant voltages in the subcutaneous leads in the scalp during TMS could result in unintended and potentially dangerous levels of electrical currents in the DBS electrode contacts. When applying ECT in patients with intracranial implants, we showed that there is an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with

  8. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols.

    PubMed

    Klooster, D C W; de Louw, A J A; Aldenkamp, A P; Besseling, R M H; Mestrom, R M C; Carrette, S; Zinger, S; Bergmans, J W M; Mess, W H; Vonck, K; Carrette, E; Breuer, L E M; Bernas, A; Tijhuis, A G; Boon, P

    2016-06-01

    Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice. PMID:27021215

  9. Stimulated oxidation of metals (laser, electric field, etc.): Comparative studies

    NASA Astrophysics Data System (ADS)

    Nánai, László; Füle, Miklós

    2014-11-01

    In this report we demonstrate the importance of metal oxides, e.g. thin films and nanostructures, in modern science and technology. The basic laws of oxide thickness on base of diffusion of specimens versus time in different circumstances (Cabrera-Mott and Wagner laws) under the influence of external fields, e.g. electromagnetic field, static electric and magnetic field, are demonstrated. We give experimental results for various metal oxide layers over a wide range of different metals. Theoretical explanations are provided as well for the most reliable circumstances.

  10. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    NASA Astrophysics Data System (ADS)

    Miranda, P. C.; Correia, L.; Salvador, R.; Basser, P. J.

    2007-09-01

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m-1 to 0.333 S m-1, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  11. Biphasic Electrical Field Stimulation Aids in Tissue Engineering of Multicell-Type Cardiac Organoids

    PubMed Central

    Chiu, Loraine L.Y.; Iyer, Rohin K.; King, John-Paul

    2011-01-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence. PMID:18783322

  12. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids.

    PubMed

    Chiu, Loraine L Y; Iyer, Rohin K; King, John-Paul; Radisic, Milica

    2011-06-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence.

  13. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  14. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    SciTech Connect

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-15

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  15. Metal-oxide-semiconductor field effect nanostructure spin lattice devices

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    This dissertation explored and developed technologies for silicon based spin lattice devices. Spin lattices are artificial electron spin systems with a periodic structure having one to a few electrons at each site. They are expected to have various magnetic and even superconducting properties when structured at an optimal scale with a specific number i of electrons. Silicon turns out to be a very good material choice in realizing spin lattices. A metal-oxide-semiconductor field-effect nanostructure (MOSFENS) device, which is closely related to a MOS transistor but with a nanostructured oxide-semiconductor interface, can define the spin lattices potential at the interface and alter the occupation i with the gate electrode potential to change the magnetic phase. The MOSFENS spin lattices engineering challenge addressed in this work has come from the practical difficulty of process integration in modifying a transistor fabrication process to accommodate the interface patterning requirements. Two distinct design choices for the fabrication sequences that create the nanostructure have been examined. Patterning the silicon surface before the MOS gate stack layers gives a "nanostructure first" process, and patterning the interface after forming the gate stack gives a "nanostructure last process." Both processes take advantage of a nano-LOCOS (nano-local oxidation of silicon) invention developed in this work. The nano-LOCOS process plays a central role in defining a clean, sharp confining potential for the spin lattice electrons. The MOSFENS process required a basic transistor fabrication process that can accommodate the nanostructures. The process developed for this purpose has a gate stack with a 15 nm polysilicon gate electrode and a 3 nm thermal gate oxide on a p-type silicon substrate. The measured threshold voltage is 0.25 V. Device processes were examined for either isolating the devices with windows in the field oxide or with mesas defined by the etched trenches

  16. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue

    PubMed Central

    Zhang, Jiayi; Laiwalla, Farah; Kim, Jennifer A; Urabe, Hayato; Van Wagenen, Rick; Song, Yoon-Kyu; Connors, Barry W; Zhang, Feng; Deisseroth, Karl; Nurmikko, Arto V

    2010-01-01

    Neural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site. We report here a novel dual-modality hybrid device, which consists of a tapered coaxial optical waveguide (‘optrode’) integrated into a 100 element intra-cortical multi-electrode recording array. We first demonstrate the dual optical delivery and electrical recording capability of the single optrode in in vitro preparations of mouse retina, photo-stimulating the native retinal photoreceptors while recording light-responsive activities from ganglion cells. The dual-modality array device was then used in ChR2 transfected mouse brain slices. Specifically, epileptiform events were reliably optically triggered by the optrode and their spatiotemporal patterns were simultaneously recorded by the multi-electrode array. PMID:19721185

  17. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  18. Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth

    PubMed Central

    Nguyen, Hieu T; Wei, Claudia; Chow, Jacqueline K; Nguyen, Alvin; Coursen, Jeff; Sapp, Shawn; Luebben, Silvia; Chang, Emily; Ross, Robert; Schmidt, Christine E

    2014-01-01

    Nerve guidance conduits (NGCs) are FDA-approved devices used to bridge gaps across severed nerve cables and help direct axons sprouting from the proximal end toward the distal stump. In this paper we present the development of a novel electrically conductive, biodegradable NGC made from a polypyrrole-block-polycaprolactone (PPy-PCL) copolymer material laminated with poly(lactic-co-glycolic acid) (PLGA). The PPy-PCL has a bulk conductivity ranging 10–20 S/cm and loses 40 wt% after 7 months under physiologic conditions. Dorsal root ganglia (DRG) grown on flat PPy-PCL/PLGA material exposed to direct current electric fields (EF) of 100 mV/cm for 2 h increased axon growth by 13% (± 2%) towards either electrode of a 2-electrode setup, compared to control grown on identical substrates without EF exposure. Alternating current increased axon growth by 21% (± 3%) without an observable directional preference, compared to the same control group. The results from this study demonstrate PLGA-coated PPy-PCL is a unique biodegradable material that can deliver substrate EF stimulation to improve axon growth for peripheral nerve repair. PMID:23964001

  19. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  20. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  1. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures. PMID:26329198

  2. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  3. Far-field RF powering of implantable devices: safety considerations.

    PubMed

    Bercich, Rebecca A; Duffy, Daniel R; Irazoqui, Pedro P

    2013-08-01

    Far-field RF powering is an attractive solution to the challenge of remotely powering devices implanted in living tissue. The purpose of this study is to characterize the peak obtainable power levels in a wireless myoelectric sensor implanted in a patient while maintaining safe local temperature and RF powering conditions. This can serve as a guide for the design of onboard electronics in related medical implants and provide motivation for more efficient power management strategies for implantable integrated circuits. Safe powering conditions and peak received power levels are established using a simplified theoretical analysis and Federal Communications Commission-established limits for radiating antennas. These conditions are subsequently affirmed and improved upon using the finite-element method and temperature modeling in bovine muscle.

  4. An application for delivering field results to mobile devices

    NASA Astrophysics Data System (ADS)

    Kanta, A.; Hloupis, G.; Vallianatos, F.; Rust, D.

    2009-04-01

    Mobile devices (MD) such as personal digital assistants (PDAs) and Smartphones expand the ability of Internet communication between remote users. In particular these devices have the possibility to interact with data centres in order to request and receive information. For field surveys MDs used primarily for controlling instruments (in case of field measurements) or for entering data needed for later processing (e.g damage description after a natural hazard). It is not unusual in areas with high interest combined measurements took place. The results from these measurements usually stored in data servers and their publicity is driven mainly by web-based applications. Here we present a client / server application capable of displaying the results of several measurements for a specific area to a MD. More specific, we develop an application than can present to the screen of the MD the results of existing measurements according to the position of the user. The server side hosted at data centre and uses a relational data base (including the results), a SMS/MMS gateway and a receiver daemon application waiting for messages from MDs. The client side runs on MD and is a simple menu driven application which asks the user to enter the type of requested data and the geographical coordinates. In case of embedded GPS receiver, coordinates automatically derived from the receiver. Then a message is sent to server which responds with the results. In case of absence of Internet communication the application can switched to common Short/Multimedia Messaging Systems: the client request data using SMS and the server responds with MMS. We demonstrate the application using results from TEM, VES and HVSR measurements Acknowledgements Work of authors AK, GH and FV is partially supported by the EU-FP6-SSA in the frame of project "CYCLOPS: CYber-Infrastructure for CiviL protection Operative ProcedureS"

  5. Magnetic field characteristics of electric bed-heating devices

    SciTech Connect

    Wilson, B.W.; Davis, K.C.; Heimbigner, T.; Buschbom, R.L.; Lee, G.M.; Yost, M.G.

    1996-12-01

    Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother`s use of these devices. Data on MFs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 {micro}T (4.5 mG) for electric blankets and 0.20 {micro}T (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA) MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBHs measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage.

  6. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats

    SciTech Connect

    Linder-Aronson, S.; Lindskog, S. )

    1991-01-01

    The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under the areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.

  7. Frac-and-pack stimulation: Application, design, and field experience

    SciTech Connect

    Roodhart, L.P.; Fokker, P.A.; Davies, D.R.; Shlyapobersky, J.; Wong, G.K.

    1994-03-01

    This paper discusses the criteria for selecting wells to be frac-and-packed. The authors show how systematic study of the inflow performance can be used to assess the potential of frac-and-packed wells, to identify the controlling factors, and to optimize design parameters. They also show that fracture conductivity is often the key to successful treatment. This conductivity depends largely on proppant size; formation permeability damage around the created fracture has less effect. Appropriate allowance needs to be made for flow restrictions caused by the presence of the perforations, partial penetration, and non-Darcy effects. They describe the application of the overpressure-calibrated hydraulic fracture model in frac-and-pack treatment design, and discuss some operational considerations with reference to field examples. The full potential of this promising new completion method can be achieved only if the design is tailored to the individual well. This demands high-quality input data, which can be obtained only from a calibration test. This paper presents their strategy for frac-and-pack design, drawing on examples from field experience. They also point out several areas that the industry needs to address, such as the sizing of proppant in soft formations and the interaction between fracturing fluids and resin in resin-coated proppant.

  8. Evaluation of Thermal Stability of Organic Electro-Optic Device by Using Thermally Stimulated Current.

    PubMed

    Ikemoto, Ryoma; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Yamada, Toshiki; Otomo, Akira

    2016-04-01

    Thermally stimulated current (TSC) measurement was employed to study the thermal stability of electro-optic (EO) polymers, i.e., guest/host polymer DR1/PMMA and side-chain polymer PMMA-co-DR1. Here the isothermal relaxation test showed that the relaxation time τ (85 °C) of side-chain polymer PMMA-co-DR1 is longer than that of guest/host polymer DR1/PMMA. TSC peaks appeared symmetrically in proportion to the poling electric field Ep, indicating that DR1 molecules make a dominant contribution to dipolar depolarization. Thermal sampling (TS) method showed that the activation energy of the DR1/PMMA is around 1 eV, while that of the PMMA-co-DR1 is distributed >1 eV. Results suggested that side-chain polymer is preferable to the guest/host polymer in the thermal stability. TSC measurement is helpful as a conventional method for studying the life time of EO polymers in terms of dipolar motion. PMID:27451636

  9. Magnetic field perturbation of neural recording and stimulating microelectrodes

    NASA Astrophysics Data System (ADS)

    Martinez-Santiesteban, Francisco M.; Swanson, Scott D.; Noll, Douglas C.; Anderson, David J.

    2007-04-01

    To improve the overall temporal and spatial resolution of brain mapping techniques, in animal models, some attempts have been reported to join electrophysiological methods with functional magnetic resonance imaging (fMRI). However, little attention has been paid to the image artefacts produced by the microelectrodes that compromise the anatomical or functional information of those studies. This work presents a group of simulations and MR images that show the limitations of wire microelectrodes and the potential advantages of silicon technology, in terms of image quality, in MRI environments. Magnetic field perturbations are calculated using a Fourier-based method for platinum (Pt) and tungsten (W) microwires as well as two different silicon technologies. We conclude that image artefacts produced by microelectrodes are highly dependent not only on the magnetic susceptibility of the materials used but also on the size, shape and orientation of the electrodes with respect to the main magnetic field. In addition silicon microelectrodes present better MRI characteristics than metallic microelectrodes. However, metallization layers added to silicon materials can adversely affect the quality of MR images. Therefore only those silicon microelectrodes that minimize the amount of metallic material can be considered MR-compatible and therefore suitable for possible simultaneous fMRI and electrophysiological studies. High resolution gradient echo images acquired at 2 T (TR/TE = 100/15 ms, voxel size = 100 × 100 × 100 µm3) of platinum-iridium (Pt-Ir, 90%-10%) and tungsten microwires show a complete signal loss that covers a volume significantly larger than the actual volume occupied by the microelectrodes: roughly 400 times larger for Pt-Ir and 180 for W, at the tip of the microelectrodes. Similar MR images of a single-shank silicon microelectrode only produce a partial volume effect on the voxels occupied by the probe with less than 50% of signal loss.

  10. Cochlear excitation by the near-field component during stimulation through the partially occluded round window

    NASA Astrophysics Data System (ADS)

    Weddell, Thomas D.; Yarin, Yury M.; Drexl, Markus; Russell, Ian J.; Elliott, Stephen J.; Lukashkin, Andrei N.

    2015-12-01

    The round window membrane (RW) provides pressure relief when the cochlea is excited by sound. While normal function of the RW is important for effective stimulation of the cochlea through the conventional oval window route, the cochlea can be stimulated successfully in non-conventional ways (e.g. through bone conduction, through the RW, and through perforations in the cochlea's apical turn). We report measurements of cochlear function from guinea pigs when the cochlea was stimulated at acoustic frequencies by movements of a miniature magnet which partially occluded the RW. Neural response latencies to acoustic and RW stimulation were similar and taken to indicate that both means of stimulation resulted in the generation of conventional travelling waves along the cochlear partition. It was concluded that the relatively high impedance of the ossicles, as seen from the cochlea, enabled the region of the RW not occluded by the magnet, to act as a pressure shunt during RW stimulation. We propose that travelling waves, similar to those due to acoustic far-field pressure changes, are driven by a jet-like, near-field component of a complex fluid-pressure field, which is generated by the magnetically vibrated RW.

  11. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  12. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception

    PubMed Central

    Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S.

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master–slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor–transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  13. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception.

    PubMed

    Jarrahi, Behnaz; Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master-slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor-transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  14. Effect of pulse magnetic field stimulation on calcium channel current

    NASA Astrophysics Data System (ADS)

    Fan, J.; Lee, Z. H.; Ng, W. C.; Khoa, W. L.; Teoh, S. H.; Soong, T. H.; Qin, Y. R.; Zhang, Z. Y.; Li, X. P.

    2012-10-01

    This study aimed to investigate the effect of low frequency and high amplitude pulse magnetic field (PMF) on Calcium ion channel current of cells. Measurements were done on the Human Embryonic Kidney 293 cells (HEK 293), which have only Calcium ion channels functioning. The whole cell current was measured by patch clamp method, with the clamped voltage ramping from -90 mV to +50 mV across the cell membrane. A PMF was generated by a 400-turn coil connected to a pulse current generator. The frequency of the pulse was 7 Hz, the width of the pulse was 3 ms, and the amplitude of the pulse, or the flux density, was ranging from 6 to 25 mT. The results showed that the profile of the whole cell Calcium channel current could be modified by the PMF. With the PMF applied, the phase shifting occurred: the onset of the channel opening took place several mili-seconds earlier than that without the PWF and correspondingly, the whole cell current reached its maximum earlier, and the current returned back to zero earlier as well. When the PWF was stopped, these effects persisted for a period of time, and then the current profile "recovered" to its original appearance. The decrease of the onset time and peak current time could be due to the local electric potential induced by the PWF and the direct interaction between PMF and ion channels/ions. The exact mechanisms of the observed effects of PMF on the cell are still unknown and need to be further studied.

  15. Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

    PubMed Central

    Haider, Bilal; Krause, Matthew R.; Duque, Alvaro; Yu, Yuguo; Touryan, Jonathan; Mazer, James A.; McCormick, David A.

    2011-01-01

    SUMMARY During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RSC) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RSC neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses. PMID:20152117

  16. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  17. Flexible and Transparent Field Emission Devices based on Graphene-Nanowire Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Heo, Kwang; Lee, Byung Yang; Seo, David H.; Seo, Sunae; Jian, Jikang; Hong, Seunghun

    2011-03-01

    Recent developments in wafer scale synthesis and transfer of graphene have made it possible to fabricate electrodes for versatile flexible devices. However, a flexible and transparent graphene-based field emission device has not been explored yet. Herein, we report the fabrication of flexible and transparent field emission devices based on graphene-nanowire hybrid structures. In this work, we successfully grew vertically-aligned Au nanowires on graphene surface using an electrochemical method and utilized it as a cathode. We also utilized a graphene electrode for an anode resulting in a transparent and flexible field emission device. Our field emission devices can be bent down to 22 mm radius of curvature without any significant change in its field emission currents. This flexible and transparent field emission device based on graphene-nanowire hybrid structures will utilized for various applications such as field emission displays, x-ray tubes, and pressure sensors.

  18. A novel inexpensive device for the electrochemical generation of metallic emitters for field desorption.

    PubMed

    Rechsteiner, C E; Mathis, D E; Bursey, M M; Buck, R P

    1977-02-01

    Details for the construction of a novel, inexpensive device for the electrochemical generation of metallic emitters for field desorption mass spectrometry are described. Use of the device for the generation of cobalt and nickel emitters is demonstrated. PMID:836944

  19. New Acid Stimulation Treatment to Sustain Production - Los Angeles Downtown Oil Field

    SciTech Connect

    Russell, Richard C.

    2003-03-10

    Hydrochloric acid stimulation was successfully used on several wells in the Los Angeles Downtown Field, in the past. The decline rates after stimulation were relatively high and generally within six months to a year, production rates have returned to their prestimulation rates. The wells in Los Angeles Downtown Field have strong scale producing tendencies and many wells are treated for scale control. Four wells were carefully selected that are representative of wells that had a tendency to form calcium carbonate scale and had shown substantial decline over the last few years.

  20. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2007-05-01

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured).

  1. Field evaluations of hearing protection devices at surface mining environments

    SciTech Connect

    Not Available

    1993-12-31

    A study was conducted to evaluate the effectiveness of circumaural hearing protection devices and their predictability when they were being worn by mine employees performing normal work duties. The method employed relied on a physical measurement of the noise reduction of the hearing protectors by utilizing two FM-wireless transmitting and receiving systems. One system measured the outside hearing protector noise level, the second system measured the inside hearing protector noise level. The noise level data of both systems was transmitted back to the corresponding receivers and was recorded onto a two-channel tape recorder. Three methods of evaluating hearing protector performance were explored and compared to the Environmental Protection Agency, Noise Reduction Rating (EPA NRR) values. They were, (1) predicted National Institute for occupational Safety and Health`s (NIOSH) method No. 1 values, (2) field-calculated NIOSH No. 1 values, and (3) measured dBA reduction values, which was the arithmetic A-weighted differences between both microphone locations. The majority of the data was obtained on operators of mobile strip equipment, such as bulldozers, front-end-loaders, and overburden drills. A total of 107 individual tests were conducted using 11 different hearing protectors. The results indicate that the amount of protection, which can vary significantly, is related either to the spectrum shape of the noise, or the C-weighted minus the A-weighted (C-A) value. This is consistent with other researchers. The field measured noise reductions were equivalent to the EPA NRR values when the C-A values were negative or approaching zero. When the C-A values increased, the measured noise reductions significantly decreased.

  2. A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States

    PubMed Central

    2015-01-01

    Several recent articles have called for the regulation of consumer transcranial direct current stimulation (tDCS) devices, which provide low levels of electrical current to the brain. However, most of the discussion to-date has focused on ethical or normative considerations; there has been a notable absence of scholarship regarding the actual legal framework in the United States. This article aims to fill that gap by providing a pragmatic analysis of the consumer tDCS market and relevant laws and regulations. In the five main sections of this manuscript, I take into account (a) the history of the do-it-yourself tDCS movement and the subsequent emergence of direct-to-consumer devices; (b) the statutory language of the Federal Food, Drug and Cosmetic Act and how the definition of a medical device—which focuses on the intended use of the device rather than its mechanism of action—is of paramount importance for discussions of consumer tDCS device regulation; (c) how both the Food and Drug Administration (FDA) and courts have understood the FDA's jurisdiction over medical devices in cases where the meaning of ‘intended use’ has been challenged; (d) an analysis of consumer tDCS regulatory enforcement action to-date; and (e) the multiple US authorities, other than the FDA, that can regulate consumer brain stimulation devices. Taken together, this paper demonstrates that rather than a ‘regulatory gap,’ there are multiple, distinct pathways by which consumer tDCS can be regulated in the United States. PMID:27774217

  3. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    PubMed

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies.

  4. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    PubMed

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies. PMID:24634247

  5. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  6. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  7. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats

    PubMed Central

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-01-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  8. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    SciTech Connect

    T. C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E. Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; M. Firestone; P. E. Long; Resch, C.T.; Newcomer, D.; Koenigsberg, S.; Willet, A. C. T. Resch, and D. Newcomer , S. Koenigsberg and A. Willet Field Investigations of Lactate-Stimulated Bioreduction of Cr at Hanford 100H

    2005-04-20

    The overall objective of this paper is to carry out field investigations to assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford 100H site.

  9. Field Performance of a Newly Developed Upflow Filtration Device

    EPA Science Inventory

    The objective of this research is to examine the removal capacities of a newly developed Upflow filtration device for treatment of stormwater. The device was developed by engineers at the University of Alabama through a Small Business Innovative Research (SBIR) grant from the U....

  10. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  11. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats.

    PubMed

    Mishima, S

    1988-03-01

    The author performed experiments in order to investigate what biological effect on the bone would be produced by long-term pulsing electromagnetic field (PEMF) systemic stimulation. In some of the mature female rats used as experimental animals, bilateral ovariectomy and right sciatic neurectomy were performed in order to make a model osteoporosis. PEMF stimulation was produced by repetitive pulse burst (RPB) waves at a positive amplitude of 25 mV, negative amplitude of 62.5 mV, burst width of 4.2 ms, pulse width of 230 microseconds and 12 Hz, with the magnetic field strength within a cage being set at 3-10 Gauss. PEMF stimulation over 6 months did not produce any effects on the physiologically aged bones. PEMF stimulation also did not produce any effects on losed cortical bone in osteoporotic hindlegs. On the other hand, an increase of bone volume and bone formation activity was observed in the cancellous bone of osteoporotic hindlegs. These findings suggested that PEMF stimulation exerted a preventive effect against bone loss of osteoporotic hindlegs. Furthermore, an observed increase in bone marrow blood flow seemed to be related with this increase of bone volume and bone formation activity.

  12. Stretching DNA by electric field and flow field in microfluidic devices: An experimental validation to the devices designed with computer simulations

    PubMed Central

    Lee, Cheng-Han; Hsieh, Chih-Chen

    2013-01-01

    We examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) and C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6, 044105 (2012)] and they were optimized for operating with electric field. In our experiments, we first used DC electric field to stretch DNA. However, the experimental results were not even in qualitative agreement with our simulations. More detailed investigation revealed that DNA molecules adopt a globular conformation in high DC field and therefore become more difficult to stretch. Owing to the similarity between flow field and electric field, we turned to use flow field to stretch DNA with the same devices. The evolution patterns of DNA conformation in flow field were found qualitatively the same as our prediction based on electric field. We analyzed the maximum values, the evolution and the distributions of DNA extension at different Deborah number in each device. We found that the shear and the hydrodynamic interaction have significant influence on the performance of the devices. PMID:24404001

  13. A novel vibration device for neuromuscular stimulation for sports and rehabilitation applications.

    PubMed

    Pujari, Amit N; Neilson, Richard D; Cardinale, Marco

    2009-01-01

    Vibration has been increasingly sought after as new technique, due to its potential to increase muscle strength and positively affect bone remodeling. Currently, there are many vibration devices on the market advertised for different applications, in particular in sports and rehabilitation. All the available devices have two major drawbacks; firstly, they are not sufficiently adaptive to the individual user's needs and secondly, they do not require any force input from the user. Our novel vibration device addresses these drawbacks with new mechanical design and bringing innovative approach to 'how it operates'.

  14. Cerebellar and Spinal Direct Current Stimulation in Children: Computational Modeling of the Induced Electric Field

    PubMed Central

    Fiocchi, Serena; Ravazzani, Paolo; Priori, Alberto; Parazzini, Marta

    2016-01-01

    Recent studies have shown that the specific application of transcranial direct current stimulation (tDCS) over the cerebellum can modulate cerebellar activity. In parallel, transcutaneous spinal DC stimulation (tsDCS) was found to be able to modulate conduction along the spinal cord and spinal cord functions. Of particular interest is the possible use of these techniques in pediatric age, since many pathologies and injuries, which affect the cerebellar cortex as well as spinal cord circuits, are diffuse in adults as well as in children. Up to now, experimental studies of cerebellar and spinal DC stimulation on children are completely missing and therefore there is a lack of information about the safety of this technique as well as the appropriate dose to be used during the treatment. Therefore, the knowledge of electric quantities induced into the cerebellum and over the spinal cord during cerebellar tDCS and tsDCS, respectively, is required. This work attempts to address this issue by estimating through computational techniques, the electric field distributions induced in the target tissues during the two stimulation techniques applied to different models of children of various ages and gender. In detail, we used four voxel child models, aged between 5- and 8-years. Results revealed that, despite inter-individual differences, the cerebellum is the structure mainly involved by cerebellar tDCS, whereas the electric field generated by tsDCS can reach the spinal cord also in children. Moreover, it was found that there is a considerable spread toward the anterior area of the cerebellum and the brainstem region for cerebellar tDCS and in the spinal nerve for spinal direct current stimulation. Our study therefore predicts that the electric field spreads in complex patterns that strongly depend on individual anatomy, thus giving further insight into safety issues and informing data for pediatric investigations of these stimulation techniques. PMID:27799905

  15. Emerging neural stimulation technologies for bladder dysfunctions.

    PubMed

    Lee, Jee Woong; Kim, Daejeong; Yoo, Sangjin; Lee, Hyungsup; Lee, Gu-Haeng; Nam, Yoonkey

    2015-03-01

    In the neural engineering field, physiological dysfunctions are approached by identifying the target nerves and providing artificial stimulation to restore the function. Neural stimulation and recording technologies play a central role in this approach, and various engineering devices and stimulation techniques have become available to the medical community. For bladder control problems, electrical stimulation has been used as one of the treatments, while only a few emerging neurotechnologies have been used to tackle these problems. In this review, we introduce some recent developments in neural stimulation technologies including microelectrode array, closed-loop neural stimulation, optical stimulation, and ultrasound stimulation.

  16. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.

    2015-01-01

    Objective To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Methods Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. Results The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r2 = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r2 > 0.96, p < 0.02). The neural activation threshold was estimated to be 0.45 ± 0.07 V/cm for 0.2 ms stimulus pulse width. Conclusion These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. Significance This work can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms. PMID:25910001

  17. Adjunctive vagus nerve stimulation for treatment-resistant bipolar disorder: managing device failure or the end of battery life.

    PubMed

    Pardo, José V

    2016-01-01

    The vagus nerve stimulation (VNS) device is used not only to treat refractory seizure disorders but also mood disorders; the latter indication received CE Mark approval in 2001 and Food and Drug Administration approval in 2005. Original estimates for the end of battery life (EOBL) were approximately 6-10 years. Many neuropsychiatric patients have or will soon face EOBL. A patient with severe, life-threatening, treatment-resistant bipolar disorder underwent 9 years of stable remission following 20 months of adjunctive VNS. The device ceased operation at EOBL. Because of logistical issues, re-initiation of VNS was delayed over several months. The patient relapsed with depression, mania and mixed states, and regained remission 17 months after device replacement. This case dictates prudence in managing stable patients in remission with VNS. If the device malfunctions, urgent surgical replacement is warranted with subsequent rapid titration to previous parameters as tolerated. Several months' delay may trigger relapse and prove difficult to re-establish remission. PMID:26951440

  18. Time and Frequency-Dependent Modulation of Local Field Potential Synchronization by Deep Brain Stimulation

    PubMed Central

    McCracken, Clinton B.; Kiss, Zelma H. T.

    2014-01-01

    High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects

  19. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  20. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation.

    PubMed

    Yan, Boyuan; Vakulenko, Maksim; Min, Seok-Hong; Hauswirth, William W; Nirenberg, Sheila

    2016-04-01

    Optogenetics methods are rapidly being developed as therapeutic tools for treating neurological diseases, in particular, retinal degenerative diseases. A critical component of the development is testing the safety of the light stimulation used to activate the optogenetic proteins. While the stimulation needs to be sufficient to produce neural responses in the targeted retinal cell class, it also needs to be below photochemical and photothermal limits known to cause ocular damage. The maximal permissible exposure is determined by a variety of factors, including wavelength, exposure duration, visual angle, pupil size, pulse width, pulse pattern, and repetition frequency. In this paper, we develop utilities to systematically and efficiently assess the contributions of these parameters in relation to the limits, following directly from the 2014 American National Standards Institute (ANSI). We also provide an array of stimulus protocols that fall within the bounds of both safety and effectiveness. Additional verification of safety is provided with a case study in rats using one of these protocols.

  1. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.

    PubMed

    Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio

    2011-04-15

    Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. PMID:21320530

  2. Stimulation and release from neurons via a dual capillary collection device interfaced to mass spectrometry.

    PubMed

    Fan, Yi; Lee, Chang Young; Rubakhin, Stanislav S; Sweedler, Jonathan V

    2013-11-01

    Neuropeptides are cell to cell signaling molecules that modulate a wide range of physiological processes. Neuropeptide release has been studied in sample sizes ranging from single cells and neuronal clusters, to defined brain nuclei and large brain regions. We have developed and optimized cell stimulation and collection approaches for the efficient measurement of neuropeptide release from neuronal samples using a dual capillary system. The defining feature is a capillary that contains octadecyl-modified silica nanoparticles on its inner wall to capture and extract releasates. This collection capillary is inserted into another capillary used to deliver solutions that chemically stimulate the cells, with solution flowing up the inner capillary to facilitate peptide collection. The efficiency of peptide collection was evaluated using six peptide standards mixed in physiological saline. The extracted peptides eluted from these capillaries were characterized via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with low femtomole detection limits. Using the capillary collection system in small custom-fabricated culturing chambers, individual cultured neurons and neuronal clusters from the model animal Aplysia californica were stimulated with distinct neuronal secretagogues and the releasates were collected and characterized using MALDI-TOF MS.

  3. Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Heo, Kwang; Lee, Byung Yang; Lee, Joohyung; Seo, David H.; Seo, Sunae; Jian, Jikang; Hong, Seunghun

    2011-09-01

    We report a simple but efficient method to prepare metallic nanowire-graphene (MN-G) hybrid nanostructures at a low temperature and show its application to the fabrication of flexible field emission devices. In this method, a graphene layer was transferred onto an anodic alumina oxide template, and vertically aligned Au nanowires were grown on the graphene surface via electrodeposition method. As a proof of concept, we demonstrated the fabrication of flexible field emission devices, where the MN-G hybrid nanostructures and another graphene layer on PDMS substrates were utilized as a cathode and an anode for highly flexible devices, respectively. Our field emission device exhibited stable and high field emission currents even when bent down to the radius of curvature of 25 mm. This MN-G hybrid nanostructure should prove tremendous flexibility for various applications such as bio-chemical sensors, field emission devices, pressure sensors and battery electrodes.

  4. Fabric Active Transducer Stimulated by Water Motion for Self-Powered Wearable Device.

    PubMed

    Kwon, Soon-Hyung; Kim, Won Keun; Park, Junwoo; Yang, YoungJun; Yoo, Byungwook; Han, Chul Jong; Kim, Youn Sang

    2016-09-21

    The recent trend of energy-harvesting devices is an adoption of fabric materials with flexible and stretchable according to the increase of wearable electronics. But it is a difficult process to form a core structure of dielectric layer or electrode on fabric materials. In particular, a fabric-based energy-harvesting device in contact with water has not been studied, though there are many challenging issues including insulation and water absorption in a harsh environment. So we propose an effective method to obtain an electrical energy from the water contact using our new fabric energy harvesting device. Our water motion active transducer (WMAT) is designed to obtain electrical energy from the variable capacitance through the movement and contact of water droplet. In this paper, we succeeded in generating an electrical energy with peak to peak power of 280 μW using a 30 μL of water droplet with the fabric WMAT device of 70 mm × 50 mm dimension. Furthermore, we specially carried out spray-coating and transfer processes instead of the conventional spin-coating process on fabric materials to overcome the limitation of its uneven morphology and porous and deformable assembly. PMID:27564593

  5. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device

    PubMed Central

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-01-01

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation. PMID:26469146

  6. An open-chamber flow-focusing device for focal stimulation of micropatterned cells.

    PubMed

    Cheng, Jonathan W; Chang, Tim C; Bhattacharjee, Nirveek; Folch, Albert

    2016-03-01

    Microfluidic devices can deliver soluble factors to cell and tissue culture microenvironments with precise spatiotemporal control. However, enclosed microfluidic environments often have drawbacks such as the need for continuous culture medium perfusion which limits the duration of experiments, incongruity between microculture and macroculture, difficulty in introducing cells and tissues, and high shear stress on cells. Here, we present an open-chamber microfluidic device that delivers hydrodynamically focused streams of soluble reagents to cells over long time periods (i.e., several hours). We demonstrate the advantage of the open chamber by using conventional cell culture techniques to induce the differentiation of myoblasts into myotubes, a process that occurs in 7-10 days and is difficult to achieve in closed chamber microfluidic devices. By controlling the flow rates and altering the device geometry, we produced sharp focal streams with widths ranging from 36 μm to 187 μm. The focal streams were reproducible (∼12% variation between units) and stable (∼20% increase in stream width over 10 h of operation). Furthermore, we integrated trenches for micropatterning myoblasts and microtraps for confining single primary myofibers into the device. We demonstrate with finite element method (FEM) simulations that shear stresses within the cell trench are well below values known to be deleterious to cells, while local concentrations are maintained at ∼22% of the input concentration. Finally, we demonstrated focused delivery of cytoplasmic and nuclear dyes to micropatterned myoblasts and myofibers. The open-chamber microfluidic flow-focusing concept combined with micropatterning may be generalized to other microfluidic applications that require stringent long-term cell culture conditions. PMID:27158290

  7. An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson's Disease.

    PubMed

    Arlotti, Mattia; Rossi, Lorenzo; Rosa, Manuela; Marceglia, Sara; Priori, Alberto

    2016-05-01

    Compared to conventional deep brain stimulation (DBS) for patients with Parkinson's Disease (PD), the newer approach of adaptive DBS (aDBS), regulating stimulation on the basis of the patient's clinical state, promises to achieve better clinical outcomes, avoid adverse-effects and save time for tuning parameters. A remaining challenge before aDBS comes into practical use is to prove its feasibility and its effectiveness in larger groups of patients and in more ecological conditions. We developed an external portable aDBS system prototype designed for clinical testing in freely-moving PD patients with externalized DBS electrodes. From a single-channel bipolar artifact-free recording, it analyses local field potentials (LFPs), during ongoing DBS for tuning stimulation parameters, independent from the specific feedback algorithm implemented. We validated the aDBS system in vitro, by testing both its sensing and closed-loop stimulation capabilities, and then tested it in vivo, focusing on the sensing capabilities. By applying the aDBS system prototype in a patient with PD, we provided evidence that it can track levodopa and DBS-induced LFP spectral power changes among different patient's clinical states. Our system, intended for testing LFP-based feedback strategies for aDBS, should help understanding how and whether aDBS therapy works in PD and indicating future technical and clinical advances. PMID:27029510

  8. Using "smart stimulators" to treat Parkinson's disease: re-engineering neurostimulation devices.

    PubMed

    Modolo, Julien; Beuter, Anne; Thomas, Alex W; Legros, Alexandre

    2012-01-01

    Let's imagine the cruise control of your car locked at 120 km/h on any road in any condition (city, country, highway, sunny or rainy weather), or your car air conditioner set on maximum cold in any temperature condition (even during a snowy winter): would you find it efficient? That would probably not be the most optimal strategy for a proper and comfortable driving experience. As surprising as this may seem, this is a pretty accurate illustration of how deep brain stimulation is used today to treat Parkinson's disease motor symptoms and other neurological disorders such as essential tremor, obsessive-compulsive disorder, or epilepsy. PMID:23060781

  9. Plasticity in the rat posterior auditory field following nucleus basalis stimulation.

    PubMed

    Puckett, Amanda C; Pandya, Pritesh K; Moucha, Raluca; Dai, WeiWei; Kilgard, Michael P

    2007-07-01

    Classical conditioning paradigms have been shown to cause frequency-specific plasticity in both primary and secondary cortical areas. Previous research demonstrated that repeated pairing of nucleus basalis (NB) stimulation with a tone results in plasticity in primary auditory cortex (A1), mimicking the changes observed after classical conditioning. However, few studies have documented the effects of similar paradigms in secondary cortical areas. The purpose of this study was to quantify plasticity in the posterior auditory field (PAF) of the rat after NB stimulation paired with a high-frequency tone. NB-tone pairing increased the frequency selectivity of PAF sites activated by the paired tone. This frequency-specific receptive field size narrowing led to a reorganization of PAF such that responses to low- and mid-frequency tones were reduced by 40%. Plasticity in A1 was consistent with previous studies -- pairing a high-frequency tone with NB stimulation expanded the high-frequency region of the frequency map. Receptive field sizes did not change, but characteristic frequencies in A1 were shifted after NB-tone pairing. These results demonstrate that experience-dependent plasticity can take different forms in both A1 and secondary auditory cortex.

  10. Spectral distribution of local field potential responses to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Wong, Yan T.; Halupka, Kerry; Kameneva, Tatiana; Cloherty, Shaun L.; Grayden, David B.; Burkitt, Anthony N.; Meffin, Hamish; Shivdasani, Mohit N.

    2016-06-01

    Objective. Different frequency bands of the local field potential (LFP) have been shown to reflect neuronal activity occurring at varying cortical scales. As such, recordings of the LFP may offer a novel way to test the efficacy of neural prostheses and allow improvement of stimulation strategies via neural feedback. Here we use LFP measurements from visual cortex to characterize neural responses to electrical stimulation of the retina. We aim to show that the LFP is a viable signal that contains sufficient information to optimize the performance of sensory neural prostheses. Approach. Clinically relevant electrode arrays were implanted in the suprachoroidal space of one eye in four felines. LFPs were simultaneously recorded in response to stimulation of individual electrodes using penetrating microelectrode arrays from the visual cortex. The frequency response of each electrode was extracted using multi-taper spectral analysis and the uniqueness of the responses was determined via a linear decoder. Main results. We found that cortical LFPs are reliably modulated by electrical stimulation of the retina and that the responses are spatially localized. We further characterized the spectral distribution of responses, with maximum information being contained in the low and high gamma bands. Finally, we found that LFP responses are unique to a large range of stimulus parameters (∼40) with a maximum conveyable information rate of 6.1 bits. Significance. These results show that the LFP can be used to validate responses to electrical stimulation of the retina and we provide the first steps towards using these responses to provide more efficacious stimulation strategies.

  11. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.

    PubMed

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  12. Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices.

    PubMed

    Kokkinakis, Kostas; Loizou, Philipos C

    2010-05-01

    Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios.

  13. Radio frequency energy harvesting from a feeding source in a passive deep brain stimulation device for murine preclinical research.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah J; Samad, Mst Fateha; Kale, Rajas P; Bennet, Kevin E; Manciu, Felicia S; Berk, Michael

    2015-10-01

    This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented. PMID:26318799

  14. Field-Capable Biodetection Devices for Homeland Security Missions

    SciTech Connect

    Dougherty, G M; Clague, D S; Miles, R R

    2007-04-05

    Biodetection instrumentation that is capable of functioning effectively outside the controlled laboratory environment is critical for the detection of health threats, and is a crucial technology for Health Security. Experience in bringing technologies from the basic research laboratory to integrated fieldable instruments suggests lessons for the engineering of these systems. This overview will cover several classes of such devices, with examples from systems developed for homeland security missions by Lawrence Livermore National Laboratory (LLNL). Recent trends suggest that front-end sample processing is becoming a critical performance-determining factor for many classes of fieldable biodetection devices. This paper introduces some results of a recent study that was undertaken to assess the requirements and potential technologies for next-generation integrated sample processing.

  15. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    PubMed

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  16. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations.

    PubMed

    Priori, Alberto; Foffani, Guglielmo; Rossi, Lorenzo; Marceglia, Sara

    2013-07-01

    Despite their proven efficacy in treating neurological disorders, especially Parkinson's disease, deep brain stimulation (DBS) systems could be further optimized to maximize treatment benefits. In particular, because current open-loop DBS strategies based on fixed stimulation settings leave the typical parkinsonian motor fluctuations and rapid symptom variations partly uncontrolled, research has for several years focused on developing novel "closed-loop" or "adaptive" DBS (aDBS) systems. aDBS consists of a simple closed-loop model designed to measure and analyze a control variable reflecting the patient's clinical condition to elaborate new stimulation settings and send them to an "intelligent" implanted stimulator. The major problem in developing an aDBS system is choosing the ideal control variable for feedback. Here we review current evidence on the advantages of neurosignal-controlled aDBS that uses local field potentials (LFPs) as a control variable, and describe the technology already available to create new aDBS systems, and the potential benefits of aDBS for patients with Parkinson's disease. PMID:23022916

  17. Thermally stimulated currents and space charge studies on field-aged extruded cable material

    SciTech Connect

    Amyot, N.; Pelissou, S.; Toureille, A.

    1996-12-31

    In the perspective of gaining more knowledge on extruded cable field aging diagnosis, complementary techniques were investigated: thermally stimulated currents (TSC) and space charge measurements, the latter being performed by the thermal step (TS) method. Measurements were taken on 28 kV extruded cable samples of cross-linked polyethylene (XLPE). Samples were peeled-off from three cables; one unaged and two field-aged. Both techniques show differences between field-aged and unaged cable material. Results obtained by TS show that aged material can store more space charges that lead to greater intensity of the electrical field in some sites in the polymer matrix and eventually initiate electrical trees leading to breakdown. Comparison with TSC results show that the origin of space charge formation cannot be attributed uniquely to traps formed by carbonyl groups from polymer oxidation.

  18. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  19. Reconfigurable microfluidic device with integrated antibody arrays for capture, multiplexed stimulation, and cytokine profiling of human monocytes

    PubMed Central

    Vu, Tam; Rahimian, Ali; Stybayeva, Gulnaz; Gao, Yandong; Kwa, Timothy; Van de Water, Judy; Revzin, Alexander

    2015-01-01

    Monocytes represent a class of immune cells that play a key role in the innate and adaptive immune response against infections. One mechanism employed by monocytes for sensing foreign antigens is via toll-like receptors (TLRs)—transmembrane proteins that distinguish classes of foreign pathogens, for example, bacteria (TLR4, 5, and 9) vs. fungi (TLR2) vs. viruses (TLR3, 7, and 8). Binding of antigens activates a signaling cascade through TLR receptors that culminate in secretion of inflammatory cytokines. Detection of these cytokines can provide valuable clinical data for drug developers and disease investigations, but this usually requires a large sample volume and can be technically inefficient with traditional techniques such as flow cytometry, enzyme-linked immunosorbent assay, or luminex. This paper describes an approach whereby antibody arrays for capturing cells and secreted cytokines are encapsulated within a microfluidic device that can be reconfigured to operate in serial or parallel mode. In serial mode, the device represents one long channel that may be perfused with a small volume of minimally processed blood. Once monocytes are captured onto antibody spots imprinted into the floor of the device, the straight channel is reconfigured to form nine individually perfusable chambers. To prove this concept, the microfluidic platform was used to capture monocytes from minimally processed human blood in serial mode and then to stimulate monocytes with different TLR agonists in parallel mode. Three cytokines, tumor necrosis factor-α, interleukin (IL)-6, and IL-10, were detected using anti-cytokine antibody arrays integrated into each of the six chambers. We foresee further use of this device in applications such as pediatric immunology or drug/vaccine testing where it is important to balance small sample volume with the need for high information content. PMID:26339315

  20. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    DOEpatents

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  1. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  2. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?

    PubMed

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B

    2015-01-01

    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii) improving the usability of the tools for field calculation to the level that they can be easily used by non-experts. We then introduce a new version of our pipeline for field calculations (www.simnibs.org) that substantially simplifies setting up and running TMS and tDCS simulations based on Finite-Element Methods (FEM). We conclude with a brief outlook on how the new version of SimNIBS can help to target the above identified challenges.

  3. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields. PMID:26094455

  4. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    PubMed Central

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  5. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

    PubMed

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M; Linn, Gary S; Megevand, Pierre; Thielscher, Axel; Deborah A, Ross; Milham, Michael P; Mehta, Ashesh D; Schroeder, Charles E

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  6. Effect of a Plunge Electrode During Field Stimulation of Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Wikswo, J.; Woods, M.; Sidorov, V.; Langrill, D.; Roth, B.

    2003-03-01

    The response of cardiac tissue to strong electric fields is determined by 3-D cable properties, bidomain anisotropy, nonlinearities, and, most importantly, heterogeneities. Langrill and Roth (IEEE Trans. BME. 48:1207 (2001)) numerically studied the effect of a plunge electrode and found alternating regions of hyperpolarization and depolarization around the electrode in response to field shock. We sought to experimentally verify their results by using field stimulation and optical imaging of di-4-ANEPPS stained rabbit right ventricles with an insulated needle serving as a plunge electrode/heterogeneity. The experimental and numerical results agree qualitatively. The key discrepancy is the larger spatial extent of the polarization in the experimental data. The combination of transmural fiber rotation and fluorescence averaging over depth may cause the spatial scale to be larger than was predicted numerically. Because adjacent regions of opposite polarization are potential sources of wave front generation, our results suggest that plunge electrodes or similar-sized heterogeneities may play a role in far-field stimulation.

  7. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  8. A study of the suitability of ferrite for use in low-field insertion devices

    SciTech Connect

    Johnson, K.; Hassenzahl, W.V.

    1995-02-01

    Most insertion devices built to date use rare-earth permanent-magnet materials, which have a high remanent field and are more expensive than many other permanent-magnet materials. Low-field insertion devices could use less-expensive, lower performance magnetic materials if they had suitable magnetic characteristics. These materials must be resistant to demagnetization during construction and operation of the insertion device, have uniform magnetization, possess low minor-axis magnetic moments, and have small minor field components on the surfaces. This paper describes an investigation to determine if ferrite possesses magnetic qualities suitable for insertion device applications. The type of ferrite investigated, MMPA Ceramic 8 from Stackpole Inc., was found to be acceptable for insertion device applications.

  9. Chemical Stimulation Treatment of the Rossi 21-19 Well Beowawe Geothermal Field

    SciTech Connect

    1984-01-01

    The tests reported were part of the DOE Geothermal Reservoir Well Stimulation Program. This was an attempt to ameliorate near-wellbore restricted permeability in a well at a field where other wells flowed at high rates. The two stage treatment first injected HCl followed by a large volume of HCl-HF acid solution. This was a relatively inexpensive treatment, with costs shown. Injectivity tests showed a 2.2 fold increase in injectivity attributable to the second treatment, but mechanical complications with the well precluded an adequate production test. Flow of the fluid out into the formation was measured by Sandia using surface electrical potential. LANL detected microseismic events during the stimulation, which might be especially significant.

  10. Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters.

    PubMed

    Matsumoto, Takahiro; Iwayama, Sho; Saito, Takao; Kawakami, Yasuyuki; Kubo, Fumio; Amano, Hiroshi

    2012-10-22

    We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

  11. Multicomponent seismic monitoring of the effective stimulated volume associated with hydraulic fracture stimulations in a shale reservoir, Pouce Coupe field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Steinhoff, Christopher

    The Reservoir Characterization Project in conjunction with Talisman Energy Inc., have been investigating a time-lapse data set acquired during hydraulic fracture stimulations of two horizontal wells in the Montney Shale at Pouce Coupe Field, Alberta, Canada. Multicomponent seismic surveys and microseismic data were acquired in December 2008 and integrated in this study with multiscale, multidisciplinary reservoir characterization techniques, including geomechanics and production data, to monitor changes within the reservoir associated with the hydraulic fracture stimulations. The goal of this investigation was to study the feasibility of microseismic and time-lapse multicomponent seismic data for correlating hydraulic stimulation success to the enhanced permeability pathways created during the stimulation process. Three independently acquired microseismic monitoring surveys and the detected microseismic events were analyzed to infer the fracture length, height, azimuth, and asymmetry created by the hydraulic stimulation. Integrating the interpretation objectives with the multicomponent surface seismic processing sequence elevated the level of reservoir characterization that can be performed using the Pouce Coupe converted-wave seismic data. Shear-wave splitting as observed by the newly processed converted-wave data were sensitive to fracture induced anisotropy and therefore, provided a measurement of the dominant fracture orientation and fracture density difference within the Montney reservoir interval. Before hydraulic stimulations, the natural fracture conditions resulted in a measured shear-wave splitting magnitude of 2-3%, with Baseline anomalies matching the independently interpreted minimal offset faults only visible on the converted-wave seismic data. Multistage hydraulic fracture stimulations increased the magnitude of shear-wave splitting up to 8%, well above the background noise level of 1%. The natural fractures and faults acted as conduits or barriers

  12. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

  13. Perioperative Brain Shift and Deep Brain Stimulating Electrode Deformation Analysis: Implications for rigid and non-rigid devices

    PubMed Central

    Sillay, Karl A.; Kumbier, L. M.; Ross, C.; Brady, M.; Alexander, A.; Gupta, A.; Adluru, N.; Miranpuri, G. S.; Williams, J. C.

    2016-01-01

    Deep brain stimulation (DBS) efficacy is related to optimal electrode placement. Several authors have quantified brain shift related to surgical targeting; yet, few reports document and discuss the effects of brain shift after insertion. Objective: To quantify brain shift and electrode displacement after device insertion. Twelve patients were retrospectively reviewed, and one post-operative MRI and one time-delayed CT were obtained for each patient and their implanted electrodes modeled in 3D. Two competing methods were employed to measure the electrode tip location and deviation from the prototypical linear implant after the resolution of acute surgical changes, such as brain shift and pneumocephalus. In the interim between surgery and a pneumocephalus free postoperative scan, electrode deviation was documented in all patients and all electrodes. Significant shift of the electrode tip was identified in rostral, anterior, and medial directions (p < 0.05). Shift was greatest in the rostral direction, measuring an average of 1.41 mm. Brain shift and subsequent electrode displacement occurs in patients after DBS surgery with the reversal of intraoperative brain shift. Rostral displacement is on the order of the height of one DBS contact. Further investigation into the time course of intraoperative brain shift and its potential effects on procedures performed with rigid and non-rigid devices in supine and semi-sitting surgical positions is needed. PMID:23010803

  14. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  15. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    SciTech Connect

    McPherson, J. W.

    2015-11-28

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges, L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.

  16. Effect of drugs, hormones and electrical field stimulation on isolated muscle strips from human choledochoduodenal junction.

    PubMed

    McKirdy, H C; Marshall, R W; Griffin, P

    1987-04-01

    The behaviour of in vitro strips from the human choledochoduodenal junction would appear to be related to the anatomical location of origin of the strip. Strips from the papillary region showed low tone and obvious spontaneous rhythmic contractions (0 X 5-6/min). Strips from the region of the inferior choledochal sphincter showed, in ten out of fifteen specimens, spontaneous myogenic tone and gave a relaxation or a biphasic response (relaxation followed by contraction) to electrical field stimulation (0 X 3 ms pulses at 10 Hz for 5 s). All strips from human choledochoduodenal junction are remarkably insensitive to a variety of gastrointestinal hormones and to opioid agents.

  17. Brain activations evoked by tactile stimulation varies with the intensity and not with number of receptive fields stimulated: An fMRI study

    NASA Astrophysics Data System (ADS)

    Ramirez Garzón, Y. T.; Pasaye, E. H.; Barrios, F. A.

    2014-11-01

    Using functional Magnetic Resonance Imaging (fMRI) it is possible to study the functional anatomy of primary cortices. Cortical representations in the primary somatosensory cortex have shown discrepancies between activations related to the same body region in some studies; these differences have been more pronounced for lower limb representations. The aim of this study was to observe the influence of the tactile stimulus intensity in somatosensory cortical responses using fMRI. Based in the sensitivity and pain threshold of each subject, we used Von Frey filaments for stimulate 12 control subject in three receptive fields on the right thigh. One filament near to sensitivity threshold (VFS), other close to pain threshold (VFP) and one intermediate filament between the two previous thresholds (VFI). The tactile stimulation with VFS produced no activation on SI, while that the contralateral SI was activated by stimulation with VFI in 5 subjects and with the stimulation of VFP in all subjects. Second level statistical analysis showed significant differences between SI activations related to the stimulation with VFP and VFI (VFP > VFI), in the comparison between the applied different intensities, a small cluster of activation was observed on SI for the unique possible contrast (VFP > VFI). The time course per trial for each subject was extracted and averaged to extract the activation in the contralateral SI and compared across the stimulus modalities, between the sites of field receptive stimulated and the intensities used. The time course of tactile stimulus responses revealed a consistent single peak of activity per cycle (30 s), approximately 12 s after the onset of the stimulus, with exception of the VFI stimulation,_which showed the peak at 10 s. Thus, our results indicate that the cortical representation of a tactile stimulus with fMRI is modulated for the intensity of the stimulus applied.

  18. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Fujino, Takeo; Inaba, Toshiro; Maki, Hisataka; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Kyo, Shunei; Ono, Minoru

    2015-03-01

    Although the suppression of sympathetic activity is an essential mission for the current heart failure treatment strategy, little is known about the relationship between the rotation speed setting and autonomic nervous activity during continuous-flow left ventricular assist device (LVAD) treatment. We evaluated 23 adult patients with sinus rhythm (36 ± 13 years) who had received continuous-flow LVAD and been followed at our institute between March 2013 and August 2014. Heart rate variability measurement was executed along with hemodynamic study at 3 rotation speeds (low, middle, and high) at 5 weeks after LVAD implantation. Lower rotation speed was associated with higher ratio of low-frequency over high-frequency spectral level (LF/HF), representing enhanced sympathetic activation (p < 0.05 by repeated analyses of variance). Among hemodynamic parameters, cardiac index was exclusively associated with LFNU = LF/(LF + HF), representing relative sympathetic activity over parasympathetic one (p < 0.05). After 6 months LVAD support at middle rotation speed, 19 patients with higher LFNU eventually had higher plasma levels of B-type natriuretic peptide and achieved less LV reverse remodeling. A logistic regression analysis demonstrated that lower LFNU was significantly associated with improvement of LV reverse remodeling (p = 0.021, odds ratio 0.903) with a cut-off level of 55 % calculated by the ROC analysis (AUC 0.869). In conclusion, autonomic activity can vary in various rotation speeds. Patients with higher LFNU may better be controlled at higher rotation speed with the view point to suppress sympathetic activity and achieve LV reverse remodeling.

  19. Quantitative determination of electric field strengths within dynamically operated devices using EBIC analysis in the SEM.

    PubMed

    Pugatschow, Anton; Heiderhoff, Ralf; Balk, Ludwig J

    2008-01-01

    Although electron beam-induced current (EBIC) technique was invented in the seventies, it is still a powerful technique for failure analysis and reliability investigations of modern materials and devices. Time-resolved and stroboscopic microanalyses using sampling Fourier components decomposed by modulated charge carrier excitation are introduced. Quantitative determination of electric field strengths within dynamically operated devices in the scanning electron microscope (SEM) will be demonstrated. This technique allows investigations of diffusion and drift processes and of variations of electric field distributions inside active devices.

  20. Characterization of dilatation induced by electrical field stimulation in mammalian cerebral and peripheral vessels.

    PubMed

    Hardebo, J E; Kåhrström, J; Owman, C

    1989-07-01

    The ability of electrical field stimulation in releasing transmitter from isolated blood vessels in vitro, during recordings of constrictor or dilator responses, is dependent upon an appropriate choice of stimulation parameters which avoid concomitant change in tone due to a direct effect on the vascular smooth muscle membrane. In many species, including man, small arteries such as pial arteries frequently respond to electrical field stimulation with a dilatation which is TTX-resistant. Such dilatations occur even with stimulus parameters of 7.5 V/60 mA at 0.1 ms, 6 Hz. The stimulation parameters required to induce the TTX-resistant response are just above those needed to obtain a purely neurogenic contractile or dilatory response in vessels equipped with a dense net of adrenergic nerves, such as rabbit central ear artery, and, in addition, highly sensitive postsynaptic alpha- or beta-adrenergic receptors, such as the buccal segment of the facial vein. This prompted us to characterize further the nature of the response. It was tested whether the relaxation, despite being TTX-resistant, might be neurogenic in origin. 4-Aminopyridine, in doses that usually enhance the transmitter release from nerves, did not affect the response. Blockade by a variety of dilator antagonists, the presence of excess amounts of known dilators or removal or emptying of known vasodilator nerves did not inhibit the response. Removal of extracellular calcium did not abolish the response. Therefore, it is highly unlikely that neuronal release is involved to any measurable extent in this response. The relaxation was not significantly affected by removal of endothelium, blockade of endothelium-derived relaxing factor, or interference with mast cells. At modest stimulatory parameters (12-13 V/96-104 mA at 0.1 ms, 7-8 V/56-64 mA at 0.3 ms, at 6 Hz) chlorine gas bubbles could be seen forming at the electrode or mounting hook; this gas is toxic to the musculature and relaxes a pre-contracted vessel

  1. Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation.

    PubMed Central

    Werkström, V.; Persson, K.; Ny, L.; Bridgewater, M.; Brading, A. F.; Andersson, K. E.

    1995-01-01

    1. Non-adrenergic, non-cholinergic (NANC) relaxations induced by electrical field stimulation (EFS) were studied in pig isolated urethra. The mechanism for relaxation was characterized by measurement of cyclic nucleotides and by study of involvement of different subsets of voltage-operated calcium channels (VOCCs). 2. EFS evoked frequency-dependent and tetrodotoxin-sensitive relaxations in the presence of propranolol (1 microM), phentolamine (1 microM) and scopolamine (1 microM). At low frequencies (< 12 Hz), relaxations were rapid, whereas at high (> 12 Hz) frequencies distinct biphasic relaxations were evoked. The latter consisted of a rapidly developing first phase followed by a more long-lasting second phase. 3. Treatment with the NO-synthesis inhibitor NG-nitro-L-arginine (L-NOARG; 0.3 mM) inhibited relaxations at low frequencies of stimulation. At high frequencies (> 12 Hz) only the first relaxation phase was affected. 4. Measurement of cyclic nucleotides in preparations subjected to continuous nerve-stimulation, revealed an increase in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels from 1.3 +/- 0.3 to 3.0 +/- 0.4 pmol mg-1 protein (P < 0.01). In the presence of L-NOARG, there was a significant decrease in cyclic GMP content to control. However, there was no increase in cyclic GMP content in response to EFS. Levels of cyclic AMP remained unchanged following EFS. 5. Treatment with the N-type VOCC-inhibitor, omega-conotoxin GVIA (0.1 microM) reduced NO-dependent relaxations, the effect being most pronounced at low frequencies (1-4 Hz) of stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8564225

  2. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    PubMed

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties.

  3. Lightweight device to stimulate and monitor human vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    McStravick, M. Catherine (Inventor); Proctor, David R. (Inventor); Wood, Scott J. (Inventor)

    1989-01-01

    A helmet formed of a rigid shell is disclosed. The shell is lined with several air filled bladders to contact firmly the head of a user. The shell has a rigid chin bar supporting a bite bar connected fixedly to a mouthpiece bearing against the teeth and hard palate to firmly anchor the helmet without movement. The outer shell surface supports various air pumping bulbs and accelerometers. Separate left and right visor pivot on the side guided in a central tongue and groove track to move optical lens mounts into the user's field of vision. The chin bar is connected to the shell by a pair of releasable clasps. A safety lanyard connects to the clasps to quickly pull pins from the clasps to enable quick release in case of motion sickness.

  4. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture.

    PubMed

    Berger, H J; Prasad, S K; Davidoff, A J; Pimental, D; Ellingsen, O; Marsh, J D; Smith, T W; Kelly, R A

    1994-01-01

    To model with greater fidelity the electromechanical function of freshly isolated heart muscle cells in primary culture, we describe a technique for the continual electrical stimulation of adult myocytes at physiological frequencies for several days. A reusable plastic cover was constructed to fit standard, disposable 175-cm2 tissue culture flasks and to hold parallel graphite electrodes along the long axis of each flask, which treated a uniform electric field that resulted in a capture efficiency of ventricular myocytes of 75-80%. Computer-controlled amplifiers were designed to be capable of driving a number of flasks concurrently, each containing up to 4 x 10(6) myocytes, over a range of stimulation frequencies (from 0.1 to 7.0 Hz) with reversal of electrode polarity after each stimulus to prevent the development of pH gradients around each electrode. Unlike quiescent, unstimulated myocytes, the amplitude of contraction, and velocities of shortening and relaxation did not change in myocytes paced at 3-5 Hz for up to 72 h. The maintenance of normal contractile function in paced myocytes required mechanical contraction per se, since paced myocytes that remained quiescent due to the inclusion of 2.5 microM verapamil in the culture medium for 48 h also exhibited a decline in contractility when paced after verapamil removal. Similarly, pacing increased peak calcium current compared with quiescent cells that had not been paced. Thus myocyte contraction at physiological frequencies induced by continual uniform electric field stimulation in short-term primary culture in defining medium maintains some biophysical parameters of myocyte phenotype that are similar to those observed in freshly isolated adult ventricular myocytes.

  5. Effects of frontal eye field stimulation upon activities of the lateral geniculate body of the cat.

    PubMed

    Tsumoto, T; Suzuki, D A

    1976-06-18

    Effects of electrical stimulation of the frontal eye field (FEF) upon activites of the lateral geniculate body (LG) were studied in encephale isole cats. In some experiments the effects were examined by recording field responses of the dorsal nucleus of LG (LGd) and the visual cortex (VC) to electrical stimulation of the optic chiasm (OX). Conditioning repetitive stimulation of FEF exerted no significant effects on the r1 wave of LGd responses but had a facilitatory effect on the r2 wave. FEF-induced facilitation of VC responses was prominent in the late postsynaptic components. These effects had latencies of 50-100 msec and durations of 200-500 msec. Transection of the midbrain showed that most of the FEF-effect was not mediated via the brainstem reticular formation. Extracellular unitary recordings were made from 125 neurons, of which 91 were LGd neurons, 23 neurons of the caudal part of the thalamic reticular nucleus (TRc) and 11 neurons of the ventral nucleus of LG (LGv). In 30 to 87 LGd relay neurons FEF stimuli increased response probabilities to OX stimuli and their spontaneous discharges. These FEF-facilitated LGd neurons were distinguished from the non-affected ones in that the former had longer OX-latencies than the latter. The FEF-facilitated neurons probably correspond to "X" neurons of LGd. In 17 TRc neurons the effects were inhibitory. Their time courses were similar to those of the facilitation in the LGd relay neurons. Seven LGv neurons recieved facilitaroy effects from FEF. Among them 5 neurons showed short-latency (6.7-17 msec) responses to FEF single shocks. The FEF sites inducing conjugate lateral eye movements exerted stronger facilitatory effects than those inducing upward or centering eye movements did. It is suggested that the effects may subserve to cancel the inhibitory convergence onto X-cells just after saccadic eye movements so as to improve visual information transmission through LGd during the eye fixation.

  6. Stimulated Raman scattering of a laser beam in a plasma with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Sajal, Vivek; Tripathi, V. K.

    2004-09-01

    A strong azimuthal magnetic field localizes the lower hybrid waves radially in laser produced plasmas. The laser pump parametrically excites a lower hybrid wave and a backscattered electromagnetic sideband wave. The density perturbation due to the lower hybrid wave couples with the oscillatory velocity of electrons due to the pump wave, to produce a nonlinear current driving the sideband. The pump and sideband waves exert a ponderomotive force on electrons driving the lower hybrid wave. The local effects reduce the growth rate of stimulated Raman scattering. The fundamental radial eigenmode (p=0) of the lower hybrid wave is the maximally growing mode. The scattering process can be used as a diagnostic for the azimuthal magnetic field.

  7. Evaluation of electric field distribution in electromagnetic stimulation of human femoral head.

    PubMed

    Su, Yukun; Souffrant, Robert; Kluess, Daniel; Ellenrieder, Martin; Mittelmeier, Wolfram; van Rienen, Ursula; Bader, Rainer

    2014-12-01

    Electromagnetic stimulation is a common therapy used to support bone healing in the case of avascular necrosis of the femoral head. In the present study, we investigated a bipolar induction screw system with an integrated coil. The aim was to analyse the influence of the screw parameters on the electric field distribution in the human femoral head. In addition, three kinds of design parameters (the shape of the screw tip, position of the screw in the femoral head, and size of the screw insulation) were varied. The electric field distribution in the bone was calculated using the finite element software Comsol Multiphysics. Moreover, a validation experiment was set up for an identical bone specimen with an implanted screw. The electric potential of points inside and on the surface of the bone were measured and compared to numerical data. The electric field distribution within the bone was clearly changed by the different implant parameters. Repositioning the screw by a maximum of 10 mm and changing the insulation length by a maximum of 4 mm resulted in electric field volume changes of 16% and 7%, respectively. By comparing the results of numerical simulation with the data of the validation experiment, on average, the electric potential difference of 19% and 24% occurred when the measuring points were at a depth of approximately 5 mm within the femoral bone and directly on the surface of the femoral bone, respectively. The results of the numerical simulations underline that the electro-stimulation treatment of bone in clinical applications can be influenced by the implant parameters.

  8. Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish

    PubMed Central

    Ward, Bryan K.; Tan, Grace X-J; Roberts, Dale C.; Della Santina, Charles C.; Zee, David S.; Carey, John P.

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  9. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    SciTech Connect

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  10. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Janssen, A. M.; Rampersad, S. M.; Lucka, F.; Lanfer, B.; Lew, S.; Aydin, Ü.; Wolters, C. H.; Stegeman, D. F.; Oostendorp, T. F.

    2013-07-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

  11. Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS.

    PubMed

    Thielscher, Axel; Kammer, Thomas

    2002-11-01

    A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.

  12. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes

    PubMed Central

    Heidi Au, Hoi Ting; Cheng, Irene; Chowdhury, Mohammad Fahad; Radisic, Milica

    2007-01-01

    In contractile tissues such as myocardium, functional properties are directly related to the cellular orientation and elongation. Thus, tissue engineering of functional cardiac patches critically depends on our understanding of the interaction between multiple guidance cues such as topographical, adhesive or electrical. The main objective of this study was to determine the interactive effects of contact guidance and electrical field stimulation on elongation and orientation of fibroblasts and cardiomyocytes, major cell populations of the myocardium. Polyvinyl surfaces were abraded using lapping paper with grain size 1 to 80μm, resulting in V-shaped abrasions with the average abrasion peak-to-peak width in the range from 3 to 13μm, and the average depth in the range from 140nm to 700nm (AFM). The surfaces with abrasions 13μm wide and 700nm deep, exhibited the strongest effect on neonatal rat cardiomyocyte elongation and orientation as well as statistically significant effect on orientation of fibroblasts, thus they were utilized for electrical field stimulation. Electrical field stimulation was performed using a regime of relevance for heart tissue in vivo as well as for cardiac tissue engineering. Stimulation (square pulses, 1ms duration, 1Hz, 2.3V/cm or 4.6V/cm) was initiated 24hr after cell seeding and maintained for additional 72hr. The cover slips were positioned between the carbon rod electrodes so that the abrasions were either parallel or perpendicular to the field lines. Non-abraded surfaces were utilized as controls. Field stimulation did not affect cell viability (live/dead staining). The presence of a well developed contractile apparatus in neonatal rat cardiomyocytes (staining for cardiac Troponin I and actin filaments) was identified in the groups cultivated on abraded surfaces in the presence of field stimulation. Overall we observed that i) fibroblast and cardiomyocyte elongation on non-abraded surfaces was significantly enhanced by electrical

  13. Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse.

    PubMed

    He, Mengyuan; Li, Zhen; Ge, Yiying; Liu, Zhihong

    2016-02-01

    We report the first portable upconversion nanoparticles (UCNPs)-based paper device for road-side field testing of cocaine. Upon the recognition of cocaine by two pieces of rationally designed aptamer fragments, the luminescence of UCNPs immobilized on the paper is quenched by Au nanoparticles (AuNPs), which indicates the cocaine concentration. This device can give quantitative results in a short time with high sensitivity using only a smartphone as the apparatus. Moreover, this device is applicable in human saliva samples, and it also can be used to monitor the cocaine content change in blood samples. The results of this work demonstrate the prospect of developing UCNPs-based paper devices for field testing of drug abuse.

  14. Guidance note: risk management of workers with medical electronic devices and metallic implants in electromagnetic fields.

    PubMed

    Hocking, Bruce; Mild, Kjell Hansson

    2008-01-01

    Medical electronic devices and metallic implants are found in an increasing number of workers. Industrial applications requiring intense electromagnetic fields (EMF) are growing and the potential risk of injurious interactions arising from EMF affecting devices or implants needs to be managed. Potential interactions include electromagnetic interference, displacement, and electrostimulation or heating of adjacent tissue, depending on the device or implant and the frequency of the fields. A guidance note, which uses a risk management framework, has been developed to give generic advice in (a) risk identification--implementing procedures to identify workers with implants and to characterise EMF exposure within a workplace; (b) risk assessment--integrating the characteristics of devices, the anatomical localisation of implants, occupational hygiene data, and application of basic physics principles; and (c) risk control--advising the worker and employer regarding safety and any necessary changes to work practices, while observing privacy.

  15. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  16. A simple analogue teaching device for demonstrating visual-receptive-field properties.

    PubMed

    Moulden, B; Martin, D

    1988-01-01

    A cheap (under 100 pounds at current prices) and simple analogue device is described which permits one to demonstrate, according to an adjustable configuration of the photoreceptive elements, some of the main properties of (i) circularly-symmetrical, (ii) 'simple' elongated opponent-flank, and (iii) multiple-discharge-centre visual receptive fields. The design and construction of the device are described, together with some suggested demonstrations.

  17. Correlations in V1 are reduced by stimulation outside the receptive field.

    PubMed

    Snyder, Adam C; Morais, Michael J; Kohn, Adam; Smith, Matthew A

    2014-08-20

    The trial-to-trial response variability of nearby cortical neurons is correlated. These correlations may strongly influence population coding performance. Numerous studies have shown that correlations can be dynamically modified by attention, adaptation, learning, and potent stimulus drive. However, the mechanisms that influence correlation strength remain poorly understood. Here we test whether correlations are influenced by presenting stimuli outside the classical receptive field (RF) of visual neurons, where they recruit a normalization signal termed surround suppression. We recorded simultaneously the activity of dozens of cells using microelectrode arrays implanted in the superficial layers of V1 in anesthetized, paralyzed macaque monkeys. We presented annular stimuli that encircled--but did not impinge upon--the RFs of the recorded cells. We found that these "extra-classical" stimuli reduced correlations in the absence of stimulation of the RF, closely resembling the decorrelating effects of stimulating the RFs directly. Our results suggest that normalization signals may be an important mechanism for modulating correlations. PMID:25143603

  18. Comparison of 2 methods of non-invasive treatment between transcutaneous electrical stimulation and pulsed electromagnetic field stimulation as replacement of invasive manual acupuncture.

    PubMed

    Kim, Soo-Byeong; Kim, Jung-Yoon; Park, Sun-Woo; Lee, Na-Ra; Lee, Seung-Wook; Kim, Young-Ho; Lee, Yong-Heum

    2012-01-01

    The aim of this study was to find the non-invasive optimal alternative method for Manual Acupuncture. Existing researches had reported that Transcutaneous Electrical Acupoint Stimulation (TEAS) was an effective treatment method instead of manual acupuncture. In place of the TEAS, we suggested the Pulsed Electromagnetic Fields (PEMFs). Thus, we designed the PEMFs system which can stimulate only an acupoint. There have been no researches which reported therapeutic effect when stimulating at an identical acupoint by TEAS and PEMFs. Hence, this study investigated the therapeutic effect on the muscle fatigue after the strenuous knee extension/flexion exercise by two stimulations. We selected the stimulation method of both TEAS and PEMFs by using 2Hz biphasic rectangular wave pulse and pulse width 0.2ms. The magnetic flux was the 30.92mT (309.2gauss) at 2 Hz. The electromyogram (EMG) and the maximal voluntary contraction (MVC) at rectus femoris were measured. The Median Frequency (MF) at TEAS group was significantly effective at 6 minutes (p=0.499). The PEMFs group was recovered to the MF rapidly after 4 minutes (p=0.166). The results of the peak torque indicated that both non-stimulation group and TEAS group did not recover to the peak torque at pre-exercise during the recovery period (p<0.05). In contrast, the significant treatment effect of PEMFs group was found after 14 minutes (p=0.135). The results of this study demonstrated that PEMFs were better than TEAS as a non-invasive method to replace the manual acupuncture.

  19. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  20. Stimulation of fracture healing with Electromagnetic Fields of Extremely Low Frequency (EMF of ELF)

    SciTech Connect

    Wahlstroem, O.

    1984-06-01

    This randomized, controlled study was performed to evaluate how electromagnetic fields affect the accumulation of /sup 99m/Technetium - methylendiphosphonate (Tc-MDP) in fresh fractures. Thirty women with Colles' fractures, aged 50-70 years, participated in this study--some in a control group and some in a treated group. After reduction, all patients were immobilized for four weeks. After randomization, 15 patients were treated by electromagnetic fields of extremely low frequency (EMF of ELF), which were generated by a coil and a battery-powered portable current generator during the time of immobilization. The frequency of the alternating magnetic field was 1-1000 Hz; the magnitude was 4 gauss (RMS (root-mean-square) value). The scintigrams were performed one, two, four, and eight weeks after the injury. The activity ratio in the fracture area was significantly higher at the examination of one and two weeks in the treated group than it was in the control group. The clinical relevance of the results is not known, but one interpretation of the data is that the stimulation with EMF of ELF improves (accelerates) the early phase of fracture healing. The data warrant further investigation of fresh fracture treatment with this method.

  1. [Development of a massage device based on microcontroller in the field of alimentary tract].

    PubMed

    Huang, Rong; Peng, Chenglin; He, Hongmei; Zhu, Jing

    2007-12-01

    In this artical is first reported a survey of the progress in research of MEMS technology. Then, the basic structure, features and the principles of a massage device based on microcontroller in the field of alimentary tract are introduced. Special emphasis is laid on the utilization of MSP430F123 microprocessor for producing a kind of period pulse to control the power of massage capsule. In general, the research and development of the massage device in the field of alimentary tract have active support and deep significance to therapy in the clinical and business settings as well as in the development of biomedical engineering and MEMS.

  2. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2009-06-01

    Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

  3. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy. PMID:26710466

  4. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  5. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  6. Miniature micro-wire based optical fiber-field access device.

    PubMed

    Pevec, Simon; Donlagic, Denis

    2012-12-01

    This paper presents an optical fiber-field access device suitable for use in different in-line fiber-optics' systems and fiber-based photonics' components. The proposed device utilizes a thin silica micro-wire positioned in-between two lead-in single mode fibers. The thin micro-wire acts as a waveguide that allows for low-loss interconnection between both lead-in fibers, while providing interaction between the guided optical field and the surrounding medium or other photonic structures. The field interaction strength, total loss, and phase matching conditions can be partially controlled by device-design. The presented all-fiber device is miniature in size and utilizes an all-silica construction. It has mechanical properties suitable for handling and packaging without the need for additional mechanical support or reinforcements. The proposed device was produced using a micromachining method that utilizes selective etching of a purposely-produced phosphorus pentoxide-doped optical fiber. This method is simple, compatible with batch processes, and has good high-volume manufacturing potential. PMID:23262732

  7. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    SciTech Connect

    Peng, Jiebin; Zhang, Gang; Li, Baowen

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  8. A new high performance field reversed configuration operating regime in the C-2 device

    SciTech Connect

    Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K.; and others

    2012-05-15

    Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.

  9. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  10. Organic nanofibers integrated by transfer technique in field-effect transistor devices

    PubMed Central

    2011-01-01

    The electrical properties of self-assembled organic crystalline nanofibers are studied by integrating these on field-effect transistor platforms using both top and bottom contact configurations. In the staggered geometries, where the nanofibers are sandwiched between the gate and the source-drain electrodes, a better electrical conduction is observed when compared to the coplanar geometry where the nanofibers are placed over the gate and the source-drain electrodes. Qualitatively different output characteristics were observed for top and bottom contact devices reflecting the significantly different contact resistances. Bottom contact devices are dominated by contact effects, while the top contact device characteristics are determined by the nanofiber bulk properties. It is found that the contact resistance is lower for crystalline nanofibers when compared to amorphous thin films. These results shed light on the charge injection and transport properties for such organic nanostructures and thus constitute a significant step forward toward a nanofiber-based light-emitting device. PMID:21711821

  11. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  12. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery.

    PubMed

    Darios, Emma S; Winner, Brittany M; Charvat, Trevor; Krasinksi, Antoni; Punna, Sreenivas; Watts, Stephanie W

    2016-08-01

    The adipokine chemerin causes arterial contraction and is implicated in blood pressure regulation, especially in obese subjects with elevated levels of circulating chemerin. Because chemerin is expressed in the perivascular adipose tissue (PVAT) that surrounds the sympathetic innervation of the blood vessel, we tested the hypothesis that chemerin (endogenous and exogenous) amplifies the sympathetic nervous system in mediating electrical field-stimulated (EFS) contraction. The superior mesenteric artery, with or without PVAT and with endothelium and sympathetic nerve intact, was mounted into isolated tissue baths and used for isometric contraction and stimulation. Immunohistochemistry validated a robust expression of chemerin in the PVAT surrounding the superior mesenteric artery. EFS (0.3-20 Hz) caused a frequency-dependent contraction in isolated arteries that was reduced by the chemerin receptor ChemR23 antagonist CCX832 alone (100 nM; with, but not without, PVAT), but not by the inactive congener CCX826 (100 nM). Exogenous chemerin-9 (1 μM)-amplified EFS-induced contraction in arteries (with and without PVAT) was blocked by CCX832 and the α-adrenergic receptor antagonist prazosin. CCX832 did not directly inhibit, nor did chemerin directly amplify, norepinephrine-induced contraction. Whole mount immunohistochemical experiments support colocalization of ChemR23 with the sympathetic nerve marker tyrosine hydroxylase in superior mesenteric PVAT and, to a lesser extent, in arteries and veins. These studies support the idea that exogenous chemerin modifies sympathetic nerve-mediated contraction through ChemR23 and that ChemR23 may be endogenously activated. This is significant because of the well-appreciated role of the sympathetic nervous system in blood pressure control. PMID:27371688

  13. Lessons from Learner Experiences in a Field-Based Inquiry in Geography Using Mobile Devices

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Chatterjea, Kalyani; Goh, Dion Hoe-Lian; Theng, Yin Leng; Lim, Ee-Peng; Sun, Aixin; Razikin, Khasfariyati; Kim, Thi Nhu Quynh; Nguyen, Quang Minh

    2012-01-01

    Geographical inquiry involves collecting, using and making sense of the data to investigate some geographical phenomena. With the increasing number of mobile devices equipped with Internet access capabilities, there is a wide scope for using it in field inquiry where learning can take place in the form of social interactions between team members…

  14. Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four commercially available spatial repellent devices were tested in a rice land habitat near Stuttgart, Arkansas after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, ARS, USDA in Gainesville, FL. OFF! Clip-On® (a.i. metofluthrin, S.C....

  15. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  16. A Micro-Electrode Array device coupled to a laser-based system for the local stimulation of neurons by optical release of glutamate.

    PubMed

    Ghezzi, Diego; Menegon, Andrea; Pedrocchi, Alessandra; Valtorta, Flavia; Ferrigno, Giancarlo

    2008-10-30

    Optical stimulation is a promising approach to investigate the local dynamic responses of cultured neurons. In particular, flash photolysis of caged compounds offers the advantage of allowing the rapid change of concentration of either extracellular or intracellular molecules, such as neurotransmitters or second messengers, for the stimulation or modulation of neuronal activity. We describe here the use of an ultra-violet (UV) laser diode coupled to an optical fibre for the local activation of caged compounds combined with a Micro-Electrode Array (MEA) device. Local uncaging was achieved by UV irradiation through the optical fibre previously positioned by using a red laser diode. The size of the stimulation was determined using caged fluorescein, whereas its efficacy was tested by studying the effect of uncaging the neurotransmitter glutamate. Uncaged glutamate evoked neuronal responses that were recorded using either fluorescence measurements or electrophysiological recordings with MEAs, thus showing the ability of our system to induce local neuronal excitation. This method allows overcoming the limitations of the MEA system related to unfocused electrical stimulation and induction of electrical artefacts. In addition, the coupling of a UV laser diode to an optical fibre allows a precise local stimulation and a quick change of the stimulation point.

  17. Magnetic Resonance Imaging of time-varying magnetic fields from therapeutic devices

    PubMed Central

    Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus

    2013-01-01

    While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields, such as those generated by transcranial magnetic stimulators or radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this work. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by a figure-eight coil inside simple phantoms over a range of frequencies and intensities, using a 7T small animal MRI scanner. The method is able to reconstruct the three-dimensional components of the oscillating magnetic field vector. PMID:23355446

  18. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  19. Phase-field modeling of fracture propagation under hydraulic stimulation in pre-fractured rocks

    NASA Astrophysics Data System (ADS)

    Khisamitov, Ildar; Mohseni, Seyed Ali; Meschke, Guenther

    2016-04-01

    The presentation presents the numerical analysis of hydraulic fracturing within Griffith theory of brittle damage. The phase-field method [1] is employed to model brittle fracture propagation driven by pressurized fluids within fully saturated porous rocks. The phase-field equation is coupled with the Biot-theory using the effective stress concept. The porous rock is assumed as fully saturated with incompressible fluid and deforms within elasticity theory. The hydraulic fracturing propagates under mode I crack opening in quasi-static regime with slow fluid flow in porous matrix and fracture. The phase-field approach for the modelling of brittle fracture [2] coincides with the maximum energy release rate criterion in fracture mechanics theory. The phase-field equation is approximated over entire the domain and introduces new degree of freedom (damage variable). Crack surface is represented by a smooth regularized damage distribution over the fractured area. The presented numerical investigations are characterized by different scenarios of hydraulic stimulation and the interaction of a new fracture emanating from the bore hole with pre-existing cracks. The scenarios include predefined fractures with different oriented to specific angle and spatial distribution over the entire domain. The undamaged rock matrix is modeled as an isotropic elastic material with initial porosity and isotropic matrix permeability. The flow within the undamaged region is governed by Darcy's law while the fluid flow in fractures is approximated by cubic law with the crack opening computed from the displacement solution and the damage variable distribution [3]. Initial fractures are modeled by an initial distribution of the damage variable and by special zero-thickness interface finite elements. Adaptive algorithms in conjunction with appropriately chosen refinement criteria are utilized to reduce the computational costs. References [1] M.J. Borden "A phase-field description of dynamic

  20. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    NASA Astrophysics Data System (ADS)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  1. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance—The U.S. E‐37 Trial

    PubMed Central

    Afra, Pegah; Macken, Micheal; Minecan, Daniela N.; Bagić, Anto; Benbadis, Selim R.; Helmers, Sandra L.; Sinha, Saurabh R.; Slater, Jeremy; Treiman, David; Begnaud, Jason; Raman, Pradheep; Najimipour, Bita

    2015-01-01

    Objectives The Automatic Stimulation Mode (AutoStim) feature of the Model 106 Vagus Nerve Stimulation (VNS) Therapy System stimulates the left vagus nerve on detecting tachycardia. This study evaluates performance, safety of the AutoStim feature during a 3‐5‐day Epilepsy Monitoring Unit (EMU) stay and long‐ term clinical outcomes of the device stimulating in all modes. Materials and Methods The E‐37 protocol (NCT01846741) was a prospective, unblinded, U.S. multisite study of the AspireSR® in subjects with drug‐resistant partial onset seizures and history of ictal tachycardia. VNS Normal and Magnet Modes stimulation were present at all times except during the EMU stay. Outpatient visits at 3, 6, and 12 months tracked seizure frequency, severity, quality of life, and adverse events. Results Twenty implanted subjects (ages 21–69) experienced 89 seizures in the EMU. 28/38 (73.7%) of complex partial and secondarily generalized seizures exhibited ≥20% increase in heart rate change. 31/89 (34.8%) of seizures were treated by Automatic Stimulation on detection; 19/31 (61.3%) seizures ended during the stimulation with a median time from stimulation onset to seizure end of 35 sec. Mean duty cycle at six‐months increased from 11% to 16%. At 12 months, quality of life and seizure severity scores improved, and responder rate was 50%. Common adverse events were dysphonia (n = 7), convulsion (n = 6), and oropharyngeal pain (n = 3). Conclusions The Model 106 performed as intended in the study population, was well tolerated and associated with clinical improvement from baseline. The study design did not allow determination of which factors were responsible for improvements. PMID:26663671

  2. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  3. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  4. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  5. Characterization of X-ray fields at the center for devices and radiological health

    SciTech Connect

    Cerra, F.

    1993-12-31

    This talk summarizes the process undertaken by the Center for Devices and Radiological Health (CDRH) for establishing reference x-ray fields in its accredited calibration laboratory. The main considerations and their effects on the calibration parameters are discussed. The characterization of fields may be broken down into two parts: (1) the initial setup of the calibration beam spectra and (2) the ongoing measurements and controls which ensure consistency of the reference fields. The methods employed by CDRH for both these stages and underlying considerations are presented. Uncertainties associated with the various parameters are discussed. Finally, the laboratory`s performance, as evidenced by ongoing measurement quality assurance results, is reported.

  6. Co-stimulation of HaCaT keratinization with mechanical stress and air-exposure using a novel 3D culture device

    PubMed Central

    Jung, Moon Hee; Jung, Sang-Myung; Shin, Hwa Sung

    2016-01-01

    Artificial skin or skin equivalents have been used for clinical purpose to skin graft and as substitutes for animal experiments. The culture of cell lines such as HaCaT has the potential to produce large amounts of artificial skin at a low cost. However, there is a limit to keratinization due to the restriction of differentiation in HaCaT. In this study, a culture device that mimics the in vivo keratinization mechanism, co-stimulated by air-exposure and mechanical stimulation, was developed to construct skin equivalents. The device can reconstruct the epidermal morphology, including the cornified layer, similar to its formation in vivo. Under the condition, epidermis was differentiated in the spinous and granular layers. Formation of the stratum corneum is consistent with the mRNA and protein expressions of differentiation markers. The device is the first of its kind to combine air-exposure with mechanical stress to co-stimulate keratinization, which can facilitate the economically viable production of HaCaT-based artificial skin substitutes. PMID:27670754

  7. FreshAiR and Field Studies—Augmenting Geological Reality with Mobile Devices

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Crompton, H.; Dunleavy, M.

    2014-12-01

    During the last decade, mobile devices have fomented a revolution in geological mapping. Present Clinton set the stage for this revolution in the year 2000 when he ordered a cessation to Selective Availability, making reliable GPS available for civilian use. Geologists began using personal digital assistants and ruggedized tablet PCs for geolocation and data recording and the pace of change accelerated with the development of mobile apps such as Google Maps, digital notebooks, and digital compass-clinometers. Despite these changes in map-making technologies, most students continue to learn geology in the field the old-fashioned way, by following a field trip leader as a group and trying to hear and understand lecturettes at the outcrop. In this presentation, we demonstrate the potential of a new Augment Reality (AR) mobile app called "FreshAiR" to change fundamentally the way content-knowledge and learning objectives are delivered to students in the field. FreshAiR, which was developed by co-author and ODU alumnus M.D., triggers content delivery to mobile devices based on proximity. Students holding their mobile devices to the horizon see trigger points superimposed on the field of view of the device's built-in camera. When they walk towards the trigger, information about the location pops up. This can include text, images, movies, and quiz questions (multiple choice and fill-in-the-blank). Students can use the app to reinforce the field trip leader's presentations or they can visit outcrops individuals at different times. This creates the possibility for asynchronous field class, a concept that has profound implications for distance education in the geosciences.

  8. Postsurgical Pathologies Associated with Intradural Electrical Stimulation in the Central Nervous System: Design Implications for a New Clinical Device

    PubMed Central

    Gibson-Corley, Katherine N.; Flouty, Oliver; Oya, Hiroyuki; Gillies, George T.; Howard, Matthew A.

    2014-01-01

    Spinal cord stimulation has been utilized for decades in the treatment of numerous conditions such as failed back surgery and phantom limb syndromes, arachnoiditis, cancer pain, and others. The placement of the stimulating electrode array was originally subdural but, to minimize surgical complexity and reduce the risk of certain postsurgical complications, it became exclusively epidural eventually. Here we review the relevant clinical and experimental pathologic findings, including spinal cord compression, infection, hematoma formation, cerebrospinal fluid leakage, chronic fibrosis, and stimulation-induced neurotoxicity, associated with the early approaches to subdural electrical stimulation of the central nervous system, and the spinal cord in particular. These findings may help optimize the safety and efficacy of a new approach to subdural spinal cord stimulation now under development. PMID:24800260

  9. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  10. Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention.

    PubMed

    Smith, Daniel T; Jackson, Stephen R; Rorden, Chris

    2009-04-01

    Voluntary eye movements and covert shifts of visual attention activate the same brain regions. Specifically, the intraparietal sulcus and the frontal eye fields (FEF) appear to be involved both with generating voluntary saccades as well with attending to a peripheral spatial location. Furthermore, these regions appear to be required by both tasks--functional disruption of these regions impairs both tasks. Therefore, it appears that the targeting system that allows us to plan saccades is the same system that allows us to covertly track peripheral visual information. Recent neuroimaging studies suggest that these brain regions are also activated when participants engage in auditory spatial attention tasks. However, it remains unclear whether these regions are required by these tasks. We used repetitive transcranial magnetic stimulation (rTMS) to disrupt the FEF while participants performed an auditory localization task. On each trial, a visual cue directed attention to the probable laterality of the auditory target, and the participant decided whether the subsequent target sound came from an upper or lower speaker. In the absence of TMS, individuals were faster to respond to targets that occurred on the cued side (valid trials) than when the target appears contralaterally to the cued side (invalid side). TMS interfered with this effect, such that the costs associated with ipsilateral invalidly cued targets were substantially reduced. These results suggest that the eye-movement system is needed for normal auditory attention. PMID:20502626

  11. Responses of the Smooth Muscle Membrane of Guinea Pig Jejunum Elicited by Field Stimulation

    PubMed Central

    Hidaka, T.; Kuriyama, H.

    1969-01-01

    Field stimulation of the jejunum elicited successively an action potential of spike form, a slow excitatory depolarization, a slow inhibitory hyperpolarization, and a postinhibitory depolarization as a rebound excitation. The slow depolarization often triggered the spike. The inhibitory potential showed lower threshold than did the excitatory potential. Both the excitatory potentials were abolished by atropine and tetrodotoxin. Effective membrane resistance measured by the intracellular polarizing method was reduced during the peak of the excitatory potential, but the degree of reduction was smaller than that evoked by iontophoretic application of acetylcholine. Conditioning hyperpolarization of the muscle membrane modified the amplitude of the excitatory potential. The estimated reversal potential level for the excitatory potenialt was about 0 mv. No changes could be observed in the amplitude of the inhibitory potential when hyperpolarization was induced with intracellularly applied current. Low [K]o and [Ca]o blocked the generation of the excitatory potential but the amplitude of the inhibitory potential was enhanced in low [K]o. Low [Ca]o and high [Mg]o had no effect on the inhibitory potential. PMID:5778319

  12. Electrical field stimulation induces cardiac fibroblast proliferation through the calcineurin-NFAT pathway.

    PubMed

    Chen, Qing-Qing; Zhang, Wei; Chen, Xiang-Fan; Bao, Yun-Jian; Wang, Jing; Zhu, Wei-Zhong

    2012-12-01

    Most cardiac diseases are associated with fibrosis. Calcineurin (CaN) is regulated by Ca(2+)/calmodulin (CaM). The CaN-NFAT (nuclear factor of activated T cell) pathway is involved in the process of cardiac diseases, such as cardiac hypertrophy, but its effect on myocardial fibrosis remains unclear. The present study investigates whether the CaN-NFAT pathway is involved in cardiac fibroblast (CF) proliferation induced by electrical field stimulation (EFS), which recently became a popular treatment for heart failure and cardiac tissue engineering. CF proliferation was evaluated by a cell survival assay (MTT) and cell counts. Myocardial fibrosis was assessed by collagen I and collagen III protein expression. Green fluorescent protein (GFP)-tagged NFAT was used to detect NFAT nuclear translocation. CF proliferation, myocardial fibrosis, CaN activity, and NFAT nuclear translocation were enhanced by EFS. More importantly, these effects were abolished by CaN inhibitors, dominant negative CaN (DN-CaN), and CaN gene silenced with siRNA. Furthermore, buffering intracellular Ca(2+) with BAPTA-AM and blocking Ca(2+) influx with nifedipine suppressed EFS-induced increase in intracellular Ca(2+) and CF proliferation. These results suggested that the CaN-NFAT pathway mediates CF proliferation, and that the CaN-NFAT pathway might be a possible therapeutic target for EFS-induced myocardial fibrosis and cardiac tissue engineering.

  13. Modifying the Kinetic Behavior of Stimulated Raman Scattering with External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Tableman, A.; Tsung, F. S.; Mori, W. B.

    2015-11-01

    We show the effect of an external magnetic field (B0) on stimulated Raman scattering (SRS) in the kinetic regime using particle-in-cell simulations. 1D simulations (with three velocity components for particle motion) are sufficient to show that orienting B0 perpendicular to the laser propagation direction can reduce SRS reflectivity. We show the effect of B0 on trapped particle motion and on local heating. In 2D simulations of single- and multi-speckled laser beams, trapped particles can be restricted to, or freed from, speckles and local bursts of SRS activity by B0. B0 collinear with the laser propagation direction acts to align trapped particles with the daughter electron plasma wave (EPW) in SRS, which can both limit collective speckle interactions and make 2D SRS more 1D-like. On the other hand, B0 perpendicular to the laser propagation direction acts to deflect trapped particles transversely across the daughter EPW and to dynamically change the population of particles that are resonant with the EPW, disrupting the nonlinear wave-particle effects on EPWs. This acts to decrease SRS reflectivity. Hot electron motion is restricted for either orientation, but to different effect with regard to local heating, SRS recurrence, and speckle interactivity. Supported by DOE, Grant No. DE-NA0001833.

  14. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    EPA Science Inventory

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
    Research Triangle Park, North Caro...

  15. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De

    The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can

  16. Rhythmic auditory stimulation using a portable smart device: short-term effects on gait in chronic hemiplegic stroke patients

    PubMed Central

    Ko, Byung-Woo; Lee, Hwi-Young; Song, Won-Kyung

    2016-01-01

    [Purpose] The effects of various rhythmic auditory stimulation tempos on stroke gait pattern changes when training patients with a smartphone-based rhythmic auditory stimulation application were investigated. [Subjects and Methods] Fifteen patients with chronic stroke were included. Cadence during comfortable walking was measured (baseline). After the baseline findings were recorded, rhythmic auditory stimulation with five different tempos (i.e., −10%, −5%, 0%, +5%, and +10% change from baseline) was randomly applied. Finally, comfortable walking without rhythmic auditory stimulation was initiated to evaluate gait pattern changes. [Results] As the tempo increased, the spatiotemporal gait parameters of the stroke patients changed significantly. Gait speed, cadence, and gait cycle duration showed the greatest improvement in the +10% rhythmic auditory stimulation condition compared to baseline. After gait training with rhythmic auditory stimulation, gait speed, cadence, stride length, gait cycle duration, and step length of the affected and unaffected sides improved significantly compared to baseline. [Conclusion] Significant changes in the gait pattern of stroke patients were noted for various tempos after training with rhythmic auditory stimulation. These findings could be used to customize rehabilitative gait training for patients who experience stroke with hemiplegia. PMID:27313366

  17. Field effect devices and sensors based on electrospun polymer assisted tin oxide nanoribbons.

    PubMed

    Rojas, Richard; Meléndez, Anamaris; Ramos, Idalia; Santiago-Avilés, Jorge J; Pinto, Nicholas J

    2010-04-01

    Electrospinning is presented as a facile method of preparing relatively long tin oxide (SnO2) nanofibers that are robust and stable in air. Upon heat treatment, the fibers collapse into a ribbon-like structure with surfaces that are not smooth, rather, are marked with several interconnected pathways. These nanoribbons were electrically characterized in a field effect transistor configuration in vacuum, with and without ultra violet (UV) light exposure. The resultant variable resistor device exhibits n-type behavior having an on/off ratio of approximately 6000. The devices show a direct response to UV with faster response times upon exposure to longer wavelength light. In the presence of UV, the device conductance and mobility increases, reaching a value approximately 2 cm2/-s for the 364 nm UV light source, comparable to amorphous Si. PMID:20355506

  18. Activation of delta-type opioid receptors modulates the responses of cat terminal ileum to field electrical stimulation.

    PubMed

    Venkova, K; Pencheva, N; Radomirov, R

    1990-01-01

    1. The effects of (D-Ala2, D-Leu5) enkephalin amide (DADLE) on the responses of the cat terminal ileum to field electrical stimulation (pulse duration of 0.5 msec, train duration of 10 sec, 30 V) were evaluated by the changes in the contractile or the relaxatory responses of longitudinal and circular strips to electrical stimuli with a frequency of 2, 10 or 30 Hz. 2. Stimulation with a frequency of 2, 10 or 30 Hz elicited contractile responses from the longitudinal strips while in the circular strips 2 Hz stimulation induced contractions and 10 or 30 Hz stimulation caused relaxation. Tetrodotoxin (TTX) (0.1 mumol/l) abolished the electrically-induced responses in both longitudinal and circular strips. 3. DADLE (1 nmol/l) significantly inhibited the cholinergic contractile responses of the longitudinal strips to 2, 10 or 30 Hz stimulation and the contractile responses of the circular strips to 2 Hz stimulation. The relaxatory responses of the circular strips to 10 or 30 Hz stimulation were insignificantly increased by DADLE. 4. On the background of guanetidine (10 mumol/l) and atropine (3 mumol/l) DADLE significantly decreased the nonadrenergic, noncholinergic relaxatory responses of the circular strips to 2, 10 or 30 Hz stimulation. 5. DADLE did not change the maximum effects and the EC50 values of acetylcholine and noradrenaline in both longitudinal and circular strips. 6. It is suggested that in the cat terminal ileum activation of delta-type opioid receptors modulates the mechanical activity suppressing the cholinergic responses in the longitudinal and circular layers as well as the adrenergic and nonadrenergic, noncholinergic responses in the circular layer.

  19. Drug-induced changes in the release of [3H]-noradrenaline from field stimulated rat iris

    PubMed Central

    Farnebo, L.-O.; Hamberger, B.

    1971-01-01

    1. Isolated rat irides were incubated with [3H]-noradrenaline [3H-NA] (10-7M), superfused with buffer and then stimulated by an electrical field. The effect of desipramine, clonidine, phentolamine, phenoxybenzamine, GD131, normetanephrine and 4-tropolone-acetamide on the stimulation-induced overflow of [3H]-NA was tested by adding the drug to the superfusing buffer. The effect of pretreatment with phentolamine or phenoxybenzamine on the stimulation-induced overflow of [3H]-NA was also studied. 2. The effect of desipramine, clonidine, phentolamine, phenoxybenzamine and GD131 on uptake of [3H]-NA in isolated irides was determined. 3. Desipramine moderately increased the stimulation-induced overflow at concentrations which almost completely inhibited neuronal uptake. It was calculated that in the isolated rat iris 30-40% of the released [3H]-NA is inactivated by reuptake into the nerve terminal. This figure may represent the true reuptake percentage in this preparation. Desipramine-induced inhibition of [3H]-NA release from the nerve terminal, possibly via a negative feed-back mechanism, may also contribute to this low figure. 4. Phentolamine and phenoxybenzamine, in concentrations or doses which did not inhibit neuronal uptake of [3H]-NA, consistently increased the stimulation-induced overflow. This increase was further augmented when neuronal uptake was inhibited. 5. The α-adrenoceptor stimulating drug clonidine decreased the stimulation-induced overflow. 6. GD131, normetanephrine and 4-tropolone-acetamide did not greatly affect the stimulation-induced overflow of [3H-NA]. 7. It is concluded that the increased [3H]-NA overflow obtained after α-adrenoceptor blockade is due to an increased [3H]-NA release from the nerve terminals. PMID:5136468

  20. Field Experiment to Stimulate Microbial Urease Activity in Groundwater for in situ Calcite Precipitation

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Taylor, J. L.; Tyler, T. L.; Banta, A. B.; Reysenbach, A. L.; Delwiche, M. E.; McLing, T. L.; Colwell, F. S.; Smith, R. W.

    2003-12-01

    Groundwater contamination by radionuclides and metals from past weapons processing activities is a significant problem for the United States Department of Energy. Removal of these pollutants from the subsurface can be prohibitively expensive and result in worker exposure, and therefore in situ containment and stabilization is an attractive remediation alternative. One potential approach for the immobilization of certain radionuclides and metals (e.g., 90Sr, 60Co, Pb, Cd) is to induce geochemical conditions that promote co-precipitation in calcite. Many aquifers in the arid western US are calcite-saturated, and calcite precipitated under an engineered remediation scheme in such aquifers should remain stable even after return to ambient conditions. We have proposed that an effective way to promote calcite precipitation is to utilize native microorganisms that hydrolyze urea. Urea hydrolysis results in carbonate and ammonium production, and an increase in pH. The increased carbonate alkalinity favors calcite precipitation, and the ammonium serves the additional role of promoting desorption of sorbed metal ions from the aquifer matrix by ion exchange. The desorbed metals are then accessible to co-precipitation in calcite, which can be a longer-term immobilization mechanism than sorption. The ability to hydrolyze urea is common among environmental microorganisms, and we have shown in the laboratory that microbial urea hydrolysis can be linked to calcite precipitation and co-precipitation of the trace metal strontium. As a next step in the development of our remediation approach, we aimed to demonstrate that we can stimulate the native microbial community to express urease in the field. In 2002 we conducted a preliminary field trial of our approach, using a well in the Eastern Snake River Plain Aquifer in Idaho Falls, Idaho, USA. A dilute molasses solution (0.00075%) was injected to promote overall biological growth, and then urea (50 mM) was added to the aquifer

  1. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  2. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  3. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    SciTech Connect

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

  4. Exposure to an Extremely-Low-Frequency Magnetic Field Stimulates Adrenal Steroidogenesis via Inhibition of Phosphodiesterase Activity in a Mouse Adrenal Cell Line

    PubMed Central

    Kitaoka, Kazuyoshi; Kawata, Shiyori; Yoshida, Tomohiro; Kadoriku, Fumiya; Kitamura, Mitsuo

    2016-01-01

    Extremely low-frequency magnetic fields (ELF-MFs) are generated by power lines and household electrical devices. In the last several decades, some evidence has shown an association between ELF-MF exposure and depression and/or anxiety in epidemiological and animal studies. The mechanism underlying ELF-MF-induced depression is considered to involve adrenal steroidogenesis, which is triggered by ELF-MF exposure. However, how ELF-MFs stimulate adrenal steroidogenesis is controversial. In the current study, we investigated the effect of ELF-MF exposure on the mouse adrenal cortex-derived Y-1 cell line and the human adrenal cortex-derived H295R cell line to clarify whether the ELF-MF stimulates adrenal steroidogenesis directly. ELF-MF exposure was found to significantly stimulate adrenal steroidogenesis (p < 0.01–0.05) and the expression of adrenal steroid synthetic enzymes (p < 0.05) in Y-1 cells, but the effect was weak in H295R cells. Y-1 cells exposed to an ELF-MF showed significant decreases in phosphodiesterase activity (p < 0.05) and intracellular Ca2+ concentration (p < 0.01) and significant increases in intracellular cyclic adenosine monophosphate (cAMP) concentration (p < 0.001–0.05) and cAMP response element-binding protein phosphorylation (p < 0.05). The increase in cAMP was not inhibited by treatment with NF449, an inhibitor of the Gs alpha subunit of G protein. Our results suggest that ELF-MF exposure stimulates adrenal steroidogenesis via an increase in intracellular cAMP caused by the inhibition of phosphodiesterase activity in Y-1 cells. The same mechanism may trigger the increase in adrenal steroid secretion in mice observed in our previous study. PMID:27100201

  5. Analysis of field usage failure rate data for plastic encapsulated solid state devices

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Survey and questionnaire techniques were used to gather data from users and manufacturers on the failure rates in the field of plastic encapsulated semiconductors. It was found that such solid state devices are being successfully used by commercial companies which impose certain screening and qualification procedures. The reliability of these semiconductors is now adequate to support their consideration in NASA systems, particularly in low cost systems. The cost of performing necessary screening for NASA applications was assessed.

  6. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  7. Dynamic stimulation evokes spatially focused receptive fields in bat auditory cortex.

    PubMed

    Hoffmann, Susanne; Schuller, Gerd; Firzlaff, Uwe

    2010-01-01

    Bats can orient and hunt for prey in complete darkness using echolocation. Due to the pulse-like character of call emission they receive a stroboscopic view of their environment. During target approach, bats adjust their emitted echolocation calls to the specific requirements of the dynamically changing environmental and behavioral context. In addition to changes of the spectro-temporal call features, the spatial focusing of the beam of the sonar emissions onto the target is a conspicuous feature during target tracking. The neural processes underlying the complex sensory-motor interactions during target tracking are not well understood. In this study, we used a two-tone-pulse paradigm with 81 combinations of inter-aural intensity differences and six inter-pulse intervals in a passive hearing task to tackle the question of how transient changes in the azimuthal position of successive sounds are encoded by neurons in the auditory cortex of the bat Phyllostomus discolor. In a population of cortical neurons (11%, 24 of 217), spatial receptive fields were focused to a small region of frontal azimuthal positions during dynamic stimulation with tone-pulse pairs at short inter-pulse intervals. The response of these neurons might be important for the behaviorally observed locking of the sonar beam onto a selected target during the later stages of target tracking. Most interestingly, the majority of these neurons (88%, 21 of 24) were located in the posterior dorsal part of the auditory cortex. This cortical subfield might thus be specifically involved in the analysis of dynamic acoustic scenes.

  8. Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.

    PubMed

    Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M

    2016-06-14

    This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. PMID:27181649

  9. Detection of DNA recognition events using multi-well field effect devices.

    PubMed

    Sakata, Toshiya; Miyahara, Yuji

    2005-11-15

    We proposed the multi-well field effect device for detection of charged biomolecules and demonstrated the detection principle for DNA recognition events using quasi-static capacitance-voltage (QSCV) measurement. The multi-well field effect device is based on the electrostatic interaction between molecular charges induced by DNA recognition and surface electrons in silicon through the Si(3)N(4)/SiO(2) thin double-layer. Since DNA molecules and DNA binders such as Hoechst 33258 have intrinsic charges in aqueous solutions, respectively, the charge density changes due to DNA recognition events at the Si(3)N(4) surface were directly translated into electrical signal such as a flat band voltage change in the QSCV measurement. The average flat band shifts were 20.7 mV for hybridization and -13.5 mV for binding of Hoechst 33258. From the results of flat band voltage shifts due to hybridization and binding of Hoechst 33258, the immobilization density of oligonucleotide probes at the Si(3)N(4) surface was estimated to be 10(8) cm(-2). The platform based on the multi-well field effect device is suitable for a simple and arrayed detection system for DNA recognition events.

  10. Graphene based spin-FET devices: Spin current manipulation through spatially modulated Rashba Field

    NASA Astrophysics Data System (ADS)

    Souza Diniz, Ginetom; Vernek, Edson; Macedo de Souza, Fabricio

    We have calculated the spin dependent conductance in a two-terminal device made of zigzag graphene nanoribbon in the presence of a spatially modulated Rashba spin-orbit coupling (SOC). The modulated Rashba SOC can be achieved by using local gates that generate strong localized electric fields perpendicular to the plane underneath. We have used the equilibrium surface Green's function technique in real space using tight-binding approximation in order to calculate the electronic transport. We demonstrate that by an appropriate architecture of the gate width, and tuning the strength and direction of the electric field in the gates is possible to effectively control the spin-charge current flow along the device. In addition, we also discuss the effect of uniaxial strain in the spin-resolved conductance profiles, which demonstrates to be an additional tool as an on-off electronic current flow switch. Our results suggest suitable application of graphene-based nanostructures in the spintronic field, using spatially modulated Rashba SOC, and uniaxial strains to effectively manipulate the spin-polarized current in nanoelectronic devices. Supported by CAPES, CNPq and FAPEMIG.

  11. Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2003-03-01

    FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.

  12. A Field-Based Cleaning Protocol for Sampling Devices Used in Life-Detection Studies

    NASA Astrophysics Data System (ADS)

    Eigenbrode, Jennifer; Benning, Liane G.; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E. F.

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  13. High Performance Field-Reversed Configuration Plasmas in the C-2 Device

    NASA Astrophysics Data System (ADS)

    Gota, H.; Tuszewski, M.; Smirnov, A.; Guo, H.; Binderbauer, M.; Barnes, D.; Akhmetov, T.; Ivanov, A.

    2012-10-01

    A high temperature, stable, long-lived field-reversed configuration (FRC) plasma state has been produced in the C-2 device by dynamically colliding and merging two oppositely directed compact toroids, by biasing edge plasma near the FRC separatrix from a plasma-gun (PG) located at one end of the C-2 device, and by neutral-beam (NB) injection. The PG creates an inward radial electric field (Er<0) which counters the usual FRC spin-up in the ion diamagnetic direction and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The PG produces ExB velocity shear in the FRC edge layer which may explain observations of improved transport properties The FRCs are nearly axisymmetric, which enables fast ion confinement. The combined effects of the PG and of NB injection yield a new High Performance FRC (HPF) regime with confinement times improved by factors 2 to 4 and FRC lifetimes extended from 1 to 3 ms. A second PG was newly installed at the other end of the C-2 device, and new experimental campaigns with 2 PGs have been explored. Characteristics of the HPF regime will be presented at the meeting as well as newly obtained results with 2 PGs and NBs.

  14. Optical field-strength generalized polarization of non-stationary quantum states in waveguiding photonic devices

    NASA Astrophysics Data System (ADS)

    Barral, David; Liñares, Jesús; Nistal, María C.

    2013-07-01

    A quantum analysis of the generalized polarization properties of multimode non-stationary states based on their optical field-strength probability distributions is presented. The quantum generalized polarization is understood as a significant confinement of the probability distribution along certain regions of a multidimensional optical field-strength space. The analysis is addressed to quantum states generated in multimode linear and nonlinear waveguiding (integrated) photonic devices, such as multimode waveguiding directional couplers and waveguiding parametric amplifiers, whose modes fulfill a spatial modal orthogonality. In particular, the generalized polarization degree of coherent, squeezed and Schrödinger's cat states is analyzed.

  15. Fabrication of Plasma Transient Density Structures and its Application to High-Field Plasma Devices

    SciTech Connect

    Chen Szuyuan; Wang Jyhpyng; Lin Jiunnyuan

    2006-11-27

    Fabrications of plasma transient density structures such as plasma waveguide, variable gas jet length, longitudinal density structure, and transverse wiggler by using laser machining in a gas jet are presented. The implementations of the technique of variable gas jet length with laser machining to achieve tomographic diagnosis of laser wakefield electron acceleration, x-ray lasing, and high harmonic generation are reported. Applications of these elements of high-field plasma devices and their combinations to enhance the products in high-field physics are presented or proposed.

  16. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  17. Rate of widening of strong-field domain in supercritically doped Gunn-effect devices

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, L. S.; Chigogidze, Z. N.; Khuchua, N. P.

    1985-04-01

    Intrinsic magnetic field of an electron beam was calculated for later application in relativistic electron devices. An axisymmetric beam was considered and, for simplicity, calculations were for an annular volume element with internal elementary convection current. Vector potential and electron velocity components were transformed from Cartesian to a cylindrical system of coordinates and magnetic induction was established at observation points inside and outside the volume element. The self-consistent problem discretized in space was treated according to electron optics theory and solved by numerical methods, analogously to calculation of intrinsic electrostatic field, with an auxiliary grid for the beam propagation space, assuming space charge and electron velocity distributions to be known. Validity of procedure and algorithms was verified against analytical solutions of two test problems: (1) magnetic field of a long solid or hollow electron beam with uniform current density distribution; (2) magnetic field of long hollow revolving electron beam. The numerical procedure was programmed in FORTRAN for YeS computers.

  18. SEMICONDUCTOR DEVICES MEMS magnetic field sensor based on silicon bridge structure

    NASA Astrophysics Data System (ADS)

    Guangtao, Du; Xiangdong, Chen; Qibin, Lin; Hui, Li; Huihui, Guo

    2010-10-01

    A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested. The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge, and a ferromagnetic magnet adhered to the sensitivity diaphragm. When the sensor is subjected to an external magnetic field, the magnetic force bends the silicon sensitivity diaphragm, producing stress and resistors change of the Wheatstone bridge and the output voltage of the sensor. Good agreement is observed between the theory and measurement behavior of the magnetic field sensor. Experimental results demonstrate that the maximum sensitivity and minimum resolution are 48 m V/T and 160 μT, respectively, making this device suitable for strong magnetic field measurement. Research results indicate that the sensor repeatability and dynamic response time are about 0.66% and 150 ms, respectively.

  19. Wireless MR Tracking of Interventional Devices Using Phase-Field Dithering and Projection Reconstruction

    PubMed Central

    Rube, Martin A.; Holbrook, Andrew B.; Cox, Benjamin F.; Houston, J. Graeme; Melzer, Andreas

    2015-01-01

    Purpose Device tracking is crucial for interventional MRI (iMRI) because conventional device materials do not contribute to the MR signal, may cause susceptibility artifacts and are generally invisible if moved out of the scan plane. A robust method for wireless tracking and dynamic guidance of interventional devices equipped with wirelessly connected resonant circuits (wRC) is presented. Methods The proposed method uses weak spatially-selective excitation pulses with very low flip angle (0.3°), a Hadamard multiplexed tracking scheme and employs phase-field dithering to obtain the 3D position of a wRC. RF induced heating experiments (ASTM protocol) and balloon angioplasties of the iliac artery were conducted in a perfused vascular phantom and three Thiel soft-embalmed human cadavers. Results Device tip tracking was interleaved with various user-selectable fast pulse sequences receiving a geometry update from the tracking kernel in less than 30 ms. Integrating phase-field dithering significantly improved our tracking robustness for catheters with small diameters (4–6 French). The volume root mean square distance error was 2.81 mm (standard deviation: 1.31 mm). No significant RF induced heating (<0.6°C) was detected during heating experiments. Conclusion This tip tracking approach provides flexible, fast and robust feedback loop, intuitive iMRI scanner interaction, does not constrain the physician and delivers very low specific absorption rates. Devices with wRC can be exchanged during a procedure without modifications to the iMRI setup or the pulse sequence. A drawback of our current implementation is that position information is available for a single tracking coil only. This was satisfactory for balloon angioplasties of the iliac artery but further studies are required for complex navigation and catheter shapes before animal trials and clinical application. PMID:24721007

  20. Improvement of device isolation using field implantation for GaN MOSFETs

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Wang, Qingpeng; Zhang, Fuzhe; Li, Liuan; Shinkai, Satoko; Wang, Dejun; Ao, Jin-Ping

    2016-03-01

    Gallium nitride (GaN) metal-oxide-semiconductor field-effect transistors (MOSFETs) with boron field implantation isolation and mesa isolation were fabricated and characterized. The process of boron field implantation was altered and subsequently conducted after performing high-temperature ohmic annealing and gate oxide thermal treatment. Implanted regions with high resistivity were achieved. The circular MOSFET fabricated in the implanted region showed an extremely low current of 6.5 × 10-12 A under a gate voltage value up to 10 V, thus demonstrating that the parasitic MOSFET in the isolation region was eliminated by boron field implantation. The off-state drain current of the rectangular MOSFET with boron field implantation was 5.5 × 10-11 A, which was only one order of magnitude higher than the 6.6 × 10-12 A of the circular device. By contrast, the rectangular MOSFET with mesa isolation presented an off-state drain current of 3.2 × 10-9 A. The field isolation for GaN MOSFETs was achieved by using boron field implantation. The implantation did not reduce the field-effect mobility. The isolation structure of both mesa and implantation did not influence the subthreshold swing, whereas the isolation structure of only the implantation increased the subthreshold swing. The breakdown voltage of the implanted region with 5 μm spacing was up to 901.5 V.

  1. Flow field study comparing design iterations of a 50 cc left ventricular assist device

    PubMed Central

    Nanna, Jason C.; Wivholm, Jennifer A.; Deutsch, Steven; Manning, Keefe B.

    2011-01-01

    The REMATCH study shows that implanted ventricular assist devices improve survival time and quality of life when used as a permanent therapy in patients who do not qualify for heart transplant. The success of the pulsatile 70 cc stroke volume left ventricular assist device (LVAD) developed by Penn State has led to the development of a 50 cc stroke volume pump for use in patients with smaller chest cavities to benefit a larger patient population. The initial 50 cc pump shows regions of in vivo thrombus formation which correlate to low wall shear rates within the device. In an in vitro evaluation of three new designs (V-2, V-3, V-4) of the 50 cc LVAD, identical except for the location and orientation of their outlet ports, particle image velocimetry (PIV) is used to capture planar flow field data within the pumps. V-2 has an outlet port which is located parallel to the inlet. In V-3, the outlet port is rotated away from the inlet port, with the intention of minimizing the amount of fluid turning needed to exit the device. With V-4 the outlet port is moved to the center of the pump in order to prolong the desirable rotational flow. PIV data were taken at 6 planar locations within the pump. While the modifications to the outlet port locations serve their intended purpose, they also introduce unwanted changes in the flow. Poorer wall washing and weaker rotational flow are observed with V-3 and V-4. While the differences between the devices are subtle, the device that has the most desirable flow characteristics is V-2. PMID:21734560

  2. Modifying the Genetic Regulation of Bone and Cartilage Cells and Associated Tissue by EMF Stimulation Fields and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Shackelford, Linda C. (Inventor)

    2014-01-01

    An apparatus and method to modify the genetic regulation of mammalian tissue, bone, or any combination. The method may be comprised of the steps of tuning at least one predetermined profile associated with at least one time-varying stimulation field thereby resulting in at least one tuned time-varying stimulation field comprised of at least one tuned predetermined profile, wherein said at least one tuned predetermined profile is comprised of a plurality of tuned predetermined figures of merit and is controllable through at least one of said plurality of tuned predetermined figures of merit, wherein said plurality of predetermined tuned figures of merit is comprised of a tuned B-Field magnitude, tuned rising slew rate, tuned rise time, tuned falling slew rate, tuned fall time, tuned frequency, tuned wavelength, and tuned duty cycle; and exposing mammalian chondrocytes, osteoblasts, osteocytes, osteoclasts, nucleus pulposus, associated tissue, or any combination to said at least one tuned time-varying stimulation field comprised of said at least one tuned predetermined profile for a predetermined tuned exposure time or plurality of tuned exposure time sequences.

  3. Field Safety Notes in Product Problems of Medical Devices for Use in Pulmonology.

    PubMed

    Hannig, Jürgen; Siekmeier, Rüdiger

    2015-01-01

    The current European system for medical devices is governed by three EC directives: the Medical Device Directive 93/42/EEC, the In-Vitro Diagnostic Directive 98/79/EC and the Active Implantable Medical Device Directive 90/385/EEC and regulates marketing and post-market surveillance of medical devices in the European Economic Area. In cases of incidents and field safety corrective actions (FSCA) manufacturers have to inform the responsible Competent Authority, which is the Federal Institute for Drugs and Medical Devices (BfArM) and the public by field safety notices (FSN). In this study we analyzed FSN of medical devices exclusively serving for diagnostics or treatment in pulmonology (e.g. nebulizers, oxygen concentrators, pulse oximeters, lung function analyzers, and non-active devices for treatment). FSCA and FSN publicized by BfArM in 2005-2013 were analyzed in respect to the MEDDEV 2.12-1 rev 8. In total 41 FSCA were publicized for the included products. German and English FSN were found in 36/35 cases, respectively. FSN were clearly characterized as FSN in 22/20 cases and declaration of the type of action was found in 27/26 cases, respectively. Product names were provided in all cases. Lot numbers or other information for product characterization were available in 7/8 and 26/24 cases, respectively. Detailed information regarding FSCA and product malfunction were found in 27/33 and 36/35 cases, respectively. Information on product related risks with previous use of the affected product was provided in 24/23 cases. In 34/34 cases manufacturers provided information to mitigate product related risks. Requests to pass FSN to persons needing awareness were found in 10/14 cases. Contact data were provided in 30/30 cases. Confirmation that the Competent Authority was informed was found in 12/14 cases and in 19/18 cases a customer confirmation was included. The obtained data suggest that there is an increasing annual number of FSCA and most FSN fulfill the criteria of

  4. Field Safety Notes in Product Problems of Medical Devices for Use in Pulmonology.

    PubMed

    Hannig, Jürgen; Siekmeier, Rüdiger

    2015-01-01

    The current European system for medical devices is governed by three EC directives: the Medical Device Directive 93/42/EEC, the In-Vitro Diagnostic Directive 98/79/EC and the Active Implantable Medical Device Directive 90/385/EEC and regulates marketing and post-market surveillance of medical devices in the European Economic Area. In cases of incidents and field safety corrective actions (FSCA) manufacturers have to inform the responsible Competent Authority, which is the Federal Institute for Drugs and Medical Devices (BfArM) and the public by field safety notices (FSN). In this study we analyzed FSN of medical devices exclusively serving for diagnostics or treatment in pulmonology (e.g. nebulizers, oxygen concentrators, pulse oximeters, lung function analyzers, and non-active devices for treatment). FSCA and FSN publicized by BfArM in 2005-2013 were analyzed in respect to the MEDDEV 2.12-1 rev 8. In total 41 FSCA were publicized for the included products. German and English FSN were found in 36/35 cases, respectively. FSN were clearly characterized as FSN in 22/20 cases and declaration of the type of action was found in 27/26 cases, respectively. Product names were provided in all cases. Lot numbers or other information for product characterization were available in 7/8 and 26/24 cases, respectively. Detailed information regarding FSCA and product malfunction were found in 27/33 and 36/35 cases, respectively. Information on product related risks with previous use of the affected product was provided in 24/23 cases. In 34/34 cases manufacturers provided information to mitigate product related risks. Requests to pass FSN to persons needing awareness were found in 10/14 cases. Contact data were provided in 30/30 cases. Confirmation that the Competent Authority was informed was found in 12/14 cases and in 19/18 cases a customer confirmation was included. The obtained data suggest that there is an increasing annual number of FSCA and most FSN fulfill the criteria of

  5. Using GIS for planning field trips: In-situ assessment of Geopoints for field trips with mobile devices

    NASA Astrophysics Data System (ADS)

    Böhm, Sarah; Kisser, Thomas; Ditter, Raimund

    2016-04-01

    Up to now no application is existing for collecting data via mobile devices using a geographical information system referring to the evaluation of Geopoints. Classified in different geographical topics a Geopark can be rated for suitability of Geopoints for field trips. The systematically acquisition of the suitability of Geopoints is necessary, especially when doing field trips with lower grade students who see a physical-geographic phenomenon for the first time. For this reason, the development of such an application is an invention for easy handling evaluations of Geopoints on the basis of commonly valid criteria like esthetic attraction, interestingness, and pithiness (Streifinger 2010). Collecting data provides the opportunity of receiving information of particularly suitable Geopoints out of the sight from students, tourists and others. One solution for collecting data in a simple and intuitive form is Survey123 for ArcGIS (http://survey123.esri.com/#/). You can create surveys using an ArcGIS Online organizational account and download your own survey or surveys "that may have been shared with you" (https://itunes.apple.com/us/app/survey-123-for-arcgis/id993015031?mt=8) on your mobile device. "Once a form is downloaded, you will be able to start collecting data."(https://itunes.apple.com/us/app/survey-123-for-arcgis/id993015031?mt=8) Free of cost and use while disconnected the application can easily be used via mobile device on field trips. On a 3-day field trip which is held three times per year in the Geopark Bergstraße-Odenwald Survey123 is being used to evaluate the suitability of different Geopoints for different topics (geology, soils, vegetation, climate). With every field trip about 25 students take part in the survey and evaluate each Geopoint at the route. So, over the time, the docents know exactly which Geopoints suites perfect for teaching geology for example, and why it suites that good. The field trip is organized in an innovative way. Before

  6. Electro-active device using radial electric field piezo-diaphragm for sonic applications

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)

    2005-01-01

    An electro-active transducer for sonic applications includes a ferroelectric material sandwiched by first and second electrode patterns to form a piezo-diaphragm coupled to a mounting frame. When the device is used as a sonic actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sonic sensor, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns, and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the plane of the ferroelectric material. The mounting frame perimetrically surrounds the peizo-diaphragm and enables attachment of the piezo-diaphragm to a housing.

  7. Prototype of haptic device for sole of foot using magnetic field sensitive elastomer

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Masuda, Y.; Sugiyama, M.; Mitsumata, T.; Ohori, S.

    2013-02-01

    Walking is one of the most popular activities and a healthy aerobic exercise for the elderly. However, if they have physical and / or cognitive disabilities, sometimes it is challenging to go somewhere they don't know well. The final goal of this study is to develop a virtual reality walking system that allows users to walk in virtual worlds fabricated with computer graphics. We focus on a haptic device that can perform various plantar pressures on users' soles of feet as an additional sense in the virtual reality walking. In this study, we discuss a use of a magnetic field sensitive elastomer (MSE) as a working material for the haptic interface on the sole. The first prototype with MSE was developed and evaluated in this work. According to the measurement of planter pressures, it was found that this device can perform different pressures on the sole of a light-weight user by applying magnetic field on the MSE. The result also implied necessities of the improvement of the magnetic circuit and the basic structure of the mechanism of the device.

  8. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  9. A field-deployable device for the rapid detection of cyanide poisoning in whole blood

    NASA Astrophysics Data System (ADS)

    Boehringer, Hans; Tong, Winnie; Chung, Roy; Boss, Gerry; O'Farrell, Brendan

    2012-06-01

    Feasibility of a field-deployable device for the rapid and early diagnosis of cyanide poisoning in whole blood using the spectral shift of the vitamin B12 precursor cobinamide upon binding with cyanide as an indicator is being assessed. Cyanide is an extremely potent and rapid acting poison with as little as 50 mg fatal to humans. Cyanide poisoning has been recognized as a threat from smoke inhalation and potentially through weapons of mass destruction. Currently, no portable rapid tests for the detection of cyanide in whole blood are available. Cobinamide has an extremely high affinity for cyanide and captures hemoglobin associated cyanide from red blood cells. Upon binding of cyanide, cobinamide undergoes a spectral shift that can be measured with a spectrophotometer. We have combined the unique cyanide-binding properties of cobinamide with blood separation technology, sample transport and a detection system, and are developing a rapid, field deployable, disposable device which will deliver an intuitive result to a first responder, allowing for rapid response to exposure events. Feasibility of the cobinamide-Cyanide chemistry in a rapid test using a whole blood sample from a finger-stick has been demonstrated with an assay time from sample collection to a valid result of under 5 minutes. Data showing the efficacy of the diagnostic method and initial device design concepts will be shown.

  10. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  11. Overview of the Full-scale Radiological Dispersal Device Field Trials.

    PubMed

    Green, Anna Rae; Erhardt, Lorne; Lebel, Luke; Duke, M John M; Jones, Trevor; White, Dan; Quayle, Debora

    2016-05-01

    In 2012, Defence Research and Development Canada, in partnership with a number of other Canadian and International organizations, led a series of three field trials designed to simulate a Radiological Dispersal Device (RDD). These trials, known as the Full-Scale RDD (FSRDD) Field Trials, involved the explosive dispersal of a short-lived radioactive tracer ((140)La, t1/2 = 40.293 h). The FSRDD Field Trials required a significant effort in their planning, preparation, and execution to ensure that they were carried out in a safe, efficient manner and that the scientific goals of the trials were met. The discussion presented here details the planning and execution of the trials, outlines the relevant radiation safety aspects, provides a summary of the source term and atmospheric conditions for the three dispersal events, and provides an overview of the measurements that were made to track the plumes and deposition patterns.

  12. Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Working, Dennis C. (Inventor)

    2005-01-01

    A fluid-control electro-active device includes a piezo-diaphragm made from a ferroelectric material sandwiched by first and second electrode patterns configured to introduce an electric field into the ferroelectric material when voltage is applied thereto. The electric field originates at a region of the ferroelectric material between the first and second electrode patterns, and extends radially outward from this region of the ferroelectric material and substantially parallel to the plane of the ferroelectric material. The piezo-diaphragm deflects symmetrically about this region in a direction substantially perpendicular to the electric field. An annular region coupled to and extending radially outward from the piezo-diaphragm perimetrically borders the piezo-diaphragm, A housing is connected to the region and at least one fluid flow path with piezo-diaphragm disposed therein.

  13. Passive magnetic field cancellation device by multiple high-Tc superconducting coils

    NASA Astrophysics Data System (ADS)

    Gu, C.; Zou, S.; Han, Z.; Qu, T.-M.

    2010-04-01

    A passive magnetic field cancellation device (PMFCD) is designed. The PMFCD could automatically cancel the field as an active cancellation system did; however it requires no power sources and feedback systems. The capability of the PMFCD is based on the principle that a closed loop can resist flux variation and keep the flux constant inside. The closed loop in the PMFCD is formed by connecting two pairs of high temperature superconductor Helmholtz coils with different radii in series. More important thing is that the ratio of the radius and the turn number between the coils has to satisfy a number of conditions, with which 100% cancellation can be reached. Theoretical methods to obtain the turn number ratio and radius ratio are the major part of the paper. Numerical simulation was followed, aiming to evaluate field distribution under a cancellation state and correct the theoretical values.

  14. Imaging of Active Microwave Devices at Cryogenic Temperatures using Scanning Near-Field Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Thanawalla, Ashfaq S.; Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Feenstra, B. J.; Anlage, Steven M.; Wellstood, F. C.

    1998-03-01

    The ability to image electric fields in operating microwave devices is interesting both from the fundamental point of view and for diagnostic purposes. To that end we have constructed a scanning near-field microwave microscope which uses an open-ended coaxial probe and operates at cryogenic temperatures.(For related publications see: C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69), 3274 (1996) and S. M. Anlage, C. P. Vlahacos, Sudeep Dutta and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997). Using this system we have imaged electric fields generated by both normal metal and superconducting microstrip resonators at temperatures ranging from 77 K to 300 K. We will present images and discuss our results including observations of clear standing wave patterns at the fundamental resonant frequency and an increased quality factor of the resonators at low temperatures.

  15. Localization of Magnetic Field Structure of Multi-Current Loops on Axisymmetrical Model for Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Okita, Taishi; Takagi, Toshiyuki

    2009-01-01

    We calculate magnetic field distributions from multi-current loops for transcranial magnetic stimulation (TMS). In TMS, it is important to produce locally strong magnetic fields and apply eddy-currents only to the aimed cell in a deep region of the brain. First, we investigate the field structure around a single current loop. We find that a single loop generates the convexed field on a certain plane parallel to the loop surface. Second, we study an axisymmetrical model of three-current loops, i.e., a main-coil and two sub-coils, in which the fields are significantly localized in the vertical direction at a symmetrical plane on the central axis compared with that of a single loop.

  16. Field-directed assembly of nanowires: identifying directors, disruptors and indices to maximize the device yield

    NASA Astrophysics Data System (ADS)

    Sam, Mahshid; Moghimian, Nima; Bhiladvala, Rustom B.

    2015-12-01

    Individually-addressable nano-electro-mechanical (NEMS) devices have been used to demonstrate sensitive mass detection to the single-proton level, as well as neutral-particle mass spectrometry. The cost of individually securing or patterning such devices is proportional to their number or the chip area covered. This limits statistical support for new research, as well as paths to the commercial availability of extraordinarily sensitive instruments. Field-directed assembly of synthesized nanowires addresses this problem and shows potential for low-cost, large-area coverage with NEMS devices. For positive dielectrophoresis (pDEP) as the main assembly director, the space of field, geometric and material parameters is large, with combinations that can serve either as directors or disruptors for directed assembly. We seek parameter values to obtain the best yield, by introducing a rational framework to reduce trial-and-error. We show that sorting the disruptors by severity and eliminating those weakly coupled to the director, allows reduction of the parameter space. The remaining disruptors are then represented compactly by dimensionless parameters. In the example protocol chosen, a single dimensionless parameter, the yield index, allows minimization of disruptors by the choice of frequency. Following this, the voltage may be selected to maximize the yield. Using this framework, we obtained 94% pre-clamped and 88% post-clamped yield over 57000 nanowire sites. Organizing the parameter space using a director-disruptor framework, with economy introduced by non-dimensional parameters, provides a path to controllably decrease the effort and cost of manufacturing nanoscale devices. This should help in the commercialization of individually addressable nanodevices.Individually-addressable nano-electro-mechanical (NEMS) devices have been used to demonstrate sensitive mass detection to the single-proton level, as well as neutral-particle mass spectrometry. The cost of

  17. Highly efficient sample stacking by enhanced field amplification on a simple paper device.

    PubMed

    Ma, Biao; Song, Yi-Zhen; Niu, Ji-Cheng; Wu, Zhi-Yong

    2016-09-21

    We present a novel electrokinetic stacking (ES) method based on field amplification on a simple paper device for sample preconcentration. With voltage application, charged probe ions in a solution of lower conductivity stack and form a narrow band at the boundary between the sample and the background electrolyte of higher conductivity. The stacking band appears quickly and stabilizes in a few minutes. With this ES method, three orders of magnitude signal improvement was successfully achieved for both a fluorescein probe and a double-stranded DNA within 300 s. This enhanced stacking efficiency is attributed to a focusing effect due to the balance between electromigration and counter electroosmotic flow. We also applied this ES method to other low-cost fiber substrates such as cloth and thread. Such a simple and highly efficient ES method will find wide applications in the development of sensitive paper-based analytical devices (PADs), especially for low-cost point-of-care testing (POCT).

  18. Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2010-10-01

    Reducing the pixel dimensions of liquid crystal microdisplays in search of high resolution has a fundamental impact on their electro-optic behavior. The liquid crystal director orientation becomes distorted due to fringing fields and diffraction effects influence the optical characteristics of the device once the structure features approach the wavelength of the incident light. Three-dimensional finite element simulation of the liquid crystal dynamics with a variable order approach is combined with a full-vector beam propagation analysis to investigate how elasticity and diffraction limit the resolution as a function of the pixel size for transmissive and reflective architectures with vertical liquid crystal alignment. The key liquid crystal properties are considered and the importance of materials with high birefringence is confirmed for small pixel devices as these improve the contrast for a fixed pixel size.

  19. Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices

    NASA Technical Reports Server (NTRS)

    Khusid, Boris; Acrivos, Andreas

    2004-01-01

    Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

  20. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  1. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

    PubMed

    Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A

    2013-08-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.

  2. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    SciTech Connect

    Chen, Xiangyu E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei E-mail: ouyangwei@phy.ecnu.edu.cn

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  3. Reversible electric control of exchange bias in a multiferroic field-effect device.

    PubMed

    Wu, S M; Cybart, Shane A; Yu, P; Rossell, M D; Zhang, J X; Ramesh, R; Dynes, R C

    2010-09-01

    Electric-field control of magnetization has many potential applications in magnetic memory storage, sensors and spintronics. One approach to obtain this control is through multiferroic materials. Instead of using direct coupling between ferroelectric and ferromagnetic order parameters in a single-phase multiferroic material, which only shows a weak magnetoelectric effect, a unique method using indirect coupling through an intermediate antiferromagnetic order parameter can be used. In this article, we demonstrate electrical control of exchange bias using a field-effect device employing multiferroic (ferroelectric/antiferromagnetic) BiFeO(3) as the dielectric and ferromagnetic La(0.7)Sr(0.3)MnO(3) as the conducting channel; we can reversibly switch between two distinct exchange-bias states by switching the ferroelectric polarization of BiFeO(3). This is an important step towards controlling magnetization with electric fields, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents.

  4. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  5. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) to Cr(III) at Hanford 100H

    SciTech Connect

    T.C. Hazen; B. Faybishenko; J. Wan; T.Tokunaga; S. Hubbard; M. Conrad; S. Borglin; D. Joyner; S. Koenigsberg; A. Willet

    2004-03-17

    The objective of this report is to perform field investigations to assess the potential for immobilizing and detoxifying chromium contaminated soils and groundwater using bioremediation at Site 100H at Hanford. Specific goals are: (1) Designing a field test to measure the effect of lactate biostimulation on microbial community activity, redox gradients, transport limitations, and other reducing agents in comparison with our previous NABIR laboratory work. (2) Establishing the rates and conditions that may cause are oxidation of Cr(III) to Cr(VI) following biostimulation. (3) Providing design criteria for full-scale deployment on in situ Cr(VI) bioreduction via lactate stimulation for use at DOE sites.

  6. Integrated approach for smart implantable cardioverter defibrillator (ICD) device with real time ECG monitoring: use of flexible sensors for localized arrhythmia sensing and stimulation

    PubMed Central

    Puri, Munish; Chapalamadugu, Kalyan C.; Miranda, Aimon C.; Gelot, Shyam; Moreno, Wilfrido; Adithya, Prashanth C.; Law, Catherine; Tipparaju, Srinivas M.

    2013-01-01

    Arrhythmias are the most common cause of death associated with sudden death and are common in US and worldwide. Cardiac resynchronization therapy (CRT), evolving from pacemakers and development of implantable cardioverter defibrillator (ICD), has been adopted for therapeutic use and demonstrated benefits in patients over the years due to its design and intricate functionality. Recent research has been focused on significant design improvement and efforts are dedicated toward device size reduction, weight and functionality in commercially available ICD's since its invention in the 1960's. Commercially available CRT-D has shown advancement on both clinical and technical side. However, improved focus is required on the device miniaturization, technologically supported and integrated wireless based system for real time heart monitoring electrocardiogram (ECG). In the present report a concise overview for the state-of-the art technology in ICDs and avenues for future development are presented. A unique perspective is also included for ICD device miniaturization and integration of flexible sensing array. Sensor array integration along with its capabilities for identifying localized arrhythmia detection and targeted stimulation for enhancing ICD device capabilities is reviewed. PMID:24167492

  7. Incorporating Geoscience, Field Data Collection Workflows into Software Developed for Mobile Devices

    NASA Astrophysics Data System (ADS)

    Vieira, D. A.; Mookerjee, M.; Matsa, S.

    2014-12-01

    Modern geological sciences depend heavily on investigating the natural world in situ, i.e., within "the field," as well as managing data collections in the light of evolving advances in technology and cyberinfrastructure. To accelerate the rate of scientific discovery, we need to expedite data collection and management in such a way so as to not interfere with the typical geoscience, field workflow. To this end, we suggest replacing traditional analog methods of data collection, such as the standard field notebook and compass, with primary digital data collection applications. While some field data collecting apps exist for both the iOS and android operating systems, they do not communicate with each other in an organized data collection effort. We propose the development of a mobile app that coordinates the collection of GPS, photographic, and orientation data, along with field observations. Additionally, this application should be able to pair with other devices in order to incorporate other sensor data. In this way, the app can generate a single file that includes all field data elements and can be synced to the appropriate database with ease and efficiency. We present here a prototype application that attempts to illustrate how digital collection can be integrated into a "typical" geoscience, field workflow. The purpose of our app is to get field scientists to think about specific requirements for the development of a unified field data collection application. One fundamental step in the development of such an app is the community-based, decision-making process of adopting certain data/metadata standards and conventions. In August of 2014, on a four-day field trip to Yosemite National Park and Owens Valley, we engaged a group of field-based geologists and computer/cognitive scientists to start building a community consensus on these cyberinfrastructure-related issues. Discussing the unique problems of field data recording, conventions, storage, representation

  8. Fabrication of spatial transient-density structures as high-field plasma photonic devices

    SciTech Connect

    Pai, C.-H.; Huang, S.-Y.; Kuo, C.-C.; Lin, M.-W.; Wang, J.; Chen, S.-Y.; Lee, C.-H.; Lin, J.-Y.

    2005-07-15

    Fabrication of periodic transient-density structures in a gas jet with a boundary scale length approaching 10 {mu}m was demonstrated. This was achieved by passing an ultrashort high-intensity laser pulse through a patterned mask and imaging the mask onto the target plane. Gas/plasma density at the laser-irradiated regions drops as a result of hydrodynamic expansion following ionization and heating by the laser pulse. The fabrication of gas/plasma density structures with such a scheme is an essential step in the development of plasma photonic devices for applications in high-field physics.

  9. Towards observation of pseudo-magnetic fields in suspended graphene devices

    NASA Astrophysics Data System (ADS)

    Downs, C. S. C.; Usher, A.; Martin, J.

    2016-05-01

    We exploit the difference in the thermal contraction coefficients within a device structure to create the strain patterns required to generate a homogeneous pseudo-magnetic field in a suspended graphene membrane. The interplay between supported and suspended metallic contacts creates deformations upon cooling, producing the desired non-uniform strain in the graphene membrane. This work can easily be adapted to produce other strain configurations, providing a route to strain engineering the electrical properties of graphene and other two-dimensional crystals, an area with a large body of theoretical work, but thus far little experimental progress.

  10. Quantum transport measurement of few-layer WTe2 field effect devices

    NASA Astrophysics Data System (ADS)

    Chen, Jianhao; Liu, Xin; Tian, Shibing; Zhang, Chenglong; Jia, Shuang

    2015-03-01

    We have performed systematic quantum transport measurement on field effect devices fabricated from few-layer WTe2 single crystals. We found that the magnetoresistance of few-layer WTe2 could be very different from that of bulk samples, which may arise from the imbalance of electron and hole carriers in the samples. We shall discuss our findings in more details in light of recent progress in our experiment. This work is supported by National Natural Science Foundation of China (11374021 and 11327406); by China Ministry of Science and Technology under Contract # 2014CB920900 and 2013CB921900; and by the Young 1000-Talent Program of China.

  11. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    PubMed

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  12. Rearrangement of receptive field topography after intracortical and peripheral stimulation: the role of plasticity in inhibitory pathways.

    PubMed

    Kalarickal, George J; Marshall, Jonathan A

    2002-02-01

    Intracortical microstimulation (ICMS) of a single site in the somatosensory cortex of rats and monkeys for 2-6 h increases the number of neurons responsive to the skin region corresponding to the ICMS-site receptive field (RF), with very little effect on the position and size of the ICMS-site RF, and the response evoked at the ICMS site by tactile stimulation. Large changes in RF topography are also observed following several weeks of repetitive stimulation of a restricted skin region during tactile frequency discrimination training in monkeys. It has been suggested that these changes in RF topography are caused by competitive learning in excitatory pathways. This paper analyses the possible role of lateral inhibitory synaptic plasticity in producing cortical plasticity after ICMS and peripheral conditioning in adult animals. The 'EXIN' (afferent excitatory and lateral inhibitory) synaptic plasticity rules are used to model RF changes after ICMS and peripheral stimulation. The EXIN model produces RF topographical changes similar to those observed experimentally. It is shown that lateral inhibitory pathway plasticity is sufficient to model RF changes and increase in position discrimination after peripheral stimulation. Several novel and testable predictions are made based on the EXIN model.

  13. Simulating the hydraulic stimulation of multiple fractures in an anisotropic stress field applying the discrete element method

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Frühwirt, Thomas; Konietzky, Heinz

    2015-04-01

    Key to a successful exploitation of deep geothermal reservoirs in a petrothermal environment is the hydraulic stimulation of the host rock to increase permeability. The presented research investigates the fracture propagation and interaction during hydraulic stimulation of multiple fractures in a highly anisotropic stress field. The presented work was conducted within the framework of the OPTIRISS project, which is a cooperation of industry partners and universities in Thuringia and Saxony (Federal States of Germany) and was funded by the European Fond for Regional Development. One objective was the design optimization of the subsurface geothermal heat exchanger (SGHE) by means of numerical simulations. The presented simulations were conducted applying 3DEC (Itasca™), a software tool based on the discrete element method. The simulation results indicate that the main direction of fracture propagation is towards lower stresses and thus towards the biosphere. Therefore, barriers might be necessary to limit fracture propagation to the designated geological formation. Moreover, the hydraulic stimulation significantly alters the stresses in the vicinity of newly created fractures. Especially the change of the minimum stress component affects the hydraulic stimulation of subsequent fractures, which are deflected away from the previously stimulated fractures. This fracture deflection can render it impossible to connect all fractures with a second borehole for the later production. The results of continuative simulations indicate that a fracture deflection cannot be avoided completely. Therefore, the stage alignment was modified to minimize fracture deflection by varying (1) the pauses between stages, (2) the spacing's between adjacent stages, and (3) the angle between stimulation borehole and minimum stress component. An optimum SGHE design, which implies that all stimulated fractures are connected to the production borehole, can be achieved by aligning the stimulation

  14. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    NASA Astrophysics Data System (ADS)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  15. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    NASA Astrophysics Data System (ADS)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  16. SEMICONDUCTOR DEVICES: Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

    NASA Astrophysics Data System (ADS)

    Hongwei, Liu; Runsheng, Wang; Ru, Huang; Xing, Zhang

    2010-04-01

    This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ0) and the low-field mean free path (λ0), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ0 is nearly a constant, and λ0 can be used as the “entry criterion" to determine whether the device begins to operate under quasi-ballistic transport to some extent.

  17. Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling

    PubMed Central

    Al-Dirini, Feras; Hossain, Faruque M.; Mohammed, Mahmood A.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2015-01-01

    Silicene is an exciting two-dimensional material that shares many of graphene’s electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene’s conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer. We illustrate this by using silicene to implement Self-Switching Diodes (SSDs), which are two-dimensional field effect nanorectifiers realized within a single silicene monolayer. Our quantum simulation results show that the atomically-thin silicene SSDs, with sub-10 nm dimensions, achieve a current rectification ratio that exceeds 200, without the need for doping, representing a 30 fold enhancement over graphene SSDs. We attribute this enhancement to a bandgap opening due to the in-plane electric field, as a consequence of silicene’s buckling. Our results suggest that silicene is a promising material for the realization of planar field effect devices. PMID:26441200

  18. Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling.

    PubMed

    Al-Dirini, Feras; Hossain, Faruque M; Mohammed, Mahmood A; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2015-10-06

    Silicene is an exciting two-dimensional material that shares many of graphene's electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene's conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer. We illustrate this by using silicene to implement Self-Switching Diodes (SSDs), which are two-dimensional field effect nanorectifiers realized within a single silicene monolayer. Our quantum simulation results show that the atomically-thin silicene SSDs, with sub-10 nm dimensions, achieve a current rectification ratio that exceeds 200, without the need for doping, representing a 30 fold enhancement over graphene SSDs. We attribute this enhancement to a bandgap opening due to the in-plane electric field, as a consequence of silicene's buckling. Our results suggest that silicene is a promising material for the realization of planar field effect devices.

  19. Autonomous field-deployable device for the measurement of phosphate in natural water

    NASA Astrophysics Data System (ADS)

    Slater, Conor; Cleary, John; McGraw, Christina M.; Yerazunis, William S.; Lau, King Tong; Diamond, Dermot

    2007-09-01

    This work describes the ongoing development of an autonomous platform for the measurement of phosphate levels in river water. This device is designed to operate unassisted for one year, taking a measurement every hour and relaying the result to a laptop computer. A first generation prototype has already been developed and successfully field tested. The system contains the sampling, chemical storage, fluid handling, colorimetric data acquisition and waste storage capabilities necessary to perform the phosphate measurement. In addition to this, the device has the embedded control, GSM communications system and power supply to allow independent operation. The entire system is placed inside a compact and rugged enclosure. Further work discussed here builds on the successes of the prototype design to deliver a system capable of one full year of operation. The second generation system has been built from the ground up. Although identical in operation to the prototype its design has a greater emphasis on power efficient components and power management to allow for a longer lifetime. Other improvements include an automated two-point calibration to compensate for drift and a more rugged design to further increase the lifetime of the device.

  20. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  1. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review.

    PubMed

    Hug, Kerstin; Röösli, Martin

    2012-02-01

    Pulsed electromagnetic fields (PEMF) delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being. However, neither the therapeutic efficacy nor the potential health hazards caused by these mats have been systematically evaluated. We conducted a systematic review of trials investigating the therapeutic effects of low-frequency PEMF devices. We were interested in all health outcomes addressed so far in randomized, sham-controlled, double-blind trials. In total, 11 trials were identified. They were focused on osteoarthritis of the knee (3 trials) or the cervical spine (1), fibromyalgia (1), pain perception (2), skin ulcer healing (1), multiple sclerosis-related fatigue (2), or heart rate variability and well-being (1). The sample sizes of the trials ranged from 12 to 71 individuals. The observation period lasted 12 weeks at maximum, and the applied magnetic flux densities ranged from 3.4 to 200 µT. In some trials sporadic positive effects on health were observed. However, independent confirmation of such singular findings was lacking. We conclude that the scientific evidence for therapeutic effects of whole-body PEMF devices is insufficient. Acute adverse effects have not been reported. However, adverse effects occurring after long-term application have not been studied so far. In summary, the therapeutic use of low-frequency whole-body PEMF devices cannot be recommended without more scientific evidence from high-quality, double-blind trials.

  2. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  3. Lensless coherent imaging by sampling of the optical field with digital micromirror device

    NASA Astrophysics Data System (ADS)

    Vdovin, G.; Gong, H.; Soloviev, O.; Pozzi, P.; Verhaegen, M.

    2015-12-01

    We have experimentally demonstrated a lensless coherent microscope based on direct registration of the complex optical field by sampling the pupil with a sequence of two-point interferometers formed by a digital micromirror device. Complete registration of the complex amplitude in the pupil of the imaging system, without any reference beam, provides a convenient link between the experimental and computational optics. Unlike other approaches to digital holography, our method does not require any external reference beam, resulting in a simple and robust registration setup. Computer analysis of the experimentally registered field allows for focusing the image in the whole range from zero to infinity, and for virtual correction of the aberrations present in the real optical system, by applying the adaptive wavefront corrections to its virtual model.

  4. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems. PMID:25273745

  5. Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Chiappini, F.; Wiedmann, S.; Novoselov, K.; Mishchenko, A.; Geim, A. K.; Maan, J. C.; Zeitler, U.

    2015-11-01

    We report on transport and capacitance measurements of graphene devices in magnetic fields up to 30 T. In both techniques, we observe the full splitting of Landau levels and we employ tilted field experiments to address the origin of the observed broken symmetry states. In the lowest energy level, the spin degeneracy is removed at filling factors ν =±1 and we observe an enhanced energy gap. In the higher levels, the valley degeneracy is removed at odd filling factors while spin polarized states are formed at even ν . Although the observation of odd filling factors in the higher levels points towards the spontaneous origin of the splitting, we find that the main contribution to the gap at ν =-4 ,-8 , and -12 is due to the Zeeman energy.

  6. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  7. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  8. Unconventional Impacts from Unconventional Hydropower Devices: The Environmental Effects of Noise, Electromagnetic Fields, and other Stressors

    NASA Astrophysics Data System (ADS)

    Bevelhimer, M.; Cada, G. F.

    2011-12-01

    Conventional dam-based hydropower production produces a variety of environmental stressors that have been debated and confronted for decades. In-current hydrokinetic devices present some of the same or analogous stressors (e.g., changes in sediment transport and deposition, interference with animal movements and migrations, and strike by rotor blades) and some potentially new stressors (e.g., noise during operation, emission of electromagnetic fields [EMF], and toxicity of paints, lubricants, and antifouling coatings). The types of hydrokinetic devices being proposed and tested are varied, as are the locations where they could be deployed, i.e., coastal, estuarine, and big rivers. Differences in hydrology, device type, and the affected aquatic community (marine, estuarine, and riverine) will likely result in a different suite of environmental concerns for each project. Studies are underway at the U.S. Department of Energy's national laboratories to characterize the level of exposure to these stressors and to measure environmental response where possible. In this presentation we present results of studies on EMF, noise, and benthic habitat alteration relevant to hydrokinetic device operation in large rivers. In laboratory studies we tested the behavioral response of a variety of fish and invertebrate organisms to exposure to DC and AC EMF. Our findings suggest that lake sturgeon may be susceptible to EMF like that emitted from underwater cables, but most other species tested are not. Based on recordings of various underwater noise sources, we will show how the spectral density of noises created by hydrokinetic devices compares to that from other anthropogenic sources and natural sources. We will also report the results of hydroacoustic surveys that show how sediments are redistributed behind pilings like those that could be used for mounting hydrokinetic devices. The potential effects of these stressors will be discussed in the context of possible fish population

  9. Magnetoneurographic registration of propagating magnetic fields in the lumbar spine after stimulation of the posterior tibial nerve

    NASA Astrophysics Data System (ADS)

    Klein, Anita; van Leeuwen, Peter; Hoormann, Jörg; Grönemeyer, Dietrich

    2006-06-01

    Stimulation of the posterior tibial nerve has been associated with different somatosensory evoked potentials (SEP) recorded along the spine and thorax. The aim of this study was to register and describe the magnetic fields corresponding to different components of spinal SEP after stimulation of tibial nerves. In nine healthy subjects, right and left posterior tibial nerves were transcutaneously electrostimulated at the ankles. Neuromagnetic fields were registered over a circular 800 cm2 area of the lumbosacral spine using a 61-channel biomagnetometer. Magnetic field maps were constructed and examined visually for dipolar patterns. Equivalent current dipoles (ECD) were calculated for each somatosensory evoked field (SEF) using a least-squares fit in a spherical model. In seven subjects dipolar SEF were detected over the lower back at two separate latencies and locations and propagating ECD could be localized. Both the first and second components found agreed anatomically and functionally with respect to propagation in the underlying nerve fibers. It was possible to record and identify SEF which correspond to the SEP described in the literature. Dipole localization based on an equivalent current dipole model allowed a basic evaluation of the plausibility of the measurements with respect to the processes being examined.

  10. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects.

    PubMed

    Schmidt, Hennrik; Giustiniano, Francesco; Eda, Goki

    2015-11-01

    Recent explosion of interest in two-dimensional (2D) materials research has led to extensive exploration of physical and chemical phenomena unique to this new class of materials and their technological potential. Atomically thin layers of group 6 transition metal dichalcogenides (TMDs) such as MoS2 and WSe2 are remarkably stable semiconductors that allow highly efficient electrostatic control due to their 2D nature. Field effect transistors (FETs) based on 2D TMDs are basic building blocks for novel electronic and chemical sensing applications. Here, we review the state-of-the-art of TMD-based FETs and summarize the current understanding of interface and surface effects that play a major role in these systems. We discuss how controlled doping is key to tailoring the electrical response of these materials and realizing high performance devices. The first part of this review focuses on some fundamental features of gate-modulated charge transport in 2D TMDs. We critically evaluate the role of surfaces and interfaces based on the data reported in the literature and explain the observed discrepancies between the experimental and theoretical values of carrier mobility. The second part introduces various non-covalent strategies for achieving desired doping in these systems. Gas sensors based on charge transfer doping and electrostatic stabilization are introduced to highlight progress in this direction. We conclude the review with an outlook on the realization of tailored TMD-based field-effect devices through surface and interface chemistry.

  11. Locked modes in two reversed-field pinch devices of different size and shell system

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.; Yagi, Y.; Koguchi, H.

    2000-10-01

    The behavior of locked modes in two reversed-field pinch devices, the Toroidal Pinch Experiment (TPE-RX) [Y. Yagi et al., Plasma Phys. Control. Fusion 41, 2552 (1999)] and Extrap T2 [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996, Montreal (International Atomic Energy Agency, Vienna, 1996), Vol. 2, p. 193] is analyzed and compared. The main characteristics of the locked mode are qualitatively similar. The toroidal distribution of the mode locking shows that field errors play a role in both devices. The probability of phase locking is found to increase with increasing magnetic fluctuation levels in both machines. Furthermore, the probability of phase locking increases with plasma current in TPE-RX despite the fact that the magnetic fluctuation levels decrease. A comparison with computations using a theoretical model estimating the critical mode amplitude for locking [R. Fitzpatrick et al., Phys. Plasmas 6, 3878 (1999)] shows a good correlation with experimental results in TPE-RX. In Extrap T2, the magnetic fluctuations scale weakly with both plasma current and electron densities. This is also reflected in the weak scaling of the magnetic fluctuation levels with the Lundquist number (˜S-0.06). In TPE-RX, the corresponding scaling is ˜S-0.18.

  12. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.

    PubMed

    Pirbodaghi, Tohid; Vigolo, Daniele; Akbari, Samin; deMello, Andrew

    2015-05-01

    The widespread application of microfluidic devices in the biological and chemical sciences requires the implementation of complex designs and geometries, which in turn leads to atypical fluid dynamic phenomena. Accordingly, a complete understanding of fluid dynamics in such systems is key in the facile engineering of novel and efficient analytical tools. Herein, we present an accurate approach for studying the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy with white light illumination and a standard high-speed camera. Specifically, we combine Ghost Particle Velocimetry and the detection of moving objects in automated video surveillance to track submicron size tracing particles via cross correlation between the speckle patterns of successive images. The efficacy of the presented technique is demonstrated by measuring the flow field over a square pillar (80 μm × 80 μm) in a 200 μm wide microchannel at high volumetric flow rates. Experimental results are in excellent agreement with those obtained via computational fluid dynamics simulations. The method is subsequently used to study the dynamics of droplet generation at a flow focusing microfluidic geometry. A unique feature of the presented technique is the ability to perform velocimetry analysis of high-speed phenomena, which is not possible using micron-resolution particle image velocimetry (μPIV) approaches based on confocal or fluorescence microscopy. PMID:25812165

  13. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    PubMed

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air.

  14. Sensory mechanisms involved in the induction of pseudopregnancy by progesterone: increased sensitivity to stimulation of the pudendal sensory field.

    PubMed

    Luque, E H; Castro-Vazquez, A

    1983-07-01

    The sensory mechanisms that participate in the induction of pseudopregnancy after a single injection of progesterone were investigated. Unless otherwise indicated, rats were kept in group cages and vaginal smears were taken daily. Progesterone evoked pseudopregnancy in a dose-dependent manner when administered to proestrous or estrous rats that received no cervicovaginal stimulation. The probability of pseudopregnancy after progesterone was higher on estrus. Cervicovaginal stimulation of proestrous rats that received 5 mg progesterone 10 h before was performed with a rod with a sliding stop attached to regulate its intravaginal penetration. Progesterone facilitated responsiveness to this stimulus, although the amount injected was not significantly effective in increasing the incidence of pseudopregnancy in nonstimulated rats. However, the mere application of the stop of the stimulator on the perineal skin was followed by a significantly higher incidence of pseudopregnancy in progesterone-injected rats than in their vehicle-injected controls, which suggested an action of the steroid on perineal sensitivity. Accordingly, the pseudopregnancy-evoking effect of progesterone was clearly inhibited by refraining from taking vaginal smears for 5 days after steroid injection on estrus. No further inhibition was observed after isolating the animals in single rat cages. However, daily finger stimulation of the perineal skin of nonsmeared rats restored to a normal level response to progesterone. Furthermore, this response was severely impaired by transecting the pudendal nerves before the injection. It is concluded that pseudopregnancy is induced in progesterone-treated rats through sensory stimulation of the pudendal receptive field and it is suggested that the pudendal nerve may subserve as a secondary afferent system to elicit the pseudopregnancy response. The possibility progesterone also acts on other afferent systems including the main afferent system constituted by the

  15. ANALYSIS OF THE STRUCTURE OF MAGNETIC FIELDS THAT INDUCED INHIBITION OF STIMULATED NEURITE OUTGROWTH

    EPA Science Inventory

    The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magne...

  16. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    SciTech Connect

    Conrad, Mark E.; Brodie, Eoin L.; Radtke, Corey W.; Bill, Markus; Delwiche, Mark E.; Lee, M. Hope; Swift, Dana L.; Colwell, Frederick S.

    2010-05-17

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH4 in the groundwater extending 250 m from the injection well. The delta13C of the CH4 increases from 56o/oo in the source area to -13 o/oo with distance from the injection well, whereas the delta13C of dissolved inorganic carbon decreases from 8 o/oo to -13 o/oo, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH4-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with 13C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.

  17. Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater.

    PubMed

    Conrad, Mark E; Brodie, Eoin L; Radtke, Corey W; Bill, Markus; Delwiche, Mark E; Lee, M Hope; Swift, Dana L; Colwell, Frederick S

    2010-06-15

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH(4) in the groundwater extending 250 m from the injection well. The delta(13)C of the CH(4) increases from -56 per thousand in the source area to -13 per thousand with distance from the injection well, whereas the delta(13)C of dissolved inorganic carbon decreases from 8 per thousand to -13 per thousand, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH(4)-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with (13)C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE. PMID:20476753

  18. Thalamic field potentials in chronic central pain treated by periventricular gray stimulation -- a series of eight cases.

    PubMed

    Nandi, Dipankar; Aziz, Tipu; Carter, Helen; Stein, John

    2003-01-01

    Chronic deep brain stimulation (DBS) of the periventricular gray (PVG) has been used for the treatment of chronic central pain for decades. In recent years motor cortex stimulation (MCS) has largely supplanted DBS in the surgical management of intractable neuropathic pain of central origin. However, MCS provides satisfactory pain relief in about 50-75% of cases, a range comparable to that reported for DBS (none of the reports are in placebo-controlled studies and hence the further need for caution in evaluating and comparing these results). Our experience also suggests that there is still a role for DBS in the control of central pain. Here we present a series of eight consecutive cases of intractable chronic pain of central origin treated with PVG DBS with an average follow-up of 9 months. In each case, two electrodes were implanted in the PVG and the ventroposterolateral thalamic nucleus, respectively, under guidance of corneal topography/magnetic resonance imaging image fusion. The PVG was stimulated in the frequency range of 2-100 Hz in alert patients while pain was assessed using the McGill-Melzack visual analogue scale. In addition, local field potentials (FPs) were recorded from the sensory thalamus during PVG stimulation. Maximum pain relief was obtained with 5-35 Hz stimulation while 50-100 Hz made the pain worse. This suggests that pain suppression was frequency dependent. Interestingly, we detected low frequency thalamic FPs at 0.2-0.4 Hz closely associated with the pain. During 5-35 Hz PVG stimulation the amplitude of this potential was significantly reduced and this was associated with marked pain relief. At the higher frequencies (50-100 Hz), however, there was no reduction in the FPs and no pain suppression. We have found an interesting and consistent correlation between thalamic electrical activity and chronic pain. This low frequency potential may provide an objective index for quantifying chronic pain, and may hold further clues to the mechanism of

  19. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.

    PubMed

    Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm. PMID:27170863

  20. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    NASA Astrophysics Data System (ADS)

    Caraveo-Frescas, J. A.; Khan, M. A.; Alshareef, H. N.

    2014-06-01

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm2V-1s-1, large memory window (~16 V), low read voltages (~-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

  1. Method to rotate an endovascular device around the axis of a vessel using an external magnetic field.

    PubMed

    Florin, E; Rangwala, H S; Rudin, S

    2007-01-01

    A magnetic guidance methodology to rotate a device around the catheter axis is proposed. The specific medical application is to intracranial aneurysms. An endovascular device, the asymmetric stent, has a low porosity region that is rotated to cover the aneurysm neck so as to reduce the blood flow into and hence obliterate the aneurysm. The magnetic guidance system consists of a magnetic device attached to the asymmetric stent and an external homogeneous magnetic field of 0.1 T. This magnetic field puts a torque on the magnetic moment of the magnetic device, thereby rotating the stent for proper orientation. For the magnetic device with the required magnetic moment of 0.001 A m2, a cylindrical neodymium permanent magnet is proposed due to its favorable material characteristics while a coil electromagnet with iron core appears impractical due to demagnetizing effects.

  2. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  3. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    NASA Astrophysics Data System (ADS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  4. Nanosecond Pulsed Electric Field Stimulation of Reactive Oxygen Species in Human Pancreatic Cancer Cells is Ca2+-Dependent

    PubMed Central

    Nuccitelli, Richard; Lui, Kaying; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

    2013-01-01

    The cellular response to 100 ns pulsed electric fields (nsPEF) exposure includes the formation of transient nanopores in the plasma membrane and organelle membranes, an immediate increase in intracellular Ca2+, an increase in reactive oxygen species (ROS), DNA fragmentation and caspase activation. 100 ns, 30 kV/cm nsPEF stimulates an increase in ROS proportional to the pulse number. This increase is inhibited by the anti-oxidant, Trolox, as well as the presence of Ca2+ chelators in the intracellular and extracellular media. This suggests that the nsPEF-triggered Ca2+ increase is required for ROS generation. PMID:23680664

  5. The signaling of amitriptyline-induced inhibitory effect on electrical field stimulation response in colon smooth muscle.

    PubMed

    Zaw, Tin Sandar; Khin, Phyu Phyu; Sohn, Uy Dong

    2016-09-01

    Amitriptyline, a well-known antidepressant, exerts inhibitory effect on electrically stimulated rat colon smooth muscle contraction. In this study, we investigated the signaling pathway of amitriptyline-induced inhibitory effect. Changes in isometric force of colon muscle were recorded on polygraph, and data were analyzed by measuring the inhibitory extent induced by amitriptyline. Firstly, muscles were contracted by stimulation with electric field stimulation (EFS), and then, amitriptyline was added cumulatively to determine its influence effect on EFS. Amitriptyline significantly inhibited EFS-induced contraction dose dependently. Then, the mechanism of inhibitory effect of amitriptyline was evaluated by pretreating with various antagonists such as L-NAME, methylene blue, atropine, 5-HT receptors blockers, guanethidine, prazosin, guanabenz, isoprenaline, Y27632 (Rho-kinase inhibitor), ML9 (myosin light chain kinase (MLCK) inhibitor), U73122 (PLC inhibitor), and chelerythrine (PKC inhibitor). Then, Ca(2+) channel blocker (nifedipine) and K(+)channel blockers, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and glybenclamide, were used to determine the involvement of ion channels. L-NAME, guanabenz, 5HT4 receptor blocker, ML9, and Y27632 enhanced the effect of amitriptyline. Meanwhile, methylene blue, atropine, guanethidine, prazosin, methylsergide, ondansetron, U73122, and chelerythrine blocked its effect. It was also shown that nifedipine enhanced but TEA and glybenclamide blocked amitriptyline-induced inhibitory effect on EFS. Our results indicated that amitriptyline may exert inhibitory effect in response to EFS by inhibiting muscarinic receptors and then PLC-mediated PKC pathway leading to opening of ATP-sensitive potassium channel.

  6. The signaling of amitriptyline-induced inhibitory effect on electrical field stimulation response in colon smooth muscle.

    PubMed

    Zaw, Tin Sandar; Khin, Phyu Phyu; Sohn, Uy Dong

    2016-09-01

    Amitriptyline, a well-known antidepressant, exerts inhibitory effect on electrically stimulated rat colon smooth muscle contraction. In this study, we investigated the signaling pathway of amitriptyline-induced inhibitory effect. Changes in isometric force of colon muscle were recorded on polygraph, and data were analyzed by measuring the inhibitory extent induced by amitriptyline. Firstly, muscles were contracted by stimulation with electric field stimulation (EFS), and then, amitriptyline was added cumulatively to determine its influence effect on EFS. Amitriptyline significantly inhibited EFS-induced contraction dose dependently. Then, the mechanism of inhibitory effect of amitriptyline was evaluated by pretreating with various antagonists such as L-NAME, methylene blue, atropine, 5-HT receptors blockers, guanethidine, prazosin, guanabenz, isoprenaline, Y27632 (Rho-kinase inhibitor), ML9 (myosin light chain kinase (MLCK) inhibitor), U73122 (PLC inhibitor), and chelerythrine (PKC inhibitor). Then, Ca(2+) channel blocker (nifedipine) and K(+)channel blockers, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and glybenclamide, were used to determine the involvement of ion channels. L-NAME, guanabenz, 5HT4 receptor blocker, ML9, and Y27632 enhanced the effect of amitriptyline. Meanwhile, methylene blue, atropine, guanethidine, prazosin, methylsergide, ondansetron, U73122, and chelerythrine blocked its effect. It was also shown that nifedipine enhanced but TEA and glybenclamide blocked amitriptyline-induced inhibitory effect on EFS. Our results indicated that amitriptyline may exert inhibitory effect in response to EFS by inhibiting muscarinic receptors and then PLC-mediated PKC pathway leading to opening of ATP-sensitive potassium channel. PMID:27234925

  7. The optimal conditions for the correlation of object pulse temporary form with the stimulated photon echo response in the presence of external spatial inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Garnaeva, G. I.; Nefediev, L. A.; Hakimzyanova, E. I.; Nefedieva, K. L.

    2014-08-01

    The influence of external spatially inhomogeneous electric fields on the reproducibility of the information and effectiveness of stimulated photon echo responses locking at different encoding information in the object laser pulses are investigated.

  8. Stereo vision-based depth of field rendering on a mobile device

    NASA Astrophysics Data System (ADS)

    Wang, Qiaosong; Yu, Zhan; Rasmussen, Christopher; Yu, Jingyi

    2014-03-01

    The depth of field (DoF) effect is a useful tool in photography and cinematography because of its aesthetic value. However, capturing and displaying dynamic DoF effect were until recently a quality unique to expensive and bulky movie cameras. A computational approach to generate realistic DoF effects for mobile devices such as tablets is proposed. We first calibrate the rear-facing stereo cameras and rectify the stereo image pairs through FCam API, then generate a low-res disparity map using graph cuts stereo matching and subsequently upsample it via joint bilateral upsampling. Next, we generate a synthetic light field by warping the raw color image to nearby viewpoints, according to the corresponding values in the upsampled high-resolution disparity map. Finally, we render dynamic DoF effect on the tablet screen with light field rendering. The user can easily capture and generate desired DoF effects with arbitrary aperture sizes or focal depths using the tablet only, with no additional hardware or software required. The system has been examined in a variety of environments with satisfactory results, according to the subjective evaluation tests.

  9. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.

    PubMed

    Greenebaum, Ben

    2015-12-01

    The prime goal of this work was to model essentially steady (DC) fields from electrodes, implanted in several ways, which have been suggested as possible means to encourage nerve fiber regrowth in spinal cord injuries. A simplified model of the human spinal cord in the lumbar region and the SEMCAD-X computer program were used to calculate electric field and current density patterns from electrodes outside vertebrae and those inserted extradurally within the spinal canal. DC electric fields guide nerve growth in developing organisms and in vitro. They also have been shown to encourage healing of injured peripheral nerves, and application of a longitudinal field has been used in attempts to bridge spinal cord injuries. When calculated results are scaled to the experimental level used in the literature, all modeled electrodes produced fields in the spinal cord below fields needed in the literature for stimulation of spinal as well as peripheral nerve growth in vitro, in dogs, and in a published clinical human trial. The highly-conducting cerebrospinal fluid appeared to provide effective shielding; there was also a very high degree of polarization at electrodes.

  10. Charge transport in organic multi-layer devices under electric and optical fields

    NASA Astrophysics Data System (ADS)

    Park, June Hyoung

    2007-12-01

    Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This

  11. Measurement of impulse peak insertion loss for four hearing protection devices in field conditions

    PubMed Central

    Murphy, William J.; Flamme, Gregory A.; Meinke, Deanna K.; Sondergaard, Jacob; Finan, Donald S.; Lankford, James E.; Khan, Amir; Vernon, Julia; Stewart, Michael

    2015-01-01

    Objective In 2009, the U.S. Environmental Protection Agency (EPA) proposed an impulse noise reduction rating (NRR) for hearing protection devices based upon the impulse peak insertion loss (IPIL) methods in the ANSI S12.42-2010 standard. This study tests the ANSI S12.42 methods with a range of hearing protection devices measured in field conditions. Design The method utilizes an acoustic test fixture and three ranges for impulse levels: 130–134, 148–152, and 166–170 dB peak SPL. For this study, four different models of hearing protectors were tested: Bilsom 707 Impact II electronic earmuff, E·A·R Pod Express, E·A·R Combat Arms version 4, and the Etymotic Research, Inc. Electronic BlastPLG™ EB1. Study sample Five samples of each protector were fitted on the fixture or inserted in the fixture's ear canal five times for each impulse level. Impulses were generated by a 0.223 caliber rifle. Results The average IPILs increased with peak pressure and ranged between 20 and 38 dB. For some protectors, significant differences were observed across protector examples of the same model, and across insertions. Conclusions The EPA's proposed methods provide consistent and reproducible results. The proposed impulse NRR rating should utilize the minimum and maximum protection percentiles as determined by the ANSI S12.42-2010 methods. PMID:22176308

  12. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices.

    PubMed

    Plecis, A; Tazid, J; Pallandre, A; Martinhon, P; Deslouis, C; Chen, Y; Haghiri-Gosnet, A M

    2010-05-21

    A method is proposed to control the zeta potential in microchannels using electrically polarisable interfaces in direct contact with the electrolyte. The approach is based on the use of conducting layers exhibiting minimal electrochemical reactions with aqueous electrolytes but a large potential window (typically from -2 V to +2 V) enabling tuning their zeta potential without detrimental faradic reactions. SiC, Al and CN(x) interfaces were deposited on glass surfaces and then integrated into glass-PDMS-glass devices. The effect of the zeta potential control was monitored by measuring the electro-osmotic flow using a microfluidic Wheatstone Bridge. The experimental results are in good agreement with theoretical predictions based on a one dimensional modeling. The electro-osmotic flow control obtained at high pH values suggests that it should be possible to use such devices as Polarisable Interface Flow-Field Effect Transistors (PI-FFETs) to overcome the difficulties met with conventional metal-isolator-electrolyte systems (MIE-FFETs) for electrokinetic separation applications. PMID:20445876

  13. Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors

    SciTech Connect

    Florica, Camelia; Costas, Andreea; Boni, Andra Georgia; Negrea, Raluca; Preda, Nicoleta E-mail: encu@infim.ro; Pintilie, Lucian; Enculescu, Ionut E-mail: encu@infim.ro; Ion, Lucian

    2015-06-01

    High aspect ratio CuO nanowires are synthesized by a simple and scalable method, thermal oxidation in air. The structural, morphological, optical, and electrical properties of the semiconducting nanowires were studied. Au-Ti/CuO nanowire and Pt/CuO nanowire electrical contacts were investigated. A dominant Schottky mechanism was evidenced in the Au-Ti/CuO nanowire junction and an ohmic behavior was observed for the Pt/CuO nanowire junction. The Pt/CuO nanowire/Pt structure allows the measurements of the intrinsic transport properties of the single CuO nanowires. It was found that an activation mechanism describes the behavior at higher temperatures, while a nearest neighbor hopping transport mechanism is characteristic at low temperatures. This was also confirmed by four-probe resistivity measurements on the single CuO nanowires. By changing the metal/semiconductor interface, devices such as Schottky diodes and field effect transistors based on single CuO p-type nanowire semiconductor channel are obtained. These devices are suitable for being used in various electronic circuits where their size related properties can be exploited.

  14. Gate tunable relativistic mass and Berry's phase in topological insulator nanoribbon field effect devices.

    PubMed

    Jauregui, Luis A; Pettes, Michael T; Rokhinson, Leonid P; Shi, Li; Chen, Yong P

    2015-02-13

    Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.

  15. Improvement of Electrostatic Discharge Protection by Introducing a Spindt-Type Silicon Field Emission Device

    NASA Astrophysics Data System (ADS)

    Chang, Liann-Be; Ferng, Yi-Cherng; Liao, Jhong-Wei; Lin, Ching-Chi

    2012-04-01

    In this paper, an original Spindt-type silicon field emission device (FED) with electrostatic discharge (ESD) regulation capability is proposed. The fabricated FED characteristics, including process parameters, capacitance-voltage (C-V), current-voltage (I-V), and frequency response, are investigated. To verify its capability of ESD protection, we replace the metal oxide varistor (MOV) in a state-of-the-art protection configuration with the fabricated FED under the application conditions of system-level ESD tests. The measured results show that the proposed ESD protection circuit composed of a prestage gas arrestor, an intermediate resistor, and an introduced FED can suppress an injected ESD pulse voltage of 6000 to 3193 V, a reduction of 46.8%, whereas suppression is to 5606 V, a reduction of 6.57%, when using only a gas arrestor.

  16. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  17. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  18. A titanium hydride gun for plasma injection into the T2-reversed field pinch device

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Hellblom, K. G.

    1999-02-01

    A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).

  19. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.

    PubMed

    Kamei, Ken-ichiro; Mashimo, Yasumasa; Koyama, Yoshie; Fockenberg, Christopher; Nakashima, Miyuki; Nakajima, Minako; Li, Junjun; Chen, Yong

    2015-04-01

    Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening.

  20. Validity and Reliability of Two Field-Based Leg Stiffness Devices: Implications for Practical Use.

    PubMed

    Ruggiero, Luca; Dewhurst, Susan; Bampouras, Theodoros M

    2016-08-01

    Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump NextR (Optojump) and Myotest ProR (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r = .98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r = .81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field. PMID:26959196

  1. Evaluation of magnetic fields due to the ferromagnetic vacuum vessel and their influence on plasma discharge in tokamak devices

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Abe, M.; Tadokoro, T.; Otsuka, M.

    We studied characteristics of the magnetic fields due to a ferromagnetic vacuum vessel (F-VV) experimentally and computationally to clarify whether plasma discharge is possible with the F-VV in tokamak devices. We made three kinds of evaluations using the Hitachi tokamak HT-2. One was a discharge test with error field coil. The second was a numerical analysis of the magnetic field induced by a ferritic first wall. The third was a discharge test with the ferritic first wall. Consequently, we confirmed that a normal plasma discharge could be obtained with a ferritic first wall in the HT-2. The strength of the localized magnetic field induced by the F-VV in the plasma region was smaller in tokamak devices with the size of the JFT-2M and ITER than in the HT-2. Therefore, the F-VV should be applicable to tokamak devices.

  2. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device

    PubMed Central

    Kouzani, Abbas Z.; Tye, Susannah J.; Abulseoud, Osama A.; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\times\\,$ \\end{document}12.5 mm \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\times\\,$ \\end{document}1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${-}{\\rm 10}~{\\rm dB}$ \\end{document}. A dielectric substrate of FR-4 of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\varepsilon _{r}=4.8$ \\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\delta=0.015$ \\end{document} with thickness of 1.5 mm is used for both antenna and rectifier

  3. Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions

    PubMed Central

    Chaturvedi, Ashutosh; Butson, Christopher R.; Lempka, Scott F.; Cooper, Scott E.; McIntyre, Cameron C.

    2010-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become the surgical therapy of choice for medically intractable Parkinson’s disease. However, quantitative understanding of the interaction between the electric field generated by DBS and the underlying neural tissue is limited. Recently, computational models of varying levels of complexity have been used to study the neural response to DBS. The goal of this study was to evaluate the quantitative impact of incrementally incorporating increasing levels of complexity into computer models of STN DBS. Our analysis focused on the direct activation of experimentally measureable fiber pathways within the internal capsule (IC). Our model system was customized to an STN DBS patient and stimulation thresholds for activation of IC axons were calculated with electric field models that ranged from an electrostatic, homogenous, isotropic model to one that explicitly incorporated the voltage-drop and capacitance of the electrode-electrolyte interface, tissue encapsulation of the electrode, and diffusion-tensor based 3D tissue anisotropy and inhomogeneity. The model predictions were compared to experimental IC activation defined from electromyographic (EMG) recordings from eight different muscle groups in the contralateral arm and leg of the STN DBS patient. Coupled evaluation of the model and experimental data showed that the most realistic predictions of axonal thresholds were achieved with the most detailed model. Furthermore, the more simplistic neurostimulation models substantially overestimated the spatial extent of neural activation. PMID:20607090

  4. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  5. Fluence-field modulated x-ray CT using multiple aperture devices

    NASA Astrophysics Data System (ADS)

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-03-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

  6. Analysis of optically variable devices using a photometric light-field approach

    NASA Astrophysics Data System (ADS)

    Soukup, Daniel; Å tolc, Svorad; Huber-Mörk, Reinhold

    2015-03-01

    Diffractive Optically Variable Image Devices (DOVIDs), sometimes loosely referred to as holograms, are popular security features for protecting banknotes, ID cards, or other security documents. Inspection, authentication, as well as forensic analysis of these security features are still demanding tasks requiring special hardware tools and expert knowledge. Existing equipment for such analyses is based either on a microscopic analysis of the grating structure or a point-wise projection and recording of the diffraction patterns. We investigated approaches for an examination of DOVID security features based on sampling the Bidirectional Reflectance Distribution Function (BRDF) of DOVIDs using photometric stereo- and light-field-based methods. Our approach is demonstrated on the practical task of automated discrimination between genuine and counterfeited DOVIDs on banknotes. For this purpose, we propose a tailored feature descriptor which is robust against several expected sources of inaccuracy but still specific enough for the given task. The suggested approach is analyzed from both theoretical as well as practical viewpoints and w.r.t. analysis based on photometric stereo and light fields. We show that especially the photometric method provides a reliable and robust tool for revealing DOVID behavior and authenticity.

  7. A novel productivity-driven logic element for field-programmable devices

    NASA Astrophysics Data System (ADS)

    Marconi, Thomas; Bertels, Koen; Gaydadjiev, Georgi

    2014-06-01

    Although various techniques have been proposed for power reduction in field-programmable devices (FPDs), they are still all based on conventional logic elements (LEs). In the conventional LE, the output of the combinational logic (e.g. the look-up table (LUT) in many field-programmable gate arrays (FPGAs)) is connected to the input of the storage element; while the D flip-flop (DFF) is always clocked even when not necessary. Such unnecessary transitions waste power. To address this problem, we propose a novel productivity-driven LE with reduced number of transitions. The differences between our LE and the conventional LE are in the FFs-type used and the internal LE organisation. In our LEs, DFFs have been replaced by T flip-flops with the T input permanently connected to logic value 1. Instead of connecting the output of the combinational logic to the FF input, we use it as the FF clock. The proposed LE has been validated via Simulation Program with Integrated Circuit Emphasis (SPICE) simulations for a 45-nm Complementary Metal-Oxide-Semiconductor (CMOS) technology as well as via a real Computer-Aided Design (CAD) tools on a real FPGA using the standard Microelectronic Center of North Carolina (MCNC) benchmark circuits. The experimental results show that FPDs using our proposal not only have 48% lower total power but also run 17% faster than conventional FPDs on average.

  8. Fluence-Field Modulated X-ray CT using Multiple Aperture Devices

    PubMed Central

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-01-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1–1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures. PMID:27110052

  9. Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2004-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  10. Formation of damage zone and seismic velocity variations during hydraulic stimulation: numerical modelling and field observations

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Calò, Marco; Lyakhovsky, Vladimir

    2013-11-01

    During hydraulic stimulations, a complex interaction is observed between the injected flux and pressure, number and magnitude of induced seismic events, and changes in seismic velocities. In this paper, we model formation and propagation of damage zones and seismicity patterns induced by wellbore fluid injection. The model includes the coupling of poroelastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters of crystalline rocks. Results show that three subsequent interactions occur during stimulation. (1) Injected flux-pressure interaction: typically, after a flux increase, the wellbore pressure also rises to satisfy the flux conditions. Thereafter, the elevated pore pressure triggers damage accumulation and seismic activity, that is, accompanied by permeability increase. As a result, wellbore pressure decreases retaining the target injected flux. (2) Wellbore pressure-seismicity interaction: damage processes create an elongated damage zone in the direction close to the main principal stress. The rocks within the damage zone go through partial healing and remain in a medium damage state. Damage that originates around the injection well propagates within the damage zone away from the well, raising the damage state of the already damaged rocks, and is followed by compaction and fast partial healing back to a medium damage state. This `damage wave' behaviour is associated with the injected flux changes only in early stages while fracture's height (h) is larger than its length (l). The ratio h/l controls the deformation process that is responsible for several key features of the damage zone. (3) Stress- and damage-induced variations of the seismic P-wave velocities (Vp). Vp gradually decreases as damage is accumulated and increases after rock failure as the shear stress is released and healing and compaction are dominant. Typically, Vp decreases within the damage zone and increases in

  11. Development and clinical translation of OTIS: a wide-field OCT imaging device for ex-vivo tissue characterization

    NASA Astrophysics Data System (ADS)

    Munro, Elizabeth A.; Rempel, David; Danner, Christine; Atchia, Yaaseen; Valic, Michael S.; Berkeley, Andrew; Davoudi, Bahar; Magnin, Paul A.; Akens, Margarete; Done, Susan J.; Kulkarni, Supriya; Leong, Wey-Liang; Wilson, Brian C.

    2016-03-01

    We have developed an automated, wide-field optical coherence tomography (OCT)-based imaging device (OTISTM Perimeter Medical Imaging) for peri-operative, ex-vivo tissue imaging. This device features automated image acquisition, enabling rapid capture of high-resolution (15 μm) OCT images from samples up to 10 cm in diameter. We report on the iterative progression of device development from phantom and pre-clinical (tumor xenograft) models through to initial clinical results. We discuss the challenges associated with proving a novel imaging technology against the clinical "gold standard" of conventional post-operative pathology.

  12. Magnetic field effect spectroscopy of C60-based films and devices

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj R.; Nguyen, Tho D.; Ehrenfreund, Eitan; Vardeny, Z. Valy

    2013-04-01

    We performed spectroscopy of the magnetic field effect (MFE) including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in annealed and pristine fullerene C60 thin films, as well as magneto-conductance (MC) in organic diodes based on C60 interlayer. The hyperfine interaction has been shown to be the primary spin mixing mechanism for the MFE in the organics. In this respect, C60 is a unique material because 98.9% of the carbon atoms are 12C isotope, having spinless nucleus and thus lack hyperfine interaction. In spite of this, we obtained substantial MPA (up to ˜15%) and significant MC and MPL in C60 films and devices, and thus mechanisms other than the hyperfine interaction are responsible for the MFE in this material. Specifically, we found that the MFE(B) response is composed of narrow (˜10 mT) and broad (>100 mT) components. The narrow MFE(B) component is due to spin-dependent triplet exciton recombination in C60, which dominates the MPA(B) response at low pump intensities in films, or the MC response at small current densities in devices. In contrast, the broad MFE(B) component dominates the MPA(B) response at high pump intensities (or large current densities for MC(B)) and is attributed to spin mixing in the polaron pairs spin manifold due to g-factor mismatch between the electron- and hole-polarons in C60. Our results show that the organic MFE has a much broader scope than believed before.

  13. Paper analytical devices for fast field screening of beta lactam antibiotics and anti-tuberculosis pharmaceuticals

    PubMed Central

    Weaver, Abigail A.; Reiser, Hannah; Barstis, Toni; Benvenuti, Michael; Ghosh, Debarati; Hunckler, Michael; Joy, Brittney; Koenig, Leah; Raddell, Kellie; Lieberman, Marya

    2013-01-01

    Reports of low quality pharmaceuticals have been on the rise in the last decade with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide, and also screen for substitute pharmaceuticals such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals. The tests can detect binders and fillers like chalk, talc, and starch not revealed by traditional chromatographic methods. These paper devices contain twelve lanes, separated by hydrophobic barriers, with different reagents deposited in the lanes. The user rubs some of the solid pharmaceutical across the lanes and dips the edge of the paper into water. As water climbs up the lanes by capillary action, it triggers a library of different chemical tests and a timer to indicate when the tests are completed. The reactions in each lane generate colors to form a “color bar code” which can be analyzed visually by comparison to standard outcomes. While quantification of the APIs is poor compared to conventional analytical methods, the sensitivity and selectivity for the analytes is high enough to pick out suspicious formulations containing no API or a substitute API, as well as formulations containing APIs that have been “cut” with inactive ingredients. PMID:23725012

  14. Source mechanism characterization and integrated interpretation of microseismic data monitoring two hydraulic stimulations in pouce coupe field, Alberta

    NASA Astrophysics Data System (ADS)

    Lindholm, Garrison J.

    The study of the Pouce Coupe Field is a joint effort between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. My study focuses on the hydraulic stimulation of two horizontal wells within the Montney Formation located in north-western Alberta. The Montney is an example of a modern-day tight, engineering-driven play in which recent advances in drilling of horizontal wells and hydraulic fracturing have made shale gas exploitation economical. The wells were completed in December 2008 and were part of a science driven project in which a multitude of data were collected including multicomponent seismic, microseismic, and production logs. Since this time, a number of studies have been performed by students at Colorado School of Mines to better understand the effects the completions have had on the reservoir. This thesis utilizes the microseismic data that were recorded during the stimulation of the two horizontal wells in order to understand the origin of the microseismic events themselves. The data are then used to understand and correlate to the well production. To gain insight into the source of the microseismic events, amplitude ratios of recorded seismic modes (P, Sh and Sv) for the microseismic events are studied. By fitting trends of simple end member source mechanisms (strike-slip, dip-slip, and tensile) to groups of amplitude ratio data, the events are found to be of strike-slip nature. By comparing the focal mechanisms to other independent natural fracture determination techniques (shear-wave splitting analysis, FMI log), it is shown that the source of recorded microseismic events is likely to be a portion of the shear slip along existing weak planes (fractures) within a reservoir. The technique described in this work is one that is occasionally but increasingly used but offers the opportunity to draw further information from microseismic data using results that are already part of a typical processing workflow. The microseismic events are

  15. Situated Learning in the Mobile Age: Mobile Devices on a Field Trip to the Sea

    ERIC Educational Resources Information Center

    Pfeiffer, Vanessa D. I.; Gemballa, Sven; Jarodzka, Halszka; Scheiter, Katharina; Gerjets, Peter

    2009-01-01

    This study focuses on learning about fish biodiversity via mobile devices in a situated learning scenario. Mobile devices do not only facilitate relating the presented information to the real world in a direct way; they also allow the provision of dynamic representations on demand. This study asks whether mobile devices are suited to support…

  16. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells.

    PubMed

    Fu, Jing-Peng; Mo, Wei-Chuan; Liu, Ying; Bartlett, Perry F; He, Rong-Qiao

    2016-09-01

    Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT), produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response. PMID:27484904

  17. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  18. Implantable neurotechnologies: electrical stimulation and applications.

    PubMed

    Nag, Sudip; Thakor, Nitish V

    2016-01-01

    Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system. In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function. Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system. PMID:26753775

  19. Subcutaneous Peripheral Nerve Field Stimulation for the Treatment of Chronic Back Pain: Patient Selection and Technical Aspects.

    PubMed

    Winkelmueller, Matthias; Kolodziej, Malgorzata Anna; Welke, Wolfgang; Koulousakis, Athanasios; Martinez, Ramon

    2016-01-01

    A wide variety of therapeutic options are available for the treatment of chronic back pain, a very common condition in Western countries with high related social and economic costs. Nevertheless, it is not always possible to achieve adequate long-term pain relief in spite of intensive analgesic therapies. Subcutaneous peripheral nerve field stimulation (sPNFS) is a newly approved neuromodulative treatment for back pain. In previously reported case series, it has provided encouraging results on long-term pain relief, improvement in quality of life, and a reduced need for analgesic drugs. Although the surgical technique is simple, there is neither consensus for patient management nor a standardized procedure for the implantation procedure. After consideration of our personal experience and the published literature, a basic recommendation has now been developed. This represents the first step toward planning prospective studies and standardization of this treatment and will permit comparison of this technique and the results with sPNFS.

  20. Clinical Outcome and Characterization of Local Field Potentials in Holmes Tremor Treated with Pallidal Deep Brain Stimulation

    PubMed Central

    Ramirez-Zamora, Adolfo; Kaszuba, Brian C.; Gee, Lucy; Prusik, Julia; Danisi, Fabio; Shin, Damian; Pilitsis, Julie G

    2016-01-01

    Background Holmes tremor (HT) is an irregular, low-frequency rest tremor associated with prominent action and postural tremors. Currently, the most effective stereotactic target and neurophysiologic characterization of HT, specifically local field potentials (LFPs) are uncertain. We present the outcome, intraoperative neurophysiologic analysis with characterization of LFPs in a patient managed with left globus pallidus interna deep brain stimulation (Gpi DBS). Case Report A 24-year-old male underwent left Gpi DBS for medically refractory HT. LFPs demonstrated highest powers in the delta range in Gpi. At the 6-month follow-up, a 90% reduction in tremor was observed. Discussion Pallidal DBS should be considered as an alternative target for management of refractory HT. LFP demonstrated neuronal activity associated with higher power in the delta region, similarly seen in patients with generalized dystonia. PMID:27441097

  1. Intermittent 20-HZ-photic stimulation leads to a uniform reduction of alpha-global field power in healthy volunteers.

    PubMed

    Rau, R; Raschka, C; Koch, H J

    2001-01-01

    19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio < 1. We conclude that ratios from GFP data are a stable diagnostic paradigma. PMID:11811850

  2. Intermittent 20-HZ-photic stimulation leads to a uniform reduction of alpha-global field power in healthy volunteers.

    PubMed

    Rau, R; Raschka, C; Koch, H J

    2001-01-01

    19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio < 1. We conclude that ratios from GFP data are a stable diagnostic paradigma.

  3. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  4. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  5. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  6. Microfluidic Device for Electric Field-Driven Single-Cell Captureand Activation

    SciTech Connect

    Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.

    2005-09-20

    A microchip that performs directed capture and chemical activation of surface-modified single-cells has been developed. The cell-capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors and adhesion to exposed gold pads on the electrodes is directed by applying a driving electric potential. Multiple cell types can thus be sequentially and selectively captured on desired electrodes. Single-cell capture efficiency is optimized by varying the duration of field application. Maximum single-cell capture is attained for the 10 min trial, with 63+-9 percent (n=30) of the electrode pad rows having a single cell. In activation studies, single M1WT3 CHO cells loaded with the calcium-sensitive dye fluo-4 AM were captured; exposure to the muscarinic agonist carbachol increased the fluorescence to 220+-74percent (n=79) of the original intensity. These results demonstrate the ability to direct the adhesion of selected living single cells on electrodes in a microfluidic device and to analyze their response to chemical stimuli.

  7. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  8. RNA Extraction from a Mycobacterium under Ultrahigh Electric Field Intensity in a Microfluidic Device.

    PubMed

    Ma, Sai; Bryson, Bryan D; Sun, Chen; Fortune, Sarah M; Lu, Chang

    2016-05-17

    Studies of transcriptomes are critical for understanding gene expression. Release of RNA molecules from cells is typically the first step for transcriptomic analysis. Effective cell lysis approaches that completely release intracellular materials are in high demand especially for cells that are structurally robust. In this report, we demonstrate a microfluidic electric lysis device that is effective for mRNA extraction from mycobacteria that have hydrophobic and waxy cell walls. We used a packed bed of microscale silica beads to filter M. smegmatis out of the suspension. 4000-8000 V/cm field intensity was used to lyse M. smegmatis with long pulses (i.e., up to 30 pulses that were 5 s long each). Our quantitative reverse transcription (qRT)-PCR results showed that our method yielded a factor of 10-20 higher extraction efficiency than the current state-of-the-art method (bead beating). We conclude that our electric lysis technique is an effective approach for mRNA release from hard-to-lyse cells and highly compatible with microfluidic molecular assays. PMID:27081872

  9. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height.

  10. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height. PMID:27322871

  11. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.

    PubMed

    Du, Yuchen; Liu, Han; Deng, Yexin; Ye, Peide D

    2014-10-28

    Although monolayer black phosphorus (BP), or phosphorene, has been successfully exfoliated and its optical properties have been explored, most of the electrical performance of the devices is demonstrated on few-layer phosphorene and ultrathin BP films. In this paper, we study the channel length scaling of ultrathin BP field-effect transistors (FETs) and discuss a scheme for using various contact metals to change the transistor characteristics. Through studying transistor behaviors with various channel lengths, the contact resistance can be extracted with the transfer length method (TLM). With different contact metals, we find out that the metal/BP interface has different Schottky barrier heights, leading to a significant difference in contact resistance, which is quite different from previous studies of transition metal dichalcogenides (TMDs), such as MoS2, where the Fermi level is strongly pinned near the conduction band edge at the metal/MoS2 interface. The nature of BP transistors is Schottky barrier FETs, where the on and off states are controlled by tuning the Schottky barriers at the two contacts. We also observe the ambipolar characteristics of BP transistors with enhanced n-type drain current and demonstrate that the p-type carriers can be easily shifted to n-type or vice versa by controlling the gate bias and drain bias, showing the potential to realize BP CMOS logic circuits.

  12. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  13. Zero field conductance singularity in two terminal ferromagnet-topological insulator device

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2014-03-01

    Spin-momentum interlocking of surface electronic states on 3D topological insulator (TI) grants the unique opportunity to generate electric current directed according to the spin polarization of injected electrons instead of the applied electric field. Such asymmetry in momentum distribution of injected electrons takes place in the vicinity of ferromagnetic contact but vanishes on the length of few mean free passes. We propose to use this property in two terminal devices consisting of two parallel ferromagnetic contacts deposited on the surface of 3D TI. When the injected spin polarization leads to electron momentum pointing towards the other electrode, it facilitate the direct transmission, resulting in a lower resistance; in contrast with a reversed bias, the spin-determined momentum points away from the other electrode, because of which the electrons could gain the right momentum only after multiple scatterings to approach the second electrode, thus resulting in a higher resistance. We stress that this asymmetry in the resistance keeps up to arbitrarily small applied voltage since it does not need the formation of space charge region that is essential in conventional diodes. The rectification ratio near zero voltage are estimated and potential application are discussed. This work was supported, in part, by the US Army Research Office and FAME (one of six centers of STARnet, a SRC program sponsored by MARCO and DARPA).

  14. Decreased Gap Width in a Cylindrical High-Field Asymmetric Waveform Ion Mobility Spectrometry Device Improves Protein Discovery.

    PubMed

    Swearingen, Kristian E; Winget, Jason M; Hoopmann, Michael R; Kusebauch, Ulrike; Moritz, Robert L

    2015-12-15

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly 4-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for on-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against prefractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling. PMID:26560994

  15. RF Power and Magnetic Field Modulation Experiments with Simple Mirror Geometry in the Central Cell of Hanbit Device

    SciTech Connect

    Lee, S.G.; Bak, J.G.; Jhang, H.G.; Kim, S.S.

    2005-01-15

    The radio frequency (RF) stabilization effects to investigate the characteristics of the interchange instability by RF power and magnetic field modulation experiments were performed near {omega}/{omega}{sub i} {approx} = 1 and with low beta ({approx} 0.1%) plasmas in the central cell of the Hanbit mirror device. Temporal behaviors of the interchange mode were measured and analyzed when the interchange mode was triggered by sudden changes of the RF power and magnetic field intensity.

  16. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters.

    PubMed

    Chan, Maria F; Song, Yulin; Dauer, Lawrence T; Li, Jingdong; Huang, David; Burman, Chandra

    2012-01-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar™ DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium (∼2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by ± 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., ∼d(max) of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  17. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  18. Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Di Marco, P.; Filippeschi, S.; Fioriti, D.; Mameli, M.

    2015-11-01

    In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction.

  19. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    SciTech Connect

    Kaiju, H. Kasa, H.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.; Komine, T.

    2015-05-07

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96–1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10–20 nm can be expected to function as spin-filter devices.

  20. High-intensity static magnetic field exposure devices for in vitro experiments on biopharmaceutical plant factories in aerospace environments.

    PubMed

    Lopresto, Vanni; Merla, Caterina; Pinto, Rosanna; Benvenuto, Eugenio

    2015-08-01

    Three high-intensity static magnetic field (SMF) exposure devices have been designed and realized for application to in vitro experimental research on hairy root cultures, supposed to grow in extreme environments- as those of space aircrafts- for producing biopharmaceutical molecules. The devices allow the exposure at two different levels of induction magnetic (B) field (250 mT and 500 mT) plus sham for blind exposure. The exposure levels can be considered representative of possible B-fields experienced within the habitat of a spacecraft in presence of active magnetic shielding systems. Each device can house a single 85-mm diameter Petri dish. Numerical simulations have been performed to accurately evaluate the B-field distribution in the biological target. Numerical results have been confirmed by measured data, proving that designed setups allows exposure to SMFs with a homogeneity better than 90%. The exposure devices will be employed for experiments scheduled within BIOxTREME research project, funded by the Italian Space Agency (ASI).

  1. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical nerve stimulator/locator. (a) Identification. A surgical nerve stimulator/locator is a device that is intended...

  2. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical nerve stimulator/locator. (a) Identification. A surgical nerve stimulator/locator is a device that is intended...

  3. Does social approval stimulate prosocial behavior? Evidence from a field experiment in the residential electricity market

    NASA Astrophysics Data System (ADS)

    Yoeli, Erez

    At least since Veblen (1899), economists have proposed that people do good because they desire "social approval" and want to look good in front of others. Evidence from the laboratory supports this claim, but is difficult to generalize due to the unrealistic degree of scrutiny in a laboratory environment. I administer a field experiment to test the potency of social approval in a realistic and policy relevant setting. In the experiment I solicit 7893 customers of a large electric utility for a program that helps prevent blackouts. I vary whether their decision to participate in the program is revealed to their neighbors. Customers whose decision is revealed are 1.5% more likely to sign up than those whose decision is anonymous when their decision is framed as a contribution to a public good. Social approval increases participation more than offering subjects a $25 incentive, and its effect is large relative to the mean sign-up rate of 4.1%. I explore whether social approval contributes to crowding out and conditionally cooperative behavior, but the evidence is inconclusive.

  4. Correlation between cell migration and reactive oxygen species under electric field stimulation.

    PubMed

    Wu, Shang-Ying; Hou, Hsien-San; Sun, Yung-Shin; Cheng, Ji-Yen; Lo, Kai-Yin

    2015-09-01

    Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate. PMID:26487906

  5. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats.

    PubMed

    Zhou, Jun; Chen, Shiju; Guo, Hua; Xia, Lu; Liu, Huifang; Qin, Yuxi; He, Chengqi

    2013-05-01

    Pulsed electromagnetic field (PEMF) has been shown to increase bone mineral density in osteoporosis patients and prevent bone loss in ovariectomized rats. But the mechanisms through which PEMF elicits these favorable biological responses are still not fully understood. Receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) are cytokines predominantly secreted by osteoblasts and play a central role in differentiation and functional activation of osteoclasts. The purpose of this study was to investigate the effects of PEMF on RANKL and OPG expression in ovariectomized rats. Thirty 3-month-old female Sprague-Dawley rats were randomly divided into three groups: sham-operated control (Sham), ovariectomy control (OVX), and ovariectomy with PEMF treatment (PEMF). After 12-week interventions, the results showed that PEMF increased serum 17β-estradiol level, reduced serum tartrate-resistant acid phosphatase level, increased bone mineral density, and inhibited deterioration of bone microarchitecture and strength in OVX rats. Furthermore, PEMF could suppress RANKL expression and improve OPG expression in bone marrow cells of OVX rats. In conclusion, this study suggests that PEMF can prevent ovariectomy-induced bone loss through regulating the expression of RANKL and OPG.

  6. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    PubMed

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  7. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  8. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    PubMed Central

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  9. Impact of magnetic topology on radial electric field profile in the scrape-off layer of the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Ida, K.; Kamiya, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, M.; Kawamura, G.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.; Hudson, S.; Feng, Y.; Yamada, I.; Yasuhara, R.; Tanaka, K.; Akiyama, T.; Morisaki, T.; The LHD Experiment Group

    2016-09-01

    The radial electric field in the plasma edge is studied in the Large Helical Device (LHD) experiments. When magnetic field lines become stochastic or open at the plasma edge and connected to the vessel, electrons are lost faster than ions along these field lines. Then, a positive electric field appears in the plasma edge. The radial electric field profile can be used to detect the effective plasma boundary. Magnetic topology is an important issue in stellarator and tokamak research because the 3D boundary has the important role of controlling MHD edge stability with respect to ELMs, and plasma detachment. Since the stochastic magnetic field layer can be controlled in the LHD by changing the preset vacuum magnetic axis, this device is a good platform to study the properties of the radial electric field that appear with the different stochastic layer width. Two magnetic configurations with different widths of the stochastic layer as simulated in vacuum are studied for low-β discharges. It has been found that a positive electric field appeared outside of the last closed flux surface. In fact the positions of the positive electric field are found in the boundary between of the stochastic layer and the scrape-off layer. To understand where is the boundary of the stochastic layer and the scrape-off layer, the magnetic field lines are analyzed statistically. The variance of the magnetic field lines in the stochastic layer is increased outwards for both configurations. However, the skewness, which means the asymmetry of the distribution of the magnetic field line, increases for only one configuration. If the skewness is large, the connection length becomes effectively short. Since that is consistent with the experimental observation, the radial electric field can be considered as an index of the magnetic topology.

  10. Detection of Delta9-tetrahydrocannabinol and amphetamine-type stimulants in oral fluid using the Rapid Stat point-of-collection drug-testing device.

    PubMed

    Röhrich, J; Zörntlein, S; Becker, J; Urban, R

    2010-04-01

    The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory.

  11. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation.

    PubMed

    Yun, Hyung-Mun; Ahn, Su-Jin; Park, Kyung-Ran; Kim, Mi-Joo; Kim, Jung-Ju; Jin, Guang-Zhen; Kim, Hae-Won; Kim, Eun-Cheol

    2016-04-01

    Magnetism has recently been implicated to play significant roles in the regulation of cell responses. Allowing cells to experience a magnetic field applied externally or scaffolding them in a material with intrinsic magnetic properties has been a possible way of utilizing magnetism. Here we aim to investigate the combined effects of the external static magnetic field (SMF) with magnetic nanocomposite scaffold made of polycaprolactone/magnetic nanoparticles on the osteoblastic functions and bone formation. The SMF synergized with the magnetic scaffolds in the osteoblastic differentiation of primary mouse calvarium osteoblasts, including the expression of bone-associated genes (Runx2 and Osterix) and alkaline phosphatase activity. The synergism was demonstrated in the activation of integrin signaling pathways, such as focal adhesion kinase, paxillin, RhoA, mitogen-activated protein kinase, and nuclear factor-kappaB, as well as in the up-regulation of bone morphogenetic protein-2 and phosphorylation of Smad1/5/8. Furthermore, the SMF/magnetic scaffold-stimulated osteoblasts promoted the angiogenic responses of endothelial cells, including the expression of vascular endothelial growth factor and angiogenin-1 genes and the formation of capillary tubes. When the magnetic scaffolds were implanted in mouse calvarium defects, the application of SMF significantly enhanced the new bone formation at 6 weeks, as revealed by the histological and micro-computed tomographic analyses. Current findings suggest that the combinatory application of external (SMF) and internal (scaffold) magnetism can be a promising tool to regenerative engineering of bone. PMID:26854394

  12. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    PubMed Central

    Caraveo-Frescas, J. A.; Khan, M. A.; Alshareef, H. N.

    2014-01-01

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm2V−1s−1, large memory window (∼16 V), low read voltages (∼−1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices. PMID:24912617

  13. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS: THE NEW X-WAND HVOC SCREENING DEVICE

    SciTech Connect

    John F. Schabron; Susan S. Sorini; Joseph F. Rovani Jr

    2006-03-01

    Western Research Institute (WRI) has developed new methodology and a test kit to screen soil or water samples for halogenated volatile organic compounds (HVOCs) in the field. The technology has been designated the X-Wand{trademark} screening tool. The new device uses a heated diode sensor that is commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. This sensor is selective to halogens. It does not respond to volatile aromatic hydrocarbons, such as those in gasoline, and it is not affected by high humidity. In the current work, the heated diode leak detectors were modified further to provide units with rapid response and enhanced sensitivity. The limit of detection for trichloroethylene TCE in air is 0.1 mg/m{sup 3} (S/N = 2). The response to other HVOCS relative to TCE is similar. Variability between sensors and changes in a particular sensor over time can be compensated for by normalizing sensor readings to a maximum sensor reading at 1,000 mg/m{sup 3} TCE. The soil TCE screening method was expanded to include application to water samples. Assuming complete vaporization, the detection limit for TCE in soil is about 1 ug/kg (ppb) for a 25-g sample in an 8-oz jar. The detection limit for TCE in water is about 1 ug/L (ppb) for a 25-mL sample in an 8-oz jar. This is comparable to quantitation limits of EPA GC/MS laboratory methods. A draft ASTM method for screening TCE contaminated soils using a heated diode sensor was successfully submitted for concurrent main committee and subcommittee balloting in ASTM Committee D 34 on Waste Management. The method was approved as ASTM D 7203-05, Standard Test Method for Screening Trichloroethylene (TCE)-Contaminated Soil Using a Heated Diode Sensor.

  14. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics

    PubMed Central

    Inci, Fatih; Filippini, Chiara; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S.; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L.; Carocci, Margot; Yamamoto, Hidemi S.; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R.; Singhal, Amit; Yang, Priscilla L.; Nibert, Max L.; Fichorova, Raina N.; Lau, Daryl T.-Y.; Henrich, Timothy J.; Kaye, Kenneth M.; Schachter, Steven C.; Kuritzkes, Daniel R.; Steinmetz, Lars M.; Gambhir, Sanjiv S.; Davis, Ronald W.; Demirci, Utkan

    2015-01-01

    Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes. PMID:26195743

  15. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics.

    PubMed

    Inci, Fatih; Filippini, Chiara; Baday, Murat; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L; Carocci, Margot; Yamamoto, Hidemi S; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R; Singhal, Amit; Yang, Priscilla L; Nibert, Max L; Fichorova, Raina N; Lau, Daryl T-Y; Henrich, Timothy J; Kaye, Kenneth M; Schachter, Steven C; Kuritzkes, Daniel R; Steinmetz, Lars M; Gambhir, Sanjiv S; Davis, Ronald W; Demirci, Utkan

    2015-08-11

    Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes. PMID:26195743

  16. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics.

    PubMed

    Inci, Fatih; Filippini, Chiara; Baday, Murat; Ozen, Mehmet Ozgun; Calamak, Semih; Durmus, Naside Gozde; Wang, ShuQi; Hanhauser, Emily; Hobbs, Kristen S; Juillard, Franceline; Kuang, Ping Ping; Vetter, Michael L; Carocci, Margot; Yamamoto, Hidemi S; Takagi, Yuko; Yildiz, Umit Hakan; Akin, Demir; Wesemann, Duane R; Singhal, Amit; Yang, Priscilla L; Nibert, Max L; Fichorova, Raina N; Lau, Daryl T-Y; Henrich, Timothy J; Kaye, Kenneth M; Schachter, Steven C; Kuritzkes, Daniel R; Steinmetz, Lars M; Gambhir, Sanjiv S; Davis, Ronald W; Demirci, Utkan

    2015-08-11

    Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.

  17. Bringing Magnetic Field Data in Real-Time for Researchers on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Wolf, V. G.; Hampton, D. L.

    2013-12-01

    Magnetometer data from eight remote stations across Alaska have been collected continuously since the early 1980's by the Geophysical Institute Magnetometer Array (GIMA). These three-axis fluxgate magnetometers, with <1 nT precision, provide data at 1 Hz, which are used to determine the currents associated with auroral activity in the Alaska polar regions. A primary function of the GIMA is to supply magnetic field deflection data in real time to researchers so they can determine when to launch a sub-orbital sounding rocket from the Poker Flat Research Range into the proper auroral conditions. The aurora is a key coupling mechanism between the Earth's magnetosphere and ionosphere, and the magnetometers are used to remotely sense the ionospheric currents associated with aurora. The web-based interface to display the real-time magnetometer data has been upgraded to be fully functional on a wide range of platforms, from desktops to mobile devices. The incoming data stream from each station is recorded in a database and used to populate the real time graphical display. Improvements in data management increased the sampling rate from 5 seconds to 1 second for the display. The displays are highly configurable to allow researchers the flexibility to interpret the magnetic signature they need to make a successful launch decision. The use of Django and Java script technology enabled the system to be structured for rapid expansion when new stations come online and input streams are improved. Data are also available for download within 24 hours of collection. The existence of real-time data has been and will continue to be critical for successful rocket launches.

  18. Effect of magnetic field topology on quasi-stationary equilibrium, fluctuations, and flows in a simple toroidal device

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Thatipamula, Shekar G.; Ganesh, R.; Saxena, Y. C.; Raju, D.

    2016-10-01

    In a simple toroidal device, the plasma profiles and properties depend on toroidal magnetic field topology. For example, the toroidal connection length crucially controls the adiabatic or non-adiabatic nature of electron dynamics, which in turn governs the nature of instabilities, fluctuations, and transport, the latter of which governs the plasma mean profiles. We present the results of extensive experiments in a simple toroidal device obtained by controlling the mean parallel connection length L ¯ c , by application of external vertical component of magnetic field Bv, where B v ≤ 2 % of toroidal magnetic field BT. Interestingly, for nearly closed field lines, which are characterized by large values of L ¯ c , it is found that flute like coherent modes are observed to be dominant and is accompanied by large poloidal flows. For small values of L ¯ c , the mean density on the high field side is seen to increase and the net poloidal flow reduces while a turbulent broad band in fluctuation spectrum is observed. Upon a gradual variation of L ¯ c from large to small values, continuous changes in mean plasma potential and density profiles, fluctuation, and poloidal flows demonstrate that in a simple toroidal device there exists a strong relationship between Lc, flows, and fluctuations. The net flow measured is found independent of the direction of Bv, but an asymmetry in the magnitude of the flow is found. The observed imbalance between the mean flow, fluctuation driven flow, and net flow is also discussed.

  19. Optical Stimulation of Neurons

    PubMed Central

    Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco

    2014-01-01

    Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269

  20. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery

    NASA Astrophysics Data System (ADS)

    Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui

    2015-08-01

    We consider a near-field thermophotovoltaic device with metal as the emitter and semiconductor as the photovoltaic cell. We show that when the cell is a III-V semiconductor, such as GaSb, parasitic phonon-polariton heat transfer reduces efficiency in the near-field regime, especially when the temperature of the emitter is not high enough. We further propose ways to avoid the phonon-polariton heat transfer by replacing the III-V semiconductor with a non-polar semiconductor such as Ge. Our work provides practical guidance on the design of near-field thermophotovoltaic systems for efficient harvesting of low-quality waste heat.

  1. Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming, Field.

    PubMed

    DiGiulio, Dominic C; Jackson, Robert B

    2016-04-19

    A comprehensive analysis of all publicly available data and reports was conducted to evaluate impact to Underground Sources of Drinking Water (USDWs) as a result of acid stimulation and hydraulic fracturing in the Pavillion, WY, Field. Although injection of stimulation fluids into USDWs in the Pavillion Field was documented by EPA, potential impact to USDWs at the depths of stimulation as a result of this activity was not previously evaluated. Concentrations of major ions in produced water samples outside expected levels in the Wind River Formation, leakoff of stimulation fluids into formation media, and likely loss of zonal isolation during stimulation at several production wells, indicates that impact to USDWs has occurred. Detection of organic compounds used for well stimulation in samples from two monitoring wells installed by EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices. PMID:27022977

  2. Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, Wyoming, Field.

    PubMed

    DiGiulio, Dominic C; Jackson, Robert B

    2016-04-19

    A comprehensive analysis of all publicly available data and reports was conducted to evaluate impact to Underground Sources of Drinking Water (USDWs) as a result of acid stimulation and hydraulic fracturing in the Pavillion, WY, Field. Although injection of stimulation fluids into USDWs in the Pavillion Field was documented by EPA, potential impact to USDWs at the depths of stimulation as a result of this activity was not previously evaluated. Concentrations of major ions in produced water samples outside expected levels in the Wind River Formation, leakoff of stimulation fluids into formation media, and likely loss of zonal isolation during stimulation at several production wells, indicates that impact to USDWs has occurred. Detection of organic compounds used for well stimulation in samples from two monitoring wells installed by EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices.

  3. Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Dai, Y. Y.; Luo, J.; Li, Z. L.; Deng, S. Z.; She, J. C.; Xu, N. S.

    2007-06-01

    In order to apply various cold cathode nanoemitters in a field emission display (FED) and to achieve high brightness, a FED device structure with double gates and corresponding driving method have been proposed. Individual pixel addressing can be achieved by applying proper sequence of positive or negative voltage to the lower gate and upper gate, respectively. The feasibility of the device has been demonstrated by using carbon nanotube and tungsten oxide nanowire cold emitters. Display of moving images has been demonstrated and high luminance up to 2500cd/m2 was obtained. The reported device structure is versatile for nanoemitters regardless of substrate or preparation temperature. The results are of significance to the development of FED using nanoemitters.

  4. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    PubMed

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  5. Dynamics of an Optically Generated Electric Field in a Quantum Dot Molecule Device Using Time-Resolved Photoluminescence Measurements

    NASA Astrophysics Data System (ADS)

    Thota, Venkata R.; Wickramasinghe, Thushan E.; Wijesundara, Kushal; Stinaff, Eric A.; Bracker, Allan S.; Gammon, D.

    2016-04-01

    Interdot transitions in the emission spectra of a quantum dot molecule may be used as a sensitive nanoscale probe to measure electric fields. Here, we demonstrate this potential by monitoring the temporal behavior of photovoltaic band flattening in a Schottky diode structure using a two-color excitation scheme. First, a continuous wave laser is tuned to an excitation energy below the wetting layer (WL) emission energy to create the interdot transition that is used to monitor the electric field in the device. A second modulated laser, at higher energy, is then used to create the optically generated electric field (OGEF) which leads to the photovoltaic band flattening. It is found that the rise time of this OGEF is ˜2.85 μs and the decay, or fall time, is on the order of ˜110 μs, most likely determined by device-dependent carrier transport, trapping, and tunneling rates. We also find that, at higher applied fields, the OGEF tends to decay faster and the measured values are consistent with the photovoltaic band-flattening effects reported previously in nanostructure devices.

  6. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Fortini, Cinzia; Setti, Stefania; De Mattei, Monica

    2014-09-01

    Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.

  7. Neocuproine, a copper (I) chelator, potentiates purinergic component of vas deferens contractions elicited by electrical field stimulation.

    PubMed

    Göçmen, Cemil; Kumcu, Eda Karabal; Büyüknacar, H Sinem; Onder, Serpil; Singirik, Ergin

    2005-10-01

    Effects of the specific copper (I) chelator, neocuproine, on the purinergic and adrenergic components of nerve-evoked contractions were investigated in the prostatic rat vas deferens. Electrical field stimulation (EFS; 4 Hz) induced bimodal contractions of vas deferens tissue in the presence of alpha1-adrenoceptor antagonist prazosin (to isolate the purinergic component) or purinoceptor antagonist suramin (to isolate the adrenergic component). Neocuproine significantly potentiated the purinergic component of the contractile responses to EFS. However, the same agent failed to elicit any significant effect on the adrenergic component of nerve-evoked contractions. The copper (II) chelator cuprizone could not affect the purinergic component of contractions. The potentiating effect of neocuproine which was reversible after washout of the drug, did not occur following the application of the pre-prepared neocuproine-copper (I) complex. A nitric oxide synthase inhibitor, L-nitroarginine; a cyclooxygenase inhibitor, indomethacin or an alpha2-adrenoceptor antagonist, yohimbine, failed to alter the responses to neocuproine on the purinergic component of the contraction to EFS. Neocuproine did not elicit any significant effect on preparations in which the purinergic receptors were desensitized with alpha,beta-methylene ATP. In conclusion, our results suggest that neocuproine potentiates the purinergic component of rat vas deferens contractions elicited by EFS, presumably by facilitating purinergic neurotransmission and that copper (I)-sensitive mechanisms can modulate purinergic transmission in this tissue.

  8. The Role of Geoelectrical Methods in Monitoring Stimulated Sulfate-Reduction: Insights Gained From Field-Scale Experiments

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kemna, A.; Long, P.; Druhan, J.; Hubbard, S.; Banfield, J.

    2006-12-01

    Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here we investigate the use of time-lapse geoelectrical methods to monitor stimulated sulfate-reduction at the field scale during in-situ acetate amendment at the Rifle, Colorado uranium mill tailings site. Modification of the pore fluid and sediment composition as a result of bisulfide production and mineral precipitation was concomitant with changes in induced polarization (IP) and self-potential (SP) signals. With data collected from both the surface and between boreholes, temporal variations in the IP response were characterized by the development of pronounced phase anomalies related to the precipitation of disordered mackinawite (FeS). Sediment samples recovered from the aquifer showed a close correlation between the location of the IP phase anomalies and the enrichment of acid volatile sulfides. Variations in borehole SP signals closely tracked the onset of sulfate-reduction and primarily resulted from an increase in the concentration of bisulfide adjacent to the measurement electrodes. The magnitude of the SP response was dominated by the galvanic interaction of metallic copper and bisulfide, and it closely approximated the electrochemical cell potential of the anodic and cathodic reactions occurring at the electrode surfaces. Both geolectrical techniques delineated spatially discrete anomalies that appear to reflect the interaction of biostimulation with lithological variability within the aquifer.

  9. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  10. Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

    PubMed Central

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4′-pentylbiphenyl – 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm–11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices. PMID:23948946

  11. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    NASA Astrophysics Data System (ADS)

    Gravestijn, R. M.; Drake, J. R.; Hedqvist, A.; Rachlew, E.

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tgrs, has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of tgrs, first (EXTRAP-T2) with tgrs of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tgrs much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  12. Improved Field Emission Algorithms for Modeling Field Emission Devices Using a Conformal Finite-Difference Time-Domain Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.

    2013-10-01

    This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.

  13. Influences of Interpolation Error, Electrode Geometry, and the Electrode-Tissue Interface on Models of Electric Fields Produced by Deep Brain Stimulation

    PubMed Central

    Howell, Bryan; Naik, Sagar; Grill, Warren M.

    2014-01-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders, but the fundamental mechanisms by which DBS has its effects remain unknown. Computational models can provide insights into the mechanisms of DBS, but to be useful, the models must have sufficient detail to predict accurately the electric fields produced by DBS. We used a finite element method model of the Medtronic 3387 electrode array, coupled to cable models of myelinated axons, to quantify how interpolation errors, electrode geometry, and the electrode-tissue interface affect calculation of electrical potentials and stimulation thresholds for populations of model nerve fibers. Convergence of the potentials was not a sufficient criterion for ensuring the same degree of accuracy in subsequent determination of stimulation thresholds, because the accuracy of the stimulation thresholds depended on the order of the elements. Simplifying the 3387 electrode array by ignoring the inactive contacts and extending the terminated end of the shaft had position dependent effects on the potentials and excitation thresholds, and these simplifications may impact correlations between DBS parameters and clinical outcomes. When the current density in the bulk tissue is uniform, the effect of the electrode-tissue interface impedance could be approximated by filtering the potentials calculated with a static lumped electrical equivalent circuit. Further, for typical DBS parameters during voltage-regulated stimulation, it was valid to approximate the electrode as an ideal polarized electrode with a nonlinear capacitance. Validation of these computational considerations enables accurate modeling of the electric field produced by DBS. PMID:24448594

  14. Reversible Luminescence Modulation upon an Electric Field on a Full Solid-State Device Based on Lanthanide Dimers.

    PubMed

    Yi, Xiaohui; Shang, Jie; Pan, Liang; Tan, Hongwei; Chen, Bin; Liu, Gang; Huang, Gang; Bernot, Kevin; Guillou, Olivier; Li, Run-Wei

    2016-06-22

    Switching luminescence of lanthanide-based molecules through an external electric field is considered as a promising approach toward novel functional molecule-based devices. Classic routes use casted films and liquid electrolyte as media for redox reactions. Such protocol, even if efficient, is relatively hard to turn into an effective solid-state device. In this work, we explicitly synthesize lanthanide-based dimers whose luminescent behavior is affected by the presence of Cu(2+) ions. Excellent evaporability of the dimers and utilization of Cu(2+)-based solid-state electrolyte makes it possible to reproduce solution behavior at the solid state. Reversible modulation of Cu(2+) ions transport can be achieved by an electric field in a solid-state device, where lanthanide-related luminescence is driven by an electric field. These findings provide a proof-of-concept alternative approach for electrically driven modulation of solid-state luminescence and show promising potential for information storage media in the future.

  15. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27.12 MHz) near a shortwave diathermy device.

    PubMed

    Brown-Woodman, P D; Hadley, J A; Richardson, L; Bright, D; Porter, D

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession. PMID:2925391

  16. Investigation of buffer traps in AlGaN/GaN-on-Si devices by thermally stimulated current spectroscopy and back-gating measurement

    SciTech Connect

    Yang, Shu; Zhou, Chunhua; Jiang, Qimeng; Chen, Kevin J.; Lu, Jianbiao; Huang, Baoling

    2014-01-06

    Thermally stimulated current (TSC) spectroscopy and high-voltage back-gating measurement are utilized to study GaN buffer traps specific to AlGaN/GaN lateral heterojunction structures grown on a low-resistivity Si substrate. Three dominating deep-level traps in GaN buffer with activation energies of ΔE{sub T1} ∼ 0.54 eV, ΔE{sub T2} ∼ 0.65 eV, and ΔE{sub T3} ∼ 0.75 eV are extracted from TSC spectroscopy in a vertical GaN-on-Si structure. High back-gate bias applied to the Si substrate could influence the drain current in an AlGaN/GaN-on-Si high-electron-mobility transistor in a way that cannot be explained with a simple field-effect model. By correlating the trap states identified in TSC with the back-gating measurement results, it is proposed that the ionization/deionization of both donor and acceptor traps are responsible for the generation of buffer space charges, which impose additional modulation to the 2DEG channel.

  17. Measurement of RF electric field in high- β plasma using a Pockels detector in magnetosphere plasma confinement device RT-1

    NASA Astrophysics Data System (ADS)

    Mushiake, Toshiki; Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, Atsushi

    2015-11-01

    The magnetosphere plasma confinement device RT-1 generates a dipole magnetic field that can confine high- β plasma by using a levitated superconducting coil. So far it is reported that high temperature electrons (up to 50keV) exist and that the local electron βe value exceeds more than 100%. However, the ion β value βi remains low in the present high- β state. To realize a high-βi state, we have started Ion Cyclotron Heating (ICH) experiments. For efficient ICH in a dipole topology, it is important to measure RF electric fields and characterize the propagation of RF waves in plasmas. On this viewpoint, we started direct measurement of local RF electric fields in RT-1 with a Pockels sensor system. A non-linear optical crystal in the Pockels sensor produces birefringence in an ambient electric field. The refractive index change of the birefringence is proportional to the applied electric field strength, which can be used to measure local electric fields. RF electric field distribution radiated from an ICH antenna was measured inside RT-1 in air, and was compared with numerical results calculated by TASK code. Results on the measurement of electric field distribution in high- β plasma and evaluation of the absorbed RF power into ions will be reported. Supported by JSPS KAKENHI Grant Numbers 23224014.

  18. The influence of L-NG-nitro-arginine on field stimulation induced contractions and acetylcholine release in guinea pig isolated tracheal smooth muscle.

    PubMed

    Brave, S R; Hobbs, A J; Gibson, A; Tucker, J F

    1991-09-16

    The interaction between parasympathetic and inhibitory non-adrenergic, non-cholinergic nerves in tracheal smooth muscle was investigated by determining the effects of the NO-synthase inhibitor L-NG-nitro-arginine (L-NOARG) on contractions and the associated acetylcholine release elicited by field stimulation of the muscle. At frequencies above 2Hz contractile responses to field stimulation were potentiated by L-NOARG (50 microM). alpha-chymotrypsin pre-treatment potentiated contractile responses at all frequencies, but the effects of L-NOARG were unaltered. The effect of L-NOARG on responses to 5Hz electrical stimulation was not mimicked by D-NOARG, was reversed by L-, but not D-arginine and was unaffected by epithelium removal. L-NOARG did not affect responses to exogenous acetylcholine nor the overflow of 3H from tissues previously loaded with [3H]-choline. It is therefore concluded that field stimulation of tracheal smooth muscle induces the release of an endogenous nitrate, which, by an inhibitory action on smooth muscle, functionally antagonises the concomitantly released parasympathetic neurotransmitter.

  19. Evaluation of salt particle collection device for preventing SCC on canister - Effect on particle collection rate by electric field

    SciTech Connect

    Takeda, H.; Saegusa, T.

    2013-07-01

    Now, in Japan, while metal casks are used for spent nuclear fuel storage, a practical use of concrete casks is under review because of its cost effectiveness and procurement easiness. In reviewing the practical use, stress corrosion cracking (SCC) of a canister container in the concrete cask becomes an issue and is needed to be resolved soon. A natural ventilation system is generally adopted for the storage facilities, especially in Japan where facilities are built near coasts so that the cooling air includes sea salt particles. Therefore, the occurrence of SCC is concerned when the sea salt particles adhere to welded parts of the canisters. In this study, we proposed a salt particle collection device with low pressure loss which does not interfere with the air flow into the building or the concrete casks. The device is composed of a stack of 10 parallel stainless steel plates, the air is free to circulate in the space between them. Pressure loss tests in a laboratory and salt particle collection tests in the field have been performed. It has been clarified that the pressure loss of the device is one-thirtieth to one-twentieth of that of a commercial filter and 40% of the particles in the air could be collected and the device would not influence the heat removal performance. Moreover, we evaluated the effect of electric field on the particle collection under supposing the particle charge. In the case of electric field over 10{sup 3} kV/m the particle collection rate could be improved dramatically.

  20. Breast Feeding Increases Vasoconstriction Induced by Electrical Field Stimulation in Rat Mesenteric Artery. Role of Neuronal Nitric Oxide and ATP

    PubMed Central

    Caracuel, Laura; Granado, Miriam; Balfagón, Gloria

    2013-01-01

    Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2.–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2.– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats. PMID:23342008

  1. Changes in the inhibitory responses to electrical field stimulation of intestinal smooth muscle from Trichinella spiralis infected rats.

    PubMed

    Tanovic, Adnan; Jiménez, Marcel; Fernández, Ester

    2002-11-15

    Functional motor changes and morphological alterations have been associated with intestinal inflammation. The aim of this work was to study functional motor changes in inflamed and non-inflamed intestinal segments of Trichinella spiralis infected rats. Thickness of muscle layers and cell infiltration during infection were also evaluated. Segments of rat jejunum and ileum were placed in organ bath and relaxations of the longitudinal muscle in response to electrical field stimulation (EFS) were recorded. During the post-infection (PI) period EFS-induced relaxations in ileum were decreased. Maximal decreases in relaxation were found on day 14-23 PI for ileum, whereas non significant changes were observed in jejunal samples throughout the experimental period. The sensitivity of the EFS-induced relaxations to the NO synthase inhibitor Nomega-nitro-L-arginine (L-NNA) and to the soluble guanylate cyclase inhibitor oxadiazolo-quinoxalin-1-one (ODQ) was decreased on day 14 PI for jejunum, whereas in the ileum it lasted from day 14-23 PI. The sensitivity of EFS-induced relaxations to apamin (a small conductance calcium activated potassium channel blocker) disappeared between day 6-23 PI for both jejunum and ileum. In contrast, the sensitivity of the EFS-induced relaxations to the K(+) channel blockers tetraethylamonium (TEA) and tetrapenthylammonium (TPEA) chloride was similar for healthy tissue and for tissue obtained form infected animals. Distribution and density of NADPH-diaphorase positive neurons was similar in tissue obtained form healthy and infected animals. In conclusion, intestinal inflammation induces functional and structural changes in both worm-free and worm-positive intestinal segments. Increased muscle thickness was similar for both inflamed and noninflamed segments but the most prominent functional changes i.e. a long-lasting decrease of EFS-induced relaxation was found in non-inflamed ileal segments. PMID:12408878

  2. Optimizing the internal electric field distribution of alternating current driven organic light-emitting devices for a reduced operating voltage

    NASA Astrophysics Data System (ADS)

    Fröbel, Markus; Hofmann, Simone; Leo, Karl; Gather, Malte C.

    2014-02-01

    The influence of the thickness of the insulating layer and the intrinsic organic layer on the driving voltage of p-i-n based alternating current driven organic light-emitting devices (AC-OLEDs) is investigated. A three-capacitor model is employed to predict the basic behavior of the devices, and good agreement with the experimental values is found. The proposed charge regeneration mechanism based on Zener tunneling is studied in terms of field strength across the intrinsic organic layers. A remarkable consistency between the measured field strength at the onset point of light emission (3-3.1 MV/cm) and the theoretically predicted breakdown field strength of around 3 MV/cm is obtained. The latter value represents the field required for Zener tunneling in wide band gap organic materials according to Fowler-Nordheim theory. AC-OLEDs with optimized thickness of the insulating and intrinsic layers show a reduction in the driving voltage required to reach a luminance of 1000 cd/m2 of up to 23% (8.9 V) and a corresponding 20% increase in luminous efficacy.

  3. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay

    PubMed Central

    Chen, Arnold; Wang, Royal; Bever, Candace R. S.; Xing, Siyuan; Pan, Tingrui

    2014-01-01

    The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10−3–104 μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments. PMID:25553178

  4. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay.

    PubMed

    Chen, Arnold; Wang, Royal; Bever, Candace R S; Xing, Siyuan; Hammock, Bruce D; Pan, Tingrui

    2014-11-01

    The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2',4,4'-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10(-3)-10(4 ) μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments. PMID:25553178

  5. Ionic Liquid Gating of Suspended MoS2 Field Effect Transistor Devices.

    PubMed

    Wang, Fenglin; Stepanov, Petr; Gray, Mason; Lau, Chun Ning; Itkis, Mikhail E; Haddon, Robert C

    2015-08-12

    We demonstrate ionic liquid (IL) gating of suspended few-layer MoS2 transistors, where ions can accumulate on both exposed surfaces. Upon application of IL, all free-standing samples consistently display more significant improvement in conductance than substrate-supported devices. The measured IL gate coupling efficiency is up to 4.6 × 10(13) cm(-2) V(-1). Electrical transport data reveal contact-dominated electrical transport properties and the Schottky emission as the underlying mechanism. By modulating IL gate voltage, the suspended MoS2 devices display metal-insulator transition. Our results demonstrate that more efficient charge induction can be achieved in suspended two-dimensional (2D) materials, which with further optimization, may enable extremely high charge density and novel phase transition.

  6. Interim report on the assessment of engineering issues for compact high-field ignition devices

    SciTech Connect

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing.

  7. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  8. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect

    Cornish, S. Gummersall, D.; Carr, M.; Khachan, J.

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  9. Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Varezhnikov, Alexey; Augustin, Martin; Bruns, Michael; Sommer, Martin; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2014-01-01

    Arrays of nearly identical graphene devices on Si/SiO2 exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectrode array of CVD graphene devices on a Si/SiO2 substrate and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol, and isopropanol. The diversity of graphene devices on Si/SiO2 could possibly be used to construct similar multisensor systems trained to recognize other analytes as well.

  10. Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO{sub 2} substrate as a platform for discriminative gas sensing

    SciTech Connect

    Lipatov, Alexey; Varezhnikov, Alexey; Sysoev, Victor; Augustin, Martin; Sommer, Martin; Bruns, Michael; Kolmakov, Andrei; Sinitskii, Alexander

    2014-01-06

    Arrays of nearly identical graphene devices on Si/SiO{sub 2} exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectrode array of CVD graphene devices on a Si/SiO{sub 2} substrate and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol, and isopropanol. The diversity of graphene devices on Si/SiO{sub 2} could possibly be used to construct similar multisensor systems trained to recognize other analytes as well.

  11. Characterization of solution processed, p-doped films using hole-only devices and organic field-effect transistors

    SciTech Connect

    Swensen, James S.; Wang, Liang; Rainbolt, James E.; Koech, Phillip K.; Polikarpov, Evgueni; Gaspar, Daniel J.; Padmaperuma, Asanga B.

    2012-12-01

    We report a solution-processed approach for a p-type doped hole transport layer in organic light emitting devices (OLEDs). UV-vis-NIR absorption spectra identified the charge transfer between the donor and acceptor in the solution processed doped films. Single carrier device and field-effect transistor were utilized as test vehicles to study the charge transport property and extract important parameters such as bulk mobile carrier concentration and mobility. OLEDs with p-type doped hole transport layer showed significant improvement in power efficiency up to 30% at the optimal doping ratio. This approach has the great potential to reduce the power consumption for OLED solid state lighting while lowering the cost and boosting the throughput of its manufacturing.

  12. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices

    SciTech Connect

    Liu, Shuai; Liu, Shu-Liang; Liu, Ling-Zhi; Liu, Yi-Chen; Long, Yun-Ze; Zhang, Hong-Di; Zhang, Jun-Cheng; Han, Wen-Peng

    2014-01-27

    Ce-doped p-type ZnO nanofibers were synthesized by electrospinning and followed calcinations. The surface morphology, elementary composition, and crystal structure of the nanofibers were investigated. The field effect curve confirms that the resultant Ce-doped ZnO nanofibers are p-type semiconductor. A p-n heterojunction device consisting of Ce-doped p-type ZnO nanofibers and n-type indium tin oxide (ITO) thin film was fabricated on a piece of quartz substrate. The current-voltage (I-V) characteristic of the p-n heterojunction device shows typical rectifying diode behavior. The turn-on voltage appears at about 7 V under the forward bias and the reverse current is impassable.

  13. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  14. Assessment of physiotherapists' occupational exposure to radiofrequency electromagnetic fields from shortwave and microwave diathermy devices: a literature review.

    PubMed

    Shah, Syed Ghulam Sarwar; Farrow, Alexandra

    2013-01-01

    We reviewed studies reporting the strength of radiofrequency (RF) electromagnetic fields (EMF) in physiotherapists' occupational environment. Studies from academic journals published from January 1990 to June 2010 were identified in nine online bibliographic databases. EMF strength was compared with occupational exposure limits (OELs) recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). In the reviewed studies, EMFs were measured at different distances (range 0.2 m to 6 m) from the console of diathermy devices, electrodes, and cables. For continuous shortwave diathermy (CSWD) (27.12 megahertz, MHz), measurements of EMFs at < 1 m, 1 m, 1.1-1.5 m, and 2 m reported the maximum E field strength as 8197%, 1639%, 295%, and 69%, respectively, and the maximum H field strength as 6250%, 681%, 213%, and 56%, respectively, of the ICNIRP limits for E and H fields for occupational exposure. For pulsed shortwave diathermy (PSWD) (27.12 MHz), EMF measurements at < 1 m, 1 m, and, 1.1-1.5 m showed the maximum E field intensity as 1639%, 175%, and 32%, and the maximum H field strength as 1175%, 968%, and 28%, respectively, of the ICNIRP limits for E and H fields for occupational exposure. For microwave diathermy (MWD) (2.45 gigahertz, GHz), the maximum power density measured at < 1 m, 1 m, 1.1-1.5 m, and 2 m was 200%, <30%, 0.76%, and 0.82%, respectively, of the ICNIRP limit for occupational exposure. RF EMF emissions measured from continuous and pulsed electrotherapeutic diathermy devices may well be higher than OELs at specific distances, i.e., at 1 m, which is currently designated to be a safe distance for physiotherapists. The minimum safe distance for physiotherapists should be revised to at least 2 m for CSWD and 1.5 m for PSWD. The reviewed studies did not provide evidence of exceeding the ICNIRP's reference levels for occupational exposure at 1 m from MWD devices. PMID:23570423

  15. [Conditions required for appearance of a double response to a single-shock stimulation of Schaffer collaterals in hippocampal field CA1 in freely moving rats].

    PubMed

    Zosimovskiĭ, V A; Korshunov, V A; Markevich, V A

    2007-01-01

    Schaffer collateral stimulation with a single current impulse can evoke a double response in hippocampal field CA1 of freely moving rats. The late response appears as a population excitatory postsynaptic potential with a preceding short-term potential (frequently biphasic) only after the early population spike and is time-locked to it. The wave shape and polarity of the late response, its latency with respect to the peak of the early population spike suggest that the excitation wave produced in the CA1 field by the stimulation of Schaffer collaterals passes across the entorhinal cortex and returns to the CA1 directly via the perforant path fibers. In waking rat, the medium-intensity stimulation of Schaffer collaterals (able to evoke in the CA1 an early population spike of sufficiently high amplitude) usually does not result in the appearance of the late response. However, similar stimulation becomes efficient after the tetanization of Schaffer collaterals, under conditions of the long-term potentiation of the early population spike. Moreover, the late response occurrence is facilitated in a rat falling asleep after the development in the CA1 of high-amplitude low-frequency EEG oscillations typical for the slow-wave sleep and in a sleeping rat independently of the EEG pattern. PMID:17596017

  16. Electron-Beam Heating Experiments on the C-2 Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Garate, Eusebio; Allfrey, Ian; Boyle, Daniel; Clary, Ryan; Douglass, Jon; Longman, Andrew; Patel, Vijay; Trask, Erik; Valentine, Travis; TAE Team

    2013-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Electron-beam heating can potentially provide both general auxiliary heating and strong, short heat pulses for studying thermal transport. Electron-beam heating has a long history on mirror machines where the mechanism of plasma electron heating by beam-driven plasma waves is well understood. The open-field-line plasma surrounding the FRC can be heated the same way. Electron-beam injection into FRC plasmas also raises the novel possibility of trapping the high energy beam particles in the cusp-like fields at the ends of the FRC and, at sufficiently high beam energy, penetrating into the closed-field-line region of the plasma. We have conducted the first experiments with electron-beam heating in an FRC configuration using a short pulse (~ 6 μs), high power (<= 500 MW), 30 kV peak energy electron beam injected along field lines from the divertor. Early results show evidence of beam particle trapping as well as the generation of strong heat pulses in the open-field-line plasma surrounding the FRC.

  17. Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge-to-transplantation time.

    PubMed

    Taeger, Christian D; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E; Präbst, Konstantin

    2015-01-01

    Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research. PMID:26145230

  18. Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge-to-transplantation time

    NASA Astrophysics Data System (ADS)

    Taeger, Christian D.; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I.; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E.; Präbst, Konstantin

    2015-07-01

    Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research.

  19. Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge-to-transplantation time

    PubMed Central

    Taeger, Christian D.; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I.; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E.; Präbst, Konstantin

    2015-01-01

    Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research. PMID:26145230

  20. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  1. Full-field characterization of a twisted nematic liquid-crystal device using equivalence theorem of a unitary optical system.

    PubMed

    Yu, Chih-Jen; Tseng, Yao-Teng; Hsu, Kuei-Chu; Chou, Chien

    2012-01-10

    Based on the equivalence theorem of a unitary optical system, we proposed an analytical approach to characterize the cell parameters of a twisted nematic liquid-crystal device (TNLCD) with full-field resolution. The spatial distribution of three characteristic parameters of a TNLCD was measured by using a polarizer-sample-analyzer imaging polarimeter so that the untwisted phase retardation, cell thickness, and twisted angle of a TNLCD can be directly calculated through the explicit expressions as a function of the characteristic parameters. The measured results agree well with the given values. This method can be implemented for characterization of a TNLCD in the manufacturing process. PMID:22270521

  2. Effect of stacking order on device performance of bilayer black phosphorene-field-effect transistor

    SciTech Connect

    Mukhopadhyay, A. Banerjee, L.; Sengupta, A.; Rahaman, H.

    2015-12-14

    We investigate the effect of stacking order of bilayer black phosphorene on the device properties of p-MOSFET and n-MOSFET. Two layers of black phosphorus are stacked in three different orders and are used as channel material in both n-MOSFET and p-MOSFET devices. The effects of different stacking orders on electron and hole effective masses and output characteristics of MOSFETs, such as ON currents, ON/OFF ratio, and transconductance are analyzed. Our results show that about 1.37 times and 1.49 times increase in ON current is possible along armchair and zigzag directions, respectively, 55.11% variation in transconductance is possible along armchair direction, by changing stacking orders (AA, AB, and AC) and about 8 times increase in ON current is achievable by changing channel orientation (armchair or zigzag) in p-MOSFET. About 14.8 mV/V drain induced barrier lowering is observed for both p-MOSFET and n-MOSFET, which signifies good immunity to short channel effects.

  3. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    SciTech Connect

    Thomson, D.B.

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date.

  4. Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-09-01

    AlGaN/GaN Field Effect Transistors (FETs) are promising biosensing devices. Functionalization of these devices is explored in this study using an in situ approach with phosphoric acid etchant and a phosphonic acid derivative. Devices are terminated on peptides and soaked in water for up to 168 hrs to examine FETs for both device responses and surface chemistry changes. Measurements demonstrated threshold voltage shifting after the functionalization and soaking processes, but demonstrated stable FET behavior throughout. X-ray photoelectron spectroscopy and atomic force microscopy confirmed peptides attachment to device surfaces before and after water soaking. Results of this work point to the stability of peptide coated functionalized AlGaN/GaN devices in solution and support further research of these devices as disposable, long term, in situ biosensors.

  5. Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties

    SciTech Connect

    Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-09-15

    AlGaN/GaN Field Effect Transistors (FETs) are promising biosensing devices. Functionalization of these devices is explored in this study using an in situ approach with phosphoric acid etchant and a phosphonic acid derivative. Devices are terminated on peptides and soaked in water for up to 168 hrs to examine FETs for both device responses and surface chemistry changes. Measurements demonstrated threshold voltage shifting after the functionalization and soaking processes, but demonstrated stable FET behavior throughout. X-ray photoelectron spectroscopy and atomic force microscopy confirmed peptides attachment to device surfaces before and after water soaking. Results of this work point to the stability of peptide coated functionalized AlGaN/GaN devices in solution and support further research of these devices as disposable, long term, in situ biosensors.

  6. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    SciTech Connect

    Beninato, A.; Baglio, S.; Andò, B.; Emery, T.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-09

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3} shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi{sub 0.7}Dy{sub 0.3}FeO{sub 3}, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a “blueprint” for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or “target” B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  7. Comparison between experimental and computer simulations of current-voltage (I-V) characteristics of dielectric-coated photon-stimulated field emitters.

    PubMed

    Mayer, A; Mousa, M S; Vigneron, J P

    2001-10-01

    For the purpose of simulating photon-stimulated field emission by taking account of three-dimensional aspects, a transfer-matrix formulation of electronic scattering was combined with a Floquet expansion of the wave function for taking account of quanta exchanges between the electrons and the external radiation. With specific techniques to preserve numerical stability, this transfer-matrix formalism is well suited to compute the transmission of the field-emitted/photon-stimulated electrons between two electrodes. This theory is applied to the computation of Fowler-Nordheim curves describing the photon-stimulated field emission of a tungsten plane emitter (described by z< or =0), which supports a nanometric protrusion and a dielectric coating. The extraction bias ranges from 12 to 24V, for an inter-electrode distance of 4nm. The electromagnetic radiation has a wavelength of 0.67 microm and a power flux density ranging from 5.96 x 10(10) to 5.96 x 10(12) W/m2. The effects due to the protrusion and the dielectric coating are studied. These theoretical results are compared with the experimental data.

  8. Application of time-lapse seismic shear wave inversion to characterize the stimulated rock volume in the Niobrara and Codell Reservoirs, Wattenberg Field, CO

    NASA Astrophysics Data System (ADS)

    Mueller, Staci K.

    Advances in horizontal drilling and completions in shale reservoirs have allowed operators to extract hydrocarbons within low permeability reservoirs that were once impossible to access. The integration of time-lapse multicomponent seismic data with engineering technology aids in the characterization of these reservoirs through monitoring. This thesis investigates the fast and slow shear wave components of a time-lapse, nine-component seismic survey to determine the stimulated volume in the Niobrara and Codell reservoir intervals. The time-lapse post-stack inversions of the shear wave datasets provide insight into how the shear impedance is affected by hydraulic fracturing through the work of cross-equalized seismic shear impedances and shear wave splitting. The study area is the Wishbone Section within Wattenberg Field, CO, which is owned and operated by Anadarko Petroleum Corporation and contains eleven horizontal wells that vary in spacing and completion methods. Shear seismic data sets were acquired over this section before and after hydraulic stimulation. The time-lapse shear seismic inversions show an increase in fast shear wave velocity and a decrease in slow shear velocity after stimulation. The sensitivity of both the fast and slow shear seismic to stimulation correlates with the net pressure trends at each stage. Borehole image log interpretations are compared to the inversions to analyze the affect that a complex fracture network has on induced anisotropy. The stimulated volume for the Niobrara and Codell reservoir intervals are now more accurately defined. Time-lapse shear seismic is the only technology that is able to define the stimulated rock volume and reveal areas that are not being accessed by the wells currently drilled. These areas are now detected within the Wishbone section, and may be candidates for future re-completion.

  9. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  10. A novel 3D embedded gate field effect transistor - Screen-grid FET - Device concept and modelling

    NASA Astrophysics Data System (ADS)

    Fobelets, K.; Ding, P. W.; Velazquez-Perez, J. E.

    2007-05-01

    A novel 3D field effect transistor on SOI - screen-grid FET (SGrFET) - is proposed and an analysis of its DC behaviour is presented by means of 2D TCAD analysis. The novel feature of the SGrFET is the design of 3D insulated gate cylinders embedded in the SOI body. This novel gate topology improves efficiency and allows great flexibility in device and gate geometry to optimize DC performance. The floating body effect is avoided and the double gating row configuration controls short channel effects. The traditional intimate relationship between gate length and source-drain distance is removed, resulting in easy control of drain induced barrier lowering, improved output conductance and ideal sub-threshold slope. The separation between the gate fingers in each row is the key factor to optimize the performance, whilst downscaling of the source-drain distance and oxide thickness is not essential from an operational point of view. The device exhibits a huge potential in low power electronics as given by an efficiency of transconductance " gm/ Id" of 39 S/A at VDS = 100 mV over a large gate voltage range and at a source-drain distance of 825 nm. We present the modelling results of the influence of gate cylinder distribution in the channel, channel doping, gate oxide thickness, gate finger distance and source-drain distance on the characteristics of the device.

  11. Comparisons of three practical field devices used to measure personal light exposures and activity levels

    PubMed Central

    Figueiro, M G; Hamner, R; Bierman, A; Rea, M S

    2012-01-01

    This paper documents the spectral and spatial performance characteristics of two new versions of the Daysimeter, devices developed and calibrated by the Lighting Research Center to measure and record personal circadian light exposure and activity levels, and compares them to those of the Actiwatch Spectrum (Philips Healthcare). Photometric errors from the Daysimeters and the Actiwatch Spectrum were also determined for various types of light sources. The Daysimeters had better photometric performance than the Actiwatch Spectrum. To assess differences associated with measuring light and activity levels at different locations on the body, older adults wore four Daysimeters and an Actiwatch Spectrum for five consecutive days. Wearing the Daysimeter or Actiwatch Spectrum on the wrist compromises accurate light measurements relative to locating a calibrated photosensor at the plane of the cornea. PMID:24443644

  12. A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field

    NASA Astrophysics Data System (ADS)

    De Marchi, Fabrizio

    2015-01-01

    In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.

  13. Using Consumer Electronics and Apps in Industrial Environments - Development of a Framework for Dynamic Feature Deployment and Extension by Using Apps on Field Devices

    NASA Astrophysics Data System (ADS)

    Schmitt, Mathias

    2014-12-01

    The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions

  14. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

    PubMed Central

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  15. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  16. Radiation and Magnetic Field Effects on New Semiconductor Power Devices for Hl-Lhc Experiments

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Abbate, C.; Baccaro, S.; Busatto, G.; Citterio, M.; Iannuzzo, F.; Lanza, A.; Latorre, S.; Lazzaroni, M.; Sanseverino, A.; Velardi, F.

    2014-06-01

    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under γ, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field.

  17. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factors of Wi-Fi devices operating in schools.

    PubMed

    Khalid, M; Mee, T; Peyman, A; Addison, D; Calderon, C; Maslanyj, M; Mann, S

    2011-12-01

    The growing use of wireless local area networks (WLAN) in schools has prompted a study to investigate exposure to the radio frequency (RF) electromagnetic fields from Wi-Fi devices. International guidelines on limiting the adverse health effects of RF, such as those of ICNIRP, allow for time-averaging of exposure. Thus, as Wi-Fi signals consist of intermittent bursts of RF energy, it is important to consider the duty factors of devices in assessing the extent of exposure and compliance with guidelines. Using radio packet capture methods, the duty factor of Wi-Fi devices has been assessed in a sample of 6 primary and secondary schools during classroom lessons. For the 146 individual laptops investigated, the range of duty factors was from 0.02 to 0.91%, with a mean of 0.08% (SD 0.10%). The duty factors of access points from 7 networks ranged from 1.0% to 11.7% with a mean of 4.79% (SD 3.76%). Data gathered with transmit time measuring devices attached to laptops also showed similar results. Within the present limited sample, the range of duty factors from laptops and access points were found to be broadly similar for primary and secondary schools. Applying these duty factors to previously published results from this project, the maximum time-averaged power density from a laptop would be 220 μW m(-2), at a distance of 0.5 m and the peak localised SAR predicted in the torso region of a 10 year old child model, at 34 cm from the antenna, would be 80 μW kg(-1). PMID:21856328

  18. An update on functional electrical stimulation after spinal cord injury.

    PubMed

    Gorman, P H

    2000-01-01

    Recent advances in biomedical engineering as applied to neurologic rehabilitation have finally borne clinically relevant fruit. Nowhere is this more evident than in the field of functional electrical stimulation (FES). This article highlights the remarkable clinical progress that has been made in the use of electrical stimulation for restoring movement and function in individuals with spinal cord injury. Specific attention is given to respiratory-assist devices, hand-grasp systems, standing and walking, and bladder control. This review article features discussion of eight devices that have gone through the United States Food and Drug Administration (FDA) regulatory approval process. PMID:11402876

  19. Quantum dots light emitting devices on MEMS: microcontact printing, near-field imaging, and early cancer detection

    NASA Astrophysics Data System (ADS)

    Gopal, Ashwini; Hoshino, Kazunori; Zhang, John X. J.

    2011-08-01

    Controlled patterning of light emitting devices on semiconductors and micro-electro-mechanical systems (MEMS) enables a vast variety of applications such as structured illumination, large-area flexible displays, integrated optoelectronic systems and micro-total analysis systems for real-time biomedical screening. We have demonstrated a series of techniques of creating quantum dot-based (QD) patterned inorganic light emitting devices at room temperature on silicon (Si) substrate. The innovative technology was translated to create localized QD-based light sources for two applications: (1) Three-dimensional scanning probe tip structures for near field imaging. Combined topographic and optical images were acquired using this new class of "self-illuminating" probe in commercial NSOM. The emission wavelength can be tuned through quantum-size effect of QDs. (2) Multispectral excitation sources integrated with microfluidic channels for tumor cell analyses. We were able to detect the variation of sub-cellular features, such as the nucleus-to-cytoplasm ratio, to quantify the absorption at different wavelength upon the near-field illumination of individual tumor cells towards the determination of cancer developmental stage.

  20. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    PubMed

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement. PMID:27023036

  1. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGES

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  2. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    PubMed

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.

  3. Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation

    SciTech Connect

    Kao, Kuo-Hsing; De Meyer, Kristin; Verhulst, Anne S.; Van de Put, Maarten; Soree, Bart; Magnus, Wim; Vandenberghe, William G.

    2014-01-28

    Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k · p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Γ and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-hole-like valence band is strongly coupling to the conduction band at the Γ point even in the presence of strain based on the 30-band k · p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) μA/μm can be achieved along with on/off ratio > 10{sup 6} for V{sub DD} = 0.5 V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge.

  4. The contributions of William F. House to the field of implantable auditory devices.

    PubMed

    Eisenberg, Laurie S

    2015-04-01

    William F. House was a pioneer in the evolving field of cochlear implants and auditory brainstem implants. Because of his vision, innovation and perseverance, the way was paved for future clinicians and researchers to carry on the work and advance a field that has been dedicated to serving adults and children with severe to profound hearing loss. Several of William House's contributions are highlighted in this prestigious volume to honor the recipients of the 2013 Lasker-Debakey Clinical Medical Research Award. Discussed are the early inventive years, clinical trials with the single-channel cochlear implant, the team approach, pediatric cochlear implantation, and the auditory brainstem implant. Readers may be surprised to learn that those early contributions continue to have relevance today. This article is part of a Special Issue entitled .

  5. Development of Point of Care Testing Device for Neurovascular Coupling From Simultaneous Recording of EEG and NIRS During Anodal Transcranial Direct Current Stimulation

    PubMed Central

    Jindal, Utkarsh; Sood, Mehak; Dutta, Anirban; Chowdhury, Shubhajit Roy

    2015-01-01

    This paper presents a point of care testing device for neurovascular coupling (NVC) from simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS) during anodal transcranial direct current stimulation (tDCS). Here, anodal tDCS modulated cortical neural activity leading to hemodynamic response can be used to identify the impaired cerebral microvessels functionality. The impairments in the cerebral microvessels functionality may lead to impairments in the cerebrovascular reactivity (CVR), where severely reduced CVR predicts the chances of transient ischemic attack and ipsilateral stroke. The neural and hemodynamic responses to anodal tDCS were studied through joint imaging with EEG and NIRS, where NIRS provided optical measurement of changes in tissue oxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$HbO2)$ \\end{document} and deoxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Hb$ \\end{document}) hemoglobin concentration and EEG captured alterations in the underlying neuronal current generators. Then, a cross-correlation method for the assessment of NVC underlying the site of anodal tDCS is presented. The feasibility studies on healthy subjects and stroke survivors showed detectable changes in the EEG and the NIRS responses to a 0.526 A/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{m}^{2}$ \\end{document} of anodal tDCS. The NIRS system

  6. Field-test of a date-rape drug detection device.

    PubMed

    Quest, Dale W; Horsley, Joanne

    2007-01-01

    Drink Safe Technology Version 1.2 is an inexpensive color-change reagent test marketed internationally for use by consumers in settings such as a night club to detect potentially incapacitating concentrations of gamma-hydroxybutyric acid (GHB) and ketamine in beverages. The objective of this study was to compare product performance in the laboratory and performance in the hands of consumers in the field. Product performance in the laboratory adhered to the protocol defined by the manufacturer. Product performance in the hands of consumers in field settings allowed browsing participants to pipette an aliquot of their own drinks into randomly coded vials containing authentic drugs, or pure water, so as to yield the same concentrations of GHB or ketamine specified in the manufacturer-defined protocol, or blanks. Consumers were to proceed according to the directions printed on the product, and to record their results on a card with a code corresponding with the vial to which they had added an aliquot of their beverage. Diagnostic performance was calculated using two-way analysis. In the laboratory, Drink Safe Technology Version 1.2 reliably detected GHB and ketamine at concentrations specified by the manufacturer's protocol. The reactive color change denoting a positive test for GHB was rapid, but a positive test for ketamine required substantially more time to resolve. Nonetheless, test accuracy following the manufacturer's protocol in the laboratory was 100%. In the field, based on 101 paired-test results recorded by consumers, the test efficiency was 65.1%, sensitivity 50%, and specificity 91.6%. The product performed much better in the laboratory than it did in the hand of consumers in the field. There seems to be considerable potential for consumers to misinterpret a test result. The potential for consumers to record a false-negative test result for a spiked drink is cause for concern. PMID:17725882

  7. Field-test of a date-rape drug detection device.

    PubMed

    Quest, Dale W; Horsley, Joanne

    2007-01-01

    Drink Safe Technology Version 1.2 is an inexpensive color-change reagent test marketed internationally for use by consumers in settings such as a night club to detect potentially incapacitating concentrations of gamma-hydroxybutyric acid (GHB) and ketamine in beverages. The objective of this study was to compare product performance in the laboratory and performance in the hands of consumers in the field. Product performance in the laboratory adhered to the protocol defined by the manufacturer. Product performance in the hands of consumers in field settings allowed browsing participants to pipette an aliquot of their own drinks into randomly coded vials containing authentic drugs, or pure water, so as to yield the same concentrations of GHB or ketamine specified in the manufacturer-defined protocol, or blanks. Consumers were to proceed according to the directions printed on the product, and to record their results on a card with a code corresponding with the vial to which they had added an aliquot of their beverage. Diagnostic performance was calculated using two-way analysis. In the laboratory, Drink Safe Technology Version 1.2 reliably detected GHB and ketamine at concentrations specified by the manufacturer's protocol. The reactive color change denoting a positive test for GHB was rapid, but a positive test for ketamine required substantially more time to resolve. Nonetheless, test accuracy following the manufacturer's protocol in the laboratory was 100%. In the field, based on 101 paired-test results recorded by consumers, the test efficiency was 65.1%, sensitivity 50%, and specificity 91.6%. The product performed much better in the laboratory than it did in the hand of consumers in the field. There seems to be considerable potential for consumers to misinterpret a test result. The potential for consumers to record a false-negative test result for a spiked drink is cause for concern.

  8. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  9. FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations.

    PubMed

    Martínez-Búrdalo, M; Martín, A; Sanchis, A; Villar, R

    2009-02-01

    In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna.

  10. Nonclassicality and Entanglement in multimode radiation fields under the action of classicality preserving devices

    SciTech Connect

    Chaturvedi, S.

    2011-09-23

    In this work we examine the possibilities of converting quantum optical nonclassicality into entanglement in multimode under the action of classicality preserving devices such as beamsplitters. While the single mode case is amenable to a complete analysis, non availability of certain crucial results in the classical theory of moments in the multimode situations forces us to treat these cases with lesser degree of generality by taking recourse to the familiar Mandel matrix and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test which, if successful, simultaneouly witnesses nonclassicality as well as NPT entanglement. We develop a test for NPT entanglement after beamsplitter action on a nonclassical state, designed in such a way that it remains 'close' to that for nonclassicality. In the same spirit we analyse the result of three-mode 'beamsplitter' action after coupling to an ancilla in the Fock ground state.