Science.gov

Sample records for field strains reported

  1. Characterization of BoHV-5 field strains circulation and report of transient specific subtype of bovine herpesvirus 5 in Argentina

    PubMed Central

    2011-01-01

    Background Bovine herpesvirus 5 (BoHV-5) is a member of the subfamily Alphaherpesvirinae responsible for meningo-encephalitis in young cattle. The first case of bovine meningo-encephalitis associated with a herpesvirus infection was reported in Australia. The current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. Outbreaks of BoHV-5 are regularly observed in Argentina suggesting the circulation of the virus in the bovine population. Results Seventeen field strains of BoHV-5 isolated from 1984 to now were confirmed by differential PCR and subjected to restriction endonuclease analysis (REA). Viral DNA was cleaved with BstEII which allows the differentiation among subtypes a, b and non a, non b. According to the REA with BstEII, only one field strain showed a pattern similar to the Argentinean A663 strain (prototype of BoHV-5b). All other isolates showed a clear pattern similar to the Australian N569 strain (prototype of BoHV-5a) consistent with the subtypes observed in Brazil, the other South-American country where BoHV-5 is known to be prevalent. The genomic region of subtype b responsible for the distinct pattern was determined and amplified by PCR; specifically a point mutation was identified in glycoprotein B gene, on the BstEII restriction site, which generates the profile specific of BoHV-5b. Conclusions This is the first report of circulation of BoHV-5a in Argentina as the prevailing subtype. Therefore the circulation of BoHV-5b was restricted to a few years in Argentina, speculating that this subtype was not able to be maintained in the bovine population. The mutation in the gB gene is associated with the difference in the restriction patterns between subtypes "a" and "b". PMID:21299866

  2. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  3. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  4. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  6. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  7. Thermographic phosphor strain measurements. Final report

    SciTech Connect

    Allison, S.W.; Capps, G.J.; Smith, D.B.; Cates, M.R.; Gleason, J.; Turley, W.D.

    1994-05-01

    This report describes the first phase of research aimed at developing a high-temperature strain gauge for power equipment use based on materials whose fluorescence characteristics are affected by strain. In electric power generating plants, the combined effect of temperature and strain on equipment and structures is a critical factor in safe, efficient operation and component lifetime. For the first part of this project, the pressure responses of phosphor and crystalline materials were surveyed. Next, pressure measurements on some promising materials, YVO{sub 4}:Dy and Gd{sub 2}O{sub 2}S:Tb, were performed. The latter phosphor appears to exhibit the greatest change with pressure. Its fluorescence lifetime decreases by a factor of 10 with pressure increase of 20 kbar. In a strain test configuration, a tapered sapphire rod compressed a similar phosphor material, La{sub 2}O{sub 2}S:Eu. The intensity level increased, as expected for this material, with compression. Both of the oxysulfide materials possess potential for use in an optical strain gauge for temperatures up to at least 300{degrees}C. It is suggested that a mixture of these two materials may be a useful way to obtain the maximum pressure or strain sensitivity.

  8. Volume strain within the Geysers geothermal field

    SciTech Connect

    Mossop, Antony; Segall, Paul

    1999-12-10

    During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

  9. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  10. Antigenic differentiation of classical swine fever vaccinal strain PAV-250 from other strains, including field strains from Mexico.

    PubMed

    Mendoza, Susana; Correa-Giron, Pablo; Aguilera, Edgar; Colmenares, Germán; Torres, Oscar; Cruz, Tonatiuh; Romero, Andres; Hernandez-Baumgarten, Eliseo; Ciprián, Abel

    2007-10-10

    Twenty-nine classical swine fever virus (CSFv) strains were grown in the PK15 or SK6 cell lines. Antigenic differentiation studies were performed using monoclonal antibodies (McAbs), produced at Lelystad (CDI-DLO), The Netherlands. The monoclonals which were classified numerically as monoclonals 2-13. Epitope map patterns that resulted from the reactivity with McAbs were found to be unrelated to the pathogenicity of the viruses studied. Antigenic determinants were recognized by McAbs 5 and 8, were not detected in some Mexican strains; however, sites for McAb 6 were absent in all strains. The PAV-250 vaccine strain was recognized by all MAbs, except by MAb 6. Furthermore, the Chinese C-S vaccine strain was found to be very similar to the GPE(-) vaccine. None of the studied Mexican vaccines or field strains was found to be similar to the PAV-250 vaccine strain.

  11. Strain rate and stress field in Switzerland

    NASA Astrophysics Data System (ADS)

    Houlié, Nicolas; Woessner, Jochen; Giardini, Domenico; Rothacher, Markus

    2016-04-01

    In this study we test whether the surface deformation and the seismic activity are in agreement in terms of seismic moment release and stress/strain orientations within the territory of Switzerland. We find that for most of the country, the stress released (~2.0 10E11 N·m/yr) is consistent with the lithosphere deformation (<5 10E-8 /yr) constrained using the Global Positioning System (GPS). South of the Alpine front, we note that surface strain rates displays few agreement with long-term (and deep) deformation of the upper mantle. In this area, we propose that shear strain is being distributed in the upper crust as a result of the clockwise rotation of the Adria plate. For three regions (Basel, Swiss Jura and Ticino), we find that seismic current activity and surface deformation not to be in agreement. In the Basel area, deep seismicity exists while surface deformation is absent. This situation contrasts to what is found in the Ticino and the Swiss Jura, where seismic activity is close to absent but surface deformation is detected (~2 10E-8 /yr). While the surface deformation and seismic activity is inconsistent for the Ticino, we find them to comply in the Valais region where MW≥6 events are historically documented. Our comparison implies that the Ticino faces the potential of damaging earthquakes every hundred to few hundred years.

  12. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    SciTech Connect

    Shukla, V; Jisrawi, N M; Sadangi, R K; Pao, P S; Horvath, K; Sadananda, K; Ignatov, A; Skaritka, J; Tsakalakos, T

    2009-02-05

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.

  13. MLVA typing of Mycoplasma hyopneumoniae bacterins and field strains

    PubMed Central

    Tamiozzo, P.; Zamora, R.; Lucchesi, P. M. A.; Estanguet, A.; Parada, J.; Carranza, A.; Camacho, P.; Ambrogi, A.

    2015-01-01

    Because of the lack of information about both the genetic characteristics of Mycoplasma hyopneumoniae commercial vaccines and their relationship with field strains, the authors attempted to identify genetic subtypes of some M hyopneumoniae bacterins, and to compare them with M. hyopneumoniae field strains. Six commercial M hyopneumoniae bacterins and 28 bronchoalveolar lavages from pigs at slaughter from three herds were analysed by Multiple-Locus Variable number tandem repeat Analysis (MLVA) on p146R1, p146R3, H4, H5 and p95 loci. The results obtained showed the presence of more than one M hyopneumoniae genotype in some pigs and also in one of the bacterins analysed. It is also worth noting that MLVA typing allowed the distinction among circulating field strains and also when comparing them with vaccine strains, which, knowing the relatedness among them, could be useful in the research of the efficacy of the vaccines. PMID:26495127

  14. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  15. Identification of Strain-Specific Sequences That Distinguish a Mycoplasma gallisepticum Vaccine Strain from Field Isolates

    PubMed Central

    Ricketts, Camir; Pickler, Larissa; Maurer, John; Ayyampalayam, Saravanaraj; García, Maricarmen

    2016-01-01

    ABSTRACT Despite attempts to control avian mycoplasmosis through management, vaccination, and surveillance, Mycoplasma gallisepticum continues to cause significant morbidity, mortality, and economic losses in poultry production. Live attenuated vaccines are commonly used in the poultry industry to control avian mycoplasmosis; unfortunately, some vaccines may revert to virulence and vaccine strains are generally difficult to distinguish from natural field isolates. In order to identify genome differences among vaccine revertants, vaccine strains, and field isolates, whole-genome sequencing of the M. gallisepticum vaccine strain ts-11 and several “ts-11-like” strains isolated from commercial flocks was performed using Illumina and 454 pyrosequencing and the sequenced genomes compared to the M. gallisepticum Rlow reference genome. The collective contigs for each strain were annotated using the fully annotated Mycoplasma reference genome. The analysis revealed genetic differences among vlhA alleles, as well as among genes annotated as coding for a cell wall surface anchor protein (mg0377) and a hypothetical protein gene, mg0359, unique to M. gallisepticum ts-11 vaccine strain. PCR protocols were designed to target 5 sequences unique to the M. gallisepticum ts-11 strain: vlhA3.04a, vlhA3.04b, vlhA3.05, mg0377, and mg0359. All ts-11 isolates were positive for the five gene alleles tested by PCR; however, 5 to 36% of field isolates were also positive for at least one of the alleles tested. A combination of PCR tests for vlhA3.04a, vlhA3.05, and mg0359 was able to distinguish the M. gallisepticum ts-11 vaccine strain from field isolates. This method will further supplement current approaches to quickly distinguish M. gallisepticum vaccine strains from field isolates. PMID:27847370

  16. Field practice internship final report

    SciTech Connect

    Foster, T.

    1994-05-01

    This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.

  17. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  18. A seismotectonic model from the strain field of Africa

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Meghraoui, Mustapha; Radwan, Ali

    2013-04-01

    Using ~100 available permanent GNSS stations we compute a velocity field to obtain the current strain field in Africa. GPS stations with short data span (>2.5 years data span) and monument/equipment instability are excluded for the estimated velocity field. Although significant gaps of geodetic stations still exist, particularly on the Central and North (include Sahara) Africa, the aim is to produce reliable velocity solutions and evaluate the strain velocity field across the African continent with respect to the latest global reference frame (ITRF2008). We consider in our geodetic data analysis the uncertainties related with the temporal correlations between the daily solutions of stations (computed using HECTOR). The geodynamic characteristics of the African plate and its complex sub-plate distribution are better constrained with the increasing number of GNSS permanent stations in Africa (our latest angular velocity model for the three major tectonic units uses a total of 37 solutions: NUBI: 25; SMLA: 07; VICT: 05). The occurrence of recent large intraplate and interplate earthquakes and volcanic activity in Nubia and Somalia combined with the results of geodetic networks contribute to a better constraint of the kinematics along plate boundaries. The comparison between the geodetic strain rate with the seismic strain release along seismically active plate boundaries permit us to observe the existence of zones of localized active deformation with geodetic rate larger than seismic moment rate. Regional studies also show negligible seismic activity in zones with active faults and where the internal plate deformation estimated with geodetic strain fields is significant. This work is prepared in the framework of the IGCP Project 601 - "Seismotectonics and Seismic Hazards in Africa".

  19. Demonstration Using Field Collections that Argentina Fall Armyworm Populations Exhibit Strain-specific Host Plant Preferences.

    PubMed

    Murúa, M Gabriela; Nagoshi, Rodney N; Dos Santos, Daniel A; Hay-Roe, Mirian M; Meagher, Robert L; Vilardi, J C

    2015-10-01

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere.

  20. Characterization of Erwinia amylovora strains from Bulgaria by pulsed-field gel electrophoresis.

    PubMed

    Atanasova, Iliana; Urshev, Zoltan; Hristova, Petya; Bogatzevska, Nevena; Moncheva, Penka

    2012-01-01

    The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum.

  1. Pseudomagnetoexcitons in strained graphene bilayers without external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Fu, Zhen-Guo; Zheng, Fawei; Zhang, Ping

    2013-03-01

    We propose a strained graphene double-layer (SGDL) system for detecting pseudomagnetoexcitons (PME) in the absence of external magnetic fields. The carriers in each graphene layer experience different strong pseudomagnetic fields (PMFs) due to strain engineering, which give rise to Landau quantization. The pseudo-Landau levels of electron-hole pairs under inhomogeneous PMFs in the SGDL are obtained analytically in the absence of Coulomb interactions. Based on the derived optical absorption selection rule for PMEs, we interpret the optical absorption spectra as indicating the formation of Dirac-type PMEs. We also predict that in the presence of inhomogeneous PMFs, the superfluidity-normal phase-transition temperature of PMEs is greater than that under homogeneous PMFs.

  2. Differences in susceptibility and physiological fitness of Mexican field Trichoplusia ni strains exposed to Bacillus thuringiensis.

    PubMed

    Tamez-Guerra, Patricia; Damas, Gabriela; Iracheta, Maria M; Oppert, Brenda; Gomez-Flores, Ricardo; Rodríguez-Padilla, Cristina

    2006-06-01

    The use of different commercial Bacillus thuringiensis (Bt) products in the Bajio guanajuatense area in Mexico began 12 yr ago, and resistance to Bt in this area has been reported for Plutella xylostella (L.) The current study provides a baseline response and resistance potential to Bt in field and laboratory strains of Bajio Trichoplusia ni (Hübner). Differences in susceptibility to Bt among T. ni populations were observed. T. ni neonates collected in Romita, Guanajuato, were more susceptible to Bt than those collected in Salvatierra or San Luis de la Paz, Guanajuato. After five generations of exposure to XenTari in the laboratory, decreased susceptibility was found only in the Salvatierra insects, with an LC50 that was 2.1-fold greater than that of a Mexican laboratory strain. The XenTari-selected San Luis de la Paz strain was from 16- to 87-fold more resistant to CrylA protoxins than U.S. (US) and Mexican laboratory strains. Although CrylAb is not a component of XenTari, this strain also was significantly less susceptible to CrylAb toxin compared with a US strain, with a resistance ratio of 40.4. The larval weights and lengths, pupal lengths, and percentage of pupation were significantly lower for the Salvatierra strain than for all other strains. The relationship of T. ni susceptibilities to Bt Cry toxins and protoxins after several generations of exposure to XenTari and its similarity to P. xylostella behavior.

  3. Four-wave dark-field electron holography for imaging strain fields

    NASA Astrophysics Data System (ADS)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  4. Developments of scanning probe microscopy with stress/strain fields.

    PubMed

    Guo, H X; Fujita, D

    2011-12-01

    An innovative stress/strain fields scanning probe microscopy in ultra high vacuum (UHV) environments is developed for the first time. This system includes scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM). Two piezo-resistive AFM cantilever probes and STM probes used in this system can move freely in XYZ directions. The nonoptical frequency shift detection of the AFM probe makes the system compact enough to be set in the UHV chambers. The samples can be bent by an anvil driven by a step motor to induce stress and strain on their surface. With a direct current (dc) power source, the sample can be observed at room and high temperatures. A long focus microscope and a monitor are used to observe the samples and the operation of STM and AFM. Silicon(111) surface in room temperature and silicon(001) surface in high temperature with stress were investigated to check the performance of the scanning probe microscope.

  5. Genome comparison of a nonpathogenic myxoma virus field strain with its ancestor, the virulent Lausanne strain.

    PubMed

    Morales, Mónica; Ramírez, Miguel A; Cano, María J; Párraga, Mario; Castilla, Joaquín; Pérez-Ordoyo, Luis I; Torres, Juan M; Bárcena, Juan

    2009-03-01

    One of the best-studied examples of host-virus coevolution is the release of myxoma virus (MV) for biological control of European rabbits in Australia and Europe. To investigate the genetic basis of MV adaptation to its new host, we sequenced the genome of 6918, an attenuated Spanish field strain, and compared it with that of Lausanne, the strain originally released in Europe in 1952. Although isolated 43 years apart, the genomes were highly conserved (99.95% identical). Only 32 of the 159 MV predicted proteins revealed amino acid changes. Four genes (M009L, M036L, M135R, and M148R) in 6918 were disrupted by frameshift mutations.

  6. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression. PMID:22703293

  7. Report of near field group

    SciTech Connect

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  8. Near tip stress and strain fields for short elastic cracks

    NASA Technical Reports Server (NTRS)

    Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.

    1994-01-01

    Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.

  9. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  10. Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Trusheim, Matthew E.; Englund, Dirk

    2016-12-01

    We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, including preferential orientation within some individual crystal grains, but preserves long spin coherence times. Using the native NVs as nanoscale sensors, we introduce a three-dimensional strain imaging technique with high sensitivity (< {10}-5 Hz-1/2) and diffraction-limited resolution across a wide field of view.

  11. Frequency dependent optical conductivity of strained graphene at T=0 from an effective quantum field theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Jiang; Pan, Hui; Wang, Hai-Long

    2017-04-01

    An effective quantum field theory (EQFT) graphene sheet with arbitrary one dimensional strain field is derived from a microscopic effective low energy Hamiltonian. The geometric meaning of the strain-induced complex gauge field is clarified. The optical conductivity is also investigated, and a frequency dependent optical conductivity is obtained. The actual value of interband optical conductivity along the deformed direction is C0 + C1/ω2 in spite of the particular strain fields at T=0.

  12. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  13. Viral diversity of Junín virus field strains.

    PubMed

    Goñi, Sandra E; Stephan, Betina I; Iserte, Javier A; Contigiani, Marta S; Lozano, Mario E; Tenorio, Antonio

    2011-09-01

    The Argentine Hemorrhagic Fever, an endemic disease present in a much of Argentina, is caused by the Junín virus (JUNV). Currently, there are sequences available from several strains of this virus, like those belonging to the vaccine lineage (XJ13, XJ#44 and Candid#1), as well as MC2 (rodent isolate) and IV4454 (human isolate). In this article, we report sequence information on two fragments of genomic segment S of viral isolates from the endemic area. A Nested-RT-PCR was used to amplify discrete genomic regions of 13 isolates of rodent and human origin. The bioinformatics studies revealed a great homogeneity of sequences among the JUNV isolates. The phylogenetic classification showed greater evolutionary distance between the old world arenaviruses (Lassa and LCM virus) than between the new world arenaviruses (JUNV and Machupo virus).

  14. Extent of validity of three-parameter crack-tip strain fields

    NASA Astrophysics Data System (ADS)

    Berger, J. R.; Dally, J. W.; Sanford, R. J.

    Error maps showing the differences in strains determined from three-term series representation of the strain field are developed for several different crack lengths in a SEN fracture specimen. To assess the validity of the three-parameter strain field model, a series of FEM analyses was conducted to determine the series coefficients in a large-order expansion of the strain field. Through knowledge of the higher-order (nonsingular) terms, the error was examined over a reasonably sized area between strain calculated from a three-parameter model and a strain calculated using a large-order model. This error is studied by choosing a point in the field, calculating the strain at this point using both three- and large-parameter models, and comparing the two strain values. The gage inclusion/exclusion criteria are determined by performing this analysis for a variety of crack lengths.

  15. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

    PubMed Central

    Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım

    2009-01-01

    Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998

  16. Susceptibility of laboratory and field strains of four stored-product insect species to spinosad.

    PubMed

    Huang, Fangneng; Subramanyam, Bhadriraju; Toews, Michael D

    2004-12-01

    Two field strains of the Indianmeal moth, Plodia interpunctella (Hübner); red flour beetle, Tribolium castaneum (Herbst); and lesser grain borer, Rhyzopertha dominica (F.), and one field strain of the rusty grain beetle, Cryptolestes ferrugineus (Stephens), were collected from hard red winter wheat stored on farms in northeastern Kansas. Fifty eggs of P. interpunctella and 25 beetle adults of each species were exposed to 100 g of untreated wheat or wheat treated with various rates of spinosad, to determine susceptibility of the field and corresponding insecticide-susceptible laboratory strains. Mortality of beetle adults and P. interpunctella larvae was assessed after 7 and 21 d postinfestation, respectively. Field strains of P. interpunctella, C. ferrugineus, and T. castaneum were less susceptible to spinosad than the corresponding laboratory strains. The LD50 and LD95 values for P. interpunctella and C. ferrugineus field strains were 1.7-2.5 times greater than values for corresponding laboratory strains. Adults of both laboratory and field strains of T. castaneum were tolerant to spinosad, resulting in <88% mortality at 8 mg/kg. The LD50 and LD95 values for the field strains of T. castaneum were 2.0-7.5 times greater compared with similar values for the laboratory strain. The field and laboratory strains of R. dominica were highly susceptible to spinosad, and one of the field strains was relatively less susceptible to spinosad than the laboratory strain. Our results confirm a range of biological variability in field populations, which is consistent with findings for other compounds, and underscores the need to adopt resistance management programs with stored grain insect pests. The baseline data generated on the susceptibility of the four insect species to spinosad will be useful for monitoring resistance development and for setting field rates.

  17. Mechanisms underlying fipronil resistance in a multiresistant field strain of the German cockroach (Blattodea: Blattellidae).

    PubMed

    Gondhalekar, Ameya D; Scharf, Michael E

    2012-01-01

    German cockroaches (Blattella germanica L.) have significant impacts on human health, most notably they are implicated as causes of childhood asthma. Gel bait formulations of fipronil, a phenylpyrazole insecticide, have been in use for German cockroach control in the United States since 1998. Previously, dieldrin resistant German cockroach strains were shown to have 7- to 17-fold cross-resistance to fipronil. More recently, a field-collected strain (GNV-R) displayed approximately 36-fold resistance to topically applied fipronil at the LD50 level, which is the highest level of fipronil resistance reported to date in the German cockroach. The aim of the current research was to identify mechanism(s) responsible for high-level fipronil resistance in the GNV-R strain. Synergist bioassays conducted using topical and injection application methods implicated cytochrome P450-mediated detoxification in resistance. Electrophysiological recordings using the suction-electrode technique revealed the nervous system of the GNV-R strain is insensitive to fipronil. In agreement with electrophysiology results, the alanine to serine (A302S) mutation encoded by the gamma-amino butyric acid-gated chloride channel subunit gene resistance to dieldrin, which confers limited cross-resistance to fipronil, was detected in 95% of GNV-R strain individuals. Logistic regression analysis showed that A302S mutation frequency correlates with neurological insensitivity as shown by electrophysiology data. Overall, results of synergism bioassays, electrophysiological recordings, and A302S mutation frequency measurements suggest that fipronil resistance in the GNV-R strain is caused by the combined effects of enhanced metabolism by cytochrome P450s and target-site insensitivity caused by the A302S-encoding mutation in the resistance to dieldrin gene.

  18. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

  19. Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).

    USGS Publications Warehouse

    Johnston, M.J.S.

    1986-01-01

    Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author

  20. [Application of reporter strains for new antibiotic screening].

    PubMed

    Sergiev, P V; Osterman, I A; Golovina, A Ya; Laptev, I G; Pletnev, P I; Evfratov, S A; Marusich, E I; Leonov, S V; Ivanenkov, Ya A; Bogdanov, A A; Dontsova, O A

    2016-01-01

    Screening for new antibiotics remains an important area of biology and medical science. Indispensable for this type of research is early identification of antibiotic mechanism of action. Preferentially, it should be studied quickly and cost-effectively, on the stage of primary screening. In this review we describe an application of reporter strains for rapid classification of antibiotics by its target, without prior purification of an active compound and determination of chemical structure.

  1. Insecticide Resistance of Several Field-Collected German Cockroach (Dictyoptera: Blattellidae) Strains.

    PubMed

    Wu, Xiaoyan; Appel, Arthur G

    2017-03-08

    German cockroaches, Blattella germanica (L.), remain one of the most difficult indoor insect species to control because of its ability to develop resistance to insecticides. The toxicity and resistance levels of five technical-grade insecticides (permethrin, chlorpyrifos, propoxur, imidacloprid, and fipronil) were determined for adult males of seven strains of the German cockroach, a laboratory-reared susceptible strain (S) and six field-collected strains (B, D, E, G, H, and I). Using topical application methods, fipronil was the most toxic insecticide to all seven strains. The LD50 values of fipronil in the susceptible strain (S) and the field-collected strains B, D, E, G, H, and I were 1.33, 2.62, 11.53, 5.07, 7.66, 5.15, and 10.15 ng/insect, respectively. The field-collected strains were most resistant to permethrin among the five insecticides, except for strain H. The resistance ratios of strains B, D, E, G, and I to permethrin were 31.8, 37.3, 51.9, 34.9, and 37.5, respectively. With a resistance ratio of 6.4, the field-collected strain H was most resistant to chlorpyrifos. The field-collected strains were not significantly resistant to propoxur. Strains B, H, and I were not significantly resistant to imidacloprid when compared with the susceptible strain. Based on the different resistance ratios for each insecticide, we conclude that there are high rates of insecticide resistance in German cockroaches from Franklin County, NC, and that the field-collected strains most likely had different treatment histories.

  2. Direct measurement of strain field evolution during dynamic deformation of an energetic material

    NASA Astrophysics Data System (ADS)

    Asay, B. W.; Henson, B. F.; Dickson, P. M.; Fugard, C. S.; Funk, D. J.

    1998-07-01

    We previously reported results showing displacement fields (at a single instant in time) on the unconfined surface of an explosive during deformation using white light speckle photography. We have now successfully obtained similar data in confined samples showing the evolution in time of the strain field using laser-induced fluorescence speckle photography. A modified data analysis technique using methods borrowed from particle image velocimetry was used in conjunction with an eight frame electronic CCD camera. For these tests, projectiles of varying shape were fired into an explosive sample. Localization of strain was observed in all cases and was found to be a strong function of the projectile shape, with ignition occurring in those cases where shear appears to play a dominant role. Results from this and continuing studies provide experimental evidence for strain localization, and for the first time allow the direct comparison to computer model predictions. The data are also being used in the design of more realistic and reliable constitutive models.

  3. Direct Measurement of Strain Field Evolution During Dynamic Deformation of an Energetic Material

    NASA Astrophysics Data System (ADS)

    Asay, B. W.; Henson, B. F.; Funk, D. J.

    1997-07-01

    We previously reported results showing displacement fields (at a single instant in time) on the unconfined surface of an explosive during deformation using white light speckle photography. We have now successfully obtained similar data in confined samples showing the evolution in time of the strain field using laser-induced fluorescence speckle photography. A modified data analysis technique using methods borrowed from particle image velocimetry was used in conjunction with an eight frame electronic CCD camera. For these tests, projectiles of varying shape were fired into an explosive sample. Localization of strain was observed in all cases and was found to be a strong function of the projectile shape, with ignition occurring in those cases where shear appears to play a dominant role. Results from this and continuing studies provide experimental evidence for strain localization, and for the first time allow the direct comparison to computer model predictions. The data are also being used in the design of more realistic and reliable constitutive models.

  4. Direct measurement of strain field evolution during dynamic deformation of an energetic material

    SciTech Connect

    Asay, B.W.; Henson, B.F.; Dickson, P.M.; Fugard, C.S.; Funk, D.J.

    1997-09-01

    The authors previously reported results showing displacement fields (at a single instant in time) on the unconfined surface of an explosive during deformation using white light speckle photography. They have now successfully obtained similar data in confined samples showing the evolution in time of the strain field using laser-induced fluorescence speckle photography. A modified data analysis technique using methods borrowed from particle image velocimetry was used in conjunction with an eight frame electronic CCD camera. For these tests, projectiles of varying shape were fired into an explosive sample. Localization of strain was observed in all cases and was found to be a strong function of the projectile shape, with ignition occurring in those cases where shear appears to play a dominant role. Results from this and continuing studies provide experimental evidence for strain localization, and for the first time allow the direct comparison to computer model predictions. The data are also being used in the design of more realistic and reliable constitutive models.

  5. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypable and therefore cannot be traced. Molecular typing methods have been use...

  6. Complete Genome Sequence of a Potential Novel Bacillus sp. Strain, FJAT-18017, Isolated from a Potato Field

    PubMed Central

    Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei; Chen, Qian-Qian

    2017-01-01

    ABSTRACT Bacillus sp. strain FJAT-18017 was isolated from a potato field in Xinjiang, China. This paper is the first report, to our knowledge, to demonstrate the fully sequenced and completely annotated genome of Bacillus sp. FJAT-18017. The genome size is 5,265,521 bp. The average G+C content was 42.42%. PMID:28104649

  7. Field sampling and travel report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. Sigua was involved with two field visits of watersheds with different livestock production systems (poultry, swine, and beef/dairy cattle); one in the sub-basins of Pinhal River Watershed (October 23, 2008) and at the micro-basins of the Rio Pine Forest (October 29, 2008) where studies of assess...

  8. Analysis of strains of Campylobacter fetus by pulsed-field gel electrophoresis.

    PubMed Central

    Fujita, M; Fujimoto, S; Morooka, T; Amako, K

    1995-01-01

    Campylobacter fetus chromosomal DNA from 21 strains was analyzed by pulsed-field gel electrophoresis. The fingerprint patterns generated with SmaI and SalI were distinctive. Using the profiles obtained by pulsed-field gel electrophoresis, we established the phylogenetic dendrogram of C. fetus to identify the genetic relationship of the strains. PMID:7650215

  9. Measurement of inhomogeneous strain fields by fiber optic sensors embedded in a polymer composite material

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Voronkov, A. A.; Kosheleva, N. A.; Matveenko, V. P.; Serovaev, G. S.; Spaskova, E. M.; Shardakov, I. N.; Shipunov, G. S.

    2016-09-01

    Experimental results of strain field measurement in polymer composite specimens by Bragg grating fiber optic strain sensors embedded in the material are considered. A rectangular plate and a rectangular plate with "butterfly" shaped cuts are used as specimens. The results of uniaxial strain experiments with rectangular plates show that fiber optic strain sensors can be used to measure the strains, and these results can be used to calculate the calibration coefficients for fiber optic strain sensors. A gradient strain field is attained in a plate with cuts, and the possibility of measuring this field by fiber optic strain sensors is the main goal of this paper. The results of measurements of gradient strain fields in the plate with cuts are compared with the results obtained by using the three-dimensional digital optic system Vix-3D and with the results of numerical computations based on finite element methods. It is shown that the difference between the strain values obtained by these three methods does not exceed 5%.

  10. Magnetic field gradiometer. Final technical report

    SciTech Connect

    Fraser-Smith, A.C.

    1983-02-01

    This report has two principal goals. First, to present a general review of magnetic field gradiometers and, second, to provide new data concerning these gradiometers, including new information about their response to magnetic dipole fields. A system of nomenclature is introduced that is consistent with the mathematical concept of gradient and which provides a basis for discussions of the different functions of magnetic field gradiometers and differential magnetometers. The distinction between component gradiometers and total field gradiometers is also stressed.

  11. The Anti-Phytophthora Effect of Selected Potato-Associated Pseudomonas Strains: From the Laboratory to the Field

    PubMed Central

    Guyer, Anouk; De Vrieze, Mout; Bönisch, Denise; Gloor, Ramona; Musa, Tomke; Bodenhausen, Natacha; Bailly, Aurélien; Weisskopf, Laure

    2015-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disk assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf disks from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavorable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonize the potato rhizosphere in very high population densities, suggest a potential for field application, e.g., in the form of tuber treatment or leaf spray. PMID:26640460

  12. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    PubMed

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF.

  13. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls

    SciTech Connect

    Layton, A.C.; Muccini, M.; Ghosh, M.M.; Sayler, G.S.

    1998-12-01

    A bioluminescent reporter strain, Ralstonia eutropha ENV307 (pUTK60), was constructed for the detection of polychlorinated biphenyls by inserting the biphenyl promoter upstream of the bioluminescence genes. In the presence of a nonionic surfactant, which enhances the solubility of chlorinated biphenyls, bioluminescence was induced three- to fourfold over background by biphenyl, monochlorinated biphenyls, and Aroclor 1242. The minimum detection limits for these compounds ranged from 0.15 mg/liter for 4-chlorobiphenyl to 1.5 mg/liter for Aroclor 1242.

  14. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  15. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  16. Cyromazine resistance in a field strain of house flies, Musca domestica L.: Resistance risk assessment and bio-chemical mechanism.

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem

    2017-01-01

    Developing resistance management strategies for eco-friendly insecticides is essential for the management of insect pests without harming the environment. Cyromazine is a biorational insecticide with very low mammalian toxicity. Resistance to cyromazine has recently been reported in house flies from Punjab, Pakistan. In order to propose a resistance management strategy for cyromazine, experiments were planned to study risk for resistance development, possibility of cross-resistance and bio-chemical mechanisms. A field strain of house flies with 8.78 fold resistance ratio (RR) to cyromazine was re-selected under laboratory conditions. After seven rounds of selection (G1-G7), the RR values rapidly increased from 8.8 to 211 fold. However, these values declined to 81fold when the cyromazine selected (CYR-SEL) strain was reared without selection pressure, suggesting an unstable nature of resistance. The CYR-SEL strain showed lack of cross-resistance to pyriproxyfen, diflubenzuron, and methoxyfenozide. Synergism bioassays using enzyme inhibitors: piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF), and metabolic enzyme analyses revealed increased activity of carboxylesterase (CarE) and mixed-function oxidase (MFO) in the CYR-SEL strain compared to the laboratory susceptible (Lab-susceptible) strain, suggesting the metabolic resistance mechanism responsible for cyromazine resistance in the CYR-SEL strain. In conclusion, risk of rapid development of cyromazine resistance under consistent selection pressure discourages the sole reliance on cyromazine for controlling house flies in the field. The unstable nature of cyromazine resistance provides window for restoring cyromazine susceptibility by uplifting selection pressure in the field. Moreover, lack of cross-resistance between cyromazine and pyriproxyfen, diflubenzuron, or methoxyfenozide in the CYR-SEL strain suggest that cyromazine could be rotated with these insecticides whenever resistance crisis occur

  17. Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO3.

    PubMed

    Agbelele, A; Sando, D; Toulouse, C; Paillard, C; Johnson, R D; Rüffer, R; Popkov, A F; Carrétéro, C; Rovillain, P; Le Breton, J-M; Dkhil, B; Cazayous, M; Gallais, Y; Méasson, M-A; Sacuto, A; Manuel, P; Zvezdin, A K; Barthélémy, A; Juraszek, J; Bibes, M

    2017-03-01

    The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly lower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.

  18. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  19. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.

    2016-10-01

    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along <1 1 1> direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to <1 1 1> has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  20. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    SciTech Connect

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts of heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  1. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts of heatmore » release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  2. Modelling of Drain Current in Tunnelling Field-Effect Transistor Based on Strained Armchair Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Suhendi, E.; Syariati, R.; Noor, F. A.; Khairurrijal

    2017-03-01

    A tunnelling field-effect transistor (TFET) based armchair graphenenanoribbons (AGNRs) with variation of uniaxial strain has been modeled. Bandgap of strained AGNR estimated by an extended tight binding method is applied to obtain electrical characteristics of a TFET under the quantum capacitance limit device approximation. Furthermore, the electron transmittance is calculated by utilizing the WKB (Wentzel–Kramers–Brillouin) approach. The obtained transmittance is then used to calculate the drain current by employing the Landauer formula. The results show that strain parameter has significant effect on the current. In other words, the electrical characteristics of AGNR TFET can be tuned by the strain of AGNR.

  3. Second-harmonic microscopy of strain fields around through-silicon-vias

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Shafiei, Farbod; Mendoza, B. S.; Lei, Ming; Jiang, Tengfei; Ho, P. S.; Downer, M. C.

    2016-04-01

    Through-Silicon-Vias (TSVs)—10 μm-diameter conducting rods that connect vertically stacked silicon layers—provide three dimensional circuit integration, but introduce strain in the surrounding silicon when thermally cycled. Here, we noninvasively probe strain fields around Cu TSVs in Si(001) using optical second-harmonic generation (SHG) microscopy. Results are compared with micro-Raman spectra of the strained regions. We find that SHG probes strain fields more quickly than Raman spectroscopy, while maintaining comparable sensitivity and spatial resolution, and avoiding the need for spectral analysis. Moreover, SHG is selectively sensitive to axial shear components uiz (i = x, y) of the strain tensor that are often neglected in Raman analysis. Thus, SHG complements Raman spectroscopy.

  4. Strain and electric field control of hyperfine interactions for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Usman, M.; Hill, C. D.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L.

    2015-06-01

    Control of hyperfine interactions is a fundamental requirement for quantum computing architecture schemes based on shallow donors in silicon. However, at present, there is lacking an atomistic approach including critical effects of central-cell corrections and nonstatic screening of the donor potential capable of describing the hyperfine interaction in the presence of both strain and electric fields in realistically sized devices. We establish and apply a theoretical framework, based on atomistic tight-binding theory, to quantitatively determine the strain and electric-field-dependent hyperfine couplings of donors. Our method is scalable to millions of atoms, and yet captures the strain effects with an accuracy level of DFT method. Excellent agreement with the available experimental data sets allow reliable investigation of the design space of multiqubit architectures, based on both strain only as well as hybrid (strain + field) control of qubits. The benefits of strain are uncovered by demonstrating that a hybrid control of qubits based on (001) compressive strain and in-plane (100 or 010) fields results in higher gate fidelities and or faster gate operations, for all of the four donor species considered (P, As, Sb, and Bi). The comparison between different donor species in strained environments further highlights the trends of hyperfine shifts, providing predictions where no experimental data exists. While faster gate operations are realizable with in-plane fields for P, As, and Sb donors, only for the Bi donor, our calculations predict faster gate response in the presence of both in-plane and out-of-plane fields, truly benefiting from the proposed planar field control mechanism of the hyperfine interactions.

  5. Whole-field thickness strain measurement using multiple camera digital image correlation system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Xie, Xin; Yang, Guobiao; Zhang, Boyang; Siebert, Thorsten; Yang, Lianxiang.

    2017-03-01

    Three Dimensional digital image correlation(3D-DIC) has been widely used by industry, especially for strain measurement. The traditional 3D-DIC system can accurately obtain the whole-field 3D deformation. However, the conventional 3D-DIC system can only acquire the displacement field on a single surface, thus lacking information in the depth direction. Therefore, the strain in the thickness direction cannot be measured. In recent years, multiple camera DIC (multi-camera DIC) systems have become a new research topic, which provides much more measurement possibility compared to the conventional 3D-DIC system. In this paper, a multi-camera DIC system used to measure the whole-field thickness strain is introduced in detail. Four cameras are used in the system. two of them are placed at the front side of the object, and the other two cameras are placed at the back side. Each pair of cameras constitutes a sub stereo-vision system and measures the whole-field 3D deformation on one side of the object. A special calibration plate is used to calibrate the system, and the information from these two subsystems is linked by the calibration result. Whole-field thickness strain can be measured using the information obtained from both sides of the object. Additionally, the major and minor strain on the object surface are obtained simultaneously, and a whole-field quasi 3D strain history is acquired. The theory derivation for the system, experimental process, and application of determining the thinning strain limit based on the obtained whole-field thickness strain history are introduced in detail.

  6. Salmonella Gallinarum field isolates from laying hens are related to the vaccine strain SG9R.

    PubMed

    Van Immerseel, F; Studholme, D J; Eeckhaut, V; Heyndrickx, M; Dewulf, J; Dewaele, I; Van Hoorebeke, S; Haesebrouck, F; Van Meirhaeghe, H; Ducatelle, R; Paszkiewicz, K; Titball, R W

    2013-10-09

    Salmonella enterica subspecies enterica serotype Gallinarum can cause severe systemic disease in chickens and a live Salmonella Gallinarum 9R vaccine (SG9R) has been used widely to control disease. Using whole-genome sequencing we found point mutations in the pyruvate dehydrogenase (aceE) and/or lipopolysaccharide 1,2-glucosyltransferase (rfaJ) genes that likely explain the attenuation of the SG9R vaccine strain. Molecular typing using Pulsed Field Gel Electrophoresis and Multiple-Locus Variable number of tandem repeat Analysis showed that strains isolated from different layer flocks in multiple countries and the SG9R vaccine strain were similar. The genome of one Salmonella Gallinarum field strain, isolated from a flock with a mortality peak and selected on the basis of identical PFGE and MLVA patterns with SG9R, was sequenced. We found 9 non-silent single-nucleotide differences distinguishing the field strain from the SG9R vaccine strain. Our data show that a Salmonella Gallinarum field strain isolated from laying hens is almost identical to the SG9R vaccine. Mutations in the aceE and rfaJ genes could explain the reversion to a more virulent phenotype. Our results highlight the importance of using well defined gene deletion mutants as vaccines.

  7. Array-Based Genomic Comparative Hybridization Analysis of Field Strains of Mycoplasma hyopneumoniae▿ †

    PubMed Central

    Madsen, Melissa L.; Oneal, Michael J.; Gardner, Stuart W.; Strait, Erin L.; Nettleton, Dan; Thacker, Eileen L.; Minion, F. Chris

    2007-01-01

    Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia and a major factor in the porcine respiratory disease complex. A clear understanding of the mechanisms of pathogenesis does not exist, although it is clear that M. hyopneumoniae adheres to porcine ciliated epithelium by action of a protein called P97. Previous studies have shown variation in the gene encoding the P97 cilium adhesin in different strains of M. hyopneumoniae, but the extent of genetic variation among field strains across the genome is not known. Since M. hyopneumoniae is a worldwide problem, it is reasonable to expect that a wide range of genetic variability may exist given all of the different breeds and housing conditions. This variation may impact the overall virulence of a single strain. Using microarray technology, this study examined the potential variation of 14 field strains compared to strain 232, on which the array was based. Genomic DNA was obtained, amplified with TempliPhi, and labeled indirectly with Alexa dyes. After genomic hybridization, the arrays were scanned and data were analyzed using a linear statistical model. The results indicated that genetic variation could be detected in all 14 field strains but across different loci, suggesting that variation occurs throughout the genome. Fifty-nine percent of the variable loci were hypothetical genes. Twenty-two percent of the lipoprotein genes showed variation in at least one field strain. A permutation test identified a location in the M. hyopneumoniae genome where there is spatial clustering of variability between the field strains and strain 232. PMID:17873054

  8. Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India.

    PubMed

    Rao, Sashi Bhushan; Gupta, Vivek K; Kumar, Mukesh; Hegde, Nagendra R; Splitter, Gary A; Reddanna, Pallu; Radhakrishnan, Girish K

    2014-05-29

    Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus.

  9. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows.

    PubMed

    Hamlington, Peter E; Schumacher, Jörg; Dahm, Werner J A

    2008-02-01

    Local and nonlocal contributions to the total strain rate tensor S(ij) at any point x in a flow are formulated from an expansion of the vorticity field in a local spherical neighborhood of radius R centered on x. The resulting exact expression allows the nonlocal (background) strain rate tensor S(ij)(B)(x) to be obtained from S(ij)(x). In turbulent flows, where the vorticity naturally concentrates into relatively compact structures, this allows the local alignment of vorticity with the most extensional principal axis of the background strain rate tensor to be evaluated. In the vicinity of any vortical structure, the required radius R and corresponding order n to which the expansion must be carried are determined by the viscous length scale lambda(nu). We demonstrate the convergence to the background strain rate field with increasing R and n for an equilibrium Burgers vortex, and show that this resolves the anomalous alignment of vorticity with the intermediate eigenvector of the total strain rate tensor. We then evaluate the background strain field S(ij)(B)(x) in direct numerical simulations of homogeneous isotropic turbulence where, even for the limited R and n corresponding to the truncated series expansion, the results show an increase in the expected equilibrium alignment of vorticity with the most extensional principal axis of the background strain rate tensor.

  10. 3D geometry of the strain-field at transform plate boundaries: Implications for seismic rupture

    SciTech Connect

    Bodin, P.; Bilham, R. |

    1994-11-01

    We examine the amplitude and distribution of slip on vertical frictionless faults in the zone of concentrated shear strain that is characteristic of transform plate boundaries. We study both a 2D and a 3D approximation to this strain field. Mean displacements on ruptures within the zone of concentrated shear strain are proportional to the shear strain at failure when they are short, and are limited by plate displacements since the last major earthquake when they are long. The transition between these two behaviors occurs when the length of the dislocation approaches twice the thickness of the seismogenic crust, approximately the breadth of the zone of concentrated shear strain observed geodetically at transform plate boundaries. This result explains the observed non-linear scaling relation between seismic moment and rupture length. A geometrical consequence of the 3D model, in which the strain-field tapers downward, is that moderate earthquakes with rupture lengths similar to the thickness of the crust tend to slip more at depth than near the surface. Seismic moments estimated from surface slip in moderate earthquakes (M less than or equal to 7) will thus be underestimated. Shallow creep, if its along-strike dimension is extensive, can reduce a surface slip deficit that would otherwise develop on faults on which M less than 7 events are typical. In the absence of surface creep or other forms of off-fault deformation great earthquakes may be necessary features of transform boundaries with downward-tapering strain-fields.

  11. Misleading Performance Reporting in the Supercomputing Field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1992-01-01

    In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially misleading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some proposed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  12. Strain field reconstruction in shallow trench isolation structures by CBED and LACBED

    NASA Astrophysics Data System (ADS)

    Spessot, A.; Frabboni, S.; Balboni, R.; Armigliato, A.

    2006-12-01

    Using a combination of the CBED and the LACBED techniques in the transmission electron microscopy (TEM), we have investigated the strain field in the silicon active region of a shallow trench isolation structure, underlying a TiSi 2 layer. Starting from the analysis of the deformation in a sample, thinned for TEM analysis, we have reconstructed the displacement field, simulating the split HOLZ lines visible in the experimental CBED patterns. From the comparison between the experimental LACBED patterns, taken in a suitable sample orientation to evidence the stressors distribution in the polycrystalline silicide layer, and the corresponding dynamically simulated ones, we have reproduced the strain field in the unthinned, bulk sample.

  13. High-resolution melt PCR analysis for rapid identification of Chlamydia abortus live vaccine strain 1B among C. abortus strains and field isolates.

    PubMed

    Vorimore, Fabien; Cavanna, Noémie; Vicari, Nadia; Magnino, Simone; Willems, Hermann; Rodolakis, Annie; Siarkou, Victoria I; Laroucau, Karine

    2012-09-01

    We describe a novel high-resolution melt assay that clearly differentiates Chlamydia abortus live vaccine strain 1B from field C. abortus strains and field wild-type isolates based on previously described single nucleotide polymorphisms. This modern genotyping technique is inexpensive, easy to use, and less time-consuming than PCR-RFLP.

  14. Interrelationship between flexoelectricity and strain gradient elasticity in ferroelectric nanofilms: A phase field study

    NASA Astrophysics Data System (ADS)

    Jiang, Limei; Xu, Xiaofei; Zhou, Yichun

    2016-12-01

    With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.

  15. Strain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts.

    PubMed

    Chai, Yu; Su, Shanshan; Yan, Dong; Ozkan, Mihrimah; Lake, Roger; Ozkan, Cengiz S

    2017-02-10

    Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. Herein, the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exerted to a bilayer MoS2 field effect transistor (FET) through deposition of a silicon nitride stress liner that warps both the gate and the source-drain area. Helium plasma etched MoS2 layers for edge contacts. Current on/off ratio and other performance metrics are measured and compared as the FETs evolve from back-gated, to top-gated and finally, to strain-gated configurations. While the indirect band gap of bilayer MoS2 at 0% strain is 1.25 eV, the band gap decreases as the tensile strain increases on an average of ~100 meV per 1% tensile strain, and the decrease in band gap is mainly due to lowering the conduction band at K point. Comparing top- and strain-gated structures, we find a 58% increase in electron mobility and 46% increase in on-current magnitude, signalling a benign effect of tensile strain on the carrier transport properties of MoS2.

  16. Strain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts

    NASA Astrophysics Data System (ADS)

    Chai, Yu; Su, Shanshan; Yan, Dong; Ozkan, Mihrimah; Lake, Roger; Ozkan, Cengiz S.

    2017-02-01

    Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. Herein, the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exerted to a bilayer MoS2 field effect transistor (FET) through deposition of a silicon nitride stress liner that warps both the gate and the source-drain area. Helium plasma etched MoS2 layers for edge contacts. Current on/off ratio and other performance metrics are measured and compared as the FETs evolve from back-gated, to top-gated and finally, to strain-gated configurations. While the indirect band gap of bilayer MoS2 at 0% strain is 1.25 eV, the band gap decreases as the tensile strain increases on an average of ~100 meV per 1% tensile strain, and the decrease in band gap is mainly due to lowering the conduction band at K point. Comparing top- and strain-gated structures, we find a 58% increase in electron mobility and 46% increase in on-current magnitude, signalling a benign effect of tensile strain on the carrier transport properties of MoS2.

  17. Strain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts

    PubMed Central

    Chai, Yu; Su, Shanshan; Yan, Dong; Ozkan, Mihrimah; Lake, Roger; Ozkan, Cengiz S.

    2017-01-01

    Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. Herein, the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exerted to a bilayer MoS2 field effect transistor (FET) through deposition of a silicon nitride stress liner that warps both the gate and the source-drain area. Helium plasma etched MoS2 layers for edge contacts. Current on/off ratio and other performance metrics are measured and compared as the FETs evolve from back-gated, to top-gated and finally, to strain-gated configurations. While the indirect band gap of bilayer MoS2 at 0% strain is 1.25 eV, the band gap decreases as the tensile strain increases on an average of ~100 meV per 1% tensile strain, and the decrease in band gap is mainly due to lowering the conduction band at K point. Comparing top- and strain-gated structures, we find a 58% increase in electron mobility and 46% increase in on-current magnitude, signalling a benign effect of tensile strain on the carrier transport properties of MoS2. PMID:28186113

  18. Direct Strain Tensor Approximation for Full-Field Strain Measurement Methods

    DTIC Science & Technology

    2013-01-01

    mathematical theory of elasticity. In fact, the general solution to this problem for an elliptic hole is known [35] and is implemented here for an ellipse of...noise. Because for the current digital imaging technology and for most practical applications , the accuracy in coordinate measurement is... applications where the knowledge of the uncertainty of the full-field measurements is of importance. 7. CONCLUSIONS In this work, the numerical foundation

  19. Strain of optic-fiber/giant magnetostrictive film structure in magnetic field by finite element analysis

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Pan, Mengchun; Xin, Jianguang; Chen, Dixiang

    2008-12-01

    The magnetostrictive transducer is the most important part of the optic-fiber magnetic field sensor, and the optic-fiber/giant magnetostrictive(GMS) film coupled structure is a novel coupling form of the magnetostrictive transducer. Always we analyze the coupled structure based on the entire coupled structure being sputtered GMS material without tail-fibers. In practical application, the coupled structure has tail-fibers without films at two ends. When the entire coupled structure is immersed in the detected magnetic field, the detected magnetic field causes the GMS film strain then causing optic-fiber strain. This strain transmission process is different from it in the coupled structure entirely with GMS films without tail-fibers. The strain transmission relationship can be calculated theoretically in the coupled structure without tail-fibers, but it's complicated to theoretically calculate the strain transmission relationship in the coupled structure with tail-fibers. After large numbers of calculations and analyses by ANSYS software, we figure out some relationships of the two strain transmission processes in the respective structures and the stress distribution in the tail-fibers. These results are helpful to the practical application of the optic-fiber/ GMS film coupled structure.

  20. Experimental measurement of the near tip strain field in an iron-silicon single crystal

    NASA Astrophysics Data System (ADS)

    Shield, T. W.; Kim, K.-S.

    1994-05-01

    EXPERIMENTAL RESULTS are presented for the plastic deformation field near a crack (200 μm wide notch) tip in an iron-3% silicon single crystal. The specimen was loaded in four point bending and the measurements were made at zero load after extensive plastic deformation had occurred. Results are given for a crack on the (011) plane with its tip along the [01|T] direction. The surface deformation field was measured using moire microscopy and a grating on the specimen surface. The in-plane Almansi strain components have been obtained by digitally processing the moire fringes. A well-structured asymptotic field has been found at a distance of 350-500 μm from the notch tip, where the maximum plastic strain is about 9%. The asymptotic field is observed to be composed of many distinct angular sectors. Three (six symmetric) of these sectors are found to have approximately constant strains. In a fourth (two symmetric) sector, the surface strains are approximately 1/ r singular. Between these sectors there are interconnecting transition sectors. The location of the stress state on the yield surface and the active slip systems in each sector are identified by assuming that the plastic strain rates are normal to a Schmid law yield surface. The slip systems identified in this manner show excellent agreement with direct observations of the slip texture on the surface and dislocation etch pits in the interior of the specimen. The experimental strain measurements also show that the constant strain sectors are regions in which unloading occurs. Because of this unloading, the crack tip stress and deformation state is substantially different from an HRR type field which assumes proportional loading. This strong nonproportional loading is thought to be caused by the presence of material anisotropy. The nonproportional loading also provides a large amount of crack tip shielding that is evidence of a toughening mechanism that results from the presence of material anisotropy.

  1. Toxicity and Metabolism of Zeta-Cypermethrin in Field-Collected and Laboratory Strains of the Neotropical Predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae).

    PubMed

    Haramboure, M; Smagghe, G; Niu, J; Christiaens, O; Spanoghe, P; Alzogaray, R A

    2017-03-09

    Resistance to pesticides has been studied in several insect pests, but information on the natural enemies of pests-including the Neotropical predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae), a major biological control agent in South America-is lacking. We report here a comparative study between a field-collected strain of C. externa subjected to monthly sprayings of pyrethroids and neonicotinoids and a laboratory strain without exposure to pesticides. The tolerance of both strains against zeta-cypermethrin was similar, and addition of the synergist piperonyl butoxide increased the toxicity by 30% in both strains. Gas-chromatography analyses and mixed-function-oxidase measurements indicated similar values in both strains and also confirmed the key role of oxidative metabolism in this species. Because C. externa has maintained a tolerance to zeta-cypermethrin without previous pesticide exposure, this species could potentially be mass-reared and released in fields in the presence of pesticide pressure.

  2. Dynamic Recrystallization in Ice : In-Situ Observation of the Strain Field during Grain Nucleation.

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Tommasi, A.; Vacher, P.

    2014-12-01

    Dynamic recrystallization (DRX) occurs in minerals, metals, ice and impact on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy and deformation heterogeneities, which are precursors of the recrystallization. During creep deformation at high temperature, DRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior, and it is expected to modify the strain field at the grain and/or the sample scale. Creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analysis with an Automatic Ice Texture Analyzer (AITA) and with EBSD (Geoscience Montpellier) were used to investigate DRX impact on texture and microstructure, at different scales. With increasing strain texture evolves to a strong concentrated girdle with a preferential orientation of c-axis close to 35° from the compression axis. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the strain field measured by DIC. We will present an overview of the impact of DRX on the texture and microstructure, from the 3D configuration down to a

  3. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  4. Second-Harmonic Generation scanning microscopy of strain fields around Through-Silicon-Vias

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Shafiei, Farbod; Mendoza, Bernardo; Jiang, Tengfei; Ho, Paul; Downer, Michael

    Through-Silicon-Vias (TSVs) improve electrical performance of integrated circuits and reduce power consumption by interconnecting vertically stacked silicon layers. Cu has been commonly used for TSVs because of its good electrical and mechanical properties. However, mismatch in thermal expansion coefficient of Si and Cu induces strain fields on the surfaces, which can degrade the performance of nearby devices and crack the surfaces. In this work, using non-invasive Second Harmonic Generation (SHG) microscopy, we successfully characterized inhomogeneous distribution of the thermally induced strain fields. High strain gradients strengthen SHG intensity, since it breaks centrosymmetry in Si. In p-polarized incoming beam and s-polarized SHG configuration, we were able to see the strain effect directly, while in p-in/ p-out polarization, strain-induced SHG was coupled with background SHG from Si. We will present SHG micrographs compared with Raman measurement and the theory of strain-induced SHG, as well as wavelength and power dependence of SHG

  5. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate

    SciTech Connect

    Kim, T. G.; Kim, U. J.; Lee, E. H.; Hwang, J. S.; Hwang, S. W. E-mail: sangsig@korea.ac.kr; Kim, S. E-mail: sangsig@korea.ac.kr

    2013-12-07

    We have systematically analyzed the effect of strain on the electrical properties of flexible field effect transistors with a single-walled carbon nanotube (SWCNT) network on a polyethersulfone substrate. The strain was applied and estimated at the microscopic scale (<1 μm) by using scanning electron microscope (SEM) equipped with indigenously designed special bending jig. Interestingly, the strain estimated at the microscopic scale was found to be significantly different from the strain calculated at the macroscopic scale (centimeter-scale), by a factor of up to 4. Further in-depth analysis using SEM indicated that the significant difference in strain, obtained from two different measurement scales (microscale and macroscale), could be attributed to the formation of cracks and tears in the SWCNT network, or at the junction of SWCNT network and electrode during the strain process. Due to this irreversible morphological change, the electrical properties, such as on current level and field effect mobility, lowered by 14.3% and 4.6%, respectively.

  6. Different resistance patterns of reference and field strains of Brucella abortus.

    PubMed

    Miranda, Karina L; Dorneles, Elaine M S; Poester, Fernando P; Martins Filho, Paulo S; Pauletti, Rebeca B; Lage, Andrey P

    2015-03-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75-0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus.

  7. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review.

    PubMed

    Roberts, Bryant C; Perilli, Egon; Reynolds, Karen J

    2014-03-21

    Digital volume correlation (DVC) provides experimental measurements of displacements and strains throughout the interior of porous materials such as trabecular bone. It can provide full-field continuum- and tissue-level measurements, desirable for validation of finite element models, by comparing image volumes from subsequent µCT scans of a sample in unloaded and loaded states. Since the first application of DVC for measurement of strain in bone tissue, subsequent reports of its application to trabecular bone cores up to whole bones have appeared within the literature. An "optimal" set of procedures capable of precise and accurate measurements of strain, however, still remains unclear, and a systematic review focussing explicitly on the increasing number of DVC algorithms applied to bone or structurally similar materials is currently unavailable. This review investigates the effects of individual parameters reported within individual studies, allowing to make recommendations for suggesting algorithms capable of achieving high accuracy and precision in displacement and strain measurements. These recommendations suggest use of subsets that are sufficiently large to encompass unique datasets (e.g. subsets of 500 µm edge length when applied to human trabecular bone cores, such as cores 10mm in height and 5mm in diameter, scanned at 15 µm voxel size), a shape function that uses full affine transformations (translation, rotation, normal strain and shear strain), the robust normalized cross-correlation coefficient objective function, and high-order interpolation schemes. As these employ computationally burdensome algorithms, researchers need to determine whether they have the necessary computational resources or time to adopt such strategies. As each algorithm is suitable for parallel programming however, the adoption of high precision techniques may become more prevalent in the future.

  8. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields.

    PubMed

    Sebők, Flóra; Dobolyi, Csaba; Zágoni, Dóra; Risa, Anita; Krifaton, Csilla; Hartman, Mátyás; Cserháti, Mátyás; Szoboszlay, Sándor; Kriszt, Balázs

    2016-12-01

    Due to the climate change, aflatoxigenic Aspergillus species and strains have appeared in several European countries, contaminating different agricultural commodities with aflatoxin. Our aim was to screen the presence of aflatoxigenic fungi in maize fields throughout the seven geographic regions of Hungary. Fungi belonging to Aspergillus section Flavi were isolated in the ratio of 26.9% and 42.3% from soil and maize samples in 2013, and these ratios decreased to 16.1% and 34.7% in 2014. Based on morphological characteristics and the sequence analysis of the partial calmodulin gene, all isolates proved to be Aspergillus flavus, except four strains, which were identified as Aspergillus parasiticus. About half of the A. flavus strains and all the A. parasiticus strains were able to synthesize aflatoxins. Aflatoxigenic Aspergillus strains were isolated from all the seven regions of Hungary. A. parasiticus strains were found in the soil of the regions Southern Great Plain and Southern Transdanubia and in a maize sample of the region Western Transdanubia. In spite of the fact that aflatoxins have rarely been detected in feeds and foods in Hungary, aflatoxigenic A. flavus and A. parasiticus strains are present in the maize culture throughout Hungary posing a potential threat to food safety.

  9. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  10. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

  11. Earth Strain Measurements with a Laser Interferometer: An 800-meter Michelson interferometer monitors the earth's strain field on the surface of the ground.

    PubMed

    Berger, J; Lovberg, R H

    1970-10-16

    The development of the laser as a source of coherent optical radiation has permitted the application of interferometric techniques to the problem of earth strain measurement. By use of this technology, an 800-meter laser strain meter has been developed which operates above the surface of the ground. The instrument has a strain least count of 10(-10), requires no calibration, and has a flat and linear response from zero frequency to 1 megahertz. The linearity and large dynamic range of the laser strain meter offer unprecedented versatility in the recording of seismic strains associated with earthquakes and nuclear blasts. The extremely wide bandwidth opens new areas of the strain spectrum to investigation. A key to the understanding of the state of stress of the earth and the association phenomona of tectonic activity and earthquakes is a knowledge of the spatial distribution of the earth strain. Measurements of secular strain and earth tides indicate that, even at these long periods, surface strain measurements are valid representations of earth strain at depth. The LSM thus provides a means of making crustal strain measurements at points selected for maximum geophysical interest and ultimately allow the mapping of strain field distributions.

  12. Strain field evolution during creep on ice. Impact of dynamic recrystallization mechanisms.

    NASA Astrophysics Data System (ADS)

    Chauve, Thomas; Montagnat, Maurine; Barou, Fabrice; Hidas, Karoly; Tommasi, Andréa; Vacher, Pierre

    2015-04-01

    Discontinuous Dynamic Recrystallization (DDRX) occurs in minerals, metals, ice and impacts on texture and microstructure evolution during deformation. It therefore impacts on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy inducing strong deformation heterogeneities, that are precursors of recrystallization. During creep deformation at high temperature in the laboratory, DDRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DDRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior (1,2), and it is expected to modify the strain field at the grain and/or the sample scale. Compressive creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analyses with an Automatic Ice Texture Analyzer (AITA) and with EBSD (CrystalProbe MEB of Geoscience Montpellier) were used to investigate DDRX mechanisms at high resolution, and deduce their impact on texture and microstructure, at different scales. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) (3) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the initial microstructure to the strain field measured by DIC. We will present an overview of

  13. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  14. Strain measurement in ferromagnetic crystals using dark-field electron holography

    NASA Astrophysics Data System (ADS)

    Murakami, Yasukazu; Niitsu, Kodai; Kaneko, Syuhei; Tanigaki, Toshiaki; Sasaki, Taisuke; Akase, Zentaro; Shindo, Daisuke; Ohkubo, Tadakatsu; Hono, Kazuhiro

    2016-11-01

    This study proposes a method to separate the geometric phase shift due to lattice strain from the undesired phase information, resulting from magnetic fields that are superposed in the dark-field electron holography (DFEH) observations. Choosing a distinct wave vector for the Bragg reflection reversed the sense of the geometric phase shift, while the sense of the magnetic information remained unchanged. In the case of an Nd-Fe-B permanent magnet, once the unwanted signal was removed by data processing, the residual phase image revealed a strain map. Even though the applications of DFEH have thus far been limited to non-magnetic systems, the method proposed in this work is also applicable to strain measurements in various ferromagnetic systems.

  15. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation.

    PubMed

    Lu, L; Fan, D; Bie, B X; Ran, X X; Qi, M L; Parab, N; Sun, J Z; Liao, H J; Hudspeth, M C; Claus, B; Fezzaa, K; Sun, T; Chen, W; Gong, X L; Luo, S N

    2014-07-01

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  16. Calibration and assessment of full-field optical strain measurement procedures and instrumentation

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Patterson, E. A.; Burguete, R.; Hack, E.; Mendels, D.; Siebert, T.; Whelan, Maurice

    2006-09-01

    There are no international standards or norms for the use of optical techniques for full-field strain measurement. In the paper the rationale and design of a reference material and a set of standarized materials for the calibration and evaluation of optical systems for full-field measurements of strain are outlined. A classification system for the steps in the measurement process is also proposed and allows the development of a unified approach to diagnostic testing of components in an optical system for strain measurement based on any optical technique. The results described arise from a European study known as SPOTS whose objectives were to begin to fill the gap caused by a lack of standards.

  17. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  18. Strain-Induced Pseudo--Magnetic Fields in Graphene: MegaGauss in Nanobubbles

    NASA Astrophysics Data System (ADS)

    Levy, Niv

    2011-03-01

    Recent theoretical proposals suggest that strain can be used to modify graphene electronic states through the creation of a pseudo--magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Scanning tunneling microscopy shows that graphene grown on a platinum (111) surface forms nanobubbles, which are highly strained due to thermal expansion mismatch between the film and the substrate. We find that scanning tunneling spectroscopy measurements of these nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo--magnetic fields greater than 300 Tesla. This demonstration of enormous pseudo--magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called ``strain engineering''. In collaboration with S. A. Burke ,2 , K. L. Meaker 2 , M. Panlasigui 2 , A. Zettl 2,3 , F. Guinea 4 , A. H. Castro Neto 5 and M. F. Crommie 2,3 . 1. Present address: Department of Physics and Astronomy and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 121, Canada. 2. Department of Physics, University of California, Berkeley, CA 94720, USA. 3. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4. Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid 28049, Spain. 5. Department of Physics, Boston University, Boston, MA 02215, USA.

  19. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  20. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    PubMed

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  1. Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect

    SciTech Connect

    Souma, Satofumi Ueyama, Masayuki; Ogawa, Matsuto

    2014-05-26

    We present a numerical study on the performance of strained graphene-based field-effect transistors. A local strain less than 10% is applied over a central channel region of the graphene to induce the shift of the Dirac point in the channel region along the transverse momentum direction. The left and the right unstrained graphene regions are doped to be either n-type or p-type. By using the atomistic tight-binding model and a Green's function method, we predict that the gate voltage applied to the central strained graphene region can switch the drain current on and off with an on/off ratio of more than six orders of magnitude at room temperature. This is in spite of the absence of a bandgap in the strained channel region. Steeper subthreshold slopes below 60 mV/decade are also predicted at room temperature because of a mechanism similar to the band-to-band tunneling field-effect transistors.

  2. Trip Report-Produced-Water Field Testing

    SciTech Connect

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  3. Direct observation of nanometer-scale strain field around CoSi{sub 2}/Si interface using scanning moiré fringe imaging

    SciTech Connect

    Kim, Suhyun; Jung, Younheum; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Heabum

    2014-04-21

    We report the use of scanning moiré fringe (SMF) imaging through high-angle annular dark-field scanning transmission electron microscopy (STEM) to measure the strain field around a CoSi{sub 2} contact embedded in the source and drain (S/D) region of a transistor. The atomic arrangement of the CoSi{sub 2}/Si (111) interface was determined from the high-resolution (HR)-STEM images, and the strain field formed around the S/D region was revealed by nanometer-scale SMFs appearing in the STEM image. In addition, we showed that the strain field in the S/D region measured by SMF imaging agreed with results obtained via peak-pairs analysis of HR-STEM images.

  4. Genotypic diversity in Babesia bovis field isolates and vaccine strains from South Africa.

    PubMed

    Combrink, M P; Troskie, P C; Pienaar, R; Latif, A A; Mans, B J

    2014-01-31

    Genotypic diversity in Babesia bovis (cause of Asiatic redwater in cattle) vaccine strains and field isolates from South Africa were investigated using the Bv80 gene as well as microsatellites. The S11 vaccine strain possessed both A and B alleles of the Bv80 gene, as well as genotypic diversity within each allele type as defined by repeat variation resulting in different amplicon sizes. Rapid serial passage of vaccine strain from passage S10 to S24 resulted in loss of genotypic diversity that yielded a single allele A genotype with an amplicon size of 558 bp. This suggested that clonal selection occurred during rapid passaging. Extensive genotypic diversity exists in 44 field isolates characterized with both Bv80 A and B alleles, but can be readily distinguished from the S24 vaccine strain using either the Bv80 allele specific PCR assays or using multi-locus micro-satellite typing. This indicated that no recent documented clinical cases of Asiatic redwater were caused by the reversion to virulence of the current vaccine strain.

  5. Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Sheng, Jian

    2011-11-01

    Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.

  6. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  7. Mapping Three-Dimensional Stress and Strain Fields within a Soft Hydrogel Using a Fluorescence Microscope

    PubMed Central

    Hall, Matthew S.; Long, Rong; Hui, Chung-Yuen; Wu, Mingming

    2012-01-01

    Three-dimensional cell culture is becoming mainstream as it is recognized that many animal cell types require the biophysical and biochemical cues within the extracellular matrices to perform truly physiologically realistic functions. However, tools for characterizing cellular mechanical environment are largely limited to cell culture plated on a two-dimensional substrate. We present a three-dimensional traction microscopy that is capable of mapping three-dimensional stress and strain within a soft and transparent extracellular matrix using a fluorescence microscope and a simple forward data analysis algorithm. We validated this technique by mapping the strain and stress field within the bulk of a thin polyacrylamide gel layer indented by a millimeter-size glass ball, together with a finite-element analysis. The experimentally measured stress and strain fields are in excellent agreements with results of the finite-element simulation. The unique contributions of the presented three-dimensional traction microscopy technique are: 1), the use of a fluorescence microscope in contrast with the confocal microscope that is required for the current three-dimensional traction microscopes in the literature; 2), the determination of the pressure field of an incompressible gel from strains; and 3), the simple forward-data-analysis algorithm. Future application of this technique for mapping animal cell traction in three-dimensional nonlinear biological gels is discussed. PMID:22677377

  8. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-02-01

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For

  9. Demonstration test of burner liner strain measuring system. Final Report

    SciTech Connect

    Stetson, K.A.

    1984-06-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  10. Differentiation of Erysipelothrix rhusiopathiae strains by nucleotide sequence analysis of a hypervariable region in the spaA gene: discrimination of a live vaccine strain from field isolates.

    PubMed

    Nagai, Shinya; To, Ho; Kanda, Akira

    2008-05-01

    Erysipelothrix rhusiopathiae causes erysipelas in swine and is considered a reemerging disease contributing substantially to economic losses in the swine industry. Since an attenuated live vaccine was commercialized in 1974 in Japan, outbreaks of acute septicemia or subacute urticaria of erysipelas have decreased dramatically. In contrast, a chronic form of erysipelas found during meat inspections in slaughterhouses has been increasing. In this study, a new strain-typing method was developed based on nucleotide sequencing of a hypervariable region in the surface protective antigen (spaA) gene for discrimination of the live vaccine strain from field isolates. Sixteen strains isolated from arthritic lesions found in slaughtered pigs were segregated into 4 major patterns: 1) identical nucleotide sequence with the vaccine strain: 3 isolates; 2) 1 nucleotide substitution (C to A) at position 555: 5 isolates; 3) 1 nucleotide substitution at various positions: 5 isolates; and 4) 2 nucleotide substitutions: 3 isolates. Isolates with the same nucleotide sequence as the vaccine strain were further characterized by other properties, including the mouse pathogenicity test. One strain isolated from pigs on a farm where the live vaccine had been used was found to be closely related to the vaccine strain. The phylogenetic tree constructed based on the spaA sequence suggests that the evolutionary distance of the isolates is related to the pathogenicity in mice. The new strain-typing system based on nucleotide sequencing of the spaA region is useful to discriminate the vaccine strain from field isolates.

  11. Deep Borehole Field Test Conceptual Design Report

    SciTech Connect

    Hardin, Ernest L.

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  12. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.

    PubMed

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-03-07

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.

  13. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  14. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  15. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  16. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  17. Magnetic-field-induced recovery strain in polycrystalline Ni-Mn-Ga foam

    NASA Astrophysics Data System (ADS)

    Chmielus, Markus; Witherspoon, Cassie; Wimpory, Robert C.; Paulke, Andreas; Hilger, André; Zhang, Xuexi; Dunand, David C.; Müllner, Peter

    2010-12-01

    Recently, we have shown that a polycrystalline Ni-Mn-Ga magnetic shape-memory alloy, when containing two populations of pore sizes, shows very high magnetic-field-induced strain of up to 8.7%. Here, this double-porosity sample is imaged by x-ray microtomography, showing a homogenous distribution of both pore populations. The orientation of six large grains—four with 10M and two with 14M structure—is identified with neutron diffraction. In situ magnetomechanical experiments with a rotating magnetic field demonstrate that strain incompatibilities between misoriented grains are effectively screened by the pores which also stop the propagation of microcracks. During uniaxial compression performed with an orthogonal magnetic bias field, a strain as high as 1% is recovered on unloading by twinning, which is much larger than the elastic value of <0.1% measured without field. At the same time, repeated loading and unloading results in a reduction in the yield stress, which is a training effect similar to that in single crystals.

  18. Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter

    2015-04-01

    Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.

  19. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste

  20. Diversity of Proteolytic Clostridium botulinum Strains, Determined by a Pulsed-Field Gel Electrophoresis Approach

    PubMed Central

    Nevas, Mari; Lindström, Miia; Hielm, Sebastian; Björkroth, K. Johanna; Peck, Michael W.; Korkeala, Hannu

    2005-01-01

    Pulsed-field gel electrophoresis (PFGE) was applied to the study of the similarity of 55 strains of proteolytic Clostridium botulinum (C. botulinum group I) types A, AB, B, and F. Rare-cutting restriction enzymes ApaI, AscI, MluI, NruI, PmeI, RsrII, SacII, SmaI, and XhoI were tested for their suitability for the cleavage of DNA of five proteolytic C. botulinum strains. Of these enzymes, SacII, followed by SmaI and XhoI, produced the most convenient number of fragments for genetic typing and were selected for analysis of the 55 strains. The proteolytic C. botulinum species was found to be heterogeneous. In the majority of cases, PFGE enabled discrimination between individual strains of proteolytic C. botulinum types A and B. The different toxin types were discriminated at an 86% similarity level with both SacII and SmaI and at an 83% similarity level with XhoI. Despite the high heterogeneity, three clusters at a 95% similarity level consisting of more than three strains of different origin were noted. The strains of types A and B showed higher diversity than the type F organisms which formed a single cluster. According to this survey, PFGE is to be considered a useful tool for molecular epidemiological analysis of proteolytic C. botulinum types A and B. However, epidemiological conclusions based on PFGE data only should be made with discretion, since highly similar PFGE patterns were noticed, especially within the type B strains. PMID:15746333

  1. Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach.

    PubMed

    Nevas, Mari; Lindström, Miia; Hielm, Sebastian; Björkroth, K Johanna; Peck, Michael W; Korkeala, Hannu

    2005-03-01

    Pulsed-field gel electrophoresis (PFGE) was applied to the study of the similarity of 55 strains of proteolytic Clostridium botulinum (C. botulinum group I) types A, AB, B, and F. Rare-cutting restriction enzymes ApaI, AscI, MluI, NruI, PmeI, RsrII, SacII, SmaI, and XhoI were tested for their suitability for the cleavage of DNA of five proteolytic C. botulinum strains. Of these enzymes, SacII, followed by SmaI and XhoI, produced the most convenient number of fragments for genetic typing and were selected for analysis of the 55 strains. The proteolytic C. botulinum species was found to be heterogeneous. In the majority of cases, PFGE enabled discrimination between individual strains of proteolytic C. botulinum types A and B. The different toxin types were discriminated at an 86% similarity level with both SacII and SmaI and at an 83% similarity level with XhoI. Despite the high heterogeneity, three clusters at a 95% similarity level consisting of more than three strains of different origin were noted. The strains of types A and B showed higher diversity than the type F organisms which formed a single cluster. According to this survey, PFGE is to be considered a useful tool for molecular epidemiological analysis of proteolytic C. botulinum types A and B. However, epidemiological conclusions based on PFGE data only should be made with discretion, since highly similar PFGE patterns were noticed, especially within the type B strains.

  2. Electric fields and valence-band offsets at strained [111] heterojunctions

    NASA Astrophysics Data System (ADS)

    Picozzi, S.; Continenza, A.; Freeman, A. J.

    1997-05-01

    Ab initio full-potential linearized augmented plane wave (FLAPW) [H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 30, 561 (1984); M. Weinert, H. Krakauer, E. Wimmer, and A. J. Freeman, ibid. 24, 864 (1981)] calculations have been performed for the [111] ordered common atom strained layer superlattices (in particular, the common-anion GaSb/InSb system and the common-cation InAs/InSb system). We have focused our attention on the potential line up at the two sides of the homopolar isovalent heterojunctions considered, and, in particular, on its dependence on the strain conditions and on the strain induced electric fields. We propose a procedure to locate the interface plane, where the band alignment could be evaluated; furthermore, we suggest that the polarization charges, due to piezoelectric effects, are approximately confined to a narrow region close to the interface and do not affect the potential discontinuity. We find that the interface contribution to the valence band offset is substantially unaffected by strain conditions, whereas the total band line up is highly tunable as a function of the strain conditions. Finally, we compare our results with those obtained for the [001] heterojunctions.

  3. Draft Genome Sequence of the Biofilm-Producing Bacillus subtilis Strain B-1, Isolated from an Oil Field

    PubMed Central

    Kesel, S.; Moormann, F.; Gümperlein, I.; Mader, A.; Morikawa, M.; Lieleg, O.

    2014-01-01

    We report here the draft genome sequence of the Bacillus subtilis strain B-1, a strain known to form biofilms. The biofilm matrix mainly consists of the biopolymer γ-polyglutamate (γ-PGA). The sequence of the genome of this strain allows the study of specific genes involved in biofilm formation. PMID:25502661

  4. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.

    2016-06-01

    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  5. In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology--mapping of cell responses to strain field.

    PubMed

    Xie, Kelvin Y; Yang, Lingyan; Chen, Kevin; Li, Qing

    2012-09-01

    Cells can respond to mechanical forces and actively interact with mechanical stimulations in vitro. Understanding the effect of mechanical loading on cell morphology signifies a critical biomechanics issue in tissue engineering. In this study, human dermal fibroblasts (GM3384) underwent cyclic strain. This was done by culturing a monolayer of the cells onto a transparent membrane and applying a cyclic stress using a computer controlled bioreactor. The cells were mechanically stimulated at around 7% strain with 1 cycle per minute for 2 days. Finite element analysis (FEA) was then employed to characterize the strain field across the substrate membrane in the bioreactor. The results showed that strain distribution were non-uniform in the substrate membrane. The mapping of cell morphology with the strain field revealed that the cells exposed to the equibiaxial strain exhibited the classical spindle morphology while the cells subjected to uniaxial strain changed to a polygonal morphology. It is concluded that the nature of the strain has significant impact on the final cell morphology.

  6. Working Group Report: Lattice Field Theory

    SciTech Connect

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  7. The application of strain field intensity method in the steel bridge fatigue life evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  8. Field Operations Program Activities Status Report

    SciTech Connect

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  9. Near Field Environment Process Model Report

    SciTech Connect

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  10. Molecular Characterization of Clostridium tetani Strains by Pulsed-Field Gel Electrophoresis and Colony PCR

    PubMed Central

    Plourde-Owobi, Lucile; Seguin, Delphine; Baudin, Marie-Anne; Moste, Catherine; Rokbi, Bachra

    2005-01-01

    Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene. PMID:16151158

  11. Molecular characterization of Clostridium tetani strains by pulsed-field gel electrophoresis and colony PCR.

    PubMed

    Plourde-Owobi, Lucile; Seguin, Delphine; Baudin, Marie-Anne; Moste, Catherine; Rokbi, Bachra

    2005-09-01

    Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene.

  12. Near-field/altered-zone models report

    SciTech Connect

    Hardin, E. L., LLNL

    1998-03-01

    lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and

  13. Comparison of hatchery and field performance between a whirling-disease-resistant strain and the Ten Sleep strain of rainbow trout.

    PubMed

    Wagner, Eric J; Bartley, Matt; Arndt, Ronney; Oplinger, Randall W; Routledge, M Douglas

    2012-06-01

    A whirling-disease-resistant strain of rainbow trout Oncorhynchus mykiss (GRHL strain) derived from a backcross of an F1 hybrid of two strains (German strain x Harrison Lake strain) with German strain females, was compared with the Ten Sleep (TS) strain of rainbow trout. The GRHL strain had consistently superior growth and feed conversion in two consecutive hatchery trials. Hatching and mortality rates were similar between strains. Both strains were stocked into two Utah reservoirs (Hyrum, Porcupine), and a third, Causey Reservoir, was monitored as a control for seasonal variation in prevalence of Myxobolus cerebralis. A total of 1,323 salmonids captured by gill net in spring and fall sampling between 2006 and 2008 were tested for M. cerebralis via pepsin-trypsin digest methods. Only eight of these (< 1% per species) had clinical signs consistent with whirling disease. In both reservoirs, GRHL survived better than the TS and had higher growth rates. The prevalence of M. cerebralis was significantly lower for GRHL (18.1%) than TS (50.0%) in Porcupine Reservoir. In Hyrum Reservoir the trend was similar, but prevalence was lower and did not significantly differ between GRHL (9.6%) and TS (23.1%). For infected fish, no significant differences were observed between strains in myxospore counts in either Hyrum (GRHL = 911-28,244 spores/fish [spf], TS = 1,822-155,800 spf) or Porcupine (GRHL = 333-426,667spf, TS = 333-230,511 spf) reservoirs. Unmarked rainbow trout in both reservoirs had significantly higher myxospore counts than stocked fish of either strain. There were significant differences in M. cerebralis prevalence and myxospore loads among other naturally reproducing salmonids in the reservoirs. The trend in susceptibility was cutthroat trout Oncorhynchus clarkii > kokanee Oncorhynchus nerka > brown trout Salmo trutta. The GRHL performed well in both hatchery and field settings and is recommended for stocking programs.

  14. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  15. Differential reactivity of immune sera from human vaccinees with field strains of eastern equine encephalitis virus.

    PubMed

    Strizki, J M; Repik, P M

    1995-11-01

    Eastern equine encephalitis (EEE) virus is a mosquito-borne alphavirus that can produce a severe and often fatal acute encephalitis in humans, with significant neurologic sequelae in survivors. Due to the serious nature of the disease, an investigational inactivated EEE vaccine (PE-6) is available to individuals at risk for infection. Both serologic and recent molecular analyses of EEE viruses have demonstrated marked differences between the two antigenic varieties of EEE virus, designated North American (NA) and South American (SA). In view of these findings, we have examined the reactivity of sera from three individuals immunized with the EEE vaccine, derived from an NA isolate, with field strains of EEE virus. Anti-EEE serum antibodies from vaccinees reacted strongly in Western blot assays with both of the envelope (E1 and E2) glycoproteins of each NA strain examined, while reactivities with the glycoproteins of SA strains were substantially weaker and variable and dependent upon both the immune response of the vaccinee and the virus isolate assayed. Most striking was the modest to virtual lack of reactivity with the E2 protein of SA strains. Antigenic differences among the glycoproteins of EEE viruses were not as pronounced in immunoprecipitation analysis. Most significantly, although human immune sera displayed high neutralizing titers against each of the NA isolates examined, only negligible neutralizing titers were obtained against SA isolates. These data suggest that immunized individuals would mount an effective antibody response against infection with NA strains of EEE virus, but that further investigation is clearly warranted to fully assess the protective capability of the vaccine against infection with SA strains.

  16. Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon

    NASA Astrophysics Data System (ADS)

    Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter

    2015-09-01

    The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.

  17. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    SciTech Connect

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  18. Approximate Analysis on Strain Rate Effects and Behavior of Stress and Strain Fields at the Crack Tip in Mode II in Metallic Materials. Appendix Number 1

    DTIC Science & Technology

    1992-10-01

    increasing the loading rate, specimens smaller in dimensions can be employed in KIC tests at high loading rates. An example of correlation between B and...difficulties arise in numerical simulation of crack behavior at high loading rates. An analytic solution for the stress field at a stationary crack tip in...with prime attention paid to use adequate stress-strain, strain-rate, temperature constitutive relations governing material behavior at the crack tip

  19. Strain gage sting balance 204-6. Calibration report

    NASA Astrophysics Data System (ADS)

    Blaettler, Heinz

    1986-12-01

    The strain gage sting balance 204-6 was developed for aerodynamic measurements on rocket models in the transonic and supersonic wind tunnel. Data are: X = +/- 50 (N); Y = +/- 150 (N); Z = +/- 400 (N); Mx = +/- 1.5 (Nm); My = +/- 20 (Nm); and Mz = +/- 10 (Nm). Compared to the existing balances of same size the ratio Y/Z is changed from 1:8 to 1:3.75. This change of specifications was introduced with regard to measurements to be taken with a sting providing automatic roll positioning around the X-axis. The resistance module was separately constructed and prestressed by a factor of 0.5, and connected to the model and sting part of the balance by electron-beam welding.

  20. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  1. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation

    SciTech Connect

    Wang, Dong; Gao, Ning; Setyawan, W.; Kurtz, R. J.; Wang, Zhi-Guang; Gao, Xing; He, Wen-Hao; Pang, Li-Long

    2016-09-01

    The influence of strain field on defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten (W) has been studied with molecular dynamics simulations. Two different W potentials (Fikar and Juslin) were compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affects the threshold displacement energy and its direction-specific values. The minimum Ed direction calculated with the Fikar-potential is <100> and with the Juslin-potential is <111>. Nevertheless, the most stable self-interstitial configuration is found to be a <111>-crowdion for both potentials. This stable configuration does not change with applied strain. Varying the strain from compression to tension increases the vacancy formation energy but decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that Ed decreases with applied hydrostatic strain from compression to tension.

  2. Quantitative full-field strain measurements by SAOED (SrAl2O4:Eu2+,Dy3+) mechanoluminescent materials

    NASA Astrophysics Data System (ADS)

    Imani Azad, Ali; Rahimi, Mohammad Reza; Yun, Gun Jin

    2016-09-01

    In this paper, a new calibration method for mechano-luminescence (ML) thin film sensors was proposed to enable quantitative full-field strain measurements in pixel-level resolution for the first time along with two standard reference test methods. The proposed method has a distinct advantage of its facet-free full-field strain sensing capability with pixel-level resolution. For the ML sensor, standard reference test methods were proposed for developing calibrated relationships between ML light intensity and effective strains: (1) uniaxial tensile reference test and (2) non-uniform strain reference test. From the reference tests, two different calibration models were developed in a recurrence equation form and validated measuring general strain distributions on different experimental specimens. Verified finite element (FE) simulation results were compared with ML effective strains to confirm its accuracy. The comparisons of the ML effective strains with FE simulation results showed that the calibration models can acceptably measure full-field strains. Limitations, sources of errors, suggestions for improving accuracy and practical considerations were also discussed. A conclusion of this research is that the proposed method enables ML sensing films to measure quantitative full-field strain distributions.

  3. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    SciTech Connect

    Tattoli, F.; Casavola, C.; Pierron, F.; Rotinat, R.; Pappalettere, C.

    2011-01-17

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto--plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  4. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.

    2011-01-01

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  5. Genetic characterization of vaccine and field strains of serotype A foot-and-mouth disease virus from India.

    PubMed

    Mohapatra, J K; Pawar, S S; Tosh, C; Subramaniam, S; Palsamy, R; Sanyal, A; Hemadri, D; Pattnaik, B

    2011-01-01

    Extreme antigenic and genetic heterogeneity of serotype A foot-and-mouth disease virus (FMDV) population has resulted in change of vaccine strains in India twice in the last decade. In such a situation, complete characterization of the vaccine strains is imperative. With regard to the frequent outbreaks of this disease, FMDV field strains are also of interest. Therefore three vaccine strains and two field strains of type A FMDV from India were completely sequenced and the obtained sequences were subjected to sequence and phylogenetic analyses. Based on the complete coding region, all the Indian strains clustered in the Asia topotype and exhibited a more than 11% nt divergence from the other Asian strains. The 5'-UTR of some Indian strains revealed block deletions of 43 and 86 nt corresponding to the pseudoknot region. Amino acids S44 in VP2 and F164 in VP1 were found to be the exclusive signatures for the Asia topotype. The vaccine strains differed at 65 aa positions in the capsid region, 13 of them antigenically critical. Variability at such positions is likely to affect the antigenic profile of these strains. Complete genome sequences of the vaccine strains presented here could serve as the reference for any comparative genomics in future.

  6. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-05-01

    The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  7. Second order nonlinearity in Si by inhomogeneous strain and electric fields

    NASA Astrophysics Data System (ADS)

    Schilling, Jörg; Schriever, Clemens; Bianco, Federica; Cazzanelli, Massimo; Pavesi, Lorenzo

    2015-08-01

    The lack of a dipolar second order susceptibility (χ(2)) in silicon due to its centro-symmetric diamond lattice usually inhibits efficient second order nonlinear optical processes in the silicon bulk. Depositing stressed silicon nitride layers or growing a thermal oxide layer introduces an inhomogeneous strain into the silicon lattice and breaks the centro-symmetry of its crystal structure thereby creating a χ(2). This causes enhanced second harmonic generation and was observed in reflection and transmission measurements for wavelengths in the infrared. However strain is not the only means to break the structures symmetry. Fixed charges at the silicon nitride/silicon interface cause a high electric field close to the silicon interface which causes electric-field-induced-second-harmonic (EFISH) contributions too. The combination of both effects leads to χ(2) values which are estimated to be of the order as classic χ(2) materials like KDP or LiNiO3. This paves the way for the exploitation of other second order nonlinear processes in the area of silicon photonics and is an example how fundamental optical properties of materials can be altered by strain.

  8. Field validation of road roughness evaluation using in-pavement strain sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Deng, F.; Huang, Y.; Bridgelall, R.

    2016-04-01

    Most transportation agencies now collect pavement roughness data using the inertial profilers, which requires instrumented vehicles and technicians with specialized training to interpret the results. The extensive labor requirements of the profiling activities limit data collection for portions of the national highway system to at most once per year, resulting in outdated roughness data for decision making of maintenance needs. In this paper, a real-time roughness evaluation method was developed by linking the output of durable in-pavement strain sensors to road roughness level. The durable in-pavement sensors will continuously provide information of road roughness in real time after they are installed and calibrated during the road construction until the service life of the associated pavement. Field tests validated the developed strain method by comparison with standard inertial profiling method and the connected-vehicle method. The comparison of the results from the field tests approves the effectiveness of the developed road roughness evaluation method using in-pavement strain sensors, which can be further applied practically for needed concrete pavements.

  9. Orientation effect on the giant stress field induced in a single Ni nanowire by mechanical strain

    NASA Astrophysics Data System (ADS)

    Melilli, G.; Madon, B.; Clochard, M.-C.; Wegrowe, J.-E.

    2015-09-01

    The change of magnetization (i.e. using the inverse magnetostriction effect) allows to investigate at the nanoscale the effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW). The magnetization state is measured locally by anisotropic magnetoresitance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. Due to the inverse magnetostriction, a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≍ 10 K has been evidenced. The coplanarity of the vectors between the magnetization and the magnetic field is broken. A way of studying the effect of the geometry on such a system, is to fabricate oriented polymer templates. Track-etched polymer membranes were thus irradiated at various angles (αirrad) leading, after electrodeposition, to embedded Ni NWs of different orientations. With cylindrical Ni NW oriented normally to the template surface, the induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification results in three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. When the Ni NWs are tilted from the polymer template surface normality, the induced stress field is reduced and the amplification phenomenon is less important.

  10. 4D STUDY OF STRAIN GRADIENTS EVOLUTION IN TWINNED NiMnGa SINGLE CRYSTALS UNDER MAGNETIC FIELD

    SciTech Connect

    Barabash, Rozaliya; Xu, Ruqing; Barabash, Oleg M; Sozinov, Alexei

    2014-01-01

    Time-resolved 3D X-ray microscopy with a submicron beam size was used to follow the evolution of strains in off-stoichiometric NiMnGa twinned crystals near type I (hard) twin boundary under magnetic field. Laminate A/B microstructure was revealed near the twin boundaries in A variant. Large strain gradients are observed in the C variant in the immediate vicinity of the type I twin boundary: the lattice is under large tensile strains ~0.4% along the c- axes within first micron. Distinct a and b lattice parameter evolution with temperature and magnetic field is demonstrated. In an applied magnetic field the strain field was observed at larger distances from the twin boundary and becomes more complex. Stochastic twin boundary motion was observed after the magnetic field reaches a certain critical value.

  11. Development of standard measurement chain for full-field optical strain measurement methods

    NASA Astrophysics Data System (ADS)

    Salbut, Leszek; Kujawinska, Malgorzata; Patterson, Eann; Hack, Erwin; Burguete, Richard; Whelan, Maurice P.; Mendels, David A.

    2004-08-01

    Optical techniques for full-field displacement/strain measurement are a powerful set of tools for use in defining the performance, design optimization, reliability and safety of various types of components, products and machines. The quality of the measurement data generated by optical techniques is strongly dependent on the instrumentation and procedures. Thus, there is a significant need to develop standardized tests that are applicable across the spectrum of optical techniques of strain measurement. This requires the description of a common standard measurement chain including: (1) definition of standard physical and virtual materials; (2) gathering experimental or simulated primary data (fringe/image map); (3) deconvolution phase maps from these data (numerical procedures); (4) calculation of required physical quantities from phase maps (numerical procedures including data scaling). This scheme supports a calibration process for both instrumentation and procedures. Validation of this general methodology was performed using an example of displacement data gathered by grating interferometry followed by data processing scheme.

  12. Present-day CGPS-derived Crustal Strain Rate Field of the Saint Lawrence River Valley

    NASA Astrophysics Data System (ADS)

    Goudarzi, M. A.; Cocard, M.; Santerre, R.

    2015-12-01

    The Saint Lawrence River valley (SLRV) is one of the most seismically active areas in eastern Canada. Along the SLRV and the Ottawa valley, earthquakes are concentrated on three distinct zones of western Quebec along the Ottawa River, Charlevoix, and Lower Saint Lawrence. The entire area is also subject to the glacial isostatic adjustment (GIA). We studied the earth's surface deformation of the area using the velocity field of 51 continuous GPS (CGPS) stations and the least-squares collocation method. While the intraplate horizontal velocities showed a coherent horizontal motion towards southeast with the typical magnitude of ~1.3 mm/yr for stations along the SLRV, the interpolated vertical velocities demonstrated a coherent uplift with the average rate of 3.1 mm/yr. We estimated strain rate tensors including the effect of vertical velocity. A NNW-SSE shortening with a typical rate of ~3.6-8.1 nstrain/yr was observed over Lower Saint Lawrence. In Charlevoix, an extension with a typical rate of ~3.0-7.1 nstrain/yr was oriented in ENE-WSW parallel to the SLRV. In western Quebec, the deformation has a shear straining mechanism with a typical shortening rate of ~1.0-5.1 nstrain/yr and extension rate of ~1.6-4.1 nstrain/yr. The extension over the northern model is consistent with the prediction of the GIA models. The range of the estimated strain rates of the area (~1.0-8.1 nstrain/yr) is between typical values of rigid blocks (< 0.1 nstrain/yr) and active tectonic regions (> 100 μstrain/yr). A strong correlation was observed between epicenters of earthquakes and areas with the highest rate of shear strain. We found a good agreement between the orientations of the principal axes of strain rate tensors and the maximum horizontal compressional stress σH from World Stress Map 2008 for both strike-slip and thrust faulting regimes especially those derived from focal mechanisms. This shows our CGPS intraplate velocities are representative of the current crustal deformation

  13. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  14. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics.

  15. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the...

  16. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the...

  17. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the...

  18. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the...

  19. 43 CFR 3.13 - Report of field officer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the...

  20. Enriched Open Field Facilitates Exercise and Social Interaction in 2 Strains of Guinea Pigs (Cavia porcellus)

    PubMed Central

    Brewer, Jacob S; Bellinger, Seanceray A; Joshi, Prianca; Kleven, Gale A

    2014-01-01

    Current housing guidelines for laboratory rodents include recommendations for enrichment. Working with guinea pigs, we have developed an open-field enrichment paradigm that provides several aspects of this species’ natural environment. These naturalistic aspects include access to increased space for exploration, access to western timothy (Phleum pratense L.) hay, and grouping as a herd to facilitate social interaction. To determine the immediate effect on behavior from access to the enriched environment, female guinea pigs from 2 strains, IAF Hairless and NIH Hartley, were observed in both standard home cages and an open-field enriched environment. Subjects were housed with cagemates in pairs for the home-cage observation and were grouped as a herd when in the open-field arena. Behaviors were videorecorded for 1 h and then scored. Salivary cortisol levels were measured both prior to and immediately after behavioral observations. Analyses revealed higher levels of activity and social interaction in the open-field arena compared with the home cage, with no significant change in salivary cortisol levels. These results suggest that exposure to the open-field environment provide increased opportunities for exercise and social enrichment. Although additional studies are needed to determine long-term effects on experimental outcomes, the open-field configuration holds promise as a laboratory enrichment paradigm for guinea pigs. PMID:25199089

  1. Treatment of multiple resistant field strain of Ostertagia spp. in Cashmere and Angora goats.

    PubMed

    Várady, M; Praslicka, J; Corba, J

    1994-05-01

    A multiple resistant field strain of gastro-intestinal nematodes was detected in Cashmere and Angora goats imported from New Zealand. Different treatments with three types of broad spectrum anthelmintics (albendazole, levamisole/tetramisole and ivermectin) at various dose rates are described. Satisfactory effect in Angora goats was not achieved until all three anthelmintics were administered simultaneously at twice the normal sheep dose. Post mortem worm counts and identification revealed that the resistant population consisted of 89% Ostertagia circumcincta, 6% Ostertagia ostertagi and 5% Ostertagia trifurcata. However, egg hatch assay carried out seven months later detected the presence of resistant nematodes again.

  2. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  3. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons.

    PubMed

    Kou, Liangzhi; Tang, Chun; Zhang, Yi; Heine, Thomas; Chen, Changfeng; Frauenheim, Thomas

    2012-10-18

    Effective modulation of physical properties via external control may open various potential nanoelectronic applications of single-layer MoS2 nanoribbons (MoS2NRs). We show by first-principles calculations that the magnetic and electronic properties of zigzag MoS2NRs exhibit sensitive response to applied strain and electric field. Tensile strain in the zigzag direction produces reversible modulation of magnetic moments and electronic phase transitions among metallic, half-metallic, and semiconducting states, which stem from the energy-level shifts induced by an internal electric polarization and the competing covalent/ionic interactions. A simultaneously applied electric field further enhances or suppresses the strain-induced modulations depending on the direction of the electric field relative to the internal polarization. These findings suggest a robust and efficient approach to modulating the properties of MoS2NRs by a combination of strain engineering and electric field tuning.

  4. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  5. Experimental determination of the velocity and strain rate field in a laminar H2/Air counter-flow diffusion flame via LDA

    NASA Technical Reports Server (NTRS)

    Yeo, S. H.; Dancey, C. L.

    1991-01-01

    Measurements of the axial and radial components of velocity on the air side of stagnation in an axisymmetric H2/Air laminar counter-flow diffusion flame are reported. Results include the two-dimensional velocity field and computed velocity gradients (strain rates) along the stagnation streamline at two 'characteristic' strain rates, below the extinction limit. The measurements generally verify the modeling assumptions appropriate to the model of Kee et al. (1988). The 'traditional' potential flow model is not consistent with the measured results.

  6. Genetic variability among Chlamydia trachomatis reference and clinical strains analyzed by pulsed-field gel electrophoresis.

    PubMed Central

    Rodriguez, P; Allardet-Servent, A; de Barbeyrac, B; Ramuz, M; Bebear, C

    1994-01-01

    Pulsed-field gel electrophoresis (PFGE) was applied to Chlamydia trachomatis reference strains representing each of the 18 serovars and to 29 clinical isolates from genital specimens collected in Bordeaux, France, or Malmö, Sweden. Comparison of the fingerprint patterns of the reference strains revealed a high level of polymorphism of the total DNA when SmaI was used (14 profiles), whereas the other enzymes, Sse8387I and ApaI, showed fewer differences. Some serovars, considered to be closely related on the basis of their antigenic determinants located on the major outer membrane protein (MOMP), such as D and Da or I and Ia, were shown to be different after PFGE of their genomic DNAs. However, serovars B and Ba and serovars L2 and L2a had identical patterns after analysis with the three endonucleases. When applied to clinical isolates, which were typed by restriction fragment length polymorphism analysis of the MOMP gene, PFGE allowed the detection of intragenotype polymorphisms and showed the identity of two strains successively isolated from the same patient. This technique seems to be an efficient tool for epidemiological studies when used in addition to serotyping or genotyping by restriction fragment length polymorphism analysis of the MOMP gene. Images PMID:7883878

  7. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGES

    McCall, S. K.; Nersessian, N.; Carman, G. P.; ...

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  8. Genetic Diversity of Fusarium oxysporum Strains from Common Bean Fields in Spain

    PubMed Central

    Alves-Santos, Fernando M.; Benito, Ernesto P.; Eslava, Arturo P.; Díaz-Mínguez, José María

    1999-01-01

    Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype. PMID:10427016

  9. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams

    NASA Astrophysics Data System (ADS)

    Chmielus, M.; Zhang, X. X.; Witherspoon, C.; Dunand, D. C.; Müllner, P.

    2009-11-01

    The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000cycles, are much larger than those of any polycrystalline, active material.

  10. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    SciTech Connect

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-04-10

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to {approx}2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2<111> and habit plane {l_brace}11x{r_brace}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a<100> loops with <100> and <110> dislocation segments is {approx}14% and 23% greater than that of hexagonal a/2<111> loops at N>500, respectively. The analysis of the formation energies of a/2<111> and a<100> loops demonstrated that the nucleation of an a<100> loop by joining of two a/2<111> loops is possible when the total number of constituent self-interstitials in these loops is larger than 13.

  11. Field bioassay of Metarhizium anisopliae strains to control the poultry red mite Dermanyssus gallinae.

    PubMed

    Tavassoli, M; Allymehr, M; Pourseyed, S H; Ownag, A; Bernousi, I; Mardani, K; Ghorbanzadegan, M; Shokrpoor, S

    2011-06-10

    The poultry red mite, Dermanyssus gallinae is one of the most economically deleterious ectoparasite of laying hens worldwide. To evaluate the efficacy of three strains (V245, 3247 and 715C) of entomopathogenic fungus Metarhizium anisopliae with potential as acaricides against D. gallinae, this investigation was carried out in a commercial caged laying poultry farm in Naghedeh, West Azarbaijan of Iran. The parasite infestation already existed in the farm. Sunflower oil suspension of all fungal strains, each in two concentrations (1×10(7) and 1×10(9) conidia/ml) were used separately as spray on hens and cages, and in the control group the cages were only sprayed with sunflower oil and sterile distilled water. For estimating the population rate of mites before and after treatment, special cardboard traps were fixed to cages during a 1-month period. The traps were placed on weeks -1, 0, 1, 2 and 3 and always removed after 1 w. The results showed that the population rates post fungal treatment with the lower concentration were not significantly different compared to the control group. However, the reduction in mite numbers induced by all three strains at the concentration of 1×10(9) conidia/ml was significantly higher than the control (P<0.05). The results revealed that under field conditions, higher concentrations of M. anisopliae will be required for controlling D. gallinae.

  12. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.

    PubMed

    Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng

    2012-03-14

    A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.

  13. Higher Drop in Speed during a Repeated Sprint Test in Soccer Players Reporting Former Hamstring Strain Injury

    PubMed Central

    Røksund, Ola D.; Kristoffersen, Morten; Bogen, Bård E.; Wisnes, Alexander; Engeseth, Merete S.; Nilsen, Ann-Kristin; Iversen, Vegard V.; Mæland, Silje; Gundersen, Hilde

    2017-01-01

    Aim: Hamstring strain injury is common in soccer. The aim of this study was to evaluate the physical capacity of players who have and have not suffered from hamstring strain injury in a sample of semi-professional and professional Norwegian soccer players in order to evaluate characteristics and to identify possible indications of insufficient rehabilitation. Method: Seventy-five semi-professional and professional soccer players (19 ± 3 years) playing at the second and third level in the Norwegian league participated in the study. All players answered a questionnaire, including one question about hamstring strain injury (yes/no) during the previous 2 years. They also performed a 40 m maximal sprint test, a repeated sprint test (8 × 20 m), a countermovement jump, a maximal oxygen consumption (VO2max) test, strength tests and flexibility tests. Independent sample t-tests were used to evaluate differences in the physical capacity of the players who had suffered from hamstring strain injury and those who had not. Mixed between-within subject's analyses of variance was used to compare changes in speed during the repeated sprint test between groups. Results: Players who reported hamstring strain injury during the previous two years (16%) had a significantly higher drop in speed (0.07 vs. 0.02 s, p = 0.007) during the repeated sprint test, compared to players reporting no previous hamstring strain injury. In addition, there was a significant interaction (groups × time) (F = 3.22, p = 0.002), showing that speed in the two groups changed differently during the repeated sprint test. There were no significant differences in relations to age, weight, height, body fat, linear speed, countermovement jump height, leg strength, VO2max, or hamstring flexibility between the groups. Conclusion: Soccer players who reported hamstring strain injury during the previous 2 years showed significant higher drop in speed during the repeated sprint test compared to players with no hamstring

  14. Colonization of a marker and field strain of Salmonella Enteritidis and a marker strain of Salmonella Typhimurium in vancomycin pretreated and non-pretreated laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effects of a vancomycin pre-treatment on the ability of marker (nalidixic acid-resistant) S. Enteritidis (SE-M), field S. Enteritidis (SE-F), and marker S. Typhimurium (ST-M) strains to colonize within the intestinal and reproductive tracts and translocate to...

  15. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    PubMed

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  16. Strain field of the monovacancy in silicene: First-principles study

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Zhongli; Ma, Wenqiang; Tan, Yonggang

    2016-05-01

    The in-plane strain fields of single-vacancy silicene with different monovacancy (MV) concentrations, as well as the corresponding electronic band structures, are investigated by using the first-principle calculations. Firstly the self-healing MV is found to be the most stable ground structure in silicene, which is different from the other 2D hexagonal honeycomb materials, e.g. graphene, h-BN. In the isolated MV center, the bonds along the pentagons are compressed, creating a compress field, and those close to the distorted hexagons are stretched, creating a stretch field. As the MV concentration increasing, the interacted compress field tends to corrugate the defected silicene, while the interacted stretch field impacts little on the low-buckled structure. Especially, the corrugation presents in those supercells with small MV concentration, just as the (4, 5), (4, 6), (4, 7), (4, 8) supercells. The corrugations approach zero at both low and high MV concentrations, and the (4, 6) supercell with a MV concentration of about 0.021, has a peak value of 3.23Å. The electronic calculations show that the linear dispersion at Γ point in pristine silicene is broken by the lower lattice symmetry of the self-healing MV reconstruction, which translates it into metal as well.

  17. Amphidial structure of ivermectin-resistant and susceptible laboratory and field strains of Haemonchus contortus.

    PubMed

    Freeman, Andrea S; Nghiem, Catherine; Li, Jian; Ashton, Francis T; Guerrero, Jorge; Shoop, Wesley L; Schad, Gerhard A

    2003-01-02

    The development of anthelmintic resistance by nematode parasites is a growing problem for veterinarians, pet owners, and producers. The intensive use of the macrocyclic lactones for the treatment of a variety of parasitic diseases has hastened the development of resistance to this family of parasiticides. As a result, resistance to ivermectin, moxidectin, nemadectin, and doramectin by Haemonchus contortus has been documented throughout the world. Sensory neurons located in the cephalic end of nematodes are in close contact with the external environment. Through these neurons, important chemical and thermal cues are gathered by the parasite. Examination of serial electron micrographs of ivermectin-susceptible and ivermectin-resistant H. contortus allows for comparison of neuronal structure, arrangement of neurons within the amphidial channel, and distance of the tip of the dendritic processes to the amphidial pore. The latter of these characteristics provides a useful means by which to compare the association between the neurons and the external environment of the worm. Comparison of parental laboratory strains of ivermectin-susceptible strains of H. contortus with related selected, ivermectin-resistant strains and with a wild-type ivermectin-susceptible field strain of H. contortus from Louisiana reveal that the ivermectin-resistant worms examined have markedly shorter sensory cilia than their ivermectin-susceptible parental counterparts. Additionally, the amphidial neurons of ivermectin-resistant worms are characterized by generalized degeneration and loss of detail, whereas other neurons outside of the channels, such as the labial and cephalic neurons, are normal in structure. These findings raise a number of questions regarding the relationship between amphidial structure and ivermectin resistance as well as the role of amphids as a means of entry for ivermectin. While shortened amphidial sensilla are associated with ivermectin resistance, it remains unclear if

  18. Fractional quantum Hall effect in strained graphene: Stability of Laughlin states in disordered pseudomagnetic fields

    NASA Astrophysics Data System (ADS)

    Bagrov, Andrey A.; Principi, Alessandro; Katsnelson, Mikhail I.

    2017-03-01

    We address the question of the stability of the fractional quantum Hall effect in the presence of pseudomagnetic disorder generated by mechanical deformations of a graphene sheet. Neglecting the potential disorder and taking into account only strain-induced random pseudomagnetic fields, it is possible to write down a Laughlin-like trial ground-state wave function explicitly. Exploiting the Laughlin plasma analogy, we demonstrate that in the case of fluctuating pseudomagnetic fluxes of a relatively small amplitude, the fractional quantum Hall effect is always stable upon the deformations. By contrast, in the case of bubble-induced pseudomagnetic fields in graphene on a substrate (a small number of large fluxes) the disorder can be strong enough to cause a glass transition in the corresponding classical Coulomb plasma, resulting in the destruction of the fractional quantum Hall regime and in a quantum phase transition to a nonergodic state of the lowest Landau level.

  19. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Warren, James A.

    2016-06-01

    A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics

  20. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    PubMed

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (Eb) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the Eb can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm(-1) electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H2 molecule when no strain or E-field is applied; however, the absorption increases to five H2 molecules under 15% biaxial strain and six H2 molecules under both 15% biaxial strain combined with a 5.14 V nm(-1)E-field. The average adsorption energies for H2 of BN-(Na-mH2) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H2)4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  1. CO-CO coupling on Cu facets: Coverage, strain and field effects

    NASA Astrophysics Data System (ADS)

    Sandberg, Robert B.; Montoya, Joseph H.; Chan, Karen; Nørskov, Jens K.

    2016-12-01

    We present a DFT study on the effect of coverage, strain, and electric field on CO-CO coupling energetics on Cu (100), (111), and (211). Our calculations indicate that CO-CO coupling is facile on all three facets in the presence of a cation-induced electric field in the Helmholtz plane, with the lowest barrier on Cu(100). The CO dimerization pathway is therefore expected to play a role in C2 formation at potentials negative of the Cu potential of zero charge, corresponding to CO2/CO reduction conditions at high pH. Both increased *CO coverage and tensile strain further improve C-C coupling energetics on Cu (111) and (211). Since CO dimerization is facile on all 3 Cu facets, subsequent surface hydrogenation steps may also play an important role in determining the overall activity towards C2 products. Adsorption of *CO, *H, and *OH on the 3 facets were investigated with a Pourbaix analysis. The (211) facet has the largest propensity to co-adsorb *CO and *H, which would favor surface hydrogenation following CO dimerization.

  2. Strain-induced modulation on phonon and electronic properties of suspended black phosphorus field effect transistor

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Si, Naichao; Xie, Guoxin; Wang, Quan

    2017-02-01

    Black phosphorus has recently appeared as a promising two-dimensional material for applications in high performance nanoelectronics. Its single- and few-atomic layer forms in field-effect transistors have attracted a lot of attention due to the tunable bandgap (0.3-2.0 eV), high carrier mobility (1000 cm2 V-1 s-1) and decent on-off ratios (105). Here, we demonstrate a suspended black phosphorus field effect transistor (BP-FET) and utilize Raman spectroscope to characterize the strain on the effects of Raman phonon. We find that red shifts appear in all the three vibrational modes (Ag1 , B2g and Ag2) in different degrees. Among them, Ag1 mode is most sensitive to the tensile strain. We further investigate the electronic properties with a Cascade semi-automatic probe station. The linear relationships in the output curves indicate the contacts between black phosphorus and electrodes are ohmic contacts. The transfer characteristic curves declare the drain current modulation is ∼ 7.6 ×103 for the hole conduction and ∼57 for the electron conduction. Mobility of this device is found to be 347.5 cm2 V-1 s-1 and 4.9 cm2 V-1 s-1 for the hole and electron conduction, respectively. These results provide a theoretical basis for the coordination of high-performance black phosphorus electronic components.

  3. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  4. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  5. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  6. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  7. Microbial field pilot study. Final report

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.

    1993-05-01

    A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m{sup 3}) of tertiary oil have been recovered. Microbial activity has increased CO{sub 2} content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.

  8. Reliability of photovoltaic systems: A field report

    NASA Astrophysics Data System (ADS)

    Thomas, M. G.; Fuentes, M. K.; Lashway, C.; Black, B. D.

    Performance studies and field measurements of photovoltaic systems indicate a 1 to 2% per year degradation in array energy production. The cause for much of the degradation has been identified as soiling, failed modules, and failures in interconnections. System performance evaluation continues to be complicated by the poor reliability of some power conditioning hardware that has greatly diminished the system availability and by inconsistent field ratings. Nevertheless, the current system reliability is consistent with degradation of less than 10% in 5 years and with estimates of less than 10% per year of the energy value for O and M.

  9. Reliability of photovoltaic systems - A field report

    NASA Astrophysics Data System (ADS)

    Thomas, M. G.; Fuentes, M. K.; Lashway, C.; Black, B. D.

    Performance studies and field measurements of photovoltaic systems indicate a 1-2-percent/yr degradation in array energy production. The cause for much of the degradation has been identified as soiling, failed modules, and failures in interconnections. System performance evaluation continues to be complicated by the poor reliability of some power conditioning hardware (which greatly diminished system availability) and by inconsistent field ratings. Nevertheless, the current system reliability is consistent with degradation of less than 10 percent in 5 years and with estimates of less than 10 percent/yr of the energy value for O&M.

  10. Methane Emissions from Rice Fields - Final Report

    SciTech Connect

    Khalil, M. Aslam; Rasmussen,Reinhold A.

    2002-12-03

    Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

  11. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  12. Finite Element Analysis of Cross Rolling on AISI 304 Stainless Steel: Prediction of Stress and Strain Fields

    NASA Astrophysics Data System (ADS)

    Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.

  13. Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae).

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali

    2014-02-01

    The house fly, Musca domestica L., is a cosmopolitan insect with the ability to develop resistance to insecticides used for their management. In the present study, we investigated the genetics of spinosad resistance, and cross-resistance potential to other insecticides by selecting a field strain with a commercial spinosad formulation. Bioassays with the field strain, before selection with spinosad, gave resistance ratios (RRs) of 4, 5, 66, 21 and 5 fold for spinosad, indoxacarb, abamectin, imidacloprid and deltamethrin, respectively, in comparison to a laboratory susceptible (Lab-susceptible) strain. After continuous selection of the field strain (Spin-SEL) with spinosad, the RR was increased up to 155 fold; however, the resistance was unstable (RR decreased 1.43 fold) when this strain was not exposed to spinosad for five generations. The Spin-SEL strain did not show cross-resistance to abamectin, indoxacarb or deltamethrin, but showed negative cross-resistance to imidacloprid. Crosses between the Spin-SEL and Lab-susceptible strains revealed an autosomal and incomplete dominant mode of resistance to spinosad. A direct test using a monogenic inheritance model based on Chi-square analysis revealed that the resistance was governed by more than one gene. Moreover, the resistance was neither overcome with the insecticide synergist piperonyl butoxide nor with S,S,S-tributylphosphorotrithioate. Lack of cross-resistance and instability of resistance suggest that rotation with spinosad could be an effective resistance management strategy.

  14. Magnetic-Field-Induced Strain of Shape-Memory Alloy Fe3Pt Studied by a Capacitance Method in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sakon, Takuo; Takaha, Atsuo; Obara, Kenji; Dejima, Koutatsu; Nojiri, Hiroyuki; Motokawa, Mitsuhiro; Fukuda, Takashi; Kakeshita, Tomoyuki

    2007-01-01

    The precise magnetic-field-induced strain (MFIS) and magnetization of the martensite metallic compound Fe3Pt in a martensitic phase were studied in a pulsed magnetic field using the capacitance method at low temperatures down to 4.2 K, which is much lower than the martensitic transformation temperature TM=85 K. After zero field cooling, a pulsed magnetic field with a maximum frequency of 160 Hz was applied parallel to the [001]p axis. A large MFIS was measured. The value of the MFIS is Δ L/L=-1.7%. When the magnetic field was decreased, the recovery of the strain was observed. In the second applied field, a strain of about 0.6% was observed. This means that MFIS occurs even in short-pulse magnetic fields. MFIS was observed below 70 K. The largest strain was observed at 20 K. These results are almost the same as the MFIS in a steady magnetic field using a superconducting magnet.

  15. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  16. Laser range pole field evaluation report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A field evaluation was made of the laser pole equipment. The basic plan for the evaluation was to expose the equipment to the actual people and environment for which it was intended and determine, through the use of the equipment, its resultant effectivity in terms of improved performance. Results show the equipment performed better than expected in the high elevation clean air of Colorado, and did as well in Tennessee.

  17. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    PubMed Central

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  18. Genotyping of Yersinia enterocolitica biotype 1A strains from clinical and nonclinical origins by pulsed-field gel electrophoresis.

    PubMed

    Campioni, Fábio; Falcão, Juliana P

    2014-06-01

    Yersinia enterocolitica biotype 1A (B1A) strains are considered mainly nonpathogenic. However, some studies considered strains of this biotype to be the causal agents of infections in humans and animals. In South America, there are no studies that have compared clinical and nonclinical strains of B1A typed by pulsed-field gel electrophoresis (PFGE) and none that have compared the capability of different enzymes on typing these strains. This study typed 51 Y. enterocolitica B1A strains isolated in Brazil and Chile by PFGE, testing the enzymes XbaI, NotI, and XhoI. The resulting dendrograms discriminated the strains in 47, 40, and 49 pulsotypes generated by the cleavage with the enzymes XbaI, NotI, and XhoI, respectively. The majority of the strains were grouped independently of their clinical or nonclinical origins. The high discriminatory power of PFGE confirmed the heterogeneity of B1A strains but could not divide the strains studied into clusters that differed in the frequency of some virulence genes as observed in studies using other methodologies.

  19. Emergence of antigenic variants of Foot-and-Mouth Disease Virus serotype O in Ecuador and preliminary evaluation of a field strain as a vaccine candidate.

    PubMed

    Maradei, Eduardo; Malirat, Viviana; Beascoechea, Claudia Perez; Espinoza, Ana María; Novo, Sabrina Galdo; Smitsaart, Eliana; Salgado, Gustavo; Mattion, Nora; Toledo, Jorge Rodriguez; Bergmann, Ingrid E

    2014-05-01

    Foot-and-Mouth Disease Virus serotype O has been circulating regularly throughout most provinces of Ecuador, one of the two South American countries that still remain endemic, although satisfactory vaccination coverage was reported. This study concentrates in the characterization of isolates collected during 2008-2011, focusing particularly on the antigenic and immunogenic relationships of the field viruses with the O1/Campos vaccine strain in use in the region and with an experimental vaccine formulated with a representative strain of the 2010 epidemic. The results established that antigenically divergent variants poorly protected by the vaccine in use emerged and co-circulated in a limited period of time. A monovalent vaccine formulated with the representative 2010 strain elicited high antibody titers and protected against challenge with homologous virus. In addition, cross-reactive antibodies to predominant viruses in the region were established. In overall this study indicates the ability of the virus to diversify under field conditions in which a vaccine strain with poor match is applied, and the potential of the selected 2010 field virus as a vaccine candidate for incorporation into strategic antigen banks and/or for addition to current formulations for systematic vaccination, in order to prevent the emergence of even more divergent isolates in the future.

  20. Influence of Chronic Heat Acclimatization on Occupational Thermal Strain in Tropical Field Conditions

    PubMed Central

    Brearley, Matt B.; Norton, Ian; Rush, Daryl; Hutton, Michael; Smith, Steve; Ward, Linda; Fuentes, Hector

    2016-01-01

    Objective: To examine whether non-heat acclimatized (NHA) emergency responders endure greater physiological and perceptual strain than heat acclimatized (HA) counterparts in tropical field settings. Methods: Eight HA and eight NHA men urban search and rescue personnel had physiological and perceptual responses compared during the initial 4 hours shift of a simulated disaster in tropical conditions (ambient temperature 34.0 °C, 48% relative humidity, wet bulb globe temperature [WBGT] 31.4 °C). Results: From the 90th minute through to end of shift, HA (38.5 °C) sustained a significantly higher gastrointestinal temperature than NHA (38.1 °C) (mean difference 0.4 ± 0.2 °C, 95% confidence interval [CI] 0.2 to 0.7 °C, P = 0.005) despite comparable heart rate (P = 0.30), respiratory rate (P = 0.88), and axilla skin temperature (P = 0.47). Overall, perception of body temperature was similar between cohorts (P = 0.87). Conclusions: The apparent tolerance of greater physiological strain by HA responders occurred in the absence of perceptual differences. PMID:27930487

  1. Monitoring dyke injection and strain field evolution using shear-wave splitting.

    NASA Astrophysics Data System (ADS)

    Kendall, J.-M.; Verdon, J. P.; Keir, D.; Baird, A.

    2012-04-01

    Magma storage and dyke injection in the shallow crust is a fundamental process in rifting and volcanic environments. The dyking will tend to align with directions of maximum compressive stress, and the associated aligned fracturing and melt migration provides a very effective means of generating seismic anisotropy. Observations of shear-wave splitting provide one of the most unambiguous indicators of such anisotropy. As such, shear-wave splitting can be used to monitor the evolving strain field in volcanic and rifting environments. Here we apply lessons learned from monitoring fracture propagation during the hydraulic stimulation of tight-gas reservoirs. In a number of experiments we observe spatial and temporal variations in shear-wave splitting magnitude and orientation. We invert shear-wave observations for fracture properties, including the tangential and normal compliance, the ratio of which is a good indicator of fluid flow and permeability. Frequency dependent affects can be also used to indicate the length scales of the causative cracks or fractures. We apply these insights to microseismic data recently acquired across the volcanically active Afar triple junction in Ethiopia. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The results help in our understanding of the role of melt in strain accommodation in rifting and volcanic environments.

  2. Strain fields around high-energy ion tracks in {alpha}-quartz

    SciTech Connect

    Follstaedt, D. M.; Norman, A. K.; Doyle, B. L.; McDaniel, F. D.

    2006-09-15

    Transmission electron microscopy has been used to image the tracks of high-energy {sup 197}Au{sup +26} (374 MeV) and {sup 127}I{sup +18} (241 MeV) ions incident in a nonchanneling direction through a prethinned specimen of hexagonal {alpha}-quartz (SiO{sub 2}). These ions have high electronic stopping powers in quartz, 24 and 19 keV/nm, respectively, which are sufficient to produce a disordered latent track. When the tracks are imaged with diffraction contrast using several different reciprocal lattice vectors, they exhibit a radial strain extending outward from their disordered centerline approximately 16 nm into the crystalline surroundings. The images are consistent with a radial strain field with cylindrical symmetry around the amorphous track, like that found in models developed to account for the lateral expansion of amorphous SiO{sub 2} films produced by irradiation with high-energy ions. These findings provide an experimental basis for increased confidence in such modeling.

  3. Field study of age-differentiated strain for assembly line workers in the automotive industry.

    PubMed

    Börner, Kerstin; Scherf, Christian; Leitner-Mai, Bianca; Spanner-Ulmer, Birgit

    2012-01-01

    A field study in an automotive supply industry company was conducted to explore age-differentiated strain of assembly line workers. Subjective and objective data from 23 female workers aged between 27 and 57 years were collected at the workplace belt buckle assembly during morning shifts. Subjects with medication or chronic diseases affecting heart rate and breath rate were excluded. For subjective data generation different questionnaires were used. Before the Work Ability Index and the Munich Chronotype Questionnaire were completed by the subjects. Short questionnaires (strain-ratings, NASA-TLX) directly at begin and end of the work were used for obtaining shift-related data. During the whole shift (6 a.m. - 2.45 p.m.) bodily functions were logged with a wireless chest strap. In addition, the motion of the hand-arm-system was recorded for 30 times, 3 minutes each after a fixed time-schedule. First results show that younger subjects need significant less time for assembly (mean = 14.940 s) compared to older subjects (mean = 17.040 s; t(472.026) = -9.278 , p < 0.01).

  4. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  5. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  6. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  7. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    SciTech Connect

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-11-17

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates.

  8. Field-Induced Strain of Shape Memory Alloy Fe-31.2%Pd Using a Capacitance Method in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sakon, Takuo; Takaha, Atsuo; Matsuoka, Yoshitaka; Obara, Kenji; Saito, Taku; Motokawa, Mitsuhiro; Fukuda, Takashi; Kakeshita, Tomoyuki

    2004-11-01

    A system for the simultaneous measurement of magnetization and magnetic strain, which is designed to be used in a pulsed magnetic field, has been developed. In this system, a capacitor on a sample is used and its capacitance changes with the displacement of a sample due to the strain on the sample in a magnetic field. The most significant feature of this system is that magnetization and strain can be measured simultaneously. It is useful to compare the magnetization and magnetic strain (magnetostriction) with each other. Using this system, we have studied the precise magnetization and magnetic field-induced strain (MFIS) of the martensite metallic compound Fe-31.2%Pd (at.%) at temperatures down to 80 K in martensite phase, which is much lower than the martensitic transformation temperature TM=230 K. Large MFIS has been measured under a pulsed magnetic field with the time constant 6 ms, which corresponds to 80 Hz in frequency. It means that the MFIS occurs even in short-pulse magnetic fields.

  9. RMDF leach-field decontamination. Final report

    SciTech Connect

    Carroll, J W; Marzec, J M; Stelle, A M

    1982-09-15

    The objective of the decontamination effort was to place the Radioactive Materials Disposal Facility (RMDF) leach field in a condition suitable for release for unrestricted use. Radioactively contaminated soil was excavated from the leach field to produce a condition of contamination as low as reasonably achievable (ALARA). The contaminated soil was boxed and shipped to an NRC-licensed burial site at Beatty, Nevada, and to the DOE burial site at Hanford, Washington. The soil excavation project successfully reduced the contamination level in the leach field to background levels, except for less than 0.6 mCi of Sr-90 and trace amounts of Cs-137 that are isolated in cracks in the bedrock. The cracks are greater than 10 ft below the surface and have been sealed with a bituminous asphalt mastic. A pathways analysis for radiation exposure to humans from the remaining radionuclides was performed, assuming intensive home gardening, and the results show that the total first year whole body dose equivalent would be about 0.1 mrem/year. This dose equivalent is a projection for the hypothetical ingestion of vegetables grown on the site. Assuming that an average adult consumes 64 kg of green leafy vegetables per year and that the entire yearly supply could be grown on the site, the amount of ingested Sr-90 and Cs-137 is calculated to be 1100 pCi/year and 200 pCi/year. This ingested quantity would produce a total first year whole body dose equivalent of 0.10 mrem, using the accepted soil-to-plant transfer factors of 0.0172 and 0.010 for Sr-90 and Cs-137, respectively. The whole body dose equivalent exposure value of 0.1 mrem/year is far below the tentative limit established by NRC of 5 mrem/year for areas released for unrestricted use.

  10. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    PubMed

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  11. Band Gap Modulation of Bilayer MoS2 Under Strain Engineering and Electric Field: A Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Ilyasov, Victor V.

    2016-08-01

    In this work, we investigate band-gap tuning in bilayer MoS2 by an external electric field and by applied biaxial strain. Our calculations show that the band gaps of bilayer MoS2 can be tuned by the perpendicular electric field or biaxial strain. The band gaps of bilayer MoS2 decrease with increasing applied electric field or biaxial strain. When the electric field was introduced, electronic levels are split due to the separation of the valence sub-band and the conduction sub-band states. Our calculations also show that the change in the band gap of bilayer MoS2 is due to the separation of electronic levels by electric field via the Stark effect. At the electric field E_{Field} = 5.5 V/nm or biaxial strain ɛ = 15%, bilayer MoS2 becomes metallic. The semiconductor-metal phase transition in bilayer MoS2 plays an important role in its application for nanodevices.

  12. ICD-10 FIELD TRIALS IN INDIA - A REPORT

    PubMed Central

    Raghuram, R.; Shamasundar, C.

    1992-01-01

    The draft of the tenth revision of the International Classification Of Diseases, Chapter V (ICD-10) was subjected to extensive field trials throughout the world. In India, Nine Field Trial Centres (PTCs) conducted the field trials. The results showed that the ICD-10 was quite adequate in its face-validity, reliability, applicability and ease of use. A brief account of the field trials and the result are reported. PMID:21776123

  13. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    NASA Astrophysics Data System (ADS)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  14. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  15. Report on the Summer MONEX Field Phase

    NASA Technical Reports Server (NTRS)

    Fein, J. S.; Kuettner, J. P.

    1980-01-01

    The Summer Monsoon Experiment (MONEX) which was conducted over the Indian Ocean and adjacent land areas from May to August 1979, and overlapped with the second Special Observing Period of the Global Weather Experiment (FGGE). Attention is given to the scientific goals of Summer MONEX which cover (1) planetary scale aspects, (2) synoptic scale aspects, (3) interactions with atmospheric circulation in the Pacific, Southern Hemisphere, Northern midlatitudes, and stratosphere, and (4) numerical simulation and prediction. The observing system and field operations designed to attain these goals are discussed in detail. In conclusion, it is noted that the combined MONEX and FGGE observations should provide an unprecedented data set for a basic study of the monsoon phenomena.

  16. A Guide to Writing Student Laboratory and Field Research Reports.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document outlines the procedures to be followed in writing a field or research report. It describes the rationale behind a good report and explains the proper format and use of title, introduction, methods, data, discussion, conclusion, references, and abstract or summary elements. This guide gives aids to writing a good report. Finally, it…

  17. Molecular typing of Japanese field isolates and live commercial vaccine strain of Mycoplasma synoviae using improved pulsed-field gel electrophoresis and vlhA gene sequencing.

    PubMed

    Harada, Kazuki; Kijima-Tanaka, Mayumi; Uchiyama, Mariko; Yamamoto, Tomoko; Oishi, Koji; Arao, Megumi; Takahashi, Toshio

    2009-12-01

    In the present study, pulsed-field gel electrophoresis (PFGE) and vlhA gene sequence analysis were applied and verified for typing the Mycoplasma synoviae live vaccine MS-H strain and field isolates from diseased chickens in Japan. The previously published PFGE protocol using SmaI digestion could not allow the discrimination of two of the 11 M. synoviae field isolates from the vaccine strain and had relatively low discrimination power (D = 0.885). On the other hand, our new PFGE protocols using BlnI and BamHI digestions as well as the vlhA sequence analysis allowed the discrimination of all 11 M. synoviae field isolates from the vaccine strain. In addition, these PFGE protocols using BlnI and BamHI digestions generated unique fragment patterns in epidemiologically unrelated isolates, including those with identical SmaI-digested patterns or vlhA gene sequences (D = 0.987 and 1.000, respectively), and generated indistinguishable or closely related patterns in epidemiologically related isolates. Therefore, we believe that they would be useful tools to determine whether M. synoviae clinical isolates from diseased chickens are derived from the vaccine strain or wild-type strain and to further elucidate the epidemiology of M. synoviae infection.

  18. Manipulation of magnetic phase separation and orbital occupancy in manganites by strain engineering and electric field

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Song, Cheng; Pan, Feng; Key Laboratory of Advanced Materials (MOE) Team

    2015-03-01

    The modification of electronic phases in correlated oxides is one of the core issues of condensed matter. We report the reversible control of ferromagnetic phase transition in manganite films by ionic liquid gating, replicating the La1-xSrxMnO3 (LSMO) phase diagram. The formation and annihilation of an insulating and magnetically hard phase in the soft magnetic matrix, which randomly nucleates and grows across the film, is directly observed under different gate voltages (VG) . The realization of reversible metal-insulator transition in colossal magnetoresistance materials can lead to the development of four-state memories. The orbital occupancy and magnetic anisotropy of LSMO films are manipulated by VG in a reversible and quantitative manner. Positive and negative VG increases and reduces the occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), respectively. This finding fills in the blank of electrical manipulation of four degrees of freedom in correlated system.

  19. [Repetitive strain injury (RSI); a report from the Health Council of the Netherlands].

    PubMed

    Willems, J H B M

    2002-10-19

    The Health Council of the Netherlands has published its advisory report on Repetitive Strain Injury (RSI). The report provides clear information on the state of this syndrome, including the definition of the problem, the epidemiology, various hypothetical pathophysiological mechanisms, occupational and personal risk factors, and possible methods of treatment. The council states that with regard to the last aspect, too few data are available to draw any conclusion as to the most promising therapy. Nevertheless, patients should get consistent advice from their GP or company doctor. The council emphasises that encouraging physical exercise and eliminating any possible causative strain should be part of an integrated approach, embracing work-related psychosocial and personal issues. Of particular interest is the council's advice to prevent RSI by improving the physical condition and by selective training of muscle function. The report recommends that more research be carried out in order to provide insight into the effectiveness of the treatment of RSI.

  20. Phase field approach to martensitic phase transformations with large strains and interface stresses

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2014-10-01

    Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg-Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg-Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the

  1. Study of effectiveness of bioluminescent reporter phage assay on Y. pseudotuberculosis strains.

    PubMed

    Mitiashvili, M R

    2013-05-01

    The method describes the phage-mediated transduction of a bioluminescent phenotype to cultivated Y. pseudotuberculosis cells which are subsequently measured using a microplate luminometer. Reporter phage assay is rapid detection technique and its efficiency is not affected by presence of contaminating bacteria, no sample preparation is needed and it has the ability to test multiple samples simultaneously in a 96-well microtiter plate format. Experiments were performed to develop the rapid detection technique for Y. pseudotuberculosis strains and study the ability of a reporter Yersinia phage to confer a bioluminescent signal to Y. pseudotuberculosis strains under different environmental conditions (media, temperature, bacterial number) for detection. Further, to determine if the Yersinia phage can detect Y. pseudotuberculosis in presence of other bacterial species. The results revealed that the developed reporter phage assay is not effective against wide range of Y. pseudotuberculosis. Y. pseudotuberculosis could be rapidly detected within 30 minutes at 28°C. The reporter phage assay could detect luminescence within 45 minutes when the bacterial cells were at the minimal concentration 105 cells/mL. The optimal detectable concentrations were 106-107 cells/mL at 28 and 37°C. The reporter phage assay could detect Y. pseudotuberculosis within 30 minutes in presence of other enteric bacteria without selective enrichment. It should be noted that the Yersinia reporter phage is specific to Yersinia pestis strains and it can be used to detect Y. pseudotuberculosis when samples exclude the existence of Y. pestis strains. In the presented study this aspect was foreseen.

  2. Manus Water Isotope Investigation Field Campaign Report

    SciTech Connect

    Conroy, Jessica L; Cobb, Kim M; Noone, David

    2016-03-01

    The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of the site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.

  3. Analysis of Genomic Diversity among Helicobacter pylori Strains Isolated from Iranian Children by Pulsed Field Gel Electrophoresis

    PubMed Central

    Falsafi, Tahereh; Sotoudeh, Nazli; Feizabadi, Mohammad-Mehdi; Mahjoub, Fatemeh

    2014-01-01

    Objective: Presence of genomic diversity among Helicobacter pylori (H. pylori) strains have been suggested by numerous investigators. Little is known about diversity of H. pylori strains isolated from Iranian children and their association with virulence of the strains. Our purpose was to assess the degree of genomic diversity among H. pylori strains isolated from Iranian-children, on the basis of vacA genotype, cagA status of the strains, sex, age as well as the pathological status of the patients. Methods: Genomic DNA from 44 unrelated H. pylori strains isolated during 1997–2009, was examined by pulse-field gel electrophoresis (PFGE). Pathological status of the patients was performed according to the modified Sydney-system and genotype/status of vacA/cagA genes was determined by PCR. PFGE was performed using XbaI restriction-endonuclease and the field inversion-gel electrophoresis system. Findings: No significant relationship was observed between the patterns of PFGE and the cagA/vacA status/genotype. Also no relationship was observed between age, sex, and pathological status of the children and the PFGE patterns of their isolates. Similar conclusion was obtained by Total Lab software. However, more relationship was observed between the strains isolated in the close period (1997–2009, 2001–2003, 2005–2007, and 2007–2009) and more difference was observed among those obtained in the distant periods (1997 and 2009). Conclusion: H. pylori strains isolated from children in Iran are extremely diverse and this diversity is not related to their virulence characteristics. Occurrence of this extreme diversity may be related to adaptation of H. pylori strains to variable living conditions during transmission between various host individuals. PMID:26019775

  4. Arctic Clouds Infrared Imaging Field Campaign Report

    SciTech Connect

    Shaw, J. A.

    2016-03-01

    The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instruments to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.

  5. Deep sequencing and variant analysis of an Italian pathogenic field strain of equine infectious anaemia virus.

    PubMed

    Cappelli, K; Cook, R F; Stefanetti, V; Passamonti, F; Autorino, G L; Scicluna, M T; Coletti, M; Verini Supplizi, A; Capomaccio, S

    2017-03-15

    Equine infectious anaemia virus (EIAV) is a lentivirus with an almost worldwide distribution that causes persistent infections in equids. Technical limitations have restricted genetic analysis of EIAV field isolates predominantly to gag sequences resulting in very little published information concerning the extent of inter-strain variation in pol, env and the three ancillary open reading frames (ORFs). Here, we describe the use of long-range PCR in conjunction with next-generation sequencing (NGS) for rapid molecular characterization of all viral ORFs and known transcription factor binding motifs within the long terminal repeat of two EIAV isolates from the 2006 Italian outbreak. These isolates were from foals believed to have been exposed to the same source material but with different clinical histories: one died 53 days post-infection (SA) while the other (DE) survived 5 months despite experiencing multiple febrile episodes. Nucleotide sequence identity between the isolates was 99.358% confirming infection with the same EIAV strain with most differences comprising single nucleotide polymorphisms in env and the second exon of rev. Although the synonymous:non-synonymous nucleotide substitution ratio was approximately 2:1 in gag and pol, the situation is reversed in env and ORF3 suggesting these sequences are subjected to host-mediated selective pressure. EIAV proviral quasispecies complexity in vivo has not been extensively investigated; however, analysis suggests it was relatively low in SA at the time of death. These results highlight advantages of NGS for molecular characterization of EIAV namely it avoids potential artefacts generated by traditional composite sequencing strategies and can provide information about viral quasispecies complexity.

  6. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  7. FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...

  8. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST

    PubMed Central

    Lu, Teng; Studer, Andrew J.; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L.; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  9. Use of pulsed-field gel electrophoresis to monitor a five-strain mixture of Listeria monocytogenes in frankfurter packages.

    PubMed

    Porto, Anna C S; Wonderling, Laura; Call, Jeffrey E; Luchansky, John B

    2003-08-01

    In a previous study, the viability of a five-strain mixture of Listeria monocytogenes (including Scott A [serotype 4b, clinical isolate], 101M [serotype 4b, beef-pork sausage isolate], F6854 [serotype 1/2a, turkey frankfurter isolate], H7776 [serotype 4b, frankfurter isolate], and MFS-2 [serotype 1/2a, pork plant isolate]) was monitored during refrigerated storage of frankfurters prepared with and without 3.0% added potassium lactate. Throughout a 90-day period of storage at 4 degrees C, the initial inoculum level of 20 CFU per package remained relatively constant in packages containing frankfurters prepared with potassium lactate, but pathogen counts increased to 4.6 log10 CFU in packages containing frankfurters prepared without added potassium lactate. To determine which of the five strains persisted under these conditions, randomly selected colonies obtained after 28 and 90 days of refrigerated storage of frankfurters were analyzed by pulsed-field gel electrophoresis (PFGE) with the restriction enzyme SmaI to generate distinct banding patterns for each of the five strains. Then, with the use of PFGE as a tool for identification, the percentages of the strains on days 28 and 90 of the growth study were compared. In the absence of any added potassium lactate in the product, 43% of the 58 isolates recovered on day 28 were identified as strain Scott A, 12% were identified as strain 101M, 22% were identified as strain F6854, 10% were identified as strain H7776, and 12% were identified as strain MFS-2. However, by day 90, an appreciable number (83%) of the 60 isolates analyzed were identified as strain MFS-2. In packages containing frankfurters formulated with 3.0% potassium lactate, all five strains were present at frequencies of 5 to 36% among the 19 isolates tested on day 28; however, by day 90, strain MFS-2 made up the statistical majority (63%) of the 27 isolates tested. The results of this study indicate that strain MFS-2, a serotype 1/2a isolate recovered from

  10. Genetic Diversity of Streptococcus suis Strains Isolated from Pigs and Humans as Revealed by Pulsed-Field Gel Electrophoresis

    PubMed Central

    Berthelot-Hérault, Florence; Marois, Corinne; Gottschalk, Marcelo; Kobisch, Marylène

    2002-01-01

    The genetic diversity of 123 Streptococcus suis strains of capsular types 2, 1/2, 3, 7, and 9, isolated from pigs in France and from humans in different countries, was evaluated by pulsed-field gel electrophoresis (PFGE) of DNA restricted with SmaI. The method was highly discriminative (D = 0.98), results were reproducible, and the PFGE analysis was easy to interpret. Among all S. suis strains, 74 PFGE patterns were shown. At 60% homology, three groups (A, B, and C) were identified, and at 69% homology, eight subgroups (a to h) were observed. Strains isolated from diseased pigs or from humans were statistically clustered in group B, especially in subgroup d. By contrast, S. suis strains isolated from clinically healthy pigs were preferentially included in subgroup b of group A. Relationships could be established between capsular types 1/2, 3, and 9 and groups A, e, and B, respectively. S. suis strains isolated from humans were homogeneous, and a very high level of association between these strains and four DNA patterns was observed. The PFGE used in this study is a very useful tool for evaluating the genetic diversity of S. suis strains, and it would be used for epidemiological investigations. PMID:11825980

  11. Genetic diversity of Streptococcus suis strains isolated from pigs and humans as revealed by pulsed-field gel electrophoresis.

    PubMed

    Berthelot-Hérault, Florence; Marois, Corinne; Gottschalk, Marcelo; Kobisch, Marylène

    2002-02-01

    The genetic diversity of 123 Streptococcus suis strains of capsular types 2, 1/2, 3, 7, and 9, isolated from pigs in France and from humans in different countries, was evaluated by pulsed-field gel electrophoresis (PFGE) of DNA restricted with SmaI. The method was highly discriminative (D = 0.98), results were reproducible, and the PFGE analysis was easy to interpret. Among all S. suis strains, 74 PFGE patterns were shown. At 60% homology, three groups (A, B, and C) were identified, and at 69% homology, eight subgroups (a to h) were observed. Strains isolated from diseased pigs or from humans were statistically clustered in group B, especially in subgroup d. By contrast, S. suis strains isolated from clinically healthy pigs were preferentially included in subgroup b of group A. Relationships could be established between capsular types 1/2, 3, and 9 and groups A, e, and B, respectively. S. suis strains isolated from humans were homogeneous, and a very high level of association between these strains and four DNA patterns was observed. The PFGE used in this study is a very useful tool for evaluating the genetic diversity of S. suis strains, and it would be used for epidemiological investigations.

  12. Isolation and characterization of Klebsiella oxytoca strain degrading crude oil from a Tunisian off-shore oil field.

    PubMed

    Chamkha, Mohamed; Trabelsi, Yosra; Mnif, Sami; Sayadi, Sami

    2011-12-01

    A facultatively anaerobic, Gram-negative, mesophilic, moderately halotolerant, non-motile, and non-sporulated bacterium, designated strain BSC5 was isolated from an off-shore "Sercina" oil field, located near the Kerkennah island, Tunisia. Yeast extract was not required for growth. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain BSC5 revealed that it was related to members of the genus Klebsiella, being most closely related to the type strain of K. oxytoca (99% sequence similarity). Strain BSC5 was capable of using aerobically the crude oil as substrate growth. The growth of strain BSC5 on crude oil was followed by measuring the OD(600 nm) and by enumeration of viable cells at different culture's time. GC-MS analysis showed that strain BSC5 was capable of degrading a wide range of aliphatic hydrocarbons from C(13) to C(30) . The biodegradation rate for n -alkanes reached 44% and 75%, after 20 and 45 days of incubation, respectively. Addition of the synthetic surfactant, Tween 80, accelerated the crude oil degradation. The biodegradation rate for n -alkanes reached 61% and 98%, after 20 and 45 days of incubation, respectively. Moreover, three aromatic compounds, p -hydroxybenzoate, protocatechuate and gentisate, were metabolized completely by strain BSC5 after 24 h, under aerobic conditions.

  13. a Computational Study of Strain Effects in the Band-To Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yousefi, Reza; Ghoreishi, Seyyed Saleh

    2012-11-01

    In this paper, the transport properties of the band-to-band-tunneling carbon nanotube field-effect transistors (BTBT-CNTFETs) under uniaxial strain are studied, with the nonequilibrium Green's function (NEGF) formalism. The effects of the uniaxial strain on the electrical properties, such as the ON current (ION), OFF current (IOFF), ION/IOFF ratio, subthreshold swing and intrinsic delay are evaluated. It was observed that the uniaxial strain has strong effects on the transport properties of these transistors. The results show that appropriate uniaxial strain, although degrades the ON current and the intrinsic delay, it also decreases the power consumption of the BTBT-CNTFETs and as a result can be used for low-power applications.

  14. Colonization of a marker and field strain of Salmonella enteritidis and a marker strain of Salmonella typhimurium in vancomycin-pretreated and nonpretreated laying hens.

    PubMed

    Hannah, J F; Wilson, J L; Cox, N A; Richardson, L J; Cason, J A; Bourassa, D V; Buhr, R J

    2011-12-01

    This study was conducted to evaluate the influence of a vancomycin pretreatment on the ability of marker (nalidixic-acid resistant) Salmonella Enteritidis (SE(M)), field Salmonella Enteritidis (SE(E)), and marker Salmonella Typhimurium (ST(M)) strains to colonize within the intestinal and reproductive tracts and translocate to other organs of leghorn laying hens. In each of three trials, caged laying hens (76, 26, and 33 wk ofage) were divided into six groups designated to receive SE(M), SE(F), or ST(M), and half were pretreated with vancomycin (n = 11-12 hens). Vancomycin-treated hens received 10 mg vancomycin in saline/kilogram body weight orally for 5 days to inhibit Gram-positive bacteria within the intestines. On Day 6, all hens were concurrently challenged by oral, intravaginal, and intracolonal routes with Salmonella and placed into separate floor chambers by Salmonella strain. Two weeks postinoculation, all hens were euthanatized and the ceca, spleen, liver/gall bladder (LGB), upper (URT), and lower (LRT) reproductive tracts, and ovarian follicles were aseptically collected, and analyzed for Salmonella. Results did not differ for the three hen's ages and were therefore combined. The vancomycin pretreatment also had no significant effect on the colonization ability of SE(M), SE(F) or ST(M), and therefore results were combined within Salmonella strain. The marker strain of Salmonella Enteritidis was recovered from 21% of ceca, 4% of LGB, 9% of LRT, and 17% of the fecal samples. The field strain of Salmonella Enteritidis was recovered from 88% of ceca, 96% of spleen, 92% of LGB, 30% of LRT, 4% of URT, 13% of follicle, and 42% of the fecal samples. The marker strain of Salmonella Typhimurium was recovered from 100% of ceca, 74% of spleen, 91% of LGB, 30% of LRT, 9% of URT, 9% of follicle, and 100% of the fecal samples. Among ceca, spleen, LGB, and fecal samples, SE(F) and ST(M) colonization was significantly greater than SE(M) colonization. Overall prevalence

  15. A comparison of susceptibility to Myxobolus cerebralis among strains of rainbow trout and steelhead in field and laboratory trials

    USGS Publications Warehouse

    Densmore, Christine L.; Blazer, V.S.; Cartwright, Deborah D.; Schill, W.B.; Schachte, J.H.; Petrie, C.J.; Batur, M.V.; Waldrop, T.B.; Mack, A.; Pooler, P.S.

    2001-01-01

    Three strains of rainbow trout and steelhead Oncorhynchus mykiss were evaluated for the presence of whirling disease in field and laboratory trials. In the field exposures, fingerling Salmon River steelhead and Cayuga Lake and Randolph strains of rainbow trout were placed in wire cages in an earthen, stream-fed pond in New York State that was known to harbor Myxobolus cerebralis. Control fish were held at another hatchery that was free of whirling disease. In the controlled trials at the National Fish Health Research Laboratory, fingerling steelhead and Cayuga Lake and Mount Lassen rainbow trout were exposed to triactinomyxons at low (200 triactinomyxons/fish) or high (2,000 triactinomyxons/fish) levels for 2 h. Controls of each group were sham-exposed. Following an incubation period of 154 d for laboratory trials and 180 d for field trials, cranial tissue samples were taken for spore enumeration (field and laboratory trials) and histological analyses (laboratory only). Clinical signs of disease, including whirling behavior, blacktail, and skeletal deformities, were recorded for each fish in the laboratory trial at the terminal sampling. No clinical evidence of disease was noted among fish in the field trials. Clinical signs were noted among all strains in the laboratory trials at both exposure levels, and these signs were consistently greatest for the Mount Lassen strain. Whirling and skeletal deformities were more evident in the steelhead than in the Cayuga Lake rainbow trout; blacktail was more common in the Cayuga Lake fish. In both field and laboratory trials, spore counts were significantly higher for Cayuga Lake rainbow trout than in steelhead. In laboratory trials, moderate to marked cranial tissue lesions predominated in all three strains.

  16. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  17. Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

    NASA Astrophysics Data System (ADS)

    Fukumoto, Y.; Mie, Y.

    2013-07-01

    A weakly nonlinear stability theory is developed for a rotating flow confined in a cylinder of elliptic cross-section. The straining field associated with elliptic deformation of the cross-section breaks the SO(2)-symmetry of the basic flow and amplifies a pair of Kelvin waves whose azimuthal wavenumbers are separated by 2, being referred to as the Moore-Saffman-Tsai-Widnall (MSTW) instability. The Eulerian approach is unable to fully determine the mean flow induced by nonlinear interaction of the Kelvin waves. We establish a general framework for deriving the mean flow by a restriction to isovortical disturbances with use of the Lagrangian variables and put it on the ground of the generalized Lagrangian-mean theory. The resulting formula reveals enhancement of mass transport in regions dominated by the vorticity of the basic flow. With the mean flow at hand, we derive unambiguously the weakly nonlinear amplitude equations to third order for a nonstationary mode. By an appropriate normalization of the amplitude, the resulting equations are made Hamiltonian systems of four degrees of freedom, possibly with three first integrals identifiable as the wave energy and the mean flow.

  18. Estimation of a Time-Dependent Strain Rate Field in Southern California Using Continuous GPS Stations in the SCIGN Network.

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Holt, W. E.; Bennett, R. A.; Li, C.; Dimitrova, L. L.; Haines, A. J.

    2005-12-01

    Advancements in the recognition of fine-scale deformation fluctuations have prompted a great deal of attention to be focused on identifying and characterizing transient strain phenomena. We have developed a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. Using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. We determine time-averaged velocity values in 0.05 year epochs for each continuous velocity series. For each velocity field solution we determine a self-consistent model velocity gradient tensor field solution for the region using bi-cubic Bessel interpolation of the GPS velocity vectors. For each epoch solution we plot dilatation strain rates, shear strain rates, and the rotation rates. We also investigate the departures of the model strain rate field and velocity field from a master solution, obtained from a time-averaged solution for the period 1999-2004, as well as estimating the departures of the time variable velocity gradient tensor field from other master solutions, including models that incorporate plate motion constraints and Quaternary fault data. By combining the epoch solution plots, we create movies that allow us to view the spatial and temporal changes in the dilation and shear strain rate field in southern California. In the present solution several time-dependent changes are noteworthy. The Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, shows a significant spatial change of relatively high shear strain rate that increases from the immediate area of the earthquake to an area that almost spans the entire ECSZ from east to west. Also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting

  19. Geodetic Monitoring of The Strain Evolution Field During The July - August 2001 Mt. Etna Eruption

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Etna01-Geo Team

    Since the beginning of the 2001 Etna eruption, EDM and GPS measurements have been carried out to monitor the evolution of the ground deformation pattern of the volcano during the particular period of activity. The ground deformation pattern pre- ceding the eruption was known thanks to previous EDM and GPS surveys carried out and completed just few days before the onset of the eruption. During the period of activity, EDM measurements have been carried out daily on the uppermost part of the southern and northeastern trilateration networks in order to monitor the strain of the areas surrounding the eruptive fractures. These surveys allowed following the evolu- tion of the strain field since the beginning of the seismic swarm preceding the opening of the eruptive fracture system. Most of the ground deformation has been observed during the very first days of the eruption. Starting from the last days of the activity, the three EDM networks located on the NE, SW and S flanks of the volcano have been completely measured to fix the ground deformation pattern caused by the eruption. During the opening of the fracture system, the N-S GPS profile (17 stations), starting from the NE Rift to the Rifugio Sapienza area, has been measured together with a few GPS stations on the upper part of the volcano. The comparison of these measurements with the previous ones carried out the day before the seismic swarm, depicts a strong ground deformation pattern in good agreement with the dynamics of the intrusion. Later, several measurements have been carried out also during the eruption, on part of the N-S profile (12 stations), from the NE rift to the Piano del Lago area, very near the upper part of the eruptive fracture, because some of the southernmost stations were covered by the lava flows during the first days of the eruption. GPS sessions have been also carried out almost daily on an E-W profile, consisting of 16 stations and cross- ing the Rifugio Sapienza and the 1989 fracture

  20. Electric and magnetic fields and tumor progression. Final report

    SciTech Connect

    Keng, P.C.; Grota, L.J.; Michaelson, S.; Lu, S.T.

    1994-12-01

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatonin is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.

  1. Stubborn Disease in Iran: Diversity of Spiroplasma citri Strains in Circulifer haematoceps Leafhoppers Collected in Sesame Fields in Fars Province.

    PubMed

    Zarei, Zahra; Salehi, Mohammad; Azami, Zabihallah; Salari, Khadijeh; Béven, Laure

    2017-02-01

    Spiroplasma citri is a bacterial pathogen responsible for the economically important citrus stubborn disease. Sesame and citrus seeds serve as hosts for both S. citri and its leafhopper vector Circulifer haematoceps. To evaluate whether sesame could act as a reservoir for citrus-infecting strains or not, the genetic diversity among S. citri strains found in leafhoppers collected in citrus and citrus-free sesame fields was investigated. Among 26 periwinkle plants exposed to the collected C. haematoceps leafhoppers, 12 plants developed typical stubborn symptoms. All symptomatic periwinkles were polymerase chain reaction positive using S. citri-specific primer pairs targeting the spiralin and P89 genes. Phylogenetic trees based on spiralin gene sequence analysis indicated that the novel field-collected strains clustered with those belonging to two formerly defined S. citri groups (groups 6 and 1). In addition, our results strongly suggest that group 1 strains could be transmitted from sesame-infected plants to citrus trees by C. haematoceps, while group 6 strains may not infect citrus trees.

  2. Full-field dynamic displacement and strain measurement using pulsed and high-speed 3D image correlation photogrammetry

    NASA Astrophysics Data System (ADS)

    Schmidt, Timothy; Tyson, John; Galanulis, Konstantin

    2004-02-01

    3D image correlation is a robust method for measuring full-field displacements and strains using a calibrated pair of video cameras. Underlying principles and benefits are reviewed, and the method is compared to both 3D ESPI and 2D image correlation. Several applications combining image correlation photogrammetry with stroboscopic illumination and/or high-speed video cameras are presented. Operational strains in ionic polymeric muscle samples and electro-restrictive actuators are determined. The use of short-duration white light pulses to study automobile tires on road wheels at speeds up to 150 miles per hour is demonstrated. Initial work measuring strains on an 18" flywheel in a spin pit at up to 35,000 rpm is described. A notched rubber dogbone sample is pulled to failure at 125% strain in 38 milliseconds, and hundreds of full-field strain maps are captured. This paper includes discussion of sample preparation methods and special lighting systems, including pulsed arc lamps and pulsed lasers. A matrix of capability using available high speed cameras is included.

  3. Measurement of high temperature full-field strain up to 2000 °C using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xu, Chenghai; Jin, Hua; Meng, Songhe; Zhang, Yumin; Xie, Weihua

    2017-03-01

    Understanding the deformation and strain at elevated temperature is a critical factor for the stability of aerodynamic shape, and an important consideration for the thermal protection system design. However, accurate measurement of deformation and strain at high temperatures is a challenge. Here, we present a measurement study for full-field strain mapping up to 2000 °C using digital image correlation (DIC) method, which mainly depends on the quality of speckle patterns on the specimen surface. In our study, the strain values are analyzed by DIC method while specimens are heated using a large electric current. Improvements in filtering and speckling allow the measured temperatures using this method to reach 2000 °C. We confirmed the validity of this method by comparison of measured Young’s modulus values with reference data for Inconel 718 Ni-based superalloy and graphite at different temperatures. Additionally, the full-field strain and Young’s modulus were demonstrated for a carbon fiber-reinforced carbon (C/C) composite uniaxial tensile specimen at 2000 °C.

  4. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  5. Field monitoring of the ice load of an icebreaker propeller blade using fiber optic strain gauges

    NASA Astrophysics Data System (ADS)

    Morin, Andre; Caron, Serge; Van Neste, Richard; Edgecombe, Merv H.

    1996-05-01

    Navigation in polar waters presents a formidable challenge to ships' propulsion systems as large ice pieces impinging on their propeller blades sometimes result in stresses exceeding the yield strength of the blade material. Damage to propellers is costly and can also spell disaster if a ship becomes disabled in a remote area. To prevent such situations, design practice must be improved and theoretical models of propeller/ice interaction must be validated against experimental data. The blade shape requires that the load be monitored at many locations in order to obtain an accurate picture of the stress and load distribution. Fiber optic sensors are ideally suited for such an application, owing to their small size, stability over time, immunity to electro-magnetic interference, resistance to corrosion and chemical attack by sea water and hydraulic oil. We report the full-scale instrumentation of an icebreaker propeller blade with 54 Fabry-Perot based fiber optic strain gauges and shaft-mounted electronics. The instrumentation design and installation procedures are described. Additional data gathered from the propulsion control system and the ship's navigation equipment is presented and the data fusion performed with underwater video imagery of the instrumented blade is also discussed. An overview of the noise-free data obtained during the Antarctic trials is given. We finally discuss the sensors behavior and long term response, presenting their applicability to smart structures.

  6. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

    PubMed Central

    Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien; Mariet, Jean-François; Aarestrup, Frank M.; Mistou, Michel-Yves; Hendriksen, René S.

    2016-01-01

    ABSTRACT Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view

  7. Persistent infections of a field strain of rabies virus in murine neuroblastoma (NA-C1300) cell cultures.

    PubMed Central

    Webster, W A; Charlton, K M; Casey, G A

    1989-01-01

    Rabies virus from the brain of a striped skunk (Mephitis mephitis) from Ontario was inoculated into murine neuroblastoma (NA-C1300) cell cultures. These cultures were incubated and the cells were subcultured every three to four days. The presence of viral antigen in the cell cultures was monitored by direct immunofluorescent staining and in the culture fluids by titration in either baby hamster kidney (BHK/C13) or NA cells or in experimental mice. The virus-infected NA cultures evolved from an initial high viral concentration in supernatant fluid through a period of decreasing titers of infectious virus in the supernatant fluids to a final phase where no infectious virus has been found following cell culture and animal inoculation methods attempted although the persistently infected cells remained 95-100% viral nucleocapsid antigen-positive. Possible mechanisms involved in the perpetuation of this infection are discussed. This is the first report of a persistent infection of cell cultures by a field strain of rabies virus. PMID:2590871

  8. Optical measurement of the dynamic strain field of a fan blade using a 3D scanning vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, C.; Vanlanduit, S.; Presezniak, F.; Steenackers, G.; Guillaume, P.

    2011-07-01

    Understanding the origin of the stress and strain distribution is crucial to increase the durability of components under dynamic loading. Numerical simulations based on finite element (FE) models help with this understanding but must be validated by real measured data. Updating the FE model using the measured data is often the next step in the design process. In this paper the recently developed 3D-scanning laser doppler vibrometer (3D-SLDV) is used to measure the 3D-displacement of a fan blade, which is then used to calculate the dynamic strain distributions. The measurement principle and experimental setup are discussed thoroughly. The experimental results are validated by using a FE model on the one hand and strain gage measurements on the other. It is shown that this technique is capable of measuring normal strain far below 1 microstrain. This technique has the potential to fill in the gap of accurately measuring small (full-field) normal and shear strains at both low and high frequencies, where other optical techniques (and strain gages) would certainly fail.

  9. Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods.

    PubMed

    Uysal, Ahmet; Durak, Yusuf

    2012-11-01

    Bacterial contamination in foods and antimicrobial resistance levels of common pathogenic strains causing food-borne disease are important in human health. Thus, typing technologies are important tools to determine primary sources of bacterial contamination. In this study, 40 Escherichia coli strains isolated from 85 food samples were evaluated in terms of genetic diversity, susceptibility to certain antibiotics, and plasmid profiles. Pulsed-field gel electrophoresis was used to identify the genetic relations of E. coli isolates. It was determined that the 40 E. coli strains revealed 32 different pulsotypes represented by 6 subtypes. Antibiotic susceptibility tests conducted by using a disc diffusion method against 15 antibiotics showed that although the isolates revealed 14 different types of resistance profiles, the strains showed the greatest resistance to ampicillin (77.5%), followed by ticarcillin-clavulanic acid (30%), tetracycline (22.5%), and cephalothin (14.5%). Plasmid isolations studies of the strains conducted by the method of alkaline lysis revealed that 18 (45%) of 40 E. coli strains contain 31 different plasmid bands ranging between 64.4 and 1 kb. The results showed that PFGE was a powerful method in tracking sources of food contamination and that the antibiotic resistance levels of food isolates were high and should be monitored.

  10. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  11. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2

    NASA Astrophysics Data System (ADS)

    Shang, Jimin; Huang, Le; Wei, Zhongming

    2017-03-01

    Using first-principles calculations, including Grimme D2 method for van der Waals interactions, we investigate the tuning electronic properties of bilayer zirconium disulfides (ZrS2) subjected to vertical electric field and normal compressive strain. The band gap of ZrS2 bilayer can be flexibly tuned by vertical external electric field. Due to the Stark effect, at critical electric fields about 1.4 V/Å, semiconducting-metallic transition presents. In addition, our results also demonstrated that the compressive strain has an important impact on the electronic properties of ZrS2 bilayer sheet. The widely tunable band gaps confirm possibilities for its applications in electronics and optoelectronics. Project support by the CAS/SAFEA International Partnership Program for Creative Research Teams and the Basic and Frontier Technology Research of Henan (No. 142300410244).

  12. [Production of a vaccine against enterotoxemia from Clostridium perfringens strains isolated in the field].

    PubMed

    Cherfaoui, S; Kadra, B

    1992-01-01

    We have isolated eight strains of C. perfringens from cases of enterotoxaemia. Five of these strains have revealed themselves toxic with respective types (type "A":2, type "C":2, type "D":1). In order to produce anti-enterotoxaemia vaccine, we have proceeded at the cultivation in fermenter of isolated strains and reference strains CWA 35, CWC and CWD AF. At the end of fermentation, we have evaluated the two following parameters: obtained biomass, and toxin titers. With the two classes of strains we reached an important biomass but toxins titers relatively weak comparatively to that which is usually required. It will be necessary then, to demonstrate the immunogen value of the produced vaccines by testing their efficacity.

  13. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta

    PubMed Central

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  14. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta.

    PubMed

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings.

  15. First report of metallo-β-lactamases producing Enterobacter spp. strains from Venezuela.

    PubMed

    Martínez, Dianny; Rodulfo, Hectorina E; Rodríguez, Lucy; Caña, Luisa E; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; De Donato, Marcos

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of blaVIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed blaTEM-1, but only one showed blaCTX-M-15 gene, while no blaSHV was detected.

  16. First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides.

    PubMed

    Reck, José; Klafke, Guilherme Marcondes; Webster, Anelise; Dall'Agnol, Bruno; Scheffer, Ramon; Souza, Ugo Araújo; Corassini, Vivian Bamberg; Vargas, Rafael; dos Santos, Julsan Silveira; Martins, João Ricardo de Souza

    2014-03-17

    The control of the cattle tick Rhipicephalus microplus is based mainly on the use of chemical acaricides, which has contributed to the emerging problem of selection of resistant tick populations. Currently, there are six main classes of acaricides commercially available in Brazil to control cattle ticks, with fluazuron, a tick growth regulator with acaricidal properties, being the only active ingredient with no previous reports of resistance. Ticks (designated the Jaguar strain) were collected in a beef cattle ranch located at Rio Grande do Sul state, Southern Brazil, after a complaint of fluazuron treatment failure. To characterise the resistance of this strain against acaricides, larval tests were performed and showed that the Jaguar strain was resistant to all of the drugs tested: cypermethrin (resistance ratio, RR=31.242), chlorpyriphos (RR=103.926), fipronil (RR=4.441), amitraz (RR=11.907) and ivermectin (3.081). A field trial was conducted to evaluate the efficacy of fluazuron treatment in heifers that had been experimentally infested with the Jaguar or a susceptible strain. Between 14 and 28 days after treatment, the average efficacy in cattle experimentally infested with the susceptible strain was 96%, while for the Jaguar strain the efficacy was zero. Additionally, the Jaguar strain response to fluazuron was evaluated in vitro using a modified adult immersion test (AIT) and the artificial feeding assay (AFA). With the AIT, 50 ppm of fluazuron inhibited 99% of larvae hatching in the susceptible strain (POA) and less than 50% in the Jaguar strain. Results of the AFA showed a larval hatching rate of 67% at 2.5 ppm of fluazuron with the Jaguar strain; conversely, only 3% of larvae of the susceptible strain hatched at the same fluazuron concentration. The results showed here demonstrated the first case of fluazuron resistance in R. microplus and the first tick population resistant to six classes of acaricides in Brazil.

  17. POPLITEUS STRAIN WITH CONCURRENT DELTOID LIGAMENT SPRAIN IN AN ELITE SOCCER ATHLETE: A CASE REPORT

    PubMed Central

    Beaumont, Josh; Tarnay, Lorena; Silvers, Holly

    2013-01-01

    Study Design: Case Report (Differential diagnosis) Background and Purpose: Differential diagnosis of knee pathology after trauma may be difficult when diagnosing an isolated popliteus strain and concurrent medial deltoid ligament sprain. Upon a thorough search of the published literature, the authors found no reports delineating a popliteus strain in professional soccer in the United States. The joints most affected by injury in soccer players are the knee and ankle joints. The purpose of this case report is to describe the presentation of and difficulties encountered in diagnosing a popliteus strain in a Major League Soccer athlete. Case Description: During an in-season away game, an outside defender was slide-tackled from behind when his right shank was caught in an externally rotated position underneath himself and the opposing player. The initial point of contact was made to the proximal third of the posterior right shank with an anteromedially directed force. The medial longitudinal arch of the foot was forced into a more midfoot pronated position and the subtalar joint was forced into eversion. Diagnosis: The athlete was diagnosed with a moderate strain of the right popliteus muscle with a concurrent medial deltoid ligament sprain of the right ankle. This mechanism of injury, pain with passive knee flexion and internal rotation during McMurray's test, pain with Garrick's Test and magnetic resonance imaging (MRI) study confirmed the diagnosis. The athlete returned to full ninety-minute game participation after an intensive 15-day rehabilitation program. Discussion: This case is unique because the injury manifested itself at multiple joints and specifically involved the popliteus muscle. The mechanism of injury can be associated with many other soft tissue injuries to the knee, and thus, may not lead the clinician initially to consider the diagnosis of a popliteus strain. Diagnosis of this entity may be difficult due to the possible shared attachment of the

  18. Two-Dimensional Strain Fields on the Cross-Section of the Human Patellofemoral Joint under Physiological Loading

    PubMed Central

    Guterl, Clare Canal; Gardner, Thomas R.; Rajan, Vikram; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2009-01-01

    The objective of this study was to provide a detailed experimental assessment of the two-dimensional cartilage strain distribution on the cross-section of the human patellofemoral joint (PFJ) subjected to physiological load magnitudes and rates. The medial side of six human PFJs sectioned along their mid-sagittal plane was loaded up to the equivalent of two body weights on a whole joint, and strain measurements obtained from digital image correlation are reported at 0.5s. Normal strains tangential to the articular surface and shear strains in the plane of the cross-section showed consistent patterns among all specimens, whereas normal strains perpendicular to the articular surface exhibited some variability that may be attributed to subject-specific variations in material properties through the depth of the articular layers. Elevated tensile and compressive principal normal strains were observed near the articular surface, around the center of the contact region, with additional locations of elevated compressive strains occurring at the bone-cartilage interface. Under an average contact stress of ∼3.3 MPa, the peak compressive principal normal strains for the patella and femur averaged -0.158 ± 0.072 and -0.118 ± 0.051 respectively, magnitudes that are significantly greater than the relative changes in cartilage thickness, -0.090 ± 0.030 and -0.072 ± 0.038 (p < 0.005). These experimental results provide a detailed description of the manner by which human PFJ articular layers deform in situ under physiological load conditions. PMID:19433326

  19. Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Baxevanis, T.; Chemisky, Y.; Lagoudas, D. C.

    2012-09-01

    The plane strain mechanical fields near a stationary crack tip in a pseudoelastic shape memory alloy (SMA) are analyzed via the finite element method. The small scale transformation assumption is employed for the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law used adopts the classical rate-independent small strain flow theory for the evolution equations of both the transformation and plastic strains. Results on the size and shape of the stress-induced transformation and plastic zone formed near the stationary crack are obtained and a fracture toughness criterion based on the J-integral is discussed in view of the observed path-dependence of J. Moreover, the obtained results are discussed in relation to results for stationary cracks in conventional elastic-plastic materials.

  20. Small animal electric and magnetic field exposure systems. Final report

    SciTech Connect

    Patterson, R.C.; Dietrich, F.M.

    1993-10-01

    Laboratory evaluation of electric and magnetic fields (EMF) and cancer in animals requires exposure of relatively large numbers of animals, usually rats or mice, to 60-Hz fields under very well controlled conditions for periods of up to two years. This report describes two exposure systems, the first of which is based on modifications of an existing electric field exposure system to include magnetic field exposure capability. In this system, each module houses 576--768 mice, which can be exposed to electric field levels of up to 100 kV/m and magnetic field levels of up to 10 Gauss. When a module was operated at 10 Gauss, measured levels of noise and vibration fell substantially below the detection threshold for humans. Moreover, temperature rise in the coils did not exceed 12{degrees}C at the 10 Gauss level. Specifications and test results for the second system, which provides magnetic field exposure capability only, are similar, except that each module houses 624--780 mice. After installation of the second system at the West Los Angeles Veterans Medical Center in Los Angeles, California, additional results were obtained. This report provides a complete description of the engineering design, specifications, and test results for the completed systems.

  1. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  2. EFFECT OF STRAIN FIELD ON THRESHOLD DISPLACEMENT ENERGY OF TUNGSTEN STUDIED BY MOLECULAR DYNAMICS SIMULATION

    SciTech Connect

    Wang, D.; Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Gao, X.; He, W. H.

    2016-03-31

    The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly than for a vacancy such that Ed decreased with applied strain from compression to tension.

  3. Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2015-08-01

    To exploit the potential of anisotropy of magnetic susceptibility (AMS) as a tool to estimate the strain field around major faults, we measured the AMS of calcite-bearing diamagnetic rocks that crop out next to the Dead Sea Fault (DSF) in northern Israel. Through integrated magnetic and geochemical methods we found that the rocks are almost pure calcite rocks and therefore the magnetic fabric is primarily controlled by preferred crystallographic orientation (PCO) with the minimum principal AMS axes (k3) parallel to calcite c-axes. We applied a separation procedure in several samples with high Fe content in order to calculate the AMS anisotropy parameters and compare them to pure diamagnetic rocks. AARM, thermo-susceptibility curves and IRM were used to characterize the magnetic phases. We found that for Fe content below 500 ppm the AMS is mostly controlled by the diamagnetic phase and showed that differences in the degree of anisotropy P' up to 3% (P' = 1.005 to 1.023) and in anisotropy difference Δk (up to ~ 0.25 × 10- 6 SI) in diamagnetic rocks are related to differences of strain magnitudes. The spatial distribution of the magnetic fabrics indicates ~ N-S maximum shortening parallel to the strike of the Hula Western Border fault (HWBF), one of the main strands of the DSF in northern Israel. The anisotropy parameters suggest that the strain magnitudes increase eastward with the proximity to the HWBF. These results suggest that the strain field near the HWBF is locally deflected as a consequence of the DSF activity. In light of the "fault weakness" model and geological setting of the study area, we suggest that the area accommodates dominant transtension during the Pleistocene. The present study demonstrates the useful application of AMS measurements in "iron-free" limestones as recorders of the strain field near plate boundaries.

  4. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine.

    PubMed

    Chen, Liang; Al Laham, Nahed; Chavda, Kalyan D; Mediavilla, Jose R; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2015-07-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to β-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the bla(OXA-48)-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene bla(OXA-48), extended spectrum β-lactamase gene bla(CTX-M-14), and aminoglycoside resistance genes strA, strB, and aph(3')-VIb.

  5. Phase transition and electric field induced strain properties in Sm modified lead zirconate stannate titanate based antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Qingfeng; Yang, Tongqing; Zhang, Yangyang; Yao, Xi

    2013-06-01

    The effect of Sm addition on the crystal structures and electrical properties of Pb1-3x/2Smx(Zr0.63Sn0.26Ti0.11)O3 ceramics were investigated in this work. X-ray diffraction analysis showed that with increasing Sm content from 0.005 to 0.03, the phase structure of the specimens underwent transition from ferroelectric (FE) to antiferroelectric (AFE) state due to the substitution of Sm3+ with smaller ion radius for Pb2+ decreasing the tolerance factor of the ceramics. In addition, it was observed that with the improvement of Sm3+ content, the strain of the specimens first increased and then decreased, and the largest value of 0.735% was obtained in the sample with x = 0.015 near AFE/FE phase boundary at the measuring frequency 1 Hz. This is because the reversal of the domains, which produces the strain, is more consummate in this composition. Further, the strain at different frequencies was nearly the same at high electric field, which was attributed to that the electric field applied to the sample was so large that the reorientation of the domains could finish in all measuring frequencies. Both a high strain level and a relatively good frequency stability in the specimen with x = 0.015 make a potential candidate for actuators applications over a wide-frequency working range.

  6. Resistance genes, phage types and pulsed field gel electrophoresis pulsotypes in Salmonella enterica strains from laying hen farms in southern Italy.

    PubMed

    Camarda, Antonio; Pugliese, Nicola; Pupillo, Antonia; Oliva, Marta; Circella, Elena; Dionisi, Anna Maria; Ricci, Antonia; Legretto, Marilisa; Caroli, Anna; Pazzani, Carlo

    2013-08-06

    Twenty-four Salmonella enterica isolates (13 serovar Enteritidis and 11 Typhimurium) isolated from 5,600 samples from intensive laying hen farms in Italy in 1998-2007 were characterized for antimicrobial resistance genes, pulsotype and phage type. Most of S. Typhimurium strains were pulsotype STYMXB.0147 (81.8%), phage type DT143 and resistant to sulfamethoxazole encoded by sul2. Two multidrug resistant (MDR) strains were identified. One strain, STYMXB.0061, was resistant to ampicillin (A), chloramphenicol (C), streptomycin (S), sulfamethoxazole (Su) and tetracycline (T) encoded by the Salmonella Genomic Island SGI1. The second MDR strain, STYMXB.0110, was resistant to SSuT encoded by sul1 and sul2, aadA1 and tet(C)-flanked by an IS26 element, respectively. The tet(C) gene has been reported to confer low levels of resistance and it has very rarely been detected in S. Typhimurium from poultry. In the current study, the MIC value (32 µg/mL) was consistent with the breakpoint (≥16 µg/mL) reported for Enterobacteriaceae. Most of the S. Enteritidis strains were resistant to Su (encoded by sul2). One MDR strain (ANxSSuT) was identified. With the exception of nalidixic acid (Nx), the resistances were respectively encoded by bla(TEM), strAB, sul2 and tet(A) harbored by an IncN conjugative plasmid. All isolates were pulsotype SENTXB.0001 with PT14b being the most prevalent identified phage type (57.1%). In Europe, SENTXB.0001 is the predominant PFGE profile from clinical cases and the identification of PT14b has steadily been on the increase since 2001. The findings presented in this study highlight the potential spread of S. Enteritidis phage types PT14b and S. Typhimurium DT143 in a field of particular relevance for zoonoses. Additional, the presence of resistance genes and genetic elements (conjugative plasmid and IS element) underlines the need to assess routinely studies in field, such as poultry farms, relevant fot the public health and suitable for the storage

  7. Annual Report for 2003 Wild Horse Research and Field Activities

    USGS Publications Warehouse

    Ransom, Jason; Singer, Francis J.; Zeigenfuss, Linda C.

    2004-01-01

    This report is meant to highlight the activities of the 2003 field season, as well as to provide a general overview of the data collected. More in-depth data analysis will be conducted following the conclusion of each I phase of the research project, and in many cases will not be possible until several seasons of data are collected.

  8. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation

  9. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction and tremor

    USGS Publications Warehouse

    Johnston, M.J.S.; Borcherdt, R.D.; Linde, A.T.; Gladwin, M.T.

    2006-01-01

    Near-field observations of high-precision borehole strain and pore pressure, show no indication of coherent accelerating strain or pore pressure during the weeks to seconds before the 28 September 2004 M 6.0 Parkfield earthquake. Minor changes in strain rate did occur at a few sites during the last 24 hr before the earthquake but these changes are neither significant nor have the form expected for strain during slip coalescence initiating fault failure. Seconds before the event, strain is stable at the 10-11 level. Final prerupture nucleation slip in the hypocentral region is constrained to have a moment less than 2 ?? 1012 N m (M 2.2) and a source size less than 30 m. Ground displacement data indicate similar constraints. Localized rupture nucleation and runaway precludes useful prediction of damaging earthquakes. Coseismic dynamic strains of about 10 microstrain peak-to-peak were superimposed on volumetric strain offsets of about 0.5 microstrain to the northwest of the epicenter and about 0.2 microstrain to the southeast of the epicenter, consistent with right lateral slip. Observed strain and Global Positioning System (GPS) offsets can be simply fit with 20 cm of slip between 4 and 10 km on a 20-km segment of the fault north of Gold Hill (M0 = 7 ?? 1017 N m). Variable slip inversion models using GPS data and seismic data indicate similar moments. Observed postseismic strain is 60% to 300% of the coseismic strain, indicating incomplete release of accumulated strain. No measurable change in fault zone compliance preceding or following the earthquake is indicated by stable earth tidal response. No indications of strain change accompany nonvolcanic tremor events reported prior to and following the earthquake.

  10. Symmetry Breaking and Fine Structure Splitting in Zincblende Quantum Dots: Atomistic Simulations of Long-Range Strain and Piezoelectric Field

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaikh; Usman, Muhammad; Heitzinger, Clemens; Rahman, Rajib; Schliwa, Andrei; Klimeck, Gerhard

    2007-04-01

    Electrons and holes captured in self-assembled quantum dots (QDs) are subject to symmetry breaking that cannot be represented in with continuum material representations. Atomistic calculations reveal symmetry lowering due to effects of strain and piezo-electric fields. These effects are fundamentally based on the crystal topology in the quantum dots. This work studies these two competing effects and demonstrates the fine structure splitting that has been demonstrated experimentally can be attributed to the underlying atomistic structure of the quantum dots.

  11. X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: A universal approach to modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Li, Li

    2014-01-01

    The effects of dynamical diffraction in single crystals engender many unique diffraction phenomena that cannot be interpreted by the kinematical-diffraction theory, yet knowledge of them is vital to resolving a vast variety of scientific problems ranging from crystal optics to strain measurements in crystalline specimens. Although the fundamental dynamical-diffraction theory was established decades ago, modeling it remains a challenge in a general case wherein the crystal has complex boundaries and mixed diffraction geometries (Bragg or Laue). Here, we propose a universal approach for modeling x-ray dynamical diffraction from a single crystal with arbitrary shape and strain field that is based on the integral representation of the Takagi-Taupin equations. Using it, we can construct the solution iteratively via a converging series, independent of the diffraction geometry. Moreover, the integral equations offer additional insights into the diffraction physics that are not readily apparent in its differential counterparts. To demonstrate this approach, we studied the dynamical diffraction from a slab of single crystal with both Bragg and Laue diffraction excited on the entrance boundaries, a problem that is difficult to model by other methods. We also explored the mirage effect caused by the presence of a linear strain field and compared it to the Eikonal theory. Lastly, we derived a dynamical-diffraction equation correlating the structural properties of a particle to its far-field Bragg-diffraction pattern, shedding light on how dynamical diffraction affects these kinematical-diffraction-based inverse techniques for reconstructing the shape and the strain field.

  12. Neural Network Prediction of Failure of Damaged Composite Pressure Vessels from Strain Field Data Acquired by a Computer Vision Method

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Lansing, Matthew D.

    1997-01-01

    This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC

  13. Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level, and site characteristics.

    PubMed

    Hortal, Sara; Pera, Joan; Parladé, Javier

    2009-03-01

    Pinus pinea plants were inoculated with different strains of the edible ectomycorrhizal fungus Lactarius deliciosus. The inoculated plants were established in six experimental plantations in two sites located in the Mediterranean area to determine the effect of the initial colonization level and the inoculated strain on fungal persistence in the field. Ectomycorrhizal root colonization was determined at transplantation time and monitored at different times from uprooted plants. Extraradical soil mycelium biomass was determined from soil samples by TaqMan(R) real-time polymerase chain reaction (PCR). The results obtained indicate that the field site played a decisive role in the persistence of L. deliciosus after outplanting. The initial colonization level and the selection of the suitable strain were also significant factors but their effect on the persistence and spread of L. deliciosus was conditioned by the physical-chemical and biotic characteristics of the plantation soil and, possibly, by their influence in root growth. Molecular techniques based on real-time PCR allowed a precise quantification of extraradical mycelium of L. deliciosus in the field. The technique is promising for non-destructive assessment of fungal persistence since soil mycelium may be a good indicator of root colonization. However, the accuracy of the technique will ultimately depend on the development of appropriate soil sampling methods because of the high variability observed.

  14. Symmetry-adapted calculations of strain and polarization fields in (111)-oriented zinc-blende quantum dots

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Caro, M. A.; O'Reilly, E. P.; Marquardt, O.

    2011-09-01

    We present expressions for the elastic and first-order piezoelectric tensor in (111)-oriented III-V zinc-blende semiconductors. Moreover, an equation for the second-order piezoelectric polarization vector in these systems is derived. Together these expressions provide an efficient route to calculate built-in potentials and strain fields in (111)-oriented zinc-blende nanostructures. Our detailed analysis provides insight into the key parameters that modify strain and built-in fields in a (111)-oriented zinc-blende system compared to a conventional (001) structure. We show that the calculated strain field in a (111)-oriented quantum dot displays the correct C3v symmetry of the underlying crystal structure, even though we use a continuum-based approach and the quantum dot geometry is higher in symmetry than C3v, e.g., C∞v. This behavior originates from an in-plane angle dependence of certain elastic tensor components in the (111)-zinc-blende system. In addition, we compare the elastic and the first-order piezoelectric tensor of the (111)-zinc-blende systems with the corresponding quantities in a wurtzite structure and point out similarities and differences. This comparison provides, for example, insight into the sign of the shear piezoelectric coefficient e15 in the wurtzite system, which is still under debate in the literature. Our analysis indicates e15<0, in accordance with recent experimental and theoretical results.

  15. Identification of the Rdl mutation in laboratory and field strains of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae).

    PubMed

    Bass, Chris; Schroeder, Iris; Turberg, Andreas; Field, Linda M; Williamson, Martin S

    2004-12-01

    In many insect species, resistance to cyclodiene insecticides is caused by amino acid substitutions at a single residue (A302) within the M2 transmembrane region of the gamma-aminobutyric acid (GABA) receptor sub-unit termed Rdl (resistance to dieldrin). These mutations (A302S and A302G) have also been shown to confer varying levels of cross-resistance to fipronil, a phenylpyrazole insecticide with a similar mode of action to cyclodienes. To investigate the possible occurrence of these mutations in the cat flea, Ctenocephalides felis (Bouché), a 176-bp fragment of the cat flea Rdl gene, encompassing the mutation site, was PCR amplified and sequenced from nine laboratory flea strains. The A302S mutation was found in eight of the nine strains analysed, although the relative frequency of the mutant allele varied between strains. Only one strain (R6) was found to be homozygous for the S302 allele in all the individuals tested, and this correlated with previous reports of low-level fipronil resistance in this strain. A PCR-based diagnostic assay, capable of screening individual fleas for this mutation, was developed and used to survey a range of fleas collected at random from veterinary clinics in the UK and USA. The A302S mutation was present at a high frequency in these domestic pet populations.

  16. Surfactant-enhanced alkaline flooding field project. Annual report, Revision

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  17. Graphene-based spin switch device via modulated Rashba field and strain

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Vernek, E.; Souza, F. M.

    2017-01-01

    We investigate the spin-resolved transport in a two-terminal zigzag graphene nanoribbon device with two independent gate induced Rashba spin-orbit coupling regions and in the presence of strain. By employing a recursive Green's function technique to the tight-binding model for the graphene nanoribbon, we calculate the spin-resolved conductance of the system. We show that by switching the sign of one of the gates it is possible to select which spin component will be transmitted. Moreover, our results show that an uniaxial strain applied to the nanoribbon plays a significant role in the transport, providing and additional manner to control the spin-polarized conductance. This makes the present system a potential candidate for future implementations of spin-based mechanical strain sensors.

  18. Calibration and evaluation of optical systems for full-field strain measurement

    NASA Astrophysics Data System (ADS)

    Patterson, Eann A.; Hack, Erwin; Brailly, Philippe; Burguete, Richard L.; Saleem, Qasim; Siebert, Thorsten; Tomlinson, Rachel A.; Whelan, Maurice P.

    2007-05-01

    The design and testing of a reference material for the calibration of optical systems for strain measurement is described, together with the design and testing of a standardized test material that allows the evaluation and assessment of fitness for purpose of the most sophisticated optical system for strain measurement. A classification system for the steps in the measurement process is also proposed and allows the development of a unified approach to diagnostic testing of components or sub-systems in an optical system for strain measurement based on any optical technique. The results described arise from a European study known as SPOTS whose objectives were to begin to fill the gap caused by a lack of standards.

  19. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  20. Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation

    SciTech Connect

    Kao, Kuo-Hsing; De Meyer, Kristin; Verhulst, Anne S.; Van de Put, Maarten; Soree, Bart; Magnus, Wim; Vandenberghe, William G.

    2014-01-28

    Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k · p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Γ and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-hole-like valence band is strongly coupling to the conduction band at the Γ point even in the presence of strain based on the 30-band k · p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) μA/μm can be achieved along with on/off ratio > 10{sup 6} for V{sub DD} = 0.5 V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge.

  1. Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angus J.; Randman, David

    2010-03-01

    The deformation around a 500-nm deep Berkovich indent in a large grained Fe sample has been studied using high resolution electron back scatter diffraction (EBSD). EBSD patterns were obtained in a two-dimensional map around the indent on the free surface. A cross-correlation-based analysis of small shifts in many sub-regions of the EBSD patterns was used to determine the variation of elastic strain and lattice rotations across the map at a sensitivity of ∼±10-4. Elastic strains were smaller than lattice rotations, with radial strains found to be compressive and hoop strains tensile as expected. Several analyses based on Nye's dislocation tensor were used to estimate the distribution of geometrically necessary dislocations (GNDs) around the indent. The results obtained using different assumed dislocation geometries, optimisation routines and different contributions from the measured lattice rotation and strain fields are compared. Our favoured approach is to seek a combination of GND types which support the six measurable (of a possible nine) gradients of the lattice rotations after correction for the 10 measurable elastic strain gradients, and minimise the total GND line energy using an L1 optimisation method. A lower bound estimate for the noise on the GND density determination is ∼±1012 m-2 for a 200-nm step size, and near the indent densities as high as 1015 m-2 were measured. For comparison, a Hough-based analysis of the EBSD patterns has a much higher noise level of ∼±1014m-2 for the GND density.

  2. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field.

    PubMed

    Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming

    2014-08-11

    We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor.

  3. Comparison of regional and local horizontal strain field on the area of Central Europe determined from GPS data

    NASA Astrophysics Data System (ADS)

    Kontny, B.

    2012-04-01

    Permanent GPS observations on EPN stations are being continued already about 15 years and so velocities of horizontal and vertical movements of the sites are determined with the great credibility. However density of the EPN sites on the area of Central Europe allow to determine only a very general model of deformation field. For determining the local strain field epoch-making GPS observations in local research networks can be used. As en example the GEOSUD GPS Network located in the area of the Sudeten mountains in South-West Poland were used. Velocities of GPS points were estimated from observations of annually repeated two-day measuring campaigns, connected to the EPN stations. On the basis of these velocities local velocity field and local strain field were estimated. The toolbox grid_strain (Teza, Pesci and Galgaro, 2008) was used. Areas of the maximum compressions and extensions were outlined as well as they were confronted with the tectonic structure of area. In the picture of the deformation field clearly four principal zones of deformations are standing out. The presence of the Sudetic Marginal Fault is becoming scratched slightly in south-eastern his parts. Values of deformations in the vicinity of fault zone are generally smaller than in more distant area. It is proving the hypothesis on interseismic character of changes and the weak tectonic activity of the fault. Such an image of horizontal deformations in which extensions are perpendicular to main direction of the fault line, is matching with the hypothesis on normal character of the SMF. On the entire research area however compression deformations are dominating.

  4. Field and laboratory investigations of selenium transformation. Quarterly report

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-12-01

    This quarterly report discusses the preparation and results of a field investigation of a selected coal mine site in Oklahoma. The field investigation has been on-going since July 1990. An analysis of this data would be useful in providing information for potential Se mobility from a coal mine site and the distribution of Se in a soil profile of reclaimed land. Also, included is the investigation and preliminary results of SeO{sub 3}{sup 2{minus}} adsorption and desorption using different soil media, including coal mine spoils (overburden).

  5. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  6. Intragranular strain field in columnar ice during elasto-viscoplatic transient creep regime, and relation with the local microstructure

    NASA Astrophysics Data System (ADS)

    Grennerat, F.; Montagnat, M.; Duval, P.; Vacher, P.; Castelnau, O.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant e.g. for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ˜6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. One therefore expects very strong strain localization in polycrystalline ice in this viscoplastic regime. On the other hand, during transient effects, elasticity comes in plays. But since elasticity of ice single crystal is almost isotropic, very different strain localizations are expected in purely elastic and purely viscoplastic deformation regimes. Consequently, strain-rate decreases by several orders of magnitude during the transient creep of polycrystalline ice. This effect is associated to stress redistribution between hard and soft grains, and is probably of great importance e.g. to understand transient regimes such as tide effects on ice shelves or on icy planets. It can be described by the coupling between elastic and viscoplastic responses, and the associated long-term memory effect. In view of a better understanding of such effects, and development of adapted micromechanical models, we are engaged in the measurement of intragranular strain field and field heterogeneities is columnar ices deformed under loading involving stress increments

  7. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields

    PubMed Central

    2010-01-01

    Background Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. Results The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the β-1,2-cyclic glucan from R. tropici CIAT 899 was co

  8. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    USGS Publications Warehouse

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  9. Study of Strain Induction for Metal-Oxide-Semiconductor Field-Effect Transistors using Transparent Dummy Gates and Stress Liners

    NASA Astrophysics Data System (ADS)

    Kosemura, Daisuke; Takei, Munehisa; Nagata, Kohki; Akamatsu, Hiroaki; Kohno, Masayuki; Nishita, Tatsuo; Nakanishi, Toshio; Ogura, Atsushi

    2009-06-01

    Strain induction was studied on a sample that had a dummy gate tetraethyl orthosilicate-silicon dioxide (TEOS-SiO2) and SiN film by UV-Raman spectroscopy with high spatial and high wave-number resolution. The UV laser penetrated through the dummy gate that was transparent to UV light, which enabled us to evaluate strain in the channel of the metal-oxide-semiconductor field-effect transistor (MOSFET) model. Furthermore, we compared stress profiles obtained by finite element (FE) calculations with those obtained by UV-Raman measurements. There was a difference between the stress profiles in the line-and-space pattern sample and in the dummy-gate sample; large compressive (tensile) strains were concentrated at the channel edges in the dummy-gate sample with the compressive (tensile) stress liner, although both tensile and compressive strains existed at the channel edge in the line-and-space pattern sample. The results from UV-Raman spectroscopy were consistent with those obtained by the FE calculation.

  10. Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

    SciTech Connect

    Chen, W. J.; Zheng, Yue Wu, C. M.; Wang, B. Ma, D. C.

    2014-03-07

    Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according to the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.

  11. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS‐1, against Tetranychus urticae (Koch)

    PubMed Central

    Zhang, Xiaona; Zou, Xiao; Guo, Jianjun

    2016-01-01

    Abstract BACKGROUND The two‐spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS‐1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. RESULTS The results showed that a suspension of 2 × 107 submerged conidia mL −1 caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 108 submerged conidia mL −1 achieved significant efficiency – the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. CONCLUSION The results suggest that the I. cateniannulata strain 08XS‐1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26775712

  12. Essential oils as potential adulticides against two populations of Aedes aegypti, the laboratory and natural field strains, in Chiang Mai province, northern Thailand.

    PubMed

    Chaiyasit, Dana; Choochote, Wej; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2006-11-01

    Essential oils derived from five plant species, celery (Apium graveolens), caraway (Carum carvi), zedoary (Curcuma zedoaria), long pepper (Piper longum), and Chinese star anise (Illicium verum), were subjected to investigation of adulticidal activity against mosquito vectors. Two populations of Aedes aegypti, the laboratory and natural field strains, collected in Chiang Mai province, northern Thailand were tested in pyrethroid-susceptibility bioassays. The results revealed that the natural field strain of A. aegypti was resistant to permethrin, with mortality rates ranging from 51 to 66%. A mild susceptibility, with mortality rates ranging from 82 to 88%, was observed in the natural field strain of A. aegypti exposed to lambdacyhalothrin, which suggested that this strain was tolerant and might be resistant to this insecticide. However, laboratory-reared A. aegypti exposed to discriminating dosages of permethrin and lambdacyhalothrin induced 100% mortality in all cases, thus indicating complete susceptibility of this strain to these insecticides. The adulticidal activity determined by topical application revealed that all five essential oils exerted a promising adulticidal efficacy against both laboratory and natural field strains of A. aegypti. Although the laboratory strain was slightly more susceptible to these essential oils than the natural field strain, no statistically significant difference was observed. Moreover, comparison of the adulticidal activity indicated that the performance of these essential oils against the two strains of A. aegypti was similar. The highest potential was established from caraway, followed by zedoary, celery, long pepper, and Chinese star anise, with an LC(50) in the laboratory strain of 5.44, 5.94, 5.96, 6.21, and 8.52 microg/mg female, respectively, and 5.54, 6.02, 6.14, 6.35, and 8.83 microg/mg female, respectively, in the field strain. These promising essential oils are, therefore, an alternative in developing and producing

  13. Human melatonin in magnetic fields: Second study. Final report

    SciTech Connect

    Graham, C.; Cook, M.R.; Cohen, H.D.

    1995-11-01

    Melatonin (MLT) is a hormone secreted primarily at night by the pineal gland in the brain. A number of studies suggest it is part of the body`s natural defenses against cancer. This hormone is reported to stimulate immune function and has been implicated in the control of cell proliferation, the growth of transplanted tumors, and the promotion and/or co-promotion of mammary tumors. MLT also plays a key role in the regulation of reproductive hormones implicated in a number of carcinogenic processes. Studies with rodents, although not always consistent, suggest that nocturnal MLT levels may be suppressed by electric or magnetic field (EMF) exposure. This relationship has been proposed as a possible biological mechanism to account for epidemiological reports linking chronic EMF exposure and increased cancer risk. Research was needed to determine if a similar suppression of MLT occurs when humans are exposed to magnetic fields at night.

  14. Development of Diagnostic Insecticide Concentrations and Assessment of Insecticide Susceptibility in German Cockroach (Dictyoptera: Blattellidae) Field Strains Collected From Public Housing.

    PubMed

    Fardisi, Mahsa; Gondhalekar, Ameya D; Scharf, Michael E

    2017-03-20

    Insecticide resistance in German cockroaches (Blattella germanica (L.)) has been a barrier to effective control since its first documentation in the 1950s. A necessary first step toward managing resistance is to understand insecticide susceptibility profiles in field-collected strains so that active ingredients (AIs) with lowest resistance levels can be identified. As a first step in this study, diagnostic concentrations (DCs) were determined for 14 insecticide AIs based on lethal concentrations that killed 99% or 90% of the individuals from a susceptible lab strain (JWax-S). Next, cockroaches were collected from two low-income multifamily housing complexes in Danville, IL, and Indianapolis, IN, and used to establish laboratory strains. These strains were screened against the 14 AI-DCs in vial bioassays, and susceptibility profiles were determined by comparing percent mortalities between the field strains relative to the JWax-S strain. Results revealed lowest resistance of field strains to boric acid, abamectin, dinotefuran, clothianidin, thiamethoxam, and chlorfenapyr. For the AIs hydramethylnon and imidacloprid, field strains did not display survivorship different than the lab strain, but >90% mortality was never achieved. Lastly, both field strains displayed resistance to indoxacarb, fipronil, acetamiprid, beta-cyfluthrin, bifenthrin, and lambda-cyhalothrin, but at varying levels. These results satisfy two objectives. First, baseline monitoring DCs were established for 14 insecticides presently registered for use against cockroaches, which represents a useful resource. Second, our findings reveal insecticide AIs with lowest resistance levels for use in forthcoming field studies that will investigate impacts of different insecticide deployment strategies on resistance management and evolution in cockroach field populations.

  15. Typing of field rabies virus strains in FR Yugoslavia by limited sequence analysis and monoclonal antibodies.

    PubMed

    Stankov, S

    2001-01-01

    A total of 32 rabies virus isolates (15 of fox, 14 of cat and 3 of dog origin) from the territory of FR Yugoslavia were collected from December 1996 till February 1998 and analyzed by limited sequencing of N gene and by indirect immunofluorescence and a panel of 20 antinucleocapsid monoclonal antibodies (MAbs). All examined strains were characterized as sylvatic fox strains. Two main genetic variants were detected, 15 isolates belonging to Group I, 14 belonging to Group II, while the remaining 3 could not be classified into any group. This classification was confirmed by MAbs. The obtained results indicate at least two independent cycles of rabies transmission, probably resulting from multiple modes of transmission to the territories now belonging to FR Yugoslavia.

  16. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  17. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  18. Bsn-t alleles from french field strains of agaricus bisporus

    PubMed

    Callac; Hocquart; Imbernon; Desmerger; Olivier

    1998-06-01

    In the Agaricus bisporus desert population in California, the dominant Bsn-t allele determines the production of tetrasporic basidia and homokaryotic spores (n) that characterize a heterothallic life cycle. Strains belonging to a French population have the Bsn-b/b genotype that results in bisporic basidia that produce heterokaryotic spores (n + n) which characterize a pseudohomothallic life cycle. More recombination occurs in the tetrasporic population than in the bisporic population. In France, tetrasporic strains are rare. For two such isolates, Bs 261 and Bs 423, we determined the life cycle, the heritability of the tetrasporic trait, the amount of variation in the recombination rate, and the haploid fruiting ability. We found that (i) Bs 261 was heterothallic, (ii) Bs 423 was homokaryotic and homothallic, (iii) Bs 261 was Bsn-t/b, (iv) recombination on a segment of chromosome I depended on the genotype at BSN, (v) some of the homokaryotic offspring of Bs 261 and all of the progeny of Bs 423 were able to fruit, (vi) Bs 261 and Bs 423 were closely related, and (vii) Bs 423 was partially intersterile with other strains of the species.

  19. Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals

    PubMed Central

    Christodoulou, Sotirios; Rajadell, Fernando; Casu, Alberto; Vaccaro, Gianfranco; Grim, Joel Q.; Genovese, Alessandro; Manna, Liberato; Climente, Juan I.; Meinardi, Francesco; Rainò, Gabriele; Stöferle, Thilo; Mahrt, Rainer F.; Planelles, Josep; Brovelli, Sergio; Moreels, Iwan

    2015-01-01

    Strain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal. Higher excited states recombine radiatively in the nanosecond time range, due to increasingly overlapping excited-state orbitals. k̇p calculations confirm the importance of the anisotropic shape and crystal structure in the buildup of the piezoelectric potential. Strain engineering thus presents an efficient approach to highly tunable single- and multiexciton interactions, driven by a dedicated core/shell nanocrystal design. PMID:26219691

  20. Bsn-t Alleles from French Field Strains of Agaricus bisporus

    PubMed Central

    Callac, Philippe; Hocquart, Sophie; Imbernon, Micheline; Desmerger, Christophe; Olivier, Jean-Marc

    1998-01-01

    In the Agaricus bisporus desert population in California, the dominant Bsn-t allele determines the production of tetrasporic basidia and homokaryotic spores (n) that characterize a heterothallic life cycle. Strains belonging to a French population have the Bsn-b/b genotype that results in bisporic basidia that produce heterokaryotic spores (n + n) which characterize a pseudohomothallic life cycle. More recombination occurs in the tetrasporic population than in the bisporic population. In France, tetrasporic strains are rare. For two such isolates, Bs 261 and Bs 423, we determined the life cycle, the heritability of the tetrasporic trait, the amount of variation in the recombination rate, and the haploid fruiting ability. We found that (i) Bs 261 was heterothallic, (ii) Bs 423 was homokaryotic and homothallic, (iii) Bs 261 was Bsn-t/b, (iv) recombination on a segment of chromosome I depended on the genotype at BSN, (v) some of the homokaryotic offspring of Bs 261 and all of the progeny of Bs 423 were able to fruit, (vi) Bs 261 and Bs 423 were closely related, and (vii) Bs 423 was partially intersterile with other strains of the species. PMID:9603821

  1. Gene transcription and electromagnetic fields. Final progress report

    SciTech Connect

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  2. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  3. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    NASA Astrophysics Data System (ADS)

    Mark, J. Abraham Hudson; Peter, A. John

    2014-04-01

    Third order susceptibility of third order harmonic generation is investigated in a Zn0.1Mg0.9Se/Zn0.8Mg0.2Se/Zn0.1Mg0.9Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  4. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    SciTech Connect

    Mark, J. Abraham Hudson Peter, A. John

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  5. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-03

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides.

  6. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  7. PISCES field chemical emissions monitoring project: Site 21 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 21. Site 21 is a pilot-scale electrostatic precipitator and wet flue gas desulfurization (FGD) system. The flue gas for the pilot unit is provided by an adjacent power plant boiler which bums a medium-sulfur bituminous, coal. The primary objective in the Site 21 sampling and analytical program was to quantify the various components of variance in the measurement of trace chemical species. In addition to the replicate sample trains typically conducted at previous PISCES field measurements, duplicate analyses and duplicate (simultaneous) sample trains were also conducted. This enabled the variance due to sampling, analytical, and process conditions to be estimated. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  8. Earth strain measurements with the transportable laser ranging system: Field techniques and planning

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, H. J.; Cahill, T.

    1982-01-01

    The potential of the transportable laser ranging system for monitoring the ground deformation around satellite ranging stations and other geodetic control points was examined with emphasis on testing the usefulness of the relative alteration technique. The temporal variation of the ratio of the length of each survey line to the mean length of all survey lines in a given area is directly related to the mean shear strain rate for the area. The data from a series of experimental measurements taken over the Los Angeles basin from a TLRS station at Mt. Wilson show that such ratios can be determined to an accuracy of one part in 10 million with a measurement program lasting for three days and without using any corrections for variations in atmospheric conditions. A numerical experiment using a set of hypothetical data indicates that reasonable estimates of the present shear strain rate and the direction of the principal axes in southern California can be deduced from such measurements over an interval of one to two years.

  9. Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues.

    PubMed

    Jayyosi, C; Fargier, G; Coret, M; Bruyère-Garnier, K

    2014-06-01

    Connective tissues are complex structures which contain collagen and elastin fibers. These fiber-based structures have a great influence on material mechanical properties and need to be studied at the microscopic scale. Several microscopy techniques have been developed in order to image such microstructures; among them are two-photon excited fluorescence microscopy and second harmonic generation. These observations have been coupled with mechanical characterization to link microstructural kinematics to macroscopic material parameter evolution. In this study, we present a new approach to measure local strain in soft biological tissues using a side-effect of fluorescence microscopy: photobleaching. Controlling the loss of fluorescence induced by photobleaching, we create a pattern on our sample that we can monitor during mechanical loading. The image analysis allows three-dimensional displacements of the patterns at various loading levels to be computed. Then, local strain distribution is derived using the finite element discretization on a four-node element mesh created from our photobleached pattern. Photobleaching tests on a human liver capsule have revealed that this technique is non-destructive and does not have any impact on mechanical properties. This method is likely to have other applications in biological material studies, considering that all collagen-elastin fiber-based biological tissues possess autofluorescence properties and thus can be photobleached.

  10. Molecular evolution of American field strains of bluetongue and epizootic haemorrhagic disease viruses.

    PubMed

    Wilson, William C; Gaudreault, Natasha N; Jasperson, Dane C; Johnson, Donna J; Ostlund, Eileen N; Chase, Christopher L; Ruder, Mark G; Stallknecht, David E

    2015-01-01

    Recent Orbivirus occurrences in the Americas have been investigated using whole genome amplification and sequencing followed by phylogenetic analysis. The bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) whole genomes were amplified without prior sequence knowledge and deep sequenced. This technology was applied to evaluate BTV‑3 isolates spanning 4 decades from Florida, Arkansas, Mississippi, South Dakota, Central America, and the Caribbean basin. The results of the dataset analysis are consistent with the hypothesis that these viruses were introduced into the United States from Central America and the Caribbean basin. A similar analysis has been performed on a recent BTV‑2 isolate from California. It indicates that the BTV‑2 strain was likely introduced into Florida and then moved South to the Caribbean and West to California. A historical (1955‑2012) molecular characterisation of EHDV strains was also completed, and subsequently used as reference sequence for comparison of genomes from recent 2012 cattle isolates associated with clinical disease. Finally, this analysis was performed on BTV‑11 isolated from 2 canine cases and demonstrated that the genome sequences of the virus isolates from these cases were almost identical. These studies indicate the value of this technology in understanding virus epidemiology and ecology.

  11. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain

    PubMed Central

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-01-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682

  12. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    SciTech Connect

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip.

  13. Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle.

    PubMed

    Silva, Jenevaldo B; Cabezas-Cruz, Alejandro; Fonseca, Adivaldo H; Barbosa, José D; de la Fuente, José

    2014-10-15

    Anaplasma marginale is the most prevalent pathogen of cattle in tropical and subtropical regions of the world and causes the disease bovine anaplasmosis. The importance of water buffalo in the world economy is increasing. In addition, while water buffalo may serve as a reservoir host for A. marginale, the susceptibility of this host for A. marginale cattle strains in Brazil has not been reported. The major surface protein 1 alpha (msp1α) gene has been shown to be a stable genetic marker for identification of A. marginale strains. Herein, we analyzed blood samples from 200 water buffalo and identified the A. marginale strains in an endemic area of Rio de Janeiro, Brazil, where ticks were present and water buffalo and cattle co-mingled. Ticks that were feeding on the study buffalo were collected and identified. The prevalence of A. marginale in water buffalo in this study was low (10%). Sequence analysis of the msp1α gene demonstrated the presence of 8 different A. marginale strains. Two A. marginale strains in the water buffalo, (α-β-β-β-Γ) and (α-β-β-Γ), were similar to those reported in cattle from nearby regions. The results of this study suggested that water buffalo in this region are naturally infected with the same strains of A. marginale found in cattle.

  14. EX SAIF SEREEA II--the field hospital clinical report.

    PubMed

    Bricknell, M C M; Wright, L A

    2004-12-01

    This paper places on record the clinical activity of the hospital facilities run by 22 Field Hospital on Exercise SAIF SEREEA II in Oman from August to November 2001. There were 1322 episodes of illness resulting in a hospital admission. The mean rate of admission was 1.96 patients per thousand per day (SD 13.62). The main causes of admission were gastrointestinal illness, conditions related to the heat and injuries. The reporting of health service utilisation data is an important duty of medical personnel during overseas deployments in order to add to the dataset available for the estimation of medical workload for future operations.

  15. Small scale field trials of Bacillus sphaericus (strain 2362) against anopheline and culicine mosquito larvae in southern Mexico.

    PubMed

    Arredondo-Jiménez, J I; López, T; Rodríguez, M H; Bown, D N

    1990-06-01

    Experimental breeding sites simulating natural conditions were used to evaluate the efficacy of 2 formulations of Bacillus sphaericus (strain 2362) against Anopheles albimanus and culicine (mostly Culex coronator and Cx. quinquefasciatus) mosquito larvae of southern Mexico. Three doses of each formulation were used in a first field trial: 2, 3 and 4 g/m2 (granular) or 2, 3 and 4 ml/m2 (liquid); and in a second field trial: 0.125, 0.24 and 0.5 g/m2 (granular) or 0.125, 0.25 and 0.5 ml/m2 (liquid). The optimum concentrations of each formulation for effective control of larval populations over periods of 3-4 months were 0.125 ml/m2 of liquid product for Culex spp. and 2 g/m2 of granular product for An. albimanus (ca. 70% mean reduction).

  16. Vaccine-strain herpes zoster found in the trigeminal nerve area in a healthy child: A case report.

    PubMed

    Iwasaki, Sayaka; Motokura, Kouji; Honda, Yoshitaka; Mikami, Masamitsu; Hata, Daisuke; Hata, Atsuko

    2016-12-01

    A previously healthy 2-year-old girl, vaccinated for varicella at 17 months, was admitted because of left-sided facial herpes zoster caused by vaccine-strain varicella-zoster virus (VZV). She recovered fully with no complication after intravenous treatment using acyclovir. Earlier reports have described that herpes zoster (HZ) rashes caused by vaccine-strain VZV tend to occur on the dermis corresponding to the skin area where the varicella vaccine was received. However, rashes appeared on this girl only in the trigeminal nerve area, which is unrelated to the vaccinated site. Results underscore the importance of distinguishing vaccine-strain VZV from wild-type VZV whenever encountering HZ cases after vaccination, even in immunocompetent children, irrespective of the skin lesion site. Monitoring vaccine-strain HZ incidence rates is expected to elucidate many aspects of varicella vaccine safety.

  17. Field transportable beta spectrometer. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potential benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.

  18. Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain.

    PubMed

    Xie, Guang Hui; Cui, Zongjun; Yu, Jun; Yan, Jing; Hai, Weili; Steinberger, Yosef

    2006-01-01

    The aim of this research was to identify nifH and nifHDKYE ' genes in twenty strains of N2-fixing heterotrophic bacteria isolated from rice fields in the Yangtze River Plain. Southern hybridization of the total DNA from each strain was performed with the Klebsiella pneumoniae nifHDKYE ' gene probe (6.2 kb Eco RI fragment from pSA30) and the Azospirillum brasilense nifH gene probe (0.6 kb Eco RI-Hin dIII fragment from pHU8). We found that Eco RI fragments of total DNA from Aeromonas hydrophila HY2, Bacillus azotoformans FD, Bacillus licheniformis NCH1, NCH5, WH4, Bacillus brevis NC2, Bacillus pumilus NC12, Bacillus cereus NCH2, Citrobacter freundii HY5, HY9, Derxia gummosa HZ5, Pseudomonas mendocina HZ1 and Pseudomonas pseudoalcaligenes WH3 were positively hybridized with both of the probes. Agrobacterium radiobacter HY17, Corynebacterium sp. HY12, YZ and Pseudomonas sp. HY11 had Eco RI fragments hybridized with the K. pneumoniae nifHDKYE ' gene probe. An Eco RI fragment of total DNA from Bacillus megaterium YY4 was positively hybridized to the A. brasilense nifH gene probe. No hybridization sign was found in the total DNA fragments from Alcaligenes cupidus YY6 and Corynebacterium sp. NC11 hybridized with either of the gene probes. The data provide the number and size of EcoRI fragments of the total DNA hybridized with the nif gene probes for these strains of rarely studied species, suggesting additional evidence for N2 fixing and nif gene diversity of N2-fixing bacteria in rice fields along the Yangtze River Plain.

  19. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides

    SciTech Connect

    Sharma, Munish E-mail: pk-ahluwalia7@yahoo.com; Kumar, Ashok; Ahluwalia, P. K. E-mail: pk-ahluwalia7@yahoo.com; Pandey, Ravindra

    2014-08-14

    Tunability of the electronic properties of two-dimensional bilayer hetero structures of transition-metal dichalcogenides (i.e., MX{sub 2}-M′X′{sub 2} with (M, M′ = Mo, W; X, X′ = S, Se) is investigated. Application of both strain and electric field is found to modify the band gap and carrier effective mass in the hybrid bilayers considered. The calculated results based on density functional theory suggest that the tensile strain considerably changes the band gap of semiconducting bilayers; it makes the band gap to be indirect, and later initiates the semiconductor-to-metal transition. Application of the external electric fields, on the other hand, shows asymmetric variation in the band gap leading to the closure of the gap at about 0.5–1.0 V/Å. Tuning of the band gap and carrier effective mass in such a controlled manner makes the hybrid bilayers of transition metal dichalcogenides to be promising candidates for application in electronic devices at nanoscale.

  20. Genotypes, antibiogram, and pulsed-field gel electrophoresis profiles of Escherichia coli strains from piglets in Korea.

    PubMed

    Lee, Su In; Rayamahji, Nabin; Lee, Won Jung; Cha, Seung Bin; Shin, Min Kyung; Roh, Yu Mi; Yoo, Han Sang

    2009-07-01

    Adherence factors and enterotoxins are major virulence factors of enterotoxigenic Escherichia coli (ETEC). Antibiotics have been used frequently for the treatment and prevention of ETEC infection in piggeries worldwide, including Korea. Therefore, data on both virulence profiles and antibiotic resistance patterns are useful in the epidemiological study of ETEC. A total number of 198 E. coli field isolates were examined. The most prevalent pathotype was F1, followed by a combination of F1 and EAST1. All of the 71 isolates were resistant to more than 2 antibiotics used in a disk diffusion test, and 87.94% of the isolates were found to be resistant to more than 4 antibiotics. Investigations were also conducted to correlate the virulence gene profiles with antibiogram and pulsed-field gel electrophoresis (PFGE). Although a high degree of polymorphism was noted among strains having the same virulence patterns, the highest similarity pattern was observed carrying the same virulence profiles and similar antibiogram. Thus, investigation of both virulence profiles and antibiogram is essential to the epidemiological study of ETEC. Moreover, the PFGE method might be applicable as a tool to reveal genetic relatedness among E. coli strains from piggeries in Korea.

  1. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-02-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  2. Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing.

    PubMed

    Rissanen, Sirkka; Rintamäki, Hannu

    2007-02-01

    The objective of this study was to quantify the thermal strain of soldiers wearing nuclear, biological, and chemical protective clothing during short-term field training in cold conditions. Eleven male subjects performed marching exercises at moderate and heavy activity levels for 60 minutes. Rectal temperature (Tre), skin temperatures, and heart rate were monitored. Ambient temperature (Ta) varied from -33 to 0 degrees C. Tre was affected by changes in metabolism, rather than in Ta. Tre increased above 38 degrees during heavy exercise even at -33 degrees C. The mean skin temperature decreased to tolerance level (25 degrees C) at Ta below -25 degrees C with moderate exercise. Finger temperature decreased below 15 degrees C (performance degradation) at Ta of -15 degrees C or cooler. The present results from the field confirm the previous results based on laboratory studies and show that risk of both heat and cold strain is evident, with cooling of extremities being most critical, while wearing nuclear, biological, and chemical protective clothing during cold-weather training.

  3. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.; Pandey, Ravindra

    2014-08-01

    Tunability of the electronic properties of two-dimensional bilayer hetero structures of transition-metal dichalcogenides (i.e., MX2-M'X'2 with (M, M' = Mo, W; X, X' = S, Se) is investigated. Application of both strain and electric field is found to modify the band gap and carrier effective mass in the hybrid bilayers considered. The calculated results based on density functional theory suggest that the tensile strain considerably changes the band gap of semiconducting bilayers; it makes the band gap to be indirect, and later initiates the semiconductor-to-metal transition. Application of the external electric fields, on the other hand, shows asymmetric variation in the band gap leading to the closure of the gap at about 0.5-1.0 V/Å. Tuning of the band gap and carrier effective mass in such a controlled manner makes the hybrid bilayers of transition metal dichalcogenides to be promising candidates for application in electronic devices at nanoscale.

  4. Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.

  5. Review of group A rotavirus strains reported in swine and cattle.

    PubMed

    Papp, Hajnalka; László, Brigitta; Jakab, Ferenc; Ganesh, Balasubramanian; De Grazia, Simona; Matthijnssens, Jelle; Ciarlet, Max; Martella, Vito; Bányai, Krisztián

    2013-08-30

    Group A rotavirus (RVA) infections cause severe economic losses in intensively reared livestock animals, particularly in herds of swine and cattle. RVA strains are antigenically heterogeneous, and are classified in multiple G and P types defined by the two outer capsid proteins, VP7 and VP4, respectively. This study summarizes published literature on the genetic and antigenic diversity of porcine and bovine RVA strains published over the last 3 decades. The single most prevalent genotype combination among porcine RVA strains was G5P[7], whereas the predominant genotype combination among bovine RVA strains was G6P[5], although spatiotemporal differences in RVA strain distribution were observed. These data provide important baseline data on epidemiologically important RVA strains in swine and cattle and may guide the development of more effective vaccines for veterinary use.

  6. Mycoplasma gallisepticum transmission: Comparison of commercial F-strain vaccine versus layer complex-derived field strains in a tunnel ventilated house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two simultaneous trials were conducted using a commercially available, live, F strain Mycoplasma gallisepticum (FMG) vaccine [Trial 1] or two inocula of layer complex-derived MG strains (LCD-MG) [Trial 2]. In each of the two trials, four commercial turkeys were housed in each of two adjoining pens ...

  7. Effect of electric field and strain on the magnetic properties of phase separated manganites

    NASA Astrophysics Data System (ADS)

    Grant, Daniel M.

    Perovskite manganese oxide (manganites) have attracted research attention due to a wide variety of complex behaviors observed, including colossal responses to external perturbations. More recent work has focused on the competing ground states and the coexistence of magnetic and non-magnetic phases in manganites. Anisotropic resistance changes have been observed in high quality thin film manganites, possibly due to dielectrophoresis, upon application of an electric field. Dielectrophoresis is usually observed in fluid-like systems in an electric field but is surprisingly useful in explaining the transport properties of manganites due to the fluid-like behavior of competing phases. A main goal of this dissertation is to explore the role of magnetic interactions on the dielectrophoresis effects on ferromagnetic metallic regions in phase separated manganite thin films. The combined effect of electric and magnetic fields in these manganites could reveal a novel form of magnetoelectric effect. In one set of experiments, a magnetic field decreased the amount of time needed for the dielectrophoresis to lead to a large drop in the resistance along one direction, showing the importance of magnetic interactions in dielectrophoresis. In another set of experiments, breaking down the large resistance of a manganite sample produced a small change in coercive field, further confirming the relationship between electric and magnetic effects in manganites. However, the largest effect on the magnetic properties of the thin films was from confinement of the competing phases in micrometer scale structures fabricated on the thin films. Coercive field increases of about 100- 400% were observed in a certain range of film thicknesses. To analyze such behavior in manganites, high quality thin films of the phase-separated manganite (La1-xPrx)1-yCa yMnO3 (LPCMO) were grown on NdGaO3 (NGO) substrates using pulsed laser deposition. Mangetotransport, magnetization, and scanning probe microscopy

  8. First Report of OXA-4, an ESBL Isolated from Pseudomonas aeruginosa a South Indian Strain.

    PubMed

    Kingsley, S A Jemima; Verghese, Susan

    2013-09-01

    The OXA-type β-lactamases are so named because of their oxacillin-hydrolyzing abilities. In this study we characterize an extended spectrum β-lactamase, designated OXA-4, produced by a clinical isolate of Pseudomonas aeruginosa. ESBL production was detected by double disk synergy test. The P. aeruginosa isolate was obtained from endotracheal suction tip of 84 years old male patient diagnosed with CVA and hypertension. ESBL producing OXA β-lactamases was detected by PCR with primers specific to the conserved regions of the coding genes. Iso electric focusing was done to confirm the significance, sequencing the amplified product was also done. In the phenotypic identification, the strain was highly resistant to third generation cephalosporins and also to imipenem. The PCR amplified product for OXA β-lactamase was viewed at 919 bp. The pI point for the same was identified at 7.2. With the help of sequencing the amplified OXA β-lactamase was identified as OXA-4 gene. Here we report P. aeruginosa producing OXA-4 ESBL for the first time in the Indian subcontinent.

  9. Nintendonitis? A case report of repetitive strain injury in a child as a result of playing computer games.

    PubMed

    Macgregor, D M

    2000-10-01

    Repetitive strain injury is a common occupational hazard but has not been previously reported in a child. With the escalating use of computers both in the home for recreational purposes and in schools for teaching, the possible incidence of hand and wrist problems may need to be highlighted. Perhaps "hand care" instruction should be implemented in UK schools as prophylaxis.

  10. Differentiation of human and animal strains of Streptococcus dysgalactiae by pulsed-field gel electrophoresis.

    PubMed

    Bert, F; Branger, C; Poutrel, B; Lambert-Zechovsky, N

    1997-05-01

    The genetic diversity among 54 human isolates and 33 animal isolates belonging to the species Streptococcus dysgalactiae (20 alpha-haemolytic Streptococcus dysgalactiae, 23 Streptococcus equisimilis, 43 group G streptococci and one group L streptococcus) was evaluated by macrorestriction analysis of chromosomal DNA with SmaI and resolution by pulsed-field gel electrophoresis. This technique revealed a high degree of intraspecies polymorphism, leading to the differentiation of 80 distinct banding patterns, and identified the presence of two major clusters, one containing isolates of human origin and the other isolates of animal origin. These results suggest than human and animal isolates of S.dysgalactiae are genetically distinct, and support the recent proposal of the subspecies S. dysgalactiae subsp. equisimilis for human isolates. The heterogeneity revealed within isolates from the same host type indicates that pulsed-field gel electrophoresis is a powerful epidemiological tool for studying S. dysgalactiae infections.

  11. Reconstruction of the strain pattern in the Somma-Vesuvius area: field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Bisson, Marina; Isaia, Roberto; Tadini, Alessandro; Vitale, Stefano

    2016-04-01

    Keywords: Somma-Vesuvio, structural analysis, volcano-tectonics. This study present a detailed structural analysis of the Somma-Vesuvio (SV) volcanic complex that couples field data about faults, fractures and dykes with the analysis of lineaments identified from high-resolution (1m) DTM deriving from LiDAR data. Field data were collected within the SV caldera,in some quarries along the volcano flanks, and in few outcrops along the carbonate reliefs bounding the southern sector of the Campania plain. A total of 8,500 orientation data have been analyzed through rose diagrams and inversion methods while a total of more than 4,000 lineaments were identified after the analyses of multiple hill shades obtained by applying different pseudo-illuminations (from NW, NE, SE and SW) and appropriate filters to the original DTM. Results indicate a complex interaction between volcanic (local) and tectonic (regional) stress fields. The preliminary analysis of lineaments indicate that most of them are radial with respect to the center of the caldera, however a "tectonic" component is present, mainly represented by the NNE-SSW, ENE-WSW and the well-known Apenninic (NW-SE) direction.

  12. Job Strain and Self-Reported Insomnia Symptoms among Nurses: What about the Influence of Emotional Demands and Social Support?

    PubMed Central

    Portela, Luciana Fernandes; Kröning Luna, Caroline; Rotenberg, Lúcia; Silva-Costa, Aline; Toivanen, Susanna; Araújo, Tania; Griep, Rosane Härter

    2015-01-01

    Job strain, derived from high psychological demands and low job control, is associated with insomnia, but information on the role of emotional demands and social support in this relationship is scarce. The aims of this study were (i) to test the association between job strain and self-reported insomnia symptoms, (ii) to evaluate the combination of emotional demands and job control regarding insomnia symptoms, and (iii) to analyze the influence of social support in these relationships. This cross-sectional study refers to a sample of nurses (N = 3,013 and N = 3,035 for Job Strain and Emotional demand-control model, resp.) working at public hospitals in Rio de Janeiro, Brazil. Data were collected through a self-report questionnaire. The prevalence of insomnia symptoms was 34.3%. Job strain was associated with increased odds for insomnia symptoms (OR: 2.20); the same result was observed with the combination of emotional demands and low job control (OR: 1.99). In both models, the inclusion of low social support combined with high demands and low job control led to increased odds for insomnia symptoms, compared to groups with high social support from coworkers and supervisors. Besides job strain, the study of emotional demands and social support are promising with regards to insomnia symptoms, particularly among nurses. PMID:26557699

  13. Job Strain and Self-Reported Insomnia Symptoms among Nurses: What about the Influence of Emotional Demands and Social Support?

    PubMed

    Portela, Luciana Fernandes; Kröning Luna, Caroline; Rotenberg, Lúcia; Silva-Costa, Aline; Toivanen, Susanna; Araújo, Tania; Griep, Rosane Härter

    2015-01-01

    Job strain, derived from high psychological demands and low job control, is associated with insomnia, but information on the role of emotional demands and social support in this relationship is scarce. The aims of this study were (i) to test the association between job strain and self-reported insomnia symptoms, (ii) to evaluate the combination of emotional demands and job control regarding insomnia symptoms, and (iii) to analyze the influence of social support in these relationships. This cross-sectional study refers to a sample of nurses (N = 3,013 and N = 3,035 for Job Strain and Emotional demand-control model, resp.) working at public hospitals in Rio de Janeiro, Brazil. Data were collected through a self-report questionnaire. The prevalence of insomnia symptoms was 34.3%. Job strain was associated with increased odds for insomnia symptoms (OR: 2.20); the same result was observed with the combination of emotional demands and low job control (OR: 1.99). In both models, the inclusion of low social support combined with high demands and low job control led to increased odds for insomnia symptoms, compared to groups with high social support from coworkers and supervisors. Besides job strain, the study of emotional demands and social support are promising with regards to insomnia symptoms, particularly among nurses.

  14. Evaluation and improvement of a single nucleotide polymorphism-based PCR assay for rapid differentiation of live attenuated vaccine strains from field isolates of Erysipelothrix rhusiopathiae.

    PubMed

    Zhu, Weifeng; Li, Jingtao; Wang, Ya; Kang, Chao; Jin, Meilin; Chen, Huanchun

    2016-11-01

    A single nucleotide polymorphism-based PCR assay has been developed to differentiate the attenuated vaccine strain used in Japan from field isolates of Erysipelothrix rhusiopathiae found in pigs. However, this assay has been evaluated with only Japanese strains and isolates; therefore, it is unknown whether it could be used in other countries with E. rhusiopathiae strains and isolates of different genetic backgrounds. In our study, the PCR assay was evaluated using Chinese E. rhusiopathiae vaccine strains and field isolates. The PCR assay was able to differentiate the attenuated vaccine strains from the field isolates of E. rhusiopathiae in China but with a pattern different from that observed in Japan (only a single nucleotide polymorphism was detected in the Chinese vaccine strains compared with 5 in the Japanese vaccine strains). Importantly, either a DNA polymerase without 3' to 5' exonuclease activity or an exo(+) polymerase with an antibody inhibiting the proofreading activity was required. In conclusion, after evaluation and improvement, this fast differentiation assay can be extended from Japan to China.

  15. A preliminary report of phylogenetic diversity of bacterial strains isolated from marine creatures.

    PubMed

    Kurahashi, Midori; Yokota, Akira

    2002-10-01

    Bacterial diversity among marine creatures, especially molluscs, as a source for searching out novel lineages of bacteria, was studied. Marine creatures were collected at the coasts of the Kanto area in Japan. A total of 116 strains of bacteria were isolated from the intestines of 19 species of marine creatures includings molluscs, pisces and protochordata. Partial sequencing of 16S rDNA revealed that most of the isolates belonged to the gamma subclass of the Proteobacteria and Cytophaga-Flavobacterium-Bacteroides group. The BLAST searches revealed that the complete 16S rDNA sequence of 17 strains out of 116 isolates showed less than 94% similarity with 16S rDNA sequences deposited in the database. Four strains out of the 17 isolates belonged to the Rhodobacter group, 8 strains to the Alteromonas group, and the remaining 5 strains to the Cytophaga-Flavobacterium-Bacteroides group. Phylogenetic positions of 6 strains belonging to the Alteromonas group, which were isolated from different marine creatures, were close to each other, and represented a novel 16S rDNA lineage within the gamma subclass of Proteobacteria. Therefore, it may be inferred that these 6 strains belong to a new genus of Proteobacteria. Phylogenetic positions of the other strains are also independent from neighboring taxa, and they were suggested to respectively form a novel lineage. From these results, it is clear that the biodiversity of bacteria in marine creatures is much wider than was previously thought, and unknown microbiological resources are buried in these organisms.

  16. Microstability theory for the field reversed configuration. Final report

    SciTech Connect

    Krall, N.A.

    1997-11-05

    This report summarizes the work done in the last contract period. Previous work has been described in Annual Performance Reports. The work carried on under this Research Grant and not included in previous progress and annual reports includes two distinct items. One work is a study of the nonlocal high beta microstability of the FRC (Field Reversed Configuration), which they began sometime ago. This study identified the limiting beta (=4{pi}nT/B{sup 2}) for the mode to remain unstable. The study found that as beta increases, the wavenumbers (k{sub y}, K{sub z}) for maximum growth changes, so that the limiting beta is not the one found by fixing (k{sub y}, K{sub z}) and increasing beta. It also appears that the criterion for nonlocal terms to influence the result, as beta increases, is substantially weaker than might have been thought. The authors identify the parameter that determines this effect. This study is presented as Appendix 1 of this report. The second study is of the effect of collisions on the lower hybrid drift instability. The result is that the effect of collisions is substantially more important than might have been expected. These two studies are in different stages of completion. The second is in fact complete, and could be published virtually as is, although it would benefit from a small amount of numerical analysis. The first study is far richer than the second, in that it includes a variety of regimes and effects. The formulation presented in it could e used as the basis for a series of papers, although in its present stage it is not ready for publication. It is unfortunate, but the level of the research Grant, and its untimely end, did not permit further progress on that study.

  17. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  18. Variable number of tandem repeats and pulsed-field gel electrophoresis cluster analysis of enterohemorrhagic Escherichia coli serovar O157 strains.

    PubMed

    Yokoyama, Eiji; Uchimura, Masako

    2007-11-01

    Ninety-five enterohemorrhagic Escherichia coli serovar O157 strains, including 30 strains isolated from 13 intrafamily outbreaks and 14 strains isolated from 3 mass outbreaks, were studied by pulsed-field gel electrophoresis (PFGE) and variable number of tandem repeats (VNTR) typing, and the resulting data were subjected to cluster analysis. Cluster analysis of the VNTR typing data revealed that 57 (60.0%) of 95 strains, including all epidemiologically linked strains, formed clusters with at least 95% similarity. Cluster analysis of the PFGE patterns revealed that 67 (70.5%) of 95 strains, including all but 1 of the epidemiologically linked strains, formed clusters with 90% similarity. The number of epidemiologically unlinked strains forming clusters was significantly less by VNTR cluster analysis than by PFGE cluster analysis. The congruence value between PFGE and VNTR cluster analysis was low and did not show an obvious correlation. With two-step cluster analysis, the number of clustered epidemiologically unlinked strains by PFGE cluster analysis that were divided by subsequent VNTR cluster analysis was significantly higher than the number by VNTR cluster analysis that were divided by subsequent PFGE cluster analysis. These results indicate that VNTR cluster analysis is more efficient than PFGE cluster analysis as an epidemiological tool to trace the transmission of enterohemorrhagic E. coli O157.

  19. Field verification of CO{sub 2} foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1995-06-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled ``Field Verification of CO{sub 2}-Foam,`` was jointly funded by the EVGSAU working interest owners, the US Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  20. Field verification of CO{sub 2} Foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1996-02-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled {open_quotes}Field Verification of CO{sub 2-}Foam,{close_quotes} was jointly funded by the EVGSAU working interest owners, the U.S. Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  1. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  2. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    SciTech Connect

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  3. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    SciTech Connect

    Fahmy M. Haggag

    1999-10-29

    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  4. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  5. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  6. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-26

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  7. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  8. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels.

    PubMed

    Yuan, Rong; Tsaih, Shirng-Wern; Petkova, Stefka B; Marin de Evsikova, Caralina; Xing, Shuqin; Marion, Michael A; Bogue, Molly A; Mills, Kevin D; Peters, Luanne L; Bult, Carol J; Rosen, Clifford J; Sundberg, John P; Harrison, David E; Churchill, Gary A; Paigen, Beverly

    2009-06-01

    To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin-like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = -0.33, P = 0.01). This correlation became stronger if the short-lived strains with a median lifespan < 600 days were removed from the analysis (R = -0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.

  9. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels

    PubMed Central

    Yuan, Rong; Tsaih, Shirng-Wern; Petkova, Stefka B.; de Evsikova, Caralina Marin; Xing, Shuqin; Marion, Michael A.; Bogue, Molly A.; Mills, Kevin D.; Peters, Luanne L.; Bult, Carol J.; Rosen, Clifford J.; Sundberg, John P.; Harrison, David E.; Churchill, Gary A.; Paigen, Beverly

    2009-01-01

    Summary To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. We carried out clinical assessments every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, we carried out more invasive measurements followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, we describe the study design, median lifespans, and circulating IGF1 levels at 6, 12 and 18 months for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with median lifespan at 6 months (R=−0.33, P=0.01). This correlation became stronger if the short-lived strains with a median lifespan<600 days were removed from the analysis (R=−0.53, P<0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan. PMID:19627267

  10. Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field

    NASA Astrophysics Data System (ADS)

    Chang, C.-P.; Chu, M.-W.; Jeng, H. T.; Cheng, S.-L.; Lin, J. G.; Yang, J.-R.; Chen, C. H.

    2014-03-01

    The success of semiconductor technology is largely ascribed to controlled impacts of strains and defects on the two-dimensional interfacial charges. Interfacial charges also appear in oxide heterojunctions such as LaAlO3/SrTiO3 and (Nd0.35Sr0.65)MnO3/SrTiO3. How the localized strain field of one-dimensional misfit dislocations, defects resulting from the intrinsic misfit strains, would affect the extended oxide-interfacial charges is intriguing and remains unresolved. Here we show the atomic-scale observation of one-dimensional electron chains formed in (Nd0.35Sr0.65)MnO3/SrTiO3 by the condensation of characteristic two-dimensional interfacial charges into the strain field of periodically arrayed misfit dislocations, using chemical mapping and quantification by scanning transmission electron microscopy. The strain-relaxed inter-dislocation regions are readily charge depleted, otherwise decorated by the pristine charges, and the corresponding total-energy calculations unravel the undocumented charge-reservoir role played by the dislocation-strain field. This two-dimensional-to-one-dimensional electronic condensation represents a novel electronic-inhomogeneity mechanism at oxide interfaces and could stimulate further studies of one-dimensional electron density in oxide heterostructures.

  11. Intramuscular challenge of rainbow trout (Oncorhynchus mykiss) with two Norwegian field strains of Flavobacterium psychrophilum.

    PubMed

    Fredriksen, Børge N; Furevik, Anette; Gauthier, David; Egenberg, Marie; Paulsen, Erik D; Brudeseth, Bjørn

    2013-08-01

    In recent years there has been an increasing occurrence of Flavobacterium psychrophilum infections in farmed salmonids in Norway. The current study describes two field isolates of F. psychrophilum collected from farmed rainbow trout (Oncorhynchus mykiss) fingerlings and post smolts in Norway. Virulence of the two isolates was tested in vivo by intramuscular (IM) and/or intraperitoneal (IP) challenge of disease free, un-vaccinated rainbow trout. The isolates were concluded to be highly virulent compared to a reference isolate as they yielded high mortality after IM challenge even at low challenge doses. The more virulent of the two isolates was further used to establish a challenge model to evaluate the efficacy of vaccines against infections with F. psychrophilum. Three groups were included in the vaccination-challenge study; a vaccinated group given a 6 antigen (Ag) component vaccine containing F. psychrophilum antigens (6 Ag/F.psy(+)), a control vaccinated group administered a similar 5 antigen component vaccine without F. psychrophilum antigens (5 Ag/F.psy(-)), and a non-injected negative control group. Results from the IM challenge demonstrated that 1) our challenge model is able to discriminate between protected and unprotected experimental groups and 2) that the vaccine induced protection is specific against F. psychrophilum as mortality in the 5 Ag/F.psy(-) group was equally high as in the negative control, while the 6 Ag/F.psy(+) induced a high level of protection (RPS60 = 86.7%). The present study is one of the first to describe protection against F. psychrophilum infections induced by a multicomponent injection vaccine.

  12. Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

    PubMed Central

    Ortiz, Carlos S.; Richards, Casey; Terry, Ashlee; Parra, Joselyn; Shim, Won-Bo

    2015-01-01

    Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field. PMID:26361468

  13. Enhancing the strain sensitivity of CoFe₂O₄ at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe.

    PubMed

    Anantharamaiah, P N; Joy, P A

    2016-04-21

    Attaining high magnetostrictive strain sensitivity (dλ/dH) with high magnetostriction strain (λ) is desirable for sintered polycrystalline cobalt ferrite for various applications. It is shown that substitution of a small amount of Fe(3+) by Mg(2+) in CoMgxFe2-xO4 (x < 0.1) gives a comparable maximum magnetostriction coefficient to that of the unsubstituted counterpart, with large improvement in the strain sensitivity at relatively low magnetic fields. A large increase in the magnetostriction coefficient is obtained at low magnetic fields for the substituted compositions. The magnetostriction parameters are further enhanced by magnetic field annealing of the sintered products. The results are analyzed based on powder XRD, Raman spectroscopy, XPS and magnetic measurements and based on the results from these studies, the changes in the magnetostriction parameters are correlated with the changes in the cation distribution, magnetic anisotropy and microstructure.

  14. Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: A first-principle study

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS2. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS2 when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS2 can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS2 in electronics and optoelectronics.

  15. Effect of in-plane magnetic field and applied strain in quantum spin Hall systems: Application to InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi

    2016-08-01

    Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.

  16. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  17. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  18. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    The New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey prioritized the community consensus for ground-based and space-based observatories. Recognizing that many of the community s key questions could be answered with a wide-field infrared survey telescope in space, and that the decade would be one of budget austerity, WFIRST was top ranked in the large space mission category. In addition to the powerful new science that could be accomplished with a wide-field infrared telescope, the WFIRST mission was determined to be both technologically ready and only a small fraction of the cost of previous flagship missions, such as HST or JWST. In response to the top ranking by the community, NASA formed the WFIRST Science Definition Team (SDT) and Project Office. The SDT was charged with fleshing out the NWNH scientific requirements to a greater level of detail. NWNH evaluated the risk and cost of the JDEM-Omega mission design, as submitted by NASA, and stated that it should serve as the basis for the WFIRST mission. The SDT and Project Office were charged with developing a mission optimized for achieving the science goals laid out by the NWNH re-port. The SDT and Project Office opted to use the JDEM-Omega hardware configuration as an initial start-ing point for the hardware implementation. JDEM-Omega and WFIRST both have an infrared imager with a filter wheel, as well as counter-dispersed moderate resolution spectrometers. The primary advantage of space observations is being above the Earth's atmosphere, which absorbs, scatters, warps and emits light. Observing from above the atmosphere enables WFIRST to obtain precision infrared measurements of the shapes of galaxies for weak lensing, infrared light-curves of supernovae and exoplanet microlensing events with low systematic errors, and infrared measurements of the H hydrogen line to be cleanly detected in the 1

  19. Co-transmission of the non-transmissible South African Babesia bovis S24 vaccine strain during mixed infection with a field isolate.

    PubMed

    Combrink, M P; Troskie, P C; de Klerk, D G; Pienaar, R; Latif, A A; Mans, B J

    2015-03-01

    The South African Babesia bovis live blood vaccine, originating from a field isolate attenuated by 23 serial syringe passages in splenectomized calves, has lost the ability to infect the natural vector Rhipicephalus (Boophilus) microplus. In this study, infection with mixed parasites from the vaccine strain and a field isolate, resulted in transmission of both genotype populations. Comparing the field isolate and transmitted combination indicated no significant difference in their virulence, while challenge of vaccinated cattle with these isolates showed the ability of the vaccine to protect against both. Limiting dilution of the transmitted combination, followed by infection of splenectomized cattle (n=34) yielded no single infections for the vaccine strain genotype, seven clonal lines of the field isolate and one mixture of vaccine strain and field isolate. Only one of two field isolate clonal lines selected for vector transmission study was transmitted. Showing that B. bovis isolates can contain both tick transmissible and non-transmissible subpopulations. The findings of this study also indicate the probability of vaccine co-infection transmission occurring in the field, which may result in new genotype populations of B. bovis. However, the impact of this recombination with field isolates is considered negligible since a genotypically diverse population of B. bovis is already present in South Africa.

  20. Comparison of multiple genes and 16S-23S rRNA intergenic space region for their capacity in high resolution melt curve analysis to differentiate Mycoplasma gallisepticum vaccine strain ts-11 from field strains.

    PubMed

    Ghorashi, Seyed A; Bradbury, Janet M; Ferguson-Noel, Naola M; Noormohammadi, Amir H

    2013-12-27

    Mycoplasma gallisepticum (MG) is an important avian pathogen causing significant economic losses in the global poultry industry. In an attempt to compare and evaluate existing genotyping methods for differentiation of MG strains/isolates, high resolution melt (HRM) curve analysis was applied to 5 different PCR methods targeting vlhA, pvpA, gapA, mgc2 genes and 16S-23S rRNA intergenic space region (IGSR). To assess the discriminatory power of PCR-HRM of examined genes and IGSR, MG strains ts-11, F, 6/85 and S6, and, initially, 8 field isolates were tested. All MG strains/isolates were differentiated using PCR-HRM curve analysis and genotype confidence percentage (GCP) values of vlhA and pvpA genes, while only 0, 3 and 4 out of 12 MG strains/isolates were differentiated using gapA, mgc2 genes and IGSR, respectively. The HRM curve analysis of vlhA and pvpA genes was found to be highly correlated with the genetic diversity of the targeted genes confirmed by sequence analysis of amplicons generated from MG strains. The potential of the vlhA and pvpA genes was also demonstrated for genotyping of 12 additional MG strains from Europe and the USA. Results from this study provide a direct comparison between genes previously used in sequencing-based genotyping methods for MG strain identification and highlight the usefulness of vlhA and pvpA HRM curve analyses as rapid and reliable tools specially for diagnosis and differentiation of MG strains used here.

  1. Electronic and magnetic properties of armchair MoS{sub 2} nanoribbons under both external strain and electric field, studied by first principles calculations

    SciTech Connect

    Hu, Ting; Dong, Jinming; Zhou, Jian; Kawazoe, Yoshiyuki

    2014-08-14

    The electronic and magnetic properties of armchair edge MoS{sub 2} nanoribbons (MoS{sub 2}-ANRs) underboth the external strain and transverse electric field (E{sub t}) have been systematically investigated by using the first-principles calculations. It is found that: (1) If no electric field is applied, an interesting structural phase transition would appear under a large tensile strain, leading to a new phase MoS{sub 2}-A'NR, and inducing a big jump peak of the band gap in the transition region. But, the band gap response to compressive strains is much different from that to tensile strain, showing no the structural phase transition. (2) Under the small tensile strains (<10%), the combined E{sub t} and tensile strain give rise to a positive superposition (resonant) effect on the band gap reduction at low E{sub t} (<3 V/nm), and oppositely a negative superposition (antiresonant) one at high E{sub t} (>4 V/nm). On the other hand, the external compressive strains have always presented the resonant effect on the band gap reduction, induced by the electric field. (3) After the structural phase transition, an external large tensile strain could greatly reduce the critical field E{sub tc} causing the band gap closure, and make the system become a ferromagnetic (FM) metal at a relative low E{sub t} (e.g., <4 V/nm), which is very helpful for its promising applications in nano-mechanical spintronics devices. (4) At high E{sub t} (>10 V/nm), the magnetic moments of both the MoS{sub 2}-ANR and MoS{sub 2}-A'NR in their FM states could be enhanced greatly by a tensile strain. Our numerical results of effectively tuning physical properties of MoS{sub 2}-ANRs by combined external strain and electric field may open their new potential applications in nanoelectronics and spintronics.

  2. Bragg x-ray ptychography of a silicon crystal: Visualization of the dislocation strain field and the production of a vortex beam

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Suzuki, Akihiro; Furutaku, Shin; Yamauchi, Kazuto; Kohmura, Yoshiki; Ishikawa, Tetsuya

    2013-03-01

    We experimentally demonstrate the visualization of nanoscale dislocation strain fields in a thick silicon single crystal by a coherent diffraction imaging technique called Bragg x-ray ptychography. We also propose that the x-ray microbeam carrying orbital angular momentum is selectively produced by coherent Bragg diffraction from dislocation singularities in crystals. This work not only provides us with a tool for characterizing dislocation strain fields buried within extended crystals but also opens up new scientific opportunities in femtosecond spectroscopy using x-ray free-electron lasers.

  3. Genomic and antigenic characterization of bovine parainfluenze-3 viruses in the United States including modified live virus vaccine (MLV) strains and field strains from cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the genetic and antigenic characterization of parainfluenza-3 virus (PI3V) of cattle. Using molecular tests including real time PCR and viral genome sequencing, PI3V strains could be separated into PI3V types, including PI3V A, PI3V B, and PI3V C. Isolates from cattle with bo...

  4. Use of pulsed-field gel electrophoresis to determine genomic diversity in strains of Helicobacter hepaticus from geographically distant locations.

    PubMed Central

    Saunders, K E; McGovern, K J; Fox, J G

    1997-01-01

    In 1992 a helical microorganism associated with chronic active hepatitis and a high incidence of hepatocellular tumors was identified in the hepatic parenchyma of A/JCr mice. By using biochemical tests, phenotypic characterization, and 16S rRNA gene sequence analysis, the organism was classified as a novel Helicobacter species and named Helicobacter hepaticus. Recent surveys completed in our laboratory indicate that H. hepaticus is widespread in academic and commercial mouse colonies. The aim of this study was to examine the H. hepaticus genome by pulsed-field gel electrophoresis (PFGE) to determine the degree of genomic variation and genomic size. This technique has been used to identify significant genomic diversity among strains of Helicobacter pylori and to demonstrate only slight genomic diversity among strains of Helicobacter mustelae. Genomic DNAs from 11 isolates of H. hepaticus from the United States, Germany, France, and The Netherlands were subjected to PFGE after digestion with SmaI. Isolates from three independent sources within the United States had very similar PFGE patterns, suggesting that the genomic DNAs of these isolates are conserved. Genomic DNA isolated from a fourth source within the United States had a PFGE pattern different from those of the other U.S. isolates. Isolates obtained from Germany, France, and The Netherlands had PFGE patterns that differed markedly from those of the U.S. isolates and from one another. The use of DNA fingerprinting may be useful in subsequent epidemiological studies of H. hepaticus when the source and method of spread of this murine pathogen need to be ascertained. By PFGE, the genomic size of H. hepaticus is estimated to be roughly 1.3 Mb, which compares to 1.67 Mb for H. pylori and 1.7 Mb for H. mustelae. PMID:9350747

  5. Case Report: Successful Sporozoite Challenge Model in Human Volunteers with Plasmodium vivax Strain Derived from Human Donors

    DTIC Science & Technology

    2009-01-01

    Report: Successful Sporozoite Challenge Model in Human Volunteers with Plasmodium vivax Strain Derived from Human Donors Sócrates Herrera...Switzerland Abstract. Successful establishment of a Plasmodium vivax sporozoite challenge model in humans is described. Eighteen healthy adult...among groups (Kruskal-Wallis, P = 0.70). One volunteer exposed to eight mosquito bites did not develop a parasitemia. No dif- ferences in parasite

  6. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    SciTech Connect

    Hertz, Joshua L.; Prasad, Ajay K.

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  7. Final Report for Propylene Dissemination System for FUSION Field Trials

    DTIC Science & Technology

    2007-03-01

    1 m/s. Field Controller Design The field controller employs a ’BRAT’ single board computer (SBC) with customized firmware to manage all local...Field Control Panel are the single board computer , interface electronics for the flow rate measurement flow control and ancillary (pressure and

  8. Project MAFEX: Report on Preservice Field Experiences in Science Education.

    ERIC Educational Resources Information Center

    Malone, Mark R.

    Project MAFEX (Meta-Analysis of Field Experience) used standard meta-analysis techniques to synthesize the available body of research concerning preservice field experience programs. Several important questions were considered: (1) What types of field experience programs are most and least effective? (2) Are there common characteristics of field…

  9. Depicting the Discrepancy between Tri Genotype and Chemotype on the Basis of Strain CBS 139514 from a Field Population of F. graminearum Sensu Stricto from Argentina

    PubMed Central

    Kulik, Tomasz; Buśko, Maciej; Bilska, Katarzyna; Ostrowska-Kołodziejczak, Anna; van Diepeningen, Anne D.; Perkowski, Juliusz; Stenglein, Sebastian

    2016-01-01

    Recent studies on a field population of F. graminearum sensu stricto from Argentina revealed an atypical panel of strains identified through PCR genotyping as 15ADON genotypes, but producing high levels of 3ADON. Based on representative strain CBS 139514, we asked if the discrepancy between the trichothecene genotype and chemotype might result from an inter-chemotype recombination of the chemotype-determining genes. To answer this, we sequenced the complete core Tri gene cluster (around 30,200 bp) from this strain and compared its sequence to sequence data of typical type B trichothecene genotypes/chemotypes. Sequence alignment showed that CBS 139514 has an identical sequence within the entire core Tri cluster to the 15ADON genotype. The revealed discrepancy underlines the need for using both molecular and chemical methods for reliable characterization of toxigenic strains of Fusarium. PMID:27845742

  10. Collection of High Energy Yielding Strains of Saline Microalgae from Southwestern States: Final Report Draft

    SciTech Connect

    Sommerfield, M. R.

    1986-01-01

    Approximately 1,400 individual isolates of microalgae were obtained from surface waters in the Southwest. Of the initial 23 algae screened for growth characteristics, the majority grew best at the lower salinities in both SERI Type I and Type II Media. Growth rates for selected strains approached three doublings per day.

  11. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation

    NASA Astrophysics Data System (ADS)

    Cakir, Ziyadin; Ergintav, Semih; Akoǧlu, Ahmet M.; ćakmak, Rahşan; Tatar, Orhan; Meghraoui, Mustapha

    2014-10-01

    We use the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with the European Space Agency's Envisat and ERS SAR data acquired on three neighboring descending tracks (T350, T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the relationships between the loading and release of interseismic strain along segmented continental strike-slip faults. In contrast with the geometric complexities at the ground surface that appear to control rupture propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and narrow throughgoing shear zone with an overall 20 ± 3 mm/yr slip rate above an unexpectedly shallow 7 ± 2 km locking depth. Such a shallow locking depth may result from the postseismic effects following recent earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A narrow throughgoing shear zone supports the thick lithosphere model in which continental strike-slip faults are thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

  12. PISCES field chemical emissions monitoring project: Site 116 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 116. Site 116 consists of a pulverized coal-fired boiler burning a bituminous coal, with an electrostatic precipitator for particulate control. Site 116 also included s a Babcock & Wilcox`s DOE Clean Coal Technology Program`s 5{minus}MWe SO{sub x}{minus}NO{sub x}-Rox Box {trademark} (SNRB{trademark}) Field Demonstration. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  13. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine

    PubMed Central

    Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.

    2000-01-01

    Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429

  14. Lack of cross-resistance between neonicotinoids and sulfoxaflor in field strains of Q-biotype of whitefly, Bemisia tabaci, from eastern China.

    PubMed

    Wang, Wenlong; Wang, Shaoli; Han, Guangjie; Du, Yuzhou; Wang, Jianjun

    2017-03-01

    Control of Bemisia tabaci has depended primarily and heavily on insecticides, especially neonicotinoids. The novel sulfoximine insecticide sulfoxaflor exhibits high potency against a broad range of sap-feeding insect species, including those resistant to neonicotinoids. The resistance levels of Q-biotype B. tabaci field strains collected from 8 locations in eastern China to neonicotinoids and sulfoxaflor were investigated, and single nucleotide polymorphisms (SNPs) of nicotinic acetylcholine receptor β1 subunit gene (Btβ1) were detected. Compared with the reference strain, the field strains had developed low to moderate levels of resistance to imidacloprid and nitenpyram with the resistance ratios (RR) ranging between 4.07 and 21.75-fold and 3.37 and 16.14-fold, respectively. While YZ strain exhibited high resistance (RF 40.38) to thiamethoxam, only low levels of resistance to thiamethoxam (RF 3.50-8.58) was observed in other strains. All strains were relatively susceptible to both dinotefuran (RF 0.50-2.55) and sulfoxaflor (RF 0.40-3.07). Sequence analysis of Btβ1 cDNA fragments revealed 23 SNPs representing 19 amino acid replacements in these strains. Notably, a 45bp fragment deletion was detected in JY strain, which encodes 15 amino acid residues (positions 66-80) containing arginine at position 79 (R79) corresponding to the R81T mutation in Loop D of nAChR β1 subunit in Myzus persicae resistant to neonicotinoids. The lack of cross-resistance indicates that both dinotefuran and sulfoxaflor could play an important role in the control of B. tabaci already resistant to the first and second generation neonicotinoids.

  15. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Field testing for Innovative and... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee shall submit a report containing the procedure, cost, results and conclusions of any field testing. The...

  16. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Field testing for Innovative and... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee shall submit a report containing the procedure, cost, results and conclusions of any field testing. The...

  17. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey.

    PubMed

    Sóki, József; Eitel, Zsuzsa; Urbán, Edit; Nagy, Elisabeth

    2013-02-01

    Here we examine the carbapenem and metronidazole resistance mechanisms of 640 Bacteroides strains reported in the 2008-2009 European antibiotic susceptibility survey. Of the 22 strains with elevated imipenem minimum inhibitory concentrations (≥4 μg/mL), 10 were cfiA-positive and out of these 5 carried activating insertion sequence (IS) elements in the upstream regions of the cfiA genes. However, resistant strains with cfiA genes but with no activating IS elements were found (n=2) as well as a resistant strain with no cfiA gene. In the former the resistance phenotypes by Etest were heterogeneous, whilst in the latter no carbapenemase production was seen; both mechanisms have been rarely observed, examined and characterised. Interestingly, few (n=3) nim-positive strains were found, including one metronidazole-resistant strain harbouring nimE activated by ISBf6, and two susceptible strains harbouring chromosomally located nim genes.

  18. The use of electron backscatter diffraction to measure the elastic strain fields in a misfit dislocation-free InGaAsP/InP heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, L. X.; Guo, D. L.; Ren, F.; Xiao, X. H.; Cai, G. X.; Fu, Q.; Jiang, C. Z.

    2007-12-01

    Elastic strain fields at the interface of the epilayer and buffer layer of the InGaAsP/InP heterostructure were characterized by electron backscatter diffraction (EBSD) technology based on scanning electron microscopy. The InGaAsP/InP heterostructure which contained lattice misfit was under a dislocation-free condition. Image quality (IQ) was used as the strain sensitive parameter. From the image quality map and image quality curve, we observed directly the distribution of the elastic strain fields at the interface along the direction perpendicular to the interface as well as the interface structure between the epilayer and buffer layer by transmission electron microscopy and high resolution transmission microscopy.

  19. Simultaneous application of scanning laser vibrometry and thermoelasticity for measurement of stress-strain fields on mechanical components

    NASA Astrophysics Data System (ADS)

    Di Renzo, A.; Marsili, R.; Martarelli, M.; Moretti, M.; Rosati, G.; Rossi, G. L.

    2006-06-01

    The application of both scanning laser vibrometry and thermoelasticity for measurement of stress and strain fields on mechanical components is proposed. A theoretical approach on both the measurement principles is illustrated and an application to a practical case, as an automotive fan blade, is described. The problem of the fan blade failure is tightly due to the force amplitude and frequency, that are applied in working condition; it is, therefore, important, to know the blade resonance frequencies and the mode shapes. For this reason, the measurement techniques, based on scanning laser Doppler vibrometer, give the chance to quickly perform an experimental modal analysis with high accuracy and spatial resolution and to obtain the structure's mode shapes. In the same time, it is important to assess the stress distribution level on the blade associated to every mode shape. Measurement techniques, that apply thermoelastic principle, allow to quickly determine the blade stress pattern at each load frequency. It is, therefore, possible to establish the stress pattern corresponding to the mode shape and predict the fatigue life of the component.

  20. Investigation of the antitrypanosomal activity of Buchholzia coriacea seed extract against a field strain of Trypanosoma congolense.

    PubMed

    Nweze, N E; Anene, B M; Asuzu, I U

    2011-01-01

    The antitrypanosomal activity of the methanol extract of Buchholzia coriacea seed against a field strain of Trypanosoma congolense was investigated using experimentally infected mice of both sexes. Monitoring of parasitaemia was by the rapid matching technique. When parasitaemia was approximately log 7.8 (63 × 10(6) parasites/ml), treatment with graded doses of the extract (250, 500 and 1000 mg/kg) was instituted for 5 consecutive days. Diminazene diaceturate (Dimivet SKM Pharma Pvt. Ltd.) was given at 3.5 mg/kg i.p. to the positive control mice. No significant differences in body weights were observed. The rectal temperatures of infected mice showed fluctuations. The PCV of infected mice were significantly (p < 0.05) lower than those of the uninfected controls. There was no significant difference between the PCV of the extract-treated and untreated animals. Parasitaemia increased steadily in the extract-treated and untreated mice groups till all the animals died. Three days post-treatment with diminazene diaceturate parasitaemia was cleared. Six days later, there was a relapse of infection. By the end of the experiment, a 50 % relapse rate was recorded in the diminazene diaceturate-treated group. The methanol extract of Buchholzia coriacea seeds did not show any antitrypanosomal activity in mice infected with Trypanosoma congolense at the doses tested.

  1. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    PubMed

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains.

  2. Detection of a Bacteriophage Gene Encoding a Mu-like Portal Protein in Haemophilus parasuis Reference Strains and Field Isolates by Nested Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nested PCR assay was developed to determine the presence of a gene encoding a bacteriophage Mu-like portal protein, gp29, in 15 reference strains and 31 field isolates of Haemophilus parasuis. Specific primers, based on the gene’s sequence, were utilized. A majority of the virulent reference strai...

  3. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  4. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  5. Draft Genome Sequence of Rhodococcus rhodochrous Strain KG-21, a Soil Isolate from Oil Fields of Krishna-Godavari Basin, India.

    PubMed

    Dawar, Chhavi; Aggarwal, Ramesh K

    2015-10-15

    Here, we present the 6.1-Mb draft genome sequence of Rhodococcus rhodochrous strain KG-21, a soil isolate from the oil fields of Krishna-Godavari Basin in Andhra Pradesh, India. This genomic resource may help in the identification of the gene(s) involved in hydrocarbon degradation and their possible deployment for bioremediation.

  6. ITS1 copy number varies among Batrachochytrium dendrobatidis strains: implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs.

    PubMed

    Longo, Ana V; Rodriguez, David; da Silva Leite, Domingos; Toledo, Luís Felipe; Mendoza Almeralla, Cinthya; Burrowes, Patricia A; Zamudio, Kelly R

    2013-01-01

    Genomic studies of the amphibian-killing fungus (Batrachochytrium dendrobatidis, [Bd]) identified three highly divergent genetic lineages, only one of which has a global distribution. Bd strains within these linages show variable genomic content due to differential loss of heterozygosity and recombination. The current quantitative polymerase chain reaction (qPCR) protocol to detect the fungus from amphibian skin swabs targets the intergenic transcribed spacer 1 (ITS1) region using a TaqMan fluorescent probe specific to Bd. We investigated the consequences of genomic differences in the quantification of ITS1 from eight distinct Bd strains, including representatives from North America, South America, the Caribbean, and Australia. To test for potential differences in amplification, we compared qPCR standards made from Bd zoospore counts for each strain, and showed that they differ significantly in amplification rates. To test potential mechanisms leading to strain differences in qPCR reaction parameters (slope and y-intercept), we: a) compared standard curves from the same strains made from extracted Bd genomic DNA in equimolar solutions, b) quantified the number of ITS1 copies per zoospore using a standard curve made from PCR-amplicons of the ITS1 region, and c) cloned and sequenced PCR-amplified ITS1 regions from these same strains to verify the presence of the probe site in all haplotypes. We found high strain variability in ITS1 copy number, ranging from 10 to 144 copies per single zoospore. Our results indicate that genome size might explain strain differences in ITS1 copy number, but not ITS1 sequence variation because the probe-binding site and primers were conserved across all haplotypes. For standards constructed from uncharacterized Bd strains, we recommend the use of single ITS1 PCR-amplicons as the absolute standard in conjunction with current quantitative assays to inform on copy number variation and provide universal estimates of pathogen zoospore loads

  7. [The presence of OXA type carbapenemases in Pseudomonas strains: first report from Turkey].

    PubMed

    Esenkaya Taşbent, Fatma; Özdemir, Mehmet

    2015-01-01

    Pseudomonas spp. that are one of the important nosocomial pathogens worldwide, and carbapenem resistance is observed in an increasing rate. Major factors leading to carbapenem resistance are metallo-beta-lactamases (MBLs) and carbapenem-hydrolyzing class D oxacillinases. MBLs are frequently prevalent in Pseudomonas spp., while carbapenem-hydrolyzing class D oxacillinases has been almost exclusively found in multidrug and carbapenem-resistant Acinetobacter baumannii. The aim of this study was to investigate the presence of OXA-23, OXA-40 and OXA-58 genes that encode carbapenemases, in carbapenem-resistant Pseudomonas spp. strains. A total of 184 imipenem and/or meropenem-resistant Pseudomonas spp. strains isolated from different clinical samples (85 bronchoalveolar lavage, 31 wound, 18 tracheal aspirate, 16 urine, 14 blood, 10 sputum, 3 catheter, 3 throat, 2 drainage fluid, 1 abscess, 1 peritoneal fluid) in Medical Microbiology Laboratory of Necmettin Erbakan University Meram Faculty of Medicine, between November 2011 to October 2013, were included in the study. The isolates were identified by conventional methods and an automated system (VITEK-2 Compact, bioMerieux, France), while the antibiotic susceptibility tests were performed with Kirby-Bauer disk diffusion method and automated system according to the recommendations of CLSI. The presence of OXA-23, OXA-40 and OXA-58 genes in strains were investigated by a commercial PCR kit (Hyplex CarbOxa ID; Amplex Diagnostics GmbH, Germany). Molecular studies were carried out in three steps, namely extraction of genomic DNA; multiplex PCR amplification and hybridization. In the final step, hybridization was achieved in the ELISA-based system. In our study, 12 (6.5%) out of 184 carbapenem-resistant Pseudomonas spp. strains were positive for OXA-23, 1 (0.54%) for OXA-40 and 1 (0.54%) for OXA-58, with a total positive rate of 7.6% (n= 14). Most of the carbapenem-resistant Pseudomonas spp. strains (129/184; 70%) were isolated

  8. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    SciTech Connect

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  9. Conservative treatment of a tibialis posterior strain in a novice triathlete: a case report

    PubMed Central

    Howitt, Scott; Jung, Sarah; Hammonds, Nicole

    2009-01-01

    Objective To detail the progress of a novice triathlete with an unusual mechanism of a tibialis posterior strain who underwent successful conservative treatment and rehabilitation. Tibialis posterior tendon dysfunction will be discussed as it relates to the case. Clinical Features The clinical features of tibialis posterior dysfunction are swelling and edema posterior to the medial malleolus with pain and an inability to weight bear. This injury may occur in endurance athletes such as triathletes, most often occurring during running. Intervention and Outcome The conservative treatment approach used in this case consisted of medical acupuncture with electrical stimulation, Graston Technique© a soft tissue instrument assisted mobilization technique, Active Release Technique®, ultrasound therapy with Traumeel, and rehabilitation. Gait analysis and orthotic prescription was completed when the patient was ready to return to play. Outcome measures included subjective pain rating and return to pre-injury activities. Objective measures included swelling and manual muscle testing. Conclusion A novice triathlete with a grade I tibialis posterior strain was quickly relieved of his symptoms and able to return to his triathlon training with conservative treatment. Practitioners treating this type of injury could consider including the soft tissue techniques, modalities and rehabilitation employed in our case for other patients with lower leg strains and/or tibialis posterior dysfunction. PMID:19421350

  10. Final report on LDRD Project: In situ determination of composition and strain during MBE

    SciTech Connect

    Chason, E.; Floro, J.A.; Reno, J.; Klem, J.

    1997-02-01

    Molecular Beam Epitaxy (MBE) of semiconductor heterostructures for advanced electronic and opto-electronic devices requires precise control of the surface composition and strain. The development of advanced in situ diagnostics for real-time monitoring and process control of strain and composition would enhance the yield, reliability and process flexibility of material grown by MBE and benefit leading-edge programs in microelectronics and photonics. The authors have developed a real-time laser-based technique to measure the evolution of stress in epitaxial films during growth by monitoring the change in the wafer curvature. Research has focused on the evolution of stress during the epitaxial growth of Si{sub x}Ge{sub 1{minus}x} alloys on Si(001) substrates. Initial studies have observed the onset and kinetics of strain relaxation during the growth of heteroepitaxial layers. The technique has also been used to measure the segregation of Ge to the surface during alloy growth with monolayer sensitivity, an order of magnitude better resolution than post-growth characterization. In addition, creation of a 2-dimensional array of parallel beams allows rapid surface profiling of the film stress that can be used to monitor process uniformity.

  11. Efficacy of Fostera PRRS modified live virus vaccine against a Canadian heterologous virulent field strain of porcine reproductive and respiratory syndrome virus

    PubMed Central

    Savard, Christian; Alvarez, Fernando; Provost, Chantale; Chorfi, Younes; D’Allaire, Sylvie; Benoit-Biancamano, Marie-Odile; Gagnon, Carl A.

    2016-01-01

    Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains. The objective of this study was to evaluate the efficacy of Fostera PRRS MLV vaccine in protecting against challenge with a heterologous field strain widely circulating in the swine herds of eastern Canada. Forty-six piglets were divided into 4 groups: nonvaccinated-nonchallenged; nonvaccinated-challenged; vaccinated-challenged; and vaccinated-nonchallenged. The animals were vaccinated at 23 d of age with Fostera PRRS and challenged 23 d later with a heterologous field strain of PRRSV (FMV12-1425619). Overall, the vaccine showed some beneficial effects in the challenged animals by reducing the severity of clinical signs and the viral load. A significant difference between nonvaccinated and vaccinated animals was detected for some parameters starting 11 to 13 d after challenge, which suggested that the cell-mediated immune response or other delayed responses could be more important than pre-existing PRRSV antibodies in vaccinated animals within the context of protection against heterologous strains. PMID:26732457

  12. First report of a resistance-breaking strain of Raspberry bushy dwarf virus in red raspberry (Rubus idaeus) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry bushy dwarf virus (RBDV) is pollen-transmitted and the most important virus of Rubus worldwide. Infection of RBDV is associated with drupelet abortion, resulting in crumbly fruit. Multiple RBDV strains have been reported, with the Scottish-type (D200) strains being the most prevalent, and...

  13. Variation in susceptibility of laboratory and field strains of three stored-grain insect species to beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to concrete surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to clean, concrete floors of empty bins prior to grain storage against field strains of stored-grain insects is unknown. We exposed adults of 16 strains of the red flour beetle, Tribolium castaneum (Herbst); 8 strains ...

  14. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing

    PubMed Central

    Kröber, Magdalena; Wibberg, Daniel; Grosch, Rita; Eikmeyer, Felix; Verwaaijen, Bart; Chowdhury, Soumitra P.; Hartmann, Anton; Pühler, Alfred; Schlüter, Andreas

    2014-01-01

    Application of the plant associated bacterium Bacillus amyloliquefaciens FZB42 on lettuce (Lactuca sativa) confirmed its capability to promote plant growth and health by reducing disease severity (DS) caused by the phytopathogenic fungus Rhizoctonia solani. Therefore this strain is commercially applied as an eco-friendly plant protective agent. It is able to produce cyclic lipopeptides (CLP) and polyketides featuring antifungal and antibacterial properties. Production of these secondary metabolites led to the question of a possible impact of strain FZB42 on the composition of microbial rhizosphere communities after its application. Rating of DS and lettuce growth during a field trial confirmed the positive impact of strain FZB42 on the health of the host plant. To verify B. amyloliquefaciens as an environmentally compatible plant protective agent, its effect on the indigenous rhizosphere community was analyzed by metagenome sequencing. Rhizosphere microbial communities of lettuce treated with B. amyloliquefaciens FZB42 and non-treated plants were profiled by high-throughput metagenome sequencing of whole community DNA. Fragment recruitments of metagenome sequence reads on the genome sequence of B. amyloliquefaciens FZB42 proved the presence of the strain in the rhizosphere over 5 weeks of the field trial. Comparison of taxonomic community profiles only revealed marginal changes after application of strain FZB42. The orders Burkholderiales, Actinomycetales and Rhizobiales were most abundant in all samples. Depending on plant age a general shift within the composition of the microbial communities that was independent of the application of strain FZB42 was observed. In addition to the taxonomic profiling, functional analysis of annotated sequences revealed no major differences between samples regarding application of the inoculant strain. PMID:24904564

  15. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response.

  16. Heat and pulsed electric field resistance of pigmented and non-pigmented enterotoxigenic strains of Staphylococcus aureus in exponential and stationary phase of growth.

    PubMed

    Cebrián, G; Sagarzazu, N; Pagán, R; Condón, S; Mañas, P

    2007-09-30

    The survival of four enterotoxigenic strains of Staphylococcus aureus (with different pigment content) to heat and to pulsed electric fields (PEF) treatments, and the increase in resistance to both processing stresses associated with entrance into stationary phase was examined. Survival curves to heat (58 degrees C) and to PEF (26 kV/cm) of cells in the stationary and in the exponential phase of growth were obtained. Whereas a wide variation in resistance to heat treatments was detected amongst the four strains, with decimal reduction time values at 58 degrees C (D(58 degrees C)) ranging from 0.93 to 0.20 min, the resistance to PEF was very similar. The occurrence of a higher tolerance to heat in stationary phase was coincident with a higher content in carotenoid pigmentation in S. aureus colonies. However, cells of the most heat resistant (pigmented) and the most heat sensitive (non-pigmented) strains in the mid-exponential phase of growth showed similar resistance to heat and to PEF. Therefore the increase in thermotolerance upon entrance into stationary phase of growth was more marked for the pigmented strains. Recovery in anaerobic conditions particularly enhanced survival to heat treatments in a non-pigmented strain. Strain CECT 4630, which possess a deficient sigma B activity, showed low heat resistance, low pigmentation, and reduced increase in thermotolerance in stationary phase. These results indicate that the magnitude of the development of a higher heat resistance in S. aureus in stationary phase is positively related to the carotenoid content of the strain. The development of tolerance to pulsed electric field was less relevant and not linked to the carotenoid content.

  17. Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-09-01

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or inside them where failures might occur. Within this paper, an approach was used to extract the full-field dynamic strain on a wind turbine assembly subject to arbitrary loading conditions. A three-bladed wind turbine having 2.3-m long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. For three different test cases, the turbine was excited using (1) pluck testing, (2) random impacts on blades with three impact hammers, and (3) random excitation by a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the paper show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for each of the three loading conditions. The approach used in this paper to predict the strain showed higher accuracy than the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.

  18. Observation of magnetic-field-induced transformation in MnCo0.78Fe0.22Ge alloys with colossal strain output and large magnetocaloric effect

    NASA Astrophysics Data System (ADS)

    Wang, Zilong; Xiu, Pengyuan; Huang, Lian; Nie, Zhihua; Zeng, Junxi; Brown, Dennis E.; Ren, Yang; Wang, Yandong

    2016-05-01

    The thermal, structural and magnetic properties were studied for the hexagonal MnCo0.78Fe0.22Ge alloys, which undergoes a first-order phase transformation from paramagnetic hexagonal phase into ferromagnetic orthorhombic martensite on cooling. Owing to the magnetostructural coupling, large magnetocaloric effect (∆SM=-10.97 J kg-1 K-1) was obtained at 254 K. In-situ synchrotron high-energy X-ray diffraction experiments were conducted to reveal the detailed change in crystallographic structure of phases and the effect of applied magnetic field on phase transformation behaviors. An anomalously huge strain of 11.89% and volume expansion of 4.35% in unit-cell were obtained between martensite and parent phase across the transformation. Furthermore, the magnetic field-induced martensitic transformation was directly evidenced at 250 K, which eventually demonstrates the possibility to achieve magnetic-field-induced strain and large magnetocaloric effect simultaneously.

  19. Report of the panel on geopotential fields: Magnetic field, section 9

    NASA Technical Reports Server (NTRS)

    Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.

    1991-01-01

    The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.

  20. 1994 Fernald field characterization demonstration program data report

    SciTech Connect

    Rautman, C.A.; Cromer, M.V.; Newman, G.C.; Beiso, D.A.

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  1. THz Radiation from Intracavity Saturable Bragg Reflector in Magnetic Field with Self-Started Mode-Locking by Strained Saturable Bragg Reflector

    NASA Astrophysics Data System (ADS)

    Liu, Tze-An; Huang, Kai-Fung; Pan, Ci-Ling; Liu, Zhenlin; Ono, Shingo; Ohtake, Hideyuki; Sarukura, Nobuhiko

    1999-11-01

    We demonstrate a new configuration for intracavity generation of THz radiation. A magnetic-field-biased saturable Bragg reflector (SBR) located inside the femtosecond laser cavity is the emitter, while a strained saturable Bragg reflector (SSBR) achieves self-started mode-locking without focusing. The calibrated power of the emitted THz radiation is estimated to be approximately 45 nW with a peak frequency at 0.72 THz and width of approximately 0.7 THz under a 0.88 T magnetic field. The quadratic dependence of THz-radiation power by the SBR on the magnetic field is also observed for the first time.

  2. Pisces field chemical emissions monitoring project: Site 117 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 117. Site 117 is a 1 MW selective catalytic reduction (SCR) pilot plant. The host boiler is an 850 MW boiler which burned a residual fuel oil. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  3. Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population.

    PubMed

    Downes, S; Parker, T L; Mahon, R J

    2010-12-01

    In 1996, the Australian cotton industry adopted Ingard that expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac and was planted at a cap of 30%. In 2004-2005, Bollgard II, which expresses cry1Ac and cry2Ab, replaced Ingard in Australia, and subsequently has made up >80% of the area planted to cotton, Gossypium hirsutum L. The Australian target species Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) are innately moderately tolerant to Bt toxins, but the absence of a history of insecticide resistance indicates that the latter species is less likely to develop resistance to Bt cotton. From 2002-2003 to 2006-2007, F2 screens were deployed to detect resistance to CrylAc or Cry2Ab in natural populations of H. punctigera. Alleles that conferred an advantage against CrylAc were not detected, but those that conferred resistance to Cry2Ab were present at a frequency of 0.0018 (n = 2,192 alleles). Importantly, the first isolation of Cry2Ab resistance in H. punctigera occurred before significant opportunities to develop resistance in response to Bollgard II. We established a colony (designated Hp4-13) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony. Through specific crosses and bioassays, we established that the resistance present in Hp4-13 is due to a single autosomal gene. The resistance is fully recessive. Homozygotes are able to survive a dose of Cry2Ab toxin that is 15 times the reported concentration in field grown Bollgard II in Australia (500 microg/ml) and are fully susceptible to Cry1Ac and to the Bt product DiPel. These characteristics are the same as those described for the first Cry2Ab resistant strain of H. armigera isolated from a field population in Australia.

  4. Missile launch detection electric field perturbation experiment. Final report

    SciTech Connect

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch period failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.

  5. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    concrete mixture that did not employ humidity sensors and the admixtures used in this program. Yuan and Wan tried to predict the shrinkage strains and stresses in the Kim and Lee experiment, but did not include a creep analysis. Grasley and Lange conducted full restraint load tests on a concrete prism instrumented with humidity sensors over a 7 day curing period. The hypothetical case of full-scale placement of the Cap Concrete was also analyzed using the developed analytical methods. The calculation performed in this report is for scoping purposes only.

  6. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  7. First report of Klebsiella oxytoca strain coproducing KPC-2 and IMP-8 carbapenemases.

    PubMed

    Li, Bin; Sun, Jing-Yong; Liu, Qing-Zhong; Han, Li-Zhong; Huang, Xin-Hong; Ni, Yu-Xing

    2011-06-01

    The study shows for the first time the presence of the Klebsiella oxytoca strain fp10 coproducing plasmid-mediated KPC-2 and IMP-8 carbapenemases. The strain was obtained from the fecal sample of an inpatient and showed high-level resistance to imipenem and ertapenem (MICs > 32 μg/ml). Conjugation experiments demonstrated the transferability of the carbapenem-resistant determinants. The results of plasmid analysis and Southern hybridization revealed that the bla(KPC-2) gene was located on transferable plasmid pFP10-1 (∼54 kb), whereas the bla(IMP-8) gene was on transferable plasmid pFP10-2 (∼180 kb). Analysis of the genetic environment of these two genes has demonstrated that ISKpn6 and ISKpn8 are involved in the spread of the bla(KPC-2) gene, while the transposable elements IS26, intI1, and tniC might contribute to the dissemination of the bla(IMP-8) gene. The chimera of several transposon-associated elements indicated a novel genetic environment of IMP-type metallo-β-lactamase gene in Enterobacteriaceae from China.

  8. Evaluation of heat-strain-monitoring methods for workers in encapsulating, impermeable protective clothing. Final report

    SciTech Connect

    Eley, W.D.

    1987-05-01

    Heat strain for six young, healthy, acclimized men (mean age 26.2 yrs., weight 84.1 kg) was measured during moderate exercise at various ambient conditions (21.5 C, 28 C, 31.5 C with sunshine) while wearing fully encapsulating chemical protective suits with self-contained breathing apparatus. The total weight of the Coast Guard Chemical Response Suit was 26.3 kg. The subjects performed a total of 35 minutes (20 minutes exercise, as determined by V(O2) measurements was 383 kcal/hr. Heart rate and mean skin temperature rose significantly as ambient temperature increased. Under the most adverse ambient condition (31.5 C with sunshine), the mean heart rate and skin temperature were elevated 39.6 bpm and 4.1 C, respectively, over those recorded for control conditions. Significant increases in rectal temperature were not noted. A mean difference in weight loss was only observed with significance between control conditions and the most severe ambient environment. The five-minute recovery heart rate, recorded at minute 25 after 20 minutes of exercise, increased significantly as ambient temperature conditions became more adverse. It is concluded that wearers of impermeable protective clothing show progressive increases in heat strain as ambient temperature increases. This study indicates that recovery heart rate is probably the best indicator of heat tolerance endpoints for work in encapsulating, impermeable protective clothing.

  9. Final Technical Report - Use of Systems Biology Approaches to Develop Advanced Biofuel-Synthesizing Cyanobacterial Strains

    SciTech Connect

    Pakrasi, Himadri

    2016-09-01

    The overall objective of this project was to use a systems biology approach to evaluate the potentials of a number of cyanobacterial strains for photobiological production of advanced biofuels and/or their chemical precursors. Cyanobacteria are oxygen evolving photosynthetic prokaryotes. Among them, certain unicellular species such as Cyanothece can also fix N2, a process that is exquisitely sensitive to oxygen. To accommodate such incompatible processes in a single cell, Cyanothece produces oxygen during the day, and creates an O2-limited intracellular environment during the night to perform O2-sensitive processes such as N2-fixation. Thus, Cyanothece cells are natural bioreactors for the storage of captured solar energy with subsequent utilization at a different time during a diurnal cycle. Our studies include the identification of a novel, fast-growing, mixotrophic, transformable cyanobacterium. This strain has been sequenced and will be made available to the community. In addition, we have developed genome-scale models for a family of cyanobacteria to assess their metabolic repertoire. Furthermore, we developed a method for rapid construction of metabolic models using multiple annotation sources and a metabolic model of a related organism. This method will allow rapid annotation and screening of potential phenotypes based on the newly available genome sequences of many organisms.

  10. Field Guide for Arctic Oil Spill Behavior. Final report

    SciTech Connect

    Schulze, R.

    1984-11-01

    A Field Guide for Oil Spill Behavior was developed to provide the On-Scene Coordinator with the spill-behavior information needed to assess whether timely and adequate containment and removal actions are taken. The field guide describes arctic ice conditions, the physical properties of oil as it weathers, oil spill behavior in cold water and ice conditions, and spill retention potential for the Alaskan shore line. The guide then uses six spill scenarios to show the user how to apply spill behavior information to solve real-world problems.

  11. Genome sequences of Mannheimia haemolytica serotype A1 strains D153 and D193 from bovine pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report two genomes, one complete and one draft, from virulent bovine strains of Mannheimia haemolytica(strains D171 and D35)serotype A2 recovered prior to the field usage of modern antimicrobial drugs....

  12. Lake Ontario Tributaries: 2009-2010 Field Data Report

    EPA Pesticide Factsheets

    In 2002, EPA began a program to regularly monitor U.S. tributaries to Lake Ontario for the critical pollutants. This report provides program results from 2009-2010, and identifies changes in the monitoring program from prior years.

  13. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  14. International Field Studies 1973 Report to the Bahamian Government.

    ERIC Educational Resources Information Center

    International Field Studies, Inc., Columbus, OH.

    This document describes the International Field Studies program on Andros Island, Bahamas. Several sections detail the facilities and financing of the projects. Other sections discuss the general characteristics of Andros concerning the local culture and government. An outline of the environmental studies course used in this program is presented…

  15. Field Testing Vocational Education Metric Modules. Final Report.

    ERIC Educational Resources Information Center

    Oldsen, Carl F.

    A project was conducted for the following purposes: (1) to develop a workshop training package to prepare vocational education teachers to use vocational subject-specific modules; (2) to train those teachers to use the workshop package; (3) to conduct field tests of the metric modules with experimental and control groups; (4) to analyze, describe,…

  16. Teachers as Family Literacy Learners: Report from the Field.

    ERIC Educational Resources Information Center

    Handel, Ruth D.

    This paper describes a field-based effort in which practicing teachers collaborated with a university researcher to develop, inaugurate, and maintain a family literacy program. In this context, family literacy is an intergenerational program serving all members of the family, meeting the needs of adult family members as individuals, not just as…

  17. Size characterization of barley starch granules by gravitational field-flow fractionation: a rapid, low-cost method to assess the brewing capability of different strains.

    PubMed

    Reschiglian, Pierluigi; Zattoni, Andrea; Casolari, Sonia; Krumlova, Andrea; Budinska, Marcela; Chmelík, Josef

    2002-04-01

    Cereal starch occurs as two types of micrometer-sized granules, large and small. Large starch granules are more susceptible to enzymatic hydrolysis. When cereal starch is used for fermentation processes, as in brewing of barley malt, the barley strains with the highest content of large starch granules should be preferred. Gravitational field-flow fractionation (GFFF) is a separation method able to fractionate starch samples at low cost and short analysis time. In this work, the search for the best GFFF conditions for the analytical separation of barley starch within an inter-laboratory approach is presented. For different barley strains cultivated under monitored conditions the size distributions of starch granules is here quickly monitored and characterized by GFFF. As a consequence, dimensional characterization of barley starch can allow for the selection of the most suitable strains with the lowest content of non-degradable starch.

  18. Development of inactivated poliovirus vaccine from Sabin strains: A progress report.

    PubMed

    Okayasu, Hiromasa; Sein, Carolyn; Hamidi, Ahd; Bakker, Wilfried A M; Sutter, Roland W

    2016-11-01

    The Global Polio Eradication Initiative (GPEI) has seen significant progress since it began in 1988, largely due to the worldwide use of oral poliovirus vaccine (OPV). In order to achieve polio eradication the global cessation of OPV is necessary because OPV contains live attenuated poliovirus, which in rare circumstances could re-gain wild poliovirus (WPV) characteristics with potential to establish transmission. The GPEI endgame strategy for the period 2013-2018 recommends the globally synchronised sequential cessation of the Sabin strains contained in the OPV, starting with type 2 Sabin. The withdrawal of Sabin type 2 took place in April 2016, with the introduction of at least one dose of inactivated poliovirus vaccine (IPV) as a risk mitigation strategy. The introduction of IPV into 126 countries since 2013 has required a rapid scale-up of IPV production by the two manufacturers supplying the global public sector market. This scale-up has been fraught with challenges, resulting in reductions of 40-50% of initial supply commitments. Consequently, 22 countries will not be supplied until 2018, and another 23 countries will experience serious stock-outs. In the last decade repeated calls-for-action were made to the global community to invigorate their vision and investment in developing "new poliovirus vaccines" including the development of IPV from less-virulent strains, such as Sabin-IPV (S-IPV). The conventional Salk-IPV production is limited to high-income industrialized-country manufacturers due to the containment requirements (i.e., high sanitation, low force-of-poliovirus-infection, and high population immunity). The use of Sabin strains in the production of S-IPV carries a lower biosafety risk, and was determined to be suitable for production in developing countries, expanding the manufacturing base and making IPV more affordable and accessible in the long term. Significant progress in the S-IPV has been made since 2006. S-IPV is now licensed as S-IPV in

  19. PISCES field chemical emissions monitoring project: Site 112 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 112. Site 112 is a tangentially fired boiler firing residual oil. Site 112 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. Sampling at Site 112 was performed in July and August of 1992 for volatile organic compounds (VOCs) and mercury. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  20. Field of Bachelor's Degree in the United States: 2009. American Community Survey Reports. ACS-18

    ERIC Educational Resources Information Center

    Siebens, Julie; Ryan, Camille L.

    2012-01-01

    This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS). It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and…

  1. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Field testing for Innovative and Alternative Technology Report. 35.2211 Section 35.2211 Protection of Environment ENVIRONMENTAL PROTECTION... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee...

  2. Production data reporting and how it aids surveillance in thermal recovery fields

    SciTech Connect

    Dever, R.E.; Womack, F.A.

    1983-03-01

    Modern surveillance requirements in large thermal recovery oil fields overwhelm manual efforts at collection, retrieval, and reporting of operations and production data. The introduction of a customized data base management and reporting system for this purpose can benefit Operations and Engineering through increased production from timelier awareness of field operating conditions, reduced operating expenses, better steam utilization, and significant manpower productivity increases.

  3. OSEP Funded Field and Student Initiated Research. Final Report, September 1, 1983-August 31, 1984.

    ERIC Educational Resources Information Center

    Beling, Dorothy; And Others

    The report reviews results of a project to examine pilot approaches to documenting the contributions of research in improving educational practice. The project abstracted 110 currently funded research projects in progress (to facilitate dissemination to the field), processed final reports of field-initiated and student-initiated research funded by…

  4. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Field testing for Innovative and Alternative Technology Report. 35.2211 Section 35.2211 Protection of Environment ENVIRONMENTAL PROTECTION... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee...

  5. Existence of variant strains Fowlpox virus integrated with Reticuloendotheliosis virus in its genome in field isolates in Tanzania.

    PubMed

    Mzula, Alexanda; Masola, Selemani N; Kasanga, Christopher J; Wambura, Philemon N

    2014-06-01

    Fowlpox virus (FPV) is one example of poultry viruses which undergoes recombination with Reticuloendotheliosis virus (REV). Trepidation had been raised, and it was well established on augmented pathogenicity of the FPV upon integration of the full intact REV. In this study, we therefore intended at assessing the integration of REV into FPV genome of the field isolates obtained in samples collected from different regions of Tanzania. DNA extraction of 85 samples (scabs) was performed, and FPV-specific PCR was done by the amplification of the highly conserved P4b gene. Evaluation of FPV-REV recombination was done to FPV-specific PCR positively identified samples by amplifying the env gene and REV long terminal repeats (5' LTR). A 578-bp PCR product was amplified from 43 samples. We are reporting for the first time in Tanzania the existence of variant stains of FPV integrated with REV in its genome as 65 % of FPV identified isolates were having full intact REV integration, 21 % had partial FPV-REV env gene integration and 5 % had partial 5' LTR integration. Despite of the fact that FPV-REV integrated stains prevailed, FPV-REV-free isolates (9 %) also existed. In view of the fact that full intact REV integration is connected with increased pathogenicity of FPV, its existence in the FPV genome of most field isolates could have played a role in increased endemic, sporadic and recurring outbreaks in selected areas in Tanzania.

  6. Second-order nonlinear optical properties in a strained InGaN/AlGaN quantum well under the intense laser field

    NASA Astrophysics Data System (ADS)

    Karimi, M. J.; Vafaei, H.

    2015-02-01

    In this work, the optical rectification and the second harmonic generation coefficients in a strained InGaN/AlGaN quantum well are studied. Impacts of the spontaneous and piezoelectric polarization fields on the potential profile are taken into account. The energy levels and wave functions are calculated using the fourth-order Runge-Kutta method and optical properties are obtained using the compact density matrix approach. Effects of intense laser field, In composition, Al composition, the well width and barrier width on the second-order nonlinear optical properties are investigated. Results reveal that the confinement potential is considerably affected by the laser field and internal electric field. Results also indicate that the resonant peaks experience a red-shift with increasing the laser field strength and barrier width. Moreover, the resonant peaks suffer a blue-shift with the increase in In and Al compositions.

  7. Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid-cell interface.

    PubMed

    Song, Min Jae; Brady-Kalnay, Susann M; McBride, Sara H; Phillips-Mason, Polly; Dean, David; Knothe Tate, Melissa L

    2012-01-01

    During mesenchymal condensation, the initial step of skeletogenesis, transduction of minute mechanical forces to the nucleus is associated with up or down-regulation of genes, ultimately resulting in formation of the skeletal template and appropriate cell lineage commitment. The summation of these biophysical cues affects the cell's shape and fate. Here, we predict and measure surface strain, in live stem cells, in response to controlled delivery of stresses, providing a platform to direct short-term structure--function relationships and long-term fate decisions. We measure local strains on stem cell surfaces using fluorescent microbeads coated with Concanavalin A. During delivery of controlled mechanical stresses, 4-Dimensional (x,y,z,t) displacements of the bound beads are measured as surface strains using confocal microscopy and image reconstruction. Similarly, micro-particle image velocimetry (μ-piv) is used to track flow fields with fluorescent microspheres. The measured flow velocity gradient is used to calculate stress imparted by fluid drag at the surface of the cell. We compare strain measured on cell surfaces with those predicted computationally using parametric estimates of the cell's elastic and shear modulus. Finally, cross-correlating stress--strain data to measures of gene transcription marking lineage commitment enables us to create stress--strain--fate maps, for live stem cells in situ. The studies show significant correlations between live stem cell stress--strain relationships and lineage commitment. The method presented here provides a novel means to probe the live stem cell's mechanome, enabling mechanistic studies of the role of mechanics in lineage commitment as it unfolds.

  8. High field superconductor development and understanding project, Final Report

    SciTech Connect

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  9. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). As a part of the IRP program, field investigations were performed in 1992 to obtain the information needed to assess what future actions willneed to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities.

  10. Preliminary Report on the Feasibility of Using Synthetic Aperture Radar Interferometry to Image Localized Strain as a Discriminator of Geothermal Resources

    SciTech Connect

    Foxall, W

    2005-06-15

    Most producing geothermal fields and known geothermal resources in the Basin and Range province are associated with Quaternary active fault systems, within which hydrothermal fluids are presumed to circulate from depth to relatively shallow production levels through high permeability fractures. Research at the Dixie Valley field by Barton et al. (1997) indicates that hydraulically conductive fractures within the Stillwater fault zone are those that have orientations such that the fractures are critically stressed for normal shear failure under the regional tectonic stress field. In general, therefore, we might expect geothermal resources to occur in areas of high inter-seismic strain accumulation, and where faults are favorably oriented with respect to the regional strain tensor; in the case of Basin and Range normal faults, these would generally be faults striking normal to the direction of maximum extension. Expanding this hypothesis, Blewitt et al. (2003), based on preliminary, broad-scale analysis of regional strain and average fault strike in the northwestern Basin and Range, have proposed that geothermal resources occur in areas where fault-normal extension associated with shear strain is the greatest. Caskey and Wesnousky (2000) presented evidence that the Dixie Valley field occupies a 10 km-long gap between prehistoric Holocene ruptures of the fault segments on either side. Modeled maximum shear and Coulomb failure stress are high within the gap owing to the stress concentrations at the ends of the ruptures. These results suggest that a major contributing factor to the enhanced permeability at fault-hosted geothermal systems may be localized stress and strain concentrations within fault zone segments. This notion is generally consistent with the common occurrence of geothermal fields within fault offsets (pull-aparts) along strike-slip fault systems, where the local strain field has a large extensional component (e.g., Salton Sea and Coso). Blewitt et al

  11. North Field 󈨛 Rapid Runway Repair Test Report. Volume 1.

    DTIC Science & Technology

    1988-11-01

    the grass, south of the repair site. Paint, polymer, and solvent, as well as storage drums for paint and polymer wastes, were stored in a designated ...events began. Fire and crash rescue support was provided by North Auxiliary Field. A "hot brakes" area was designated at the intersection of the NE/SW...upheaval and sag limits for each repair. Computer simulations, using the results of a runway survey and a test limit of 80 percent design limit load for

  12. Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fascians: genome size and linear and circular replicon composition in virulent and avirulent strains.

    PubMed

    Pisabarro, A; Correia, A; Martín, J F

    1998-05-01

    Total DNA of virulent and avirulent strains of Rhodococcus fascians was resolved by pulsed-field gel electrophoresis (PFGE) into a discrete number of fragments by digestion with the endonucleases AseI and DraI. Restriction endonucleases PacI, PmeI, and SwaI yielded no fragments upon digestion of R. fascians genome, and all the other tested endonucleases recognizing 6 bp released too many fragments. The genome size was 5.6 megabases for the type strain R. fascians DSM 20669, and 5.8 megabases for the virulent R. fascians D188 strain. However the genome size of R. fascians CECT 3001 (NRRL B15096) was 8.0 megabases. No linear chromosome in the megabase range was observed under pulse conditions in which Saccharomyces cerevisiae and Schizosaccharomyces pombe chromosomes were perfectly resolved, suggesting that the R. fascians chromosome is circular. A new linear plasmid pIRN640 of 640 kb was found in the avirulent R. fascians CECT 3001 that did not hybridize with a probe internal to the fas region of pFiD188 known to be involved in plant pathogenicity in the virulent strain R. fascians D188. Virulence was correlated in all strains tested with the presence of the fas region. The AseI and DraI bands corresponding to the extrachromosomal elements were identified providing the basis for a physical map of this organism.

  13. Final Technical Report: Global Field Aligned Mesh and Gyrokinetic Field Solver in a Tokamak Edge Geometry

    SciTech Connect

    Cummings, Julian C.

    2013-05-15

    This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.

  14. Monitoring sustainable development. Reports from the field -- Latin America.

    PubMed

    Metcalfe, R

    1997-01-01

    The Fundacion Pro-Sierra Nevada (FPSN) has sponsored environmental and development projects in the Sierra Nevada mountains in Colombia for 10 years. This region, an acknowledged ecological treasure, has been plagued with armed conflict and deforestation. FPSN believed their efforts were having a positive impact on the environment, but, through their participation in the field-testing of a new research methodology, they now have valuable, new information upon which to base their projects and increase the likelihood of project success. The new methodology used by FPSN since 1994 is participatory and reflective analytical mapping (PRAM) and is based on Map Maker, a computer software program that creates simple maps of any geographic area from complex environmental and social information. PRAM methodology is based on the idea that sustainable development depends on both environmental and social factors. The FPSN field-testing involved identification of the six social and environmental indicators that would have the greatest impact on sustainability. Environmental data came from FPSN's files, and social data came from community leaders and experts. The data were used to rate each of the 11 municipalities in the region and to generate color-coded maps. This analysis revealed that three regions previously ignored by FPSN were home to the weakest economies and the highest level of social despair. This field work allowed FPSN to understand that sustainability requires social as well as environmental improvements and that FPSN needs to develop links with appropriate agencies to effect social changes.

  15. Nationwide survey of the development of drug resistance in the pediatric field in 2007, 2010, and 2012: drug sensitivity of Haemophilus influenzae serotype b strain in Japan.

    PubMed

    Baba, Hiroaki; Sato, Yoshitake; Toyonaga, Yoshikiyo; Hanaki, Hideaki; Sunakawa, Keisuke

    2015-04-01

    Based on the results of surveillance in the pediatric field conducted in 2007, 2010, and 2012, we examined the frequency of Haemophilus influenzae serotype b (Hib) strains, the susceptibility for Hib strains to various types of antimicrobial agent, and the relations to patients' background factors. Among all of Haemophilus influenzae, the frequency of Hib strains was 3.6% (14/386 strains) in 2007, 4.8% (23/484 strains) in 2010, 1.2% (5/411 strains) in 2012, and decreasing in 2012. Hib strains were isolated in patients with the following infections: nine patients with respiratory tract infections (upper respiratory tract infection, bronchitis, and pneumonia), three patients with sepsis, one patient with meningitis, and one patient with purulent inflammation of a tendon sheath in 2007; 11 patients with respiratory tract infections (upper respiratory tract infection, bronchitis, and pneumonia), four patients with sepsis, and eight patients with meningitis in 2010, demonstrating a relatively high frequency in patients with invasive infections. However, in 2012, Hib strains were isolated in only four patients with respiratory tract infections (upper respiratory tract infection) and one patient with bronchial asthma. Evaluation of background factors with pediatric patients in whom Hib strains were isolated showed that approximately 70% were male; majority was children under three years of age; and higher detection rates were also related to the background of patients who were attendant to daycare center, had siblings, had received no antimicrobial agents within the previous one month before collecting specimens. Throughout the surveillance between 2007 and 2012, antimicrobial agents with all phases' MICs ≤ 1 μg/mL were cefditoren, cefcapene, and cefteram in the oral β-lactams; tazobactam/piperacillin, ceftriaxone, cefotaxime, and meropenem in the injectable β-lactams; azithromycin in the macrolide; and levofloxacin in the quinolone. After 2010, MIC ranges were

  16. Develop a field grid system for yield mapping and machine control. Final report, Invention 544

    SciTech Connect

    1995-12-15

    The objective of this project was to build and test the Field Grid Sense system for yield mapping and machine control during harvesting. Secondly, to use Field Grid Sense system with chemical application equipment to demonstrate a workable in-field system. This document contains summarized quarterly reports.

  17. Electric-field-induced strain effects on the magnetization of a Pr0.67Sr0.33MnO3 film

    DOE PAGES

    Zhang, B.; Sun, C. -J.; Lu, W.; ...

    2015-05-26

    The electric-field control of magnetic properties of Pr0.67Sr0.33MnO3 (PSMO) film on piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two eg orbitals (3dz2 and 3dx2-y2) of Mn ions was responsible for the change of magnetic moment. This work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change inmore » eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less

  18. Cable Television and Education; A Report from the Field.

    ERIC Educational Resources Information Center

    National Cable Television Association, Inc., Washington, DC.

    Cable television, with its potential wealth of channels, provides education with a possible new tool through which existing services can be improved and new services devised. This report very briefly describes some of the possibilities for the use of cable television and gives a number of examples of ways in which communities are using cable…

  19. Field Report: Medical Response to Super Typhoon Haiyan.

    PubMed

    Noone, Michael

    2015-10-01

    This report describes the experience and observations during a humanitarian medical response 10 days after landfall of Typhoon Haiyan in the Leyte Island region of the Philippines. Loss of availability of local health care providers was observed to affect the ability of the local community to provide for immediate, post-event medical relief.

  20. Implementing Randomized Field Trials in Education: Report of a Workshop

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Hilton, Margaret, Ed.

    2004-01-01

    The Center for Education of the National Research Council (NRC) has undertaken a series of activities to address issues related to the quality of scientific education research. In 2002, the NRC released "Scientific Research in Education" (National Research Council, 2002), a report designed to articulate the nature of scientific education research…

  1. Effect of Rashba spin-orbit coupling and external magnetic field on electronic minibands in highly strained one-layer quantum ring superlattice

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, Vram; Manaselyan, Aram; Kirakosyan, Albert

    2017-04-01

    The Rashba spin-orbit coupling for electronic states in a strained one layer superlattice, composed of InAs/GaAs quantum rings has been investigated in the presence of uniform magnetic field directed perpendicular to the lattice plane. The dispersion surfaces and the energy dependencies on the magnetic field induction are obtained by the exact diagonalization procedure using the Fourier transformation to the momentum space. The characteristic splitting of the mini-bands as well as the crossings of the dispersion surfaces at the high symmetry points in the Brillouin zone have been observed. An upward shift of the minibands by about 60 meV due to strain in superlattice has been observed.

  2. Fielding The Automated Container Offering System: An interim report

    SciTech Connect

    Dixon, B. ); Rochette, D. ); Crandell, J. )

    1990-01-01

    The Automated Container Offering System (TACOS) is a cargo booking assistant currently being fielded in the International Traffic Directorate of the Military Traffic Management Command (MTMC). The expert system automates the selection process for type and size of SEAVAN containers, ports, carrier, and ship for containerized military cargo moving from the continental US to Europe. It is designed to perform all processing on simple cases and provide assistance to the human booker on complex cases. MTMC processes requests for {approximately}1000 containers per week on these routes. This paper is a case history which describes factors guiding development of TACOS to illustrate several themes which occur in other (military) logistics expert system projects.

  3. Year 1 Field Work Report: Utah Bat Monitoring Protocol

    DTIC Science & Technology

    2010-01-28

    IX. Disinfection Protocol for Bat Field Research/Monitoring, U.S. Fish and Wildlife Service (June 2009)…………………………. ………………………………….87   3 LIST...is not visible (except during a solar eclipse). Waxing Crescent - The Moon appears to be partly but less than one-half illuminated by direct...not visible (except during a solar eclipse). Waxing Crescent - The Moon appears to be partly but less than one-half illuminated by direct

  4. Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report

    SciTech Connect

    Dubey, M

    2016-03-01

    Laboratory (LANL) worked on the Pajarito Aerosol Couplings to Ecosystems (PACE) intensive operational period (IOP). PACE’s primary goal was to demonstrate routine Mobile Aerosol Observing System (MAOS) field operations and improve instrumental and operational performance. LANL operated the instruments efficiently and effectively with remote guidance by the instrument mentors. This was the first time a complex suite of instruments had been operated under the ARM model and it proved to be a very successful and cost-effective model to build upon.

  5. Annual report for 2004 wild horse research and field activities

    USGS Publications Warehouse

    Ransom, Jason; Singer, Francis J.; Zeigenfuss, Linda; Coates-Markle, Linda

    2005-01-01

    The Bureau of Land Management (BLM) and U.S. Geological Survey-Biological Resources Discipline (USGS/BRD) continued wild horse research in 2004, investigating the strategic research elements of fertility control and population estimation. Fertility control research was focused on the individual-based porcine zonae pellucid (PZP) field trials at the Pryor Mountain Wild Horse Range (WHR), Little Rock Cliffs WHR, and McCullough Peaks Wild Horse Management Area (WHMA). Aerial population estimation research was conducted on a number of western wild horse herds to test different survey techniques as applied to various habitat types and population sizes.

  6. Ion heating perpendicular to the magnetic field. Technical report

    SciTech Connect

    Andre, M.; Chang, T.

    1994-03-28

    Several theories of ion heating perpendicular to the geomagnetic field are briefly reviewed and assessed. Perpendicular heating of ions leading to the formation of ion conics is common in the ionosphere and magnetosphere. Ion conics at altitudes above a few thousand kilometers are often associated with waves around the ion gyrofrequency. It is concluded that the majority of these ion conics that are locally heated or generated over extended altitude regimes, may be best explained by ion cyclotron resonance heating. At lower altitudes, particularly in the region of discrete auroras, energization by turbulence around the lower hybrid frequency seems to be an important heating mechanism.

  7. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 4, Appendixes E and F: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  8. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains.

    PubMed

    Mihoub, Mouadh; El May, Alya; Aloui, Amine; Chatti, Abdelwaheb; Landoulsi, Ahmed

    2012-07-02

    This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.

  9. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    SciTech Connect

    Leung, L Ruby

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  10. Development of a portable field monitor for PCBs. Final report

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1983-01-01

    With the advent of recent regulations and those yet pending concerning allowable concentrations of polychlorinated biphenyls (PCBs), personnel in all aspects of the electric power industry, analytical support personnel, and those in the regulatory functions themselves have realized that the PCB problem, as well as these associated regulations, has far surpassed available monitoring capability. In short, detailed, stringent regulations are being set for contamination levels where no accepted ASTM procedure or instrumentation exists. The largest PCB problems occur in the form of PCB-contaminated oil in field transformers and storage containers, and pure askarel in transformers and capacitors. The most immediate need for a portable field instrument would be for use under PCB spill conditions. Portable monitors based on the principles of photoionization detection (PID) and infrared spectroscopy (IR) have been adapted and evaluated for this purpose. The latter includes both flow cell and horizontal multiple internal reflectance (HMIR) sampling configurations. Extensive work has also been performed on solvent-solvent and solvent-soil extractions, as well as PCB adsorption on packings, for use under spill conditions.

  11. Effects of magnetic field and the built-in internal fields on the absorption coefficients in a strained wurtzite GaN/AlGaN quantum dot

    NASA Astrophysics Data System (ADS)

    Minimala, N. S.; Peter, A. John

    2013-02-01

    Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.

  12. Microbial strain improvement for organosulfur removal from coal. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Kilbane, J.J. II; Ho, K.

    1993-05-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTSS possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop strains of microorganisms that possess higher levels of desulfurization activity. During the past quarter, the DNA sequence of the promoter region of the chloramphenicol resistance gene of pRF2 was determined and tentatively localized to a 50 bp region. To further define the important sequences of this promoter mutants were generated that may have altered promoters allowing higher levels of expression of the chloramphenicol resistance gene. The promoter region from twenty such mutants has been subcloned. Additionally, promoter probe vectors were used to isolate small DNA fragments from the chromosome that possess promoters. These studies will lead to the identification and/or the construction of particularly strong Rhodococcus promoters which will subsequently be used to express the desulfurization genes.

  13. Final Report on the Airborne Field Mill Project (ABFM) 2000-2001 Field Campaign

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Lewis, Sharon; Bateman, Monte, G.; Mach, Douglas M.; Merceret, Francis J.; Ward, Jennifer G.; Grainger, Cedric A.

    2004-01-01

    The Airborne Field Mill (ABFM) research program conducted under the direction of the John F. Kennedy Space Center during 2000 and 2001 is described. The purpose, methodology and initial results from the program are presented. Extensive appendices detailing the instrumentation used to collect the data are provided.

  14. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible

  15. OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report

    SciTech Connect

    Poellot, Michael

    2016-07-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights of the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.

  16. Atoms and Ions Interacting with Particles and Fields: Final Report

    SciTech Connect

    Robicheaux, Francis

    2014-09-18

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. The duration of the grant was the 10 year period from 8/2003 to 8/2013. All of the support from the grant was used to pay salaries of the PI, postdocs, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 65 peer reviewed publications over these 10 years with 8 of the publications in Physical Review Letters; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B, ...). I will disuss the results for the periods of time relevant for each grant period.

  17. Fractual interrelationships in field and seismic data. Final report

    SciTech Connect

    1997-01-07

    Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. The work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.

  18. Electromagnetic field exposure dosimeter. Final report, September 1992-May 1993

    SciTech Connect

    Feaga, A.C.; Hilliard, M.P.; Link, R.

    1994-07-28

    The growing concern about adverse health effects caused by electromagnetic radiation prompted the ideas for this dosimeter. Data have been presented that link prolonged exposure to electromagnetic radiation from power lines to leukemia and some types of cancer. At present, though, there is a lack of recording instrumentation to measure the prolonged exposure of an individual; thus, it is not possible to correlate properly the amount of exposure or dose to health effects. With the recent advances in small, low-power devices, a small measuring device can be developed. Once this is built, a large data base can be obtained to help correlate electromagnetic field exposure to health conditions. The objective of this project is to develop an instrument which can measure electromagnetic fields over a prolonged period of time. The instrument would be small, say about the size of a radio Walkman, and would be worn throughout the day while taking data, as the individual goes about normal activities. A PC would be used to retrieve the data from the instrument at the end of the day. The dosimeter comprises a triaxial ferrite-loaded coil sensor, a set of amplifiers and filters, analog-to-digital converters, a microcontroller, and random access data memory. The signals from the sensor are filtered into three frequency ranges: one to measure 60-Hz exposure and two harmonics, another to measure high-energy pulsed energy, and a third frequency range to record the activity level of the individual. The signals from the filters are digitized and read into a microcontroller. The microcontroller performs a few calculations and controls the flow of the data to either random access memory or to a computer. A computer is used to retrieve the data from the dosimeter, and can store and display the measured data.

  19. Report of an international collaborative study to evaluate the suitability of multiplex PCR as an identity assay for different sub-strains of BCG vaccine.

    PubMed

    Markey, Kevin; Ho, Mei M; Choudhury, Babna; Seki, Masaaki; Ju, Liu; Castello-Branco, Luiz R R; Gairola, Sunil; Zhao, Aihua; Shibayama, Keigo; Andre, Murielle; Corbel, Michael J

    2010-10-08

    Current methods for the identification of BCG vaccine in quality control settings involve acid-fast staining with microscopic examination. However, this method is unable to distinguish the many different sub-strains of BCG, or to differentiate BCG strains from virulent members of the Mycobacterium tuberculosis complex. A multiplex PCR (mPCR) which uses six target regions in mycobacteria has been developed to identify specific sub-strains of BCG. This study reports the findings from an international collaborative study to assess the accuracy, robustness and reproducibility of this mPCR method to differentiate BCG sub-strains. The method was found to fulfil these criteria successfully and was able to distinguish BCG sub-strains in vaccine preparations. The majority of the participants in the study generated the expected PCR product profiles indicating the method is also robust.

  20. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  1. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

    PubMed

    Wu, S Z; Miao, J; Xu, X G; Yan, W; Reeve, R; Zhang, X H; Jiang, Y

    2015-03-10

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  2. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    PubMed Central

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  3. Association of Job Strain With Cortisol and Alpha-Amylase Among Shift-Working Health Care Professionals in Laboratory and Field.

    PubMed

    Karhula, Kati; Härmä, Mikko; Sallinen, Mikael; Lindholm, Harri; Hirvonen, Ari; Elovainio, Marko; Kivimäki, Mika; Vahtera, Jussi; Puttonen, Sampsa

    2016-01-01

    Although the prevalence of work-related stress has increased, knowledge on the contributions of that stress to long-term adverse health effects is still lacking. Stress biomarkers can reveal early signs of negative health effects, but no previous studies have measured both acute stress reactions and long-term exposure to job strain using both salivary cortisol and α-amylase (AA). The present study examines the association between job strain and these biomarkers among shift-working female health care professionals in the laboratory and the field. The 95 participants were recruited from hospital wards categorized in either the top (high job strain [HJS] group, n = 42) or the bottom quartile of job strain (low job strain [LJS] group, n = 53), as rated by survey responses. Participants' self-perceived job strain was at least as high or low as the ward's average estimation. Saliva samples were collected during the Trier Social Stress Test (TSST), preselected morning and night shifts, and a day off. There was a larger increase in the cortisol concentration of participants in the HJS than in the LJS group (2.27- vs. 1.48-fold, respectively, nonsignificant) during the TSST. Participants in the HJS group also had higher salivary AA levels 30 min after awakening on the morning-shift day than those in the LJS group (p = .02), whereas the salivary cortisol awakening response on the day off was higher in the LJS group (p = .05, education as a covariate). The remaining stress-biomarker results did not differ significantly between groups. These data suggest that HJS in shift-working health care professionals is weakly associated with changes in stress biomarkers.

  4. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time.

  5. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain.

    PubMed

    Cruz, Andrea Paola Zuluaga; Ferreira, Virginia; Pianzzola, María Julia; Siri, María Inés; Coll, Núria S; Valls, Marc

    2014-03-01

    Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance.

  6. Report of the panel on geopotential fields: Gravity field, section 8

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor

    1991-01-01

    The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.

  7. Vadose Zone Transport Field Study: FY 2002 Status Report

    SciTech Connect

    Ward, Anderson L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2003-01-02

    This work reported here is part of the U. S. Department of Energy’s Science and Technology Initiative to develop improved conceptual models of flow and transport in the vadose zone, particularly for the Hanford Site, Washington. The National Academy of Sciences has identified significant knowledge gaps in conceptual model development as one reason for discovery of subsurface contamination in unexpected places. Inadequate conceptualizations limits, not only the understanding of long-term fate and transport, but also the selection and design of remediation technologies. Current conceptual models are limited partly because they do not account for the random heterogeneity that occurs under the extremes of very nonlinear flow behavior typical of the Hanford vadose zone. A major improvement in conceptual modeling of the Hanford vadose zone includes a better understanding and description of soil anisotropy, a property that appears to control much of the subsurface flow and transport in layered sediments at the Hanford Site.

  8. Early dissemination of OXA-72-producing Acinetobacter baumannii strain in Colombia: a case report.

    PubMed

    Saavedra, Sandra Yamile; Cayô, Rodrigo; Gales, Ana Cristina; Leal, Aura Lucia; Saavedra, Carlos Humberto

    2014-01-01

    Nosocomial infections caused by carbapenem-resistant Acinetobacter baumannii isolates have reached epidemic levels in past decades. Currently this microorganism is responsible for outbreaks of difficult eradication and with high mortality rates worldwide. We herein report a rare case of an OXA-72-producing A. baumannii isolate colonizing a 47-year-old male patient with peritonitis due to abdominal stab wound, four years earlier than the first report of this carbapenemase in Acinetobacter pittii in Colombia. Although OXA-72 presents a low prevalence compared with OXA-23, our study demonstrated that A. baumannii isolates carrying the blaOXA-72 gene were present in the hospital environment in Colombia and could act as a reservoir for further spread to other Acinetobacter species, like A. pittii, causing carbapenem-resistance.

  9. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    SciTech Connect

    Buseck, Peter R

    2016-04-01

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensional (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.

  10. Cooperative field test program for wind systems. Final report

    SciTech Connect

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  11. Characterization of Black Carbon Mixing State Field Campaign Report

    SciTech Connect

    Sedlacek, A.; Davidovits, P.; Lewis, E. R.; Onasch, T. B.

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  12. Transfer of the virulence-associated protein A-bearing plasmid between field strains of virulent and avirulent Rhodococcus equi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virulent and avirulent isolates coexist in equine feces and the environment and serve as a source of infection for foals. The extent to which conjugative plasmid transfer occurs between these strains is unknown and is important for understanding the epidemiology of Rhodococcus equi infections of fo...

  13. Parsivel Disdrometer Support for MAGIC Field Campaign Report

    SciTech Connect

    Kollias, Pavlos; Bartholomew, Mary Jane

    2016-06-01

    In the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) was deployed on the Horizon Lines cargo ship Spirit traversing a route between Los Angeles, California and Honolulu, Hawaii for one full year. The transect for this deployment was chosen specifically because it crosses the stratocumulus-to-cumulus transition of the North-East Pacific, a region of great climatic interest and a close approximation to the transect used for several focused model intercomparison efforts. The cloud type and cover along this transect vary from low marine stratocumulus with high areal coverage near the California coast to isolated shallow cumulus with much lower areal coverage in the trade wind regime near Hawaii. The low marine stratocumulus decks, with their high albedo, exert a major influence on the shortwave radiation budget in the ocean environment, and thus provide an extremely important forcing of Earth’s climate. The trade cumulus clouds play a large role in the global surface evaporation and also in Earth’s albedo. One of the important science drivers of the MAGIC campaign was to measure the properties of clouds and precipitation, specifically cloud type, fractional coverage, base height, physical thickness, liquid water path (LWP), optical depth, and drizzle and precipitation frequency, amount, and extent. Retrievals of cloud and precipitation properties during the MAGIC campaign relied critically on the calibration of the AMF2 radar systems. For MAGIC this included the KAZR and M-WACR, both fixed zenith-pointing systems, and the 1290 MHz beam steerable wind profiler.

  14. Smart Infrared Inspection System Field Operational Test Final Report

    SciTech Connect

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar; Lascurain, Mary Beth

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  15. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  16. Enhanced Soundings for Local Coupling Studies Field Campaign Report

    SciTech Connect

    Ferguson, Craig R; Santanello, Joseph A; Gentine, Pierre

    2016-04-01

    This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12 intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.

  17. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report

    SciTech Connect

    Vaughan, Geraint

    2016-05-01

    The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics (CAST) campaign. This campaign was a collaboration between the National Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and the United Kingdom’s (UK) Natural Environment Research Council (NERC) to study the composition of the Tropical Tropopause Layer (TTL) and the impact of deep convection on this composition. There are three main areas of interest: i) transport of trace gases in the tropical atmosphere (especially short-lived halogenated compounds that can be lifted rapidly into the TTL, where they augment the stratospheric loading of these species); ii) formation of cirrus and its impact on the TTL; and iii) the upper-atmosphere water vapor budget. Overall, the aim was to improve understanding of the dynamical, radiative, and chemical role of the TTL. The Manus operation was a joint experiment between the Universities of Manchester and Cambridge and the UK National Centre for Atmospheric Science (NCAS). It consisted of two elements: an ozonesonde campaign to measure ozone vertical profiles through the TTL, and ground-based monitoring of ozone, halogenated hydrocarbons, and greenhouse gases to determine the composition of lower-boundary-layer air in the Warm Pool region. Thanks to the support from the ARM Climate Research Facility and the exemplary collaboration of ARM staff in the region, the campaign was very successful.

  18. Oral re-vaccination of Eurasian wild boar with Mycobacterium bovis BCG yields a strong protective response against challenge with a field strain

    PubMed Central

    2014-01-01

    Background Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. Results BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. Conclusions Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions. PMID:24766746

  19. Internal electrical and strain fields influence on the electrical tunability of epitaxial Ba0.7Sr0.3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bagdzevicius, S.; Mackeviciute, R.; Ivanov, M.; Fraygola, B.; Sandu, C. S.; Setter, N.; Banys, J.

    2016-03-01

    Perpetual demand for higher transfer speed and ever increasing miniaturization of radio and microwave telecommunication devices demands new materials with high electrical tunability. We have investigated built in electrical and strain fields' influence on the electrical tunability in Ba0.7Sr0.3TiO3 thin film hetero-system grown by pulsed laser deposition technique. We observed the built in electrical field by local piezo-force microscopy (as deflected hysteresis loops) and macroscopic impedance analysis (as asymmetric tunability curves), with the calculated 88 kV/cm built in field at room temperature. Negative -1.4% misfit strain (due to clamping by the substrate) enhanced ferroelectric phase transition temperature in Ba0.7Sr0.3TiO3 thin film by more than 300 K. Built in fields do not deteriorate functional film properties—dielectric permittivity and tunability are comparable to the best to date values observed in Ba1-xSrxTiO3 thin films.

  20. Two-Column Aerosol Project (TCAP) Field Campaign Report

    SciTech Connect

    Berg, Larry K

    2016-05-01

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found to be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both aerosol and

  1. Resolving the velocity and strain fields in the Upper Rhine Graben Area from a Combination of Levelling, GNSS and InSAR

    NASA Astrophysics Data System (ADS)

    Westerhaus, Malte; Fuhrmann, Thomas; Mayer, Michael; Zippelt, Karl; Heck, Bernhard

    2016-04-01

    The Upper Rhine Graben (URG), located in the tri-national region between Germany, France and Switzerland is the most prominent segment of the European Cenozoic rift system. In recent times, the URG area is characterised by small tectonic movements (less than 1 mm/a) and moderate seismicity up to M=5. Historically, earthquake magnitudes exceeding M=6 have been reported showing that the seismic hazard is quite high. The contemporary tectonic surface deformations are superimposed by displacements caused by anthropogenic activities in various locations in the area, such as coal and potash mining, groundwater usage, oil extraction, geothermal energy and CO2 storage. We use data sets from levelling campaigns, InSAR and permanent GNSS sites to raise an inventory of the current 3D surface displacements and strain rates in the URG with high precision and high spatial resolution. Precise levellings carried out by the surveying authorities of Germany, France and Switzerland since the end of the 19th century have been combined to form a network of levelling lines. A kinematic network adjustment is applied on the levelling data, providing an accurate solution for vertical displacement rates at the levelling benchmarks. InSAR is used to fill gaps in the interior of the levelling loops and to significantly increase the number of points. All the available ERS-1/2 and Envisat scenes from two acquisition geometries covering a period from 1992 to 2000 and 2002 to 2010, resp., are processed according to the Persistent-Scatterer approach. In addition, coordinate time series of 76 permanent sites of the GNSS URG Network are used to support the derivation of the horizontal velocity field of the region. Daily GPS-solutions obtained in differential mode are available since 2004. In a first step, estimates of the surface displacement rates are derived from each technique starting from the raw data. Subsequently, the single-technique deformation estimates are mathematically combined to a 3D

  2. Automated water monitor system field demonstration test report. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.

  3. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  4. Genetic and immunologic relationships between vaccine and field strains for vaccine selection of type A foot-and-mouth disease virus circulating in East Asia.

    PubMed

    Lee, Seo-Yong; Park, Min-Eun; Kim, Rae-Hyung; Ko, Mi-Kyeong; Lee, Kwang-Nyeong; Kim, Su-Mi; Shim, Hang-Sub; Kim, Byounghan; Lee, Jong-Soo; Park, Jong-Hyeon

    2015-01-29

    Of the seven known serotypes of foot-and-mouth disease virus (FMDV), type A has the most diverse variations. Genetic variations also occur frequently at VP1, VP2, VP3, and VP4 because these proteins constitute the viral capsid. The structural proteins of FMDV, which are closely related to immunologic correlations, are the most easily analyzed because they have highly accessible information. In this study we analyzed the type A vaccine viruses by alignment of available sequences in order to find appropriate vaccine strains. The matching rate of ASIA topotype-specific sites (20 amino acids) located on the viral surface, which are mainly VP1 and VP2, was highly related to immunologic reactivity. Among the available vaccines analyzed in this study, we suggest that A Malaysia 97 could be used as a vaccine virus as it has the highest genetic similarity and immunologic aspects to field strains originating in East Asia.

  5. [Status of resistance to insecticides in field strains of the Blatella germanica species (Dictyoptera: Blattellidae) from Pinar del Río municipality].

    PubMed

    Díaz, Cristina; Enríquez, Dagoberto; Bisset, Juan A

    2003-01-01

    A study of the levels of resistance to 10 insecticides: 4 organophosphate compounds (malathion, clorpirifos, methylpyrimifos and diazinon), 2 carbamates (propoxur and bendiocarb) and 4 pyrethroids (cypermethrin, deltamethrin, lamdacyhalothrin and cyfluthrin) was conducted in 5 strains of Blatella germanica (Linnaeus, 1767) collected in the field of Pinar del Rio. High levels of resistance to bediocarb, cypermethrin and deltamethrin insecticides; low level of resistance to diazinon; from moderate to high resistance to methyl-pyrimifos, as well as susceptibility to one insecticide in each study group: clorpirifos (organophosphate), propoxur (carbamate) and cyfluthrin (pyrethroid); were detected. Only a strain presented low resistance to malathion (Inicio Carlos Manuel) and to lambda-cyhalothrin (Consejo Celso Maragoto). Cypermethrin-deltamethrin cross resistance was evidenced. It did not affect the susceptibility to lambda-cyalothrin and cyfluthrin.

  6. Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea

    PubMed Central

    Pacheco, Juan M.; Lee, Kwang-Nyeong; Eschbaumer, Michael; Bishop, Elizabeth A.; Hartwig, Ethan J.; Pauszek, Steven J.; Smoliga, George R.; Kim, Su-Mi; Park, Jong-Hyeon; Ko, Young-Joon; Lee, Hyang-Sim; Tark, Dongseob; Cho, In-Soo; Kim, Byounghan; Rodriguez, Luis L.; Arzt, Jonathan

    2016-01-01

    Since the early 2000s outbreaks of foot-and-mouth disease (FMD) have been described in several previously FMD-free Asian nations, including the Republic of Korea (South Korea). One outbreak with FMD virus (FDMV) serotype A and two with serotype O occurred in South Korea in 2010/2011. The causative viruses belonged to lineages that had been spreading in South East Asia, far East and East Asia since 2009 and presented a great threat to the countries in that region. Most FMDV strains infect ruminants and pigs, as it happened during the outbreaks of FMDV serotype O in South Korea. Contrastingly, the strain of serotype A affected only ruminants. Based upon these findings, the intention of the work described in the current report was to characterize and compare the infectivity, virulence and transmission of both strains under laboratory conditions in cattle and pigs, by direct inoculation and contact exposure. As expected, FMDV serotype O was highly virulent in both cattle and swine by contact exposure and direct inoculation. Surprisingly, FMDV serotype A was highly virulent in swine, but was less infectious in cattle by contact exposure to infected swine or cattle. Interestingly, similar quantities of aerosolized FMDV RNA were detected during experiments with viruses of serotypes O and A. Specific virus-host interaction of A/SKR/2010 could affect the transmission of this strain to cattle, and this may explain in part the limited spread of the serotype A epizootic. PMID:26735130

  7. Speciation and strain-typing of Staphylococcus agnetis and Staphylococcus hyicus isolated from bovine milk using a novel multiplex PCR and pulsed-field gel electrophoresis.

    PubMed

    Adkins, P R F; Middleton, J R; Calcutt, M J; Stewart, G C; Fox, L K

    2017-03-22

    Staphylococcus hyicus and Staphylococcus agnetis are two coagulase variable staphylococcal species that can be isolated from bovine milk and are difficult to differentiate. The objectives of this study were to characterize isolates of bovine milk origin from a collection that had previously been characterized as coagulase positive S. hyicus based on phenotypic speciation methods and to develop a PCR-based method for differentiating S. hyicus, S. agnetis, and S. aureus. Isolates (n = 62) were selected from a previous study in which milk samples were collected from cows on 15 dairy herds. Isolates were coagulase tested and speciated using housekeeping gene sequencing. A multiplex PCR to differentiate S. hyicus, S. agnetis, and S. aureus was developed. Pulsed-field gel electrophoresis was conducted to strain type isolates. Based on gene sequencing, 44/62 of the isolates were determined to be either S. agnetis (n = 43) or S. hyicus (n = 1). Overall, 88% (37/42) of coagulase positive S. agnetis isolates were found to be coagulase positive at 4 hours. Herd-level prevalence of coagulase positive S. agnetis ranged from 0 to 2.17%. Strain-typing identified 23 different strains. Six strains were identified more than once and from multiple cows within the herd. Three strains were isolated from cows at more than one time point, with 41-264 days between samplings. These data suggest that S. agnetis is likely more prevalent on dairy farms than S. hyicus Also, some S. agnetis isolates in this study appeared to be contagious and associated with persistent infections.

  8. Evaluation of Cross-Protection of a Lineage 1 West Nile Virus Inactivated Vaccine against Natural Infections from a Virulent Lineage 2 Strain in Horses, under Field Conditions.

    PubMed

    Chaintoutis, Serafeim C; Diakakis, Nikolaos; Papanastassopoulou, Maria; Banos, Georgios; Dovas, Chrysostomos I

    2015-09-01

    Although experimental data regarding cross-protection of horse West Nile virus (WNV) vaccines against lineage 2 infections exist, the cross-protective efficacy of these vaccines under field conditions has not been demonstrated. This study was conducted to evaluate the capability of an inactivated lineage 1 vaccine (Equip WNV) to protect against natural infections from the Nea Santa-Greece-2010 lineage 2 strain. In total, 185 WNV-seronegative horses in Thessaloniki, Greece, were selected during 2 consecutive years (2011 and 2012); 140 were immunized, and 45 were used as controls. Horses were examined for signs compatible with WNV infection. Neutralizing antibody titers against the Greek strain and the PaAn001/France lineage 1 strain were determined in immunized horses. WNV circulation was detected during both years in the study area. It was estimated that 37% and 27% of the horses were infected during 2011 and 2012, respectively. Three control animals developed clinical signs, and the WNV diagnosis was confirmed. Signs relat